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1. Introduction

Let N be a positive integer, and consider the space of automorphic forms of level IV,
weight k£ € 7Z, and nebentypus ¢ modulo N. There are at least two natural choices of how
to decompose the space spanned by the Eisenstein series. One is to use Eisenstein series
E.(z,s,1) attached to cusps and the other is to use Eisenstein series E, , (%, s) attached
to pairs of Dirichlet characters, which has a natural interpretation from representation

* This material is based upon work supported by the National Science Foundation under agreement No.
DMS-1702221. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

E-mail address: myoung@math.tamu.edu.

https://doi.org/10.1016/j.jnt.2018.11.007
0022-314X/© 2018 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jnt.2018.11.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:myoung@math.tamu.edu
https://doi.org/10.1016/j.jnt.2018.11.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2018.11.007&domain=pdf

2 M.P. Young / Journal of Number Theory 199 (2019) 1-48

theory. The decomposition along cusps is quite convenient from the point of view of
the spectral decomposition and the Parseval formula since in essence Eisenstein series
attached to inequivalent cusps are orthogonal. The decomposition with Dirichlet charac-
ters is friendly when studying the L-functions associated to automorphic forms. Clearly,
these two features are in conflict with each other.

One of the main goals of this paper is to explicitly work out the translations between
these different bases, and to use this information to derive some other useful formulas.
These change of basis formulas appear as Theorems 6.1 and 7.1.

Along the way, we derive the Fourier expansion (see Proposition 4.1), allowing us to
derive the functional equation of E,, ,,(2,s) under s — 1 — s. The Fourier expansion
also shows that F,, ,, is an eigenfunction of all the Hecke operators, and gives explicit
formulas for the Hecke eigenvalues. We additionally examine the Mellin transform of the
Eisenstein series E,, y,(iy, s), leading to a complementary functional equation related
to the functional equation of the Dirichlet L-functions.

After developing the change of basis formulas, in Section 8 we examine the orthogo-
nality properties of the various types of Eisenstein series.

In Section 9, we explicitly derive the action of the Atkin—Lehner operators. This is
helpful for studying the behavior of Eisenstein series around different cusps (e.g. see [BJ]
for a recent application).

As a culmination of all this work, in Section 10 we derive a Bruggeman—Kuznetsov
formula restricted to newforms, in the special case where the level is squarefree, the
nebentypus is principal, and the weight is 0. This is an extension of the derivation of
the Petersson formula for newforms of [PY], which proceeds by a sieving argument.
The method of [PY] may be easily modified to sieve for cuspidal Maass newforms, but
unfortunately the same approach does not immediately carry over to sieve the continuous
spectrum. This sieving argument is a requirement to prove the Bruggeman—Kuznetsov
formula for newforms. The material developed in this paper may be used to sieve the
Eisenstein series in a close analogy to the cusp forms.

In [PY], the newform Petersson formula is the crucial initial step to set up the cu-
bic moment which is in turn used to prove a strong subconvexity bound for twisted
L-functions L(f ® x4, 1/2) where f is a holomorphic newform of squarefree level N, and
Xq is a quadratic character of conductor ¢. This paper generalized the groundbreaking
work of Conrey and Iwaniec [CI], which required N|g. With the aid of the newform
Bruggeman-Kuznetsov formula, the tools are now in place to allow for f to be a Maass
newform. The arithmetical aspects of [PY] will be the same, but some of the analytical
aspects (e.g., integral transforms with Bessel functions) will look somewhat different.
Conrey and Iwaniec [CI] successfully treated both the holomorphic forms and Maass
forms in tandem, so it is reasonable to expect that the subconvexity bound of [PY] may
be extended to Maass forms. A motivation for this extension is the hybrid equidistri-
bution of Heegner points as both the level and discriminant vary (as in [LMY]); such a
result would immediately improve many of the exponents in [LMY].
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An overarching goal of this paper is to provide, in one place, and in explicit form,
many of the basic properties of Eisenstein series, using the classical language. Many
special cases (e.g., with principal nebentypus, or primitive nebentypus, or weight k = 0,
or with holomorphic forms, ...) are scattered throughout the literature, and the author
found [Hux] [I1] [12] [DFI] [DS] [KL] particularly useful references.

2. Acknowledgments

I thank Peter Humphries and Jiakun Pan for useful feedback and corrections on earlier
drafts of this paper, and especially E. Mehmet Kiral for many conversations on this work.
T also thank Andrew Booker and Min Lee for informing me of their independent work with
Andreas Stombergsson on the change-of-basis formulas, and Gergely Harcos, Abhishek
Saha, and Rainer Schulze-Pillot for conversations on orthogonalization. Finally, I thank
the referee for valuable suggestions.

3. Definitions
3.1. Fisenstein series attached to cusps

Let I' = T'g(V), suppose v is a Dirichlet character modulo N, and let k € Z. We
study automorphic functions f on I' of weight k and nebentypus v, which satisfy the
transformation formula

F(v2) = i(v, 2) (1) f(2),
where ¥ (y) = ¢(d), with d denoting the lower-right entry of -, and where

_cz+d
ez +d|

J(v,2)

Since —I € T'y(V), a necessary condition for a nonzero automorphic function to exist is
that

Let a be a cusp for I'; and let o4 be a scaling matrix for a, which means o,00 = a, and
o700 = Too = {&( ! ll’) :beZ}. Let 74 = 04 1 1)0;1, so that +7, generate I'y, the
stabilizer of a in T'. We say that a is singular for 1 if 1)(74) = 1. The Eisenstein series of

nebentypus ¢ and weight k attached to the cusp a is defined by

Ea(z,5,9) = Y $(ilog'y,2) " (Im og'v2)°, (3.1)

YET AT
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initially for Re(s) > 1. Since we generally have no need to combine Eisenstein series with
different weights, we suppress the weight in the notation.

The definition of singular given above disagrees with some definitions in the literature,
which seemingly allowed (74) to be —1 for k odd. Under this assumption, Eq4(z, s, )
would be ill-defined, because the summand would change sign under v — 747.

One may check that F, is independent of the choice of scaling matrix. Moreover, if a
and b = ya are I'-equivalent cusps, then

Bya(z,5,9) = () Ea(2, 5, 9), (3:2)
correcting a remark of [DFI, p. 505].
3.2. Fisenstein series attached to characters
We draw inspiration from Huxley’s paper [Hux], but refer the reader to [KL, Chapter

5] for a more motivated definition. Let x1,x2 be Dirichlet characters modulo ¢, ¢a,
respectively, with y1(—1)x2(—1) = (=1)*. Define

> (q2y)°x1(c)x2(d) (lcqzz +d| )k. (3.3)

1
E ==
X1.x2 (%5 8) 9 lcqaz + d|?s cqoz +d

(e, d)=1

One can check directly that E,, ,, is automorphic on I'g(g1g2) of weight k& and neben-
typus x1¥z. However, we can give a more structural view as follows.! With x1,x2 as
above, define

o(4 7) =l (3.0

for a,b,c,d € Z and ad — bc = 1. Also define o = (‘/{TQ ), which satisfies 0z = ¢a2.

1/vaz
Then E,, y,(2,s) = Eg(z,s), where Ej is defined by
Eg(z,s)= > 0(1)i(v,02) *Im(yo2)*. (3-5)

Y€l \I'o (1)

It is easy to check that 0To(q1g2)0 ! = T'o(q1,q2), where this latter group denotes the
subgroup of SLo(Z) with lower-left entry divisible by g1, and upper-right entry divisible
by ¢2. Moreover, if 7 € Ty(q1¢2), and 7" € T'g(q1, ¢2) is defined by o7 = 7’0, then the
lower-right entry of 7/ is the same as the lower-right entry of 7. Finally, one directly
checks that if v € SLy(Z) and 7/ € Tg(q1, q2), then

! The author thanks E. Mehmet Kiral for pointing out this setup.
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0(yr") = 0(v) (Xix2)(d), (3.6)

where d’ is the lower-right entry of 7’.
With these properties, we may now check the automorphy of Ey. For 7 € T'v(q1¢2),
and 7’ defined by o7 = 7’0, we have

Eo(12,8) = Z 0(y)j (v, 7'c2) FIm(y1'02)*. (3.7)
7€ET\I'0(1)
1

1 —k

Changing variables by v — 7/ =1, using j(y7' ~!,7'02) 7% = j(y,02)7Fj(7',02)F, and
finally j(7/,02) = j(7, z) (check this one directly from the definitions), we complete the
proof that Fy has weight k, nebentypus x1%z, and level g;¢s.

By Mobius inversion, we have

L (29)°x1(e)x2(d) [ legaz +d[\*
L(2s, x1x2) Ey, x2 (2, 8) = ) E leqaz + d|?s ( caoz +d ) =1 Gy, x2(2,8), (3.8)
odel q2 q2

with the prime denoting that the term ¢ = d = 0 is omitted. With k£ = 0, Huxley’s
notation for our Ey, y,(2,5) is EX2(q22, 5), and our Gy, ,(z, s) is Huxley’s BY?(gaz, s).
The reader interested in holomorphic Eisenstein series of weight & > 3 should consider

- 1 x1(c)xz2(d)
By xa .k (2) = (929) k/zExmm (z, %) D) Z mv (3.9)
(=1 €12

which satisfies By, v, x(%55) = (cz + d)* (x1X2)(d) By, .k (2), for (* g) € To(q1¢2).

3.8. Remarks

We refer the reader to [DFI, Section 4] for a more comprehensive overview of the space
L?(To(N)\H, 1), including a discussion on the relevant differential operators.

Weisinger [W] has developed a newform theory for Eisenstein series of weight k and
nebentypus ¥ in the holomorphic setting. The newforms of level ¢;¢g2 are the functions
Ey. x»,k(2) where x; is primitive modulo ¢;, i = 1,2, and xi1x2 = %. The space of
Eisenstein series of level N is spanned by E,, y, »(Bz) where Bqiqz2|N.

In [Hux], Huxley calculated the scattering matrix for the congruence subgroups I'g(N),
I'1(N), and I'(N), with trivial nebentypus and weight 0. For each of these groups, he
related Eisenstein series attached to characters to Eisenstein series attached to cusps on
T(N).
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4. Fourier expansion and consequences
4.1. The Fourier expansion

For k = 0, Huxley [Hux] stated (without proof) the Fourier expansion of Ey, y,(z,s);
a proof may be found in [KL, Section 5.6]. For general k, and x;X3z primitive, [DFI] have
developed the Fourier expansion. One may also find a Fourier expansion for E, , 5 in
[DS]. The author was not able to locate a formula for general k, s, x1, Xa.

It is convenient to consider the “completed” Eisenstein series defined by

* (q2/7T)S k
B\, (z,8) := Wf(s + 5)L(25, x1x2) By, x2 (2, 5),

where 7(x2) denotes the Gauss sum.

Proposition 4.1. Suppose x; is primitive modulo ¢;, i = 1,2, and (x1x2)(—1) = (=1)*.
Then

I(s+ %)

* o« A (n,s)
EX17X2 (Z’ S) = €x1,x2 (ya 5) + Z e(nx) F(S + g Sgl’l(’ﬂ)) W% sgn(n),sfé(

w0 VInl

4dr(nly),

where

—S
*

_ 2s m k s
€y o (Y5 8) = 5q1:1Q26WF(5 + 3)L(2s, x2)y

(4.1)
g 95 T U179 k —, 1-s
+ 0go=147 %F(l —s+5)L(2-2s8,x1)y %,
_ b\5—3
Mo (1:8) = xalsgn(n) Y- xa(@xa®)(2) (4.2)
ab=|n/|

and Wo, g is the Whittaker function. In particular, if k =0, then

B 30 (2:8) = €5 50 (4:8) + 205 D Ao (1, 8)e(na) K,y (2mnly).
n#0

Convention. Here and throughout we take the convention that the principal character
modulo 1 is primitive.

Proof. We have

Griixa(2,8) = Z e(na)en(y), cn(y)

nez

Gy xo (T + 1y, s)e(—nz)dx,

Il
o _

and inserting (3.8), we have
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Z x1(6)x2(d)(q2y) / (lcq2<x+iy)+d‘)kdaz
chZ lega (z +zy —|—d|2"‘ cqz(x +1y) +d '

Extracting the term ¢ = 0, which only occurs for ¢; = 1, we obtain

cn(y) = 5q1=15n=0(Q2y)sL(23a X2) + bn(y),

where
y) = Z:l ;Xl(c)xz (g29) / |ch T —|— iy) + d|?s (tgzgi ::—— Zzi ——:: :il|>kdx
c>1dez
Changing variables * — = — %, we obtain
bt = e © g () [ () e
> d

cq2

Next break up the sum over d into arithmetic progressions modulo cgs, giving

7‘+Zcq2+1

bal0) = (@)’ Y- 20 S )y [t (e,

n - 2 2 .
=i (ca2)* Mmodcq?) cq2 =2 IxHyI S\ x4y

cq2

The sum over ¢ forms the complete integral over R, and the sum over r satisfies

nr
> xale( =) = edleln)r(xz,n/e) = ed(eln)xa(n/)7(x2),

r (mod cq2) 42
where the final equation holds for all n provided x is primitive (see [IK, (3.12)]). The
integral may be evaluated with [GR, 3.384.9], but it takes some care to transform the
integral into this template. We have

o0
e(—nx) <|:r+z'y|>kdx: 1—9s e(—nzy)
|z + iy|?° \ = + iy |z + |25—*

— 00 — 00

(z +14) *dx.

Then we note (z+i)~F = i *(1—iz) =%, [z+i[2F = |[14iz|>F = (14iz)*~ % (1—iz)* 2
which is valid since arg(1l +ix) € (— 71'/27 7/2). Thus the integral we want is

i



M.P. Young / Journal of Number Theory 199 (2019) 1-48

oo

1-25,—k / exp(—2minzy)dx
Y ¢ '
(1+ix)s~2 (1 —iz)s*ts

27)2—5(2 s—1
12s;k (27) (k m|n|y) & gan(n).e— 1 (47[0[Y),
I(s+gsgn(n)) 270"

=Yy

valid for n # 0 and Re(s) > 1. This simplifies as

—s;—k s s—1
Yy % s n
W 4m|nly).
F(S—l— gsgn(n)) %sgn(n),s—%( | |y)

We note the special cases (see [GR, (9.235.2)], [DFI, (4.21)]):

2V/InlyK, y(2nlnly) k=0, n#£0,

(4mny)*/? exp(—2mny),

W% sgn(n),s—3 (47T‘77,|y) =

(4.3)
s=k/2>0, n>1

When n = 0, we have from [GR, (8.381.1)]

T i\ b r(2s — 1
/ - (|£U + Zy|) dr = Z‘fk(2ﬂ_)(2y)172s ( S )
@+ iy \ @+ iy

D(s+5)D(s —5)

Thus, by(y) = 0 if ¢o > 1, and for n # 0, we have

c —si—k,n.s n|s—1
bnly) = (a20)" Y 21O Ll

cod(cln)xz(n/c)T g2 I o (dninly).
= (cq2)?s (c[n)xz(n/c) (XZ)F(3+§sgn(n)) E sgn(n),: 2( |n|y)

Simplifying gives the desired formula for the nonzero Fourier coefficients.
For the constant term, we obtain

, . o (2m)2t251 (25 — 1
co(y) = 64,=1(q2y)* L(25, X2) + 8go=1y" *L(25 — 1,x1)i £ (2m) ( )

D(s+5)T(s —5)

We now simplify this. The functional equation of L(2s — 1, x1) gives

3
v q1 q1 5_2$F(1—S+
-t == (7)o
2

m|,?‘ M|3'
~— |~

L(2 - 287%)3

where 61 = 0 if x1(—1) =1, and 6; =1 if x1(—1) = —1. Also, note

[(2s— 1) =7 /22272 (s — L)I'(s).
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Therefore,

Co(y) = 5q1:1Q§L(25aX2)yS
. w2l T(l—s+%) , T(s—II(s
+5 71q2 2s 2 i k 2
e =i (xg) I(s—1+ %1) I'(s+ g)r(s - g)

Consider

,01, k) =
v(s,01, k) T

Note that in our application, é; = k& (mod 2). Using standard gamma function identities,
we obtain

5 E) = (—=1)k/2, k even,
’Y(Sa 1, )_ (_1)(k—1)/27 k‘Odd,

whence i ~#+%1 (s, §1, k) = 1. Therefore,

: 8 e 1T =1 4)
co(y) = 00, =165L(25, x2)y° + Ggu—147 287(%) F(s+ﬁ)2
2

L(2 — 2s,x7)y' ~°.

Then using ey, \,(y,s) = i@;@;r(s + )eo(y) completes the proof. O
Note that
2 Ay xe (1, 8) _
>0 PR = Lut s — §ov)Lut § — 5, Xa). (4.4)
n=1

4.2. Functional equations

The Fourier coefficient satisfies the functional equation

)‘X17X2 (n, 1- 5) = (X1X2)(Sgn(n)))‘ﬁ»ﬁ(na 3)' (4'5)
As for the Eisenstein series itself, we have

Proposition 4.2. Suppose x; is primitive modulo q;, i = 1,2, and (x1x2)(—1) = (=1)*.
Then E;MXZ(Z’ s) extends to a meromorphic function for all s € C. Moreover, it satisfies
the functional equation

E:  (z,8) =EZ

X1,X2 X2,X1

(z,1—s). (4.6)

If k>0 and q1q2 > 1, then E}, | (z,s) is analytic for all s € C.
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Remark. For k& < 0, the multiplication by I'(s + %) produces some poles of EY | (z,s).

If desired, one could form the completed Eisenstein series by multiplication by I'(s — g)
instead of I'(s+ %), leading to a slightly different functional equation following from (4.7)

below.

Proof. First consider the case with g1, g2 > 1. From the Fourier expansion, we have

Sl (n,1—23s)
B u(m1=9) =) —Xl’xz\/nl e(nz)Ws 1 (4x|nly)
n=1

< A (el s) r(1-s+%)
+ 3 daseltmlms) ) =0 5) g nlngy).
n=1 \/ﬁ F(l -5 7) : ’

Since the Whittaker function has exponential decay, uniformly for s on compact sets,
we see that £ (2,1 — s) extends to a meromorphic function with possible poles at
s= g + ¢ with ¢ a nonnegative integer.

Using (4.5), x1(=1)x2(=1) = (=1)*, and

T(1—s+%) I(s+ %)
= () 1, (4.7)
we obtain the functional equation. Moreover, the poles at 1 — s with s = g + ¢ are

removable, provided k£ > 0.

Next consider the case with ¢; = 1 or go = 1. The non-constant terms in the Fourier
expansion have the same analytic properties as in the case with g1, g2 > 1, so it suffices to
examine the constant term ey,  (y,s). By inspection of (4.1), it satisfies the functional
equation

6;17)(2 (y7 1- 5) = e%,ﬁ(yv 5)

k
k_
negative integer. If & > 0 then these poles are canceled by the trivial zeros of L(2s, x2).

The coefficient of y® is analytic except possibly for poles at s = — £, with ¢ a non-
Similarly, the coefficient of !~ is analytic except for possible poles at s = %—i— 144, with
£ a nonnegative integer. These points occur at 2 — 2s = —k — 2¢ and are also canceled
by trivial zeros of L(2 — 2s,X71), provided £ > 0. O

We are also interested in the Mellin transform of EY, | (iy, s) and its functional equa-
tion. A motivation for this explicit calculation comes from the evaluation of restriction
norms of automorphic forms, as in [Y]. See [DFI, Section 8] for this calculation with cusp
forms. The reader only interested in the change of basis formulas may wish to skip these
calculations.

Assume that x; and ys are primitive with ¢1, g2 > 1, so the constant term vanishes.

We have
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oo

dy
/ e (1,8 qlqz)“”y“?
0

[NIES RS
N~—

d
W_x S?;(47rny)>y"—y,
—~ vn s — 202 Y

oo
n,s I'(s+
(q1q2 u/2 Z X17X2( / . 47rny) Tey FE )
0
(4.8)

with e; = x;(—1), for i = 1,2. Changing variables y — £, and evaluating the Dirichlet
series using (4.4), we have

T d
/ " e (1,8 qqu)“/Qy“?y
0
_ L (m\EreNE 1 1 R G
_\/7?(77) (ﬂ.) L(2+u+8 27X1)L(2+u+2 57X2)¢k(u+2,8 2()4;9)
where as in [DFI, (8.25)]
T I3+ 1) a_1dy
‘Pi(aaﬁ)Zﬁ/<Wg,g(4y)+5r(5+7ik)Wg,g(4y))y 2?~ (4.10)
2
0

Actually, our definition of ®%, differs from [DFI] in that we have not divided by 4 in the
right hand side of (4.10). This integral is evaluated in [DFI, Lemma 8.2], for k& > 0, but
the value stated there is not quite correct. The correct formula is

T PRI Y (Gl Y it R PRTY

and pf(«, B) is a certain polynomial in «, defined recursively. The formula of [DFI] is
incorrect in a few ways. One simple mistake is that it is off by a factor of 4, explaining

and 1= E( Dl in the gamma factors, which arises from a typo early in the calculation of
[DFT). A side effect of this typo is that the formula for pf(a, ) needs correction. We
have devoted Section 12 to correcting the evaluation of ®3,.

For k = 0,1, the polynomial is given by

pi(a. B) ==, pi(a,B) =1

Note that if € = &5, then 52(—1)k = €1, and so in our desired application the gamma
factors match those of the Dirichlet L-functions appearing in (4.9) (only after the cor-
rection (4.11)), keeping in mind how the gamma factor depends on the parity of the
character.
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Define A(s, ) = (q/7)*/*T(352)L(s, x) for a primitive Dirichlet character modulo g,
with 6 = kxf(fl) Then, for k = 0,1, and x1, x2 primitive we have

oo
—s sl

dy _
/ X15X2 ly7 Q1QQ)U/23/U? = 63(]1 q2 A(% +u+s— %aXl)A(% +u+ % - saX?)y
0

where d3 = 1 unless £ = 0 and €1 = e5 = —1, in which case d3 = 0.
From the functional equation A(s,x) = e(x)A(1 — s,%), we see that (4.8) satisfies

7 o0
dy L a1 B oy
/E i (1958 )(q102)" 2y Yy = e(x1)e(X2)q 2 K /E (19, 8)(q192) /2y u;
0 0
On the other hand, if we apply the Fricke involution to EY, | , which maps y to quzzy’
then we get that
Y * ¢ —u/2, —u Y
ES o1y, 8) (192 w2y = = /E <7 s) q192 y ==
/ X1,X2 ’ ) y X1,X2 q1q2ya ( ) y
0 0
Hence for 63 = 1, we have
i —\ -5 s—
ES e (@,S) =e(x1)e(x2)af @ 2E;§2 (1Y, 9). (4.12)

In Section 9, we will explicitly derive the action of all the Atkin—Lehner operators for x;
even or odd, which will generalize (4.12) (which only covers the Fricke involution, and
additionally required x; and x2 to be primitive). This provides a pleasant consistency
check.

4.3. Hecke operators

One simple consequence of the explicit calculation of the Fourier expansion, particu-
larly the Euler product formula implied by (4.4), is that this shows that E,, ,,(z,s) is
an eigenfunction of all the Hecke operators, including p|g;q2. We have that

ToEyy o (2,1/2+14t) = Ay, v, (0, 1/2 4+ 0t)Ey, y,(2,1/2 4 it). (4.13)

In particular, if p|(¢1,g2) then T, E,, 1, = 0.
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4.4. Holomorphic forms

It would be negligent not to extract information on the holomorphic Eisenstein series
defined by (3.9). Formally specializing s = k/2, we obtain

EY (2 K[2) = €, \, (y,k/2) + Z M\/gkﬂ)

n=1

k/2

e(nx)(4mny)" “ exp(—2mny),

using (4.3) to simplify the Whittaker function. In the constant term, we have
dgy=1L(2 — k,X7) = 0 for k > 2. Therefore, for k > 2 we have

(£)*T(k)L(k, x1X2)
kT(X2)

(32)*T (k) L(k, x1x2)
~F7r(x2)

EX11X2J€(Z) = 6‘11:1

+ Z Axioxa (75 k/2)n"7 e(nz).

n=1
Compare with [DS, Theorem 4.5.1], and note
Axixe (10, k/2)n Z x1(a bk L
ab=n

Since the original definition of E,, ,,(z,s) converges absolutely for Re(s) > 1, then
certainly we may set s = k/2 for k > 3. When k = 2, then since the completed Eisenstein
series is entire in s, we may also set s = k/2 = 1, except when ¢; = g2 = 1 in which case
the level 1 Eisenstein series (with x1 = x2 = 1) has a pole at s = 1. See [DS, Section 4.6]
for a description of the linear space of weight 2 Eisenstein series.

We may also examine k = 1. Suppose ¢1, g2 > 1 for ease of discussion; then we may
set s = k/2 = 1/2. One interesting feature here is that for weight 1, A,, y,(n,1/2) =
Azxr(n,1/2) for n > 1 (see (4.5)) showing that E,, y,1(z) is a scalar multiple of
FE5 57,1(2). This corresponds, roughly, to the fact that the dimension of the space of
holomorphic Eisenstein series of weight 1 is about half that of the corresponding space
of odd weight k > 3. See [DS, Section 4.8] for precise statements.

5. Preliminary formulas
Now we embark on proving the change of basis formulas.
5.1. Primitive and non-primitive

Lemma 5.1. Suppose that x; has modulus q;, and is induced by the primitive character
X§ of modulus qf. Then
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L(2s,Xx1x3) (@) xi( )x (b) age
Booal®:9) = T3] 22 s (e 9):
2

L(2s, xaxa) alqy blgz

Remarks. Within the sum, we may restrict to (b,¢3) = 1, which implies bg}|g2, and so

qu is an integer. Similarly, we may assume (a,¢7) = 1 which gives that aqf is a divisor
of Bz “
9192

Proof. The desired formula is equivalent to

b
G ZZM )X ( )Xz( )GXI»X§<%Z?S>'

alq1 blgz

By definition,

Gryna(2,8) = % Z/ (2y)* x5 (c)x5(d) (|cq22 + d\)k.

ot legaz + d|?s cqez+d
(e,q1)=1
(d,qz):1
By Mobius inversion, we deduce
1 (229)°Xi(0)x5(d) (acgaz + bd|\*
b ( )
Grsxal ZZM (a)xa( )2 Z |acgaz + bd|?s \ acgez + bd
alq1 blgz ¢,deZ

For the inner sum above, we have

1 (929)°Xi(e)x3(d) (acgzz + bd|\*
>3 ( )

2C7d6Z lacgaz + bd|?s  \ acgaz + bd

11 (@229 X (Ox3(d) leqs 22+ d]
) _Z ( ) ’

= s * Ag2 2s * ag2
(ab 267deZ legs bas 2 +d| €G3 has 2 +d

which is none other than (ab) ™*G s s (%z, s). O
5.2. Notation and results from [KY]

As shown in [KY, Proposition 3.1] (see also [DS, Section 3.8]), a complete set of
inequivalent cusps for To(N) is given by + = % where f|N and u runs modulo (f, N/f),

w

coprime to the modulus, after choosing a representative coprime to N (such a choice can
always be achieved). With this choice of representative, then # ~ % (equivalent in
I'g(N)), and so by (3.2), Ex = E(’)/)E%ﬂ where ’y(uif) = %. One may easily check that

any 7y satisfying this equation has lower-right entry d congruent to @ modulo both f and
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N'=N/f. Thusd =7 (mod [f, N']). In Lemma 5.4 below, we show that u/f is singular
for 1 iff ¢ has period dividing [f, N’], and therefore () = 1 (u). That is,

By (z5,0) = () B (2,5,0). (5.1)
We will generally work with cusps of the form u—lf, but one may convert to % using (5.1).
Proposition 5.2 ([KY], Proposition 3.3). Let ¢ = 1/w be a cusp of T =To(N), and set
N = (N,w)N’ w = (N, w)w, N’ = (N, w)N". (5.2)
The stabilizer of 1/w is given as

. n 1—wN'"n N'n
I‘l/w:{:tTl/w:TLGZ}, where 7'1/w:(w2N”n 1+wN”n>’

and one may choose the scaling matrix as

()T )

Remark. With this choice of scaling matrix, we have

_ 11
Jl/i;Tl/wol/w = ( 1) ) (5.5)

which is important in the context of checking if 1/w is singular for a Dirichlet character
1 (recall the discussion in Section 3.1). One should also observe that N|w?N" to see
that Ti/w € To(N).

We next quote a double coset calculation from [KY], in the special case a = oo, in
which case the notation from [KY] specializes with r = N, s = 1:

Lemma 5.3 ([KY], Lemma 3.5). Let ¢ = 1/w be any cusp of T =T4(N) and a =1/N ~
co. Let the scaling matriz o1, be as in (5.4), and take 0o = I. Then

A B
- " " .A B
o1 Do = {(C\/\;VW D\/\;VW> : (C D) € SLy(Z), C = —wA (mod N)}. (5.6)

It is convenient to translate the notation a bit. With w = uf as above, we have

N N’
NI I N// — / — .
F Ny v
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5.8. Singular cusps

Lemma 5.4. Let ¢ be a Dirichlet character modulo N, and let a = uif with f|N, and

(u, N) = 1. Then a is singular for 1 if and only if 1 is periodic modulo (fﬁjz\\,]/f), equiva-

lently, the primitive character inducing v has modulus dividing (fTN/f)

Remarks. In case ¢ is primitive modulo N, then the singular cusps for 1 are the

Atkin—Lehner cusps 1/f with (f, N/f) = 1. Also, observe 7 ﬁ/f) = [f,N/f], and so

in particular, N and (fJJ\\f’W share the same prime factors.

Proof. By Proposition 5.2 and (5.5), the cusp % = % is singular for ¢ iff Y (1+wN"t) =
1 for all ¢ € Z. Since wN" = (fTN/f)u, the condition that 1/w is singular for v is seen
to be equivalent to (1 + ﬁt) =1forallteZ.

Let x be a Dirichlet character modulo N, and suppose d|N. It is an elementary exercise
to show that x is induced by a character of modulus d if and only if x(1 4 dk) = 1 for

all k € Z such that (14 dk, N) = 1. This exercise completes the proof. O

Corollary 5.5. Suppose 1 is a Dirichlet character modulo N, induced by a primitive
character ¥* of conductor N*|N. Then the number of singular cusps for 1 equals

S G((fN/D)).

fIN
(£, N/ 1) #%

6. Decomposition of F,
Our first main result decomposes B in terms of By, y,’s.

Theorem 6.1. Let notation be as in Section 5.2, and let xo,n denote the principal char-
acter modulo N. Then

_ ! L * gy L@sxaxe)
By Goss) = Gy ) 2 2 2 MU

2s,
a1 & a21fx1 (mod q1) X1X2X07N)

x2 (mod g2)
X1X22%

pla)p(d)xa(b)xz(a) bf
%f: bzﬂ: (ab)s EleXZ(@Z7S)7 (6'1)
(a,q2)=1 (b,lzllgzl

where the sum is over primitive characters x; modulo q;, and x1X2 =~ ¥ means that both
sides are induced by the same primitive character.
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Booker, Lee, and Strombersson (personal communication) have independently proved
Theorem 6.1 as well as the inversion formula in Theorem 7.1. They use these formulas,

as well as the functional equation of E to work out the scattering matrix for I'o(NV)

1,X2)
with arbitrary nebentypus. Previously, Huxley [Hux] considered the trivial nebentypus
case.

Remarks. Suppose that v is primitive of conductor N, so that the cusp L is singular

uf
iff (f,N/f) =1, and so we may take u = 1. Then (6.1) simplifies as

Ei/4(z,8,9) = %Em,m (2,8), (6.2)
where x1 is modulo N/f and x»2 is modulo f, and x1Xz = %. This type of identity is
implicit in [DFI], where the authors explicitly evaluated many properties of the Eisenstein
series when the nebentypus is primitive. In another special case where N is square-free
and 1 is principal, then (6.1) reduces to [CI, (3.25)].

Theorem 6.1 shows in an explicit form that the space of Eisenstein series is spanned
by Ey, x.(Bz,s) with q1g2B|N, and x1Xx2 ~ v, as expected from the discussion in
Section 3.3.

The proof of Theorem 6.1 is long, so we break the proof into more managable pieces.
We begin with some notation. From Lemma 5.4, the cusp # is singular iff ¢ is peri-
odic modulo [f, N’]. There exist integers fo|f and NJ|N’ so that [f, N'] = foN} and
(fo, N§j) = 1. The choices of fp and N/ may not be unique in case there is a prime power
exactly dividing both f and N’. Then we may write ¢ = 1p(f0)yy(No) according to this
factorization. We remark that fo and N§ are useful within the proof of Theorem 6.1, yet
they are not present in the final formula (6.1).

With this notation in place, it is helpful for later to record that if u = v’ (mod (f, N'))
(both coprime to N), then E%f (z,8,9) = w(Né)(u’U)Eﬁ (z,8,1), following from (3.2)
and a calculation of the lower-right entry of a matrix v such that ’y# = u} 7 Put another
way, z/J(Né)(u)Eu_lf (z,8,1) is a well-defined function of u (mod (f, N')).

Lemma 6.2. With notation as above, we have

. y* YN (—aC")pFo) (D) /|C” fz + D|\k
Eu—lf (2,8,¢) = 6p=ny’ + (N Z |C" fz+ D|?s ( C'fz+D ) )
(D,fC")=1
C’'>0, (C/,N")=1
D=-C"u (mod (f,N"))
(6.3)

Proof. From (3.1), and changing variables, we have

El/w(zvsaw) = Z E(’y)](o—;/lw’%Z)_klm(af/lw’yz)s
YEL1 /W \T
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= Z (01 /07)5 (7, 2)"FIm(72)*.

Telo\oy ), T

For the evaluation of E(al /wT), note that

1 0\ (VN7 0 S e\ [ A B
w1 o 1/VN")\cyN" pyN") \C+Aw D+Buw)"

As a consistency check, observe that if we translate 7 on the left by ( (1) ') then that

replaces B by B + DnN", and so the lower-right entry changes from D + Bw to D +

Bw + DwnN". Since wN" = u(f—%,), and v is assumed to be periodic modulo —(f]}f\,,),

this shows that 1 is well-defined under such translations.

Next we need to work out representatives for Foo\af/lwf, in terms of the lower row
of matrices occurring in (5.6). In the case of the identity coset with C' = 0,D = 1, we
obtain (D + Bw) = (1 + Bw) = (1) = 1, since this coset occurs only when f = N,
ie., % ~ 00. This leads to the term d;—ny°.

From now on, consider the non-identity cosets. Note that the action of I'y, does not
affect the congruence linking A to C. Consider the conditions

C>0, (C,D)=1, C=fC', (C',N)=1, and D=-uC" (mod (f,N')).
(6.4)

We claim that

_ * *

as a disjoint union. Moreover, the value of (o JwT) is determined by the conditions
(6.4) (we will derive a formula for it within the proof).

Proof of claim. First assume that (6.4) holds. From (C,D) = 1, there exist integers
Ag, By so that AgD — BoC = 1. Then Ay = D (mod C), and so from the congruence on
D in (6.4), and the fact that f|C, we have Ag = —C"u (mod (f,N')). Let z,y € Z be
such that A9 = —uC’ 4+ fx + N'y. We next want to find n € Z so that A = Ay + nC
satisfies C = —wA (mod N), which in turn is equivalent to A = —uC’ (mod N’). For
this, we have A = —uC’ + fx+ N'y+nC’'f = —uC’ + f(z+nC’) (mod N’), so choosing
n = —zC’ (mod N’) finishes the job.

Next we show the conditions (6.4) follow from the conditions on the right hand
side of (5.6). This can be seen as follows. The determinant equation obviously implies
(C,D) = 1, and using the congruence we have 1 = AD — BC = A(D + Bw) (mod N),
whence (A,N) = 1, and so (C,N) = (w,N) = f. That is, we may write C = fC’
with (C’, N') = 1. The congruence on D follows from D = A (mod |C|) and A = —uC’
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(mod N'), which together give D = —uC’ (mod (f, N’)), as claimed. The condition
C > 0 may be arranged by multiplication by —1I.

Finally, we show that (o1 /,,7) only depends on the data appearing in (6.4). Explicitly,

V(01/07) = P(A) = M) (—aC" )y (D). (6.6)

We first show that given C,D € Z satisfying (6.4), the value of ¥(A) is uniquely
determined. The determinant condition on A is A= D (mod C) and the congruence is
A = —uC’ (mod N’). This determines A modulo the least common multiple of C' and
N’, namely (007]1\\7,//) = (?7]]\\;/,) = CN" (one can also see how the left I's, action translates
A by this). The condition that these two congruences on A are consistent is precisely the
congruence on D in (6.4). These two congruences on A uniquely determine A modulo

(?,]{,j\;/) = 7 N/f) Since v is periodic modulo 7 N/f), this means that ¢(A) is uniquely

determined. Finally, we need to show (6.6).

We take an interlude to discuss the problem in more general terms. Suppose that we
have a pair of congruences x = a (mod @) and z = b (mod R), and for consistency, we
have a = b (mod (@, R)). We wish to evaluate x(z), where x is a Dirichlet character
modulo [@, R]. There exist integers Qo, Ro with the following properties:

QO|Q7 R()|R7 [Q7 R] = QOR07 (QOv RO) =1
One may check that

QR

(Q,R) = 00 o’ and (Qo, Q/Qo) =1 = (Ro, R/Ro).

The former equatlon follows from (Q, R) = and the latter follows by noting that

Rl
a prime power p* exactly dividing Qo has e[lctghe]r k = 0 or p* exactly dividing Q (and
similarly for prime powers dividing Rp). We also have that R%|Q0 and %\RO, which is
deduced from (R/Ro, Qo) = (fz/]%o7 RoQo) = (R/Ro, [R, QD = f%/}zo7 and similarly for
the other formula.

Using the above coprimality formulas, the system of congruences is equivalent to z = a
(mod Qo) and z = b (mod Ryp), under the consistency condition ¢ = b (mod (@, R)).
Corresponding to the above notation, we may write y = x1x2 where x; is modulo Qg
and x» is modulo Ry, and then x(z) = x1(a)x2(b). This discussion proves the claim, and
completes the proof of the lemma. We recall for emphasis that the consistency condition
is recorded in (6.4). O

Proof of Theorem 6.1. We continue with (6.3). The first step is to detect the con-
gruence D = —C’u (mod (f, N’)) with Dirichlet characters; for this, observe that
(DC'u, (f,N")) = 1 holds from the other listed coprimality conditions. Thus
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s

(s,0) = bpny’ + [ 0= 3 (@)

E
e((f,N')) x (mod (£,N"))

1
uf

5 (M) (B ) (D) (¢ f= + DI\ -
(6.7
(D,fC")=(C",N")=1 |C"fz + DJ?s ( C”fZ+D) } (6.7)
c’'>1

Next we claim that we may omit some of the above coprimality conditions. The
modulus of Yy o) is the least common multiple of (f, N') and N{, and equals

(f’N/)N(/) :(faN/)N(/JfOZ N _ N :g:N/
(f, N No) — (f;iNo) o (£fo. N o (FifoNG)  f '

Therefore we may omit the condition (C’, N') = 1. A similar calculation shows that the
modulus of XE(JCU) is f, and that we may omit the condition (D, f) = 1. Thus

s

(zo8,9) = 6oy’ + [0 3 (5™ (—u)
PN moa vy

(™) () (") (D) (1" fz + D]\ ¢
Z |C'fz+ D|?s (C”fz—i—D)]

E

1
oF

(D,C")=1
c’'>1

The term C’ = 0 may be returned to the sum, because it only occurs when N’ =1 (i.e.,
f = N), and then consulting (3.3), we have

1 1 (D)
(2,8,9) = 1"ys / Z xXv ") (—wE ) o) (2,8). (6.8)
N7V (TN X x5

i
u f

Applying Lemma 5.1, we have

1 S0y A28 0w D) (8 7))

TNy o((J,N7)) (v )

B (z,8,1) =
x (mod (f,N")) L(2s, x*1No)y)

uf

(N} —(fo)\ b
3 3 AR B0 ) (a)E(w(Né))*,(W))*(éw), (6.9)

alf b|N (ab)*

oy
V)

where ¢y (say) is the conductor of (yy

Next we set (Xw(Né)) =x1 and (x¥
i = 1,2. Note that

= X2, where y; is primitive of modulus ¢;,
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(6.10)

L(2s, x>0 F ) pIN P

L(2s, (Wé))*(@““)ﬂ [1( - uehew)

which only depends on x1x2. Also, a necessary condition on x; and xs is that x1xz =~ .
Therefore, by moving the sum over x to the inside, we have

1 x1(p)xa2(p)\
%«(Z‘Sw) (fN")s f7N’ ZZ Z H(I_T:)

q1|N’ g2|fx1 (mod q1) p|N
X2 (mod g2)
X1X2>2
p(a X bf
D ey (as) X deanas) 61
alf b|N’ X (mod (f,N”))

where d(x, x1, X2, ) is the indicator function of

(M) =1, @) = e (6.12)

Our claim is that > 6(x, X1, X2,%) = 1 under the conditions appearing in (6.11), which
will give (6.1), concluding the proof of the theorem.
Now we prove the claim. Using that (fo, Nj) = 1 and that a prime divides N iff it

(fo). (Ng) (fo)

divides foNj = [f, N'], we may uniquely factor x; = x;’’ x; °’ where x,;”*’ has modulus

dividing fo, and XEN{’) has modulus dividing Nj. We may also factor x in the same way,
by x = X(fU)X(Né); in addition, we may suppose that x is primitive of modulus dividing
(f, N'). Recall also that 1»M0) has modulus N}, and ©(fo) has modulus f;. Thus the
assumption x1xz ~ ¥ is equivalent to

N5 (N8) g (NE) and  xxglfo) o yFo), (6.13)
The condition (xyp(No))* = x; from (6.12) is in turn equivalent to
U0 (N (N yx — \ o) (NG (6.14)
that is,
XU =X and (M) = (. (6.15)
Likewise, for the equation with y2, we obtain
A0 =X and (P = . (6.16)
From these two displayed equations, we see that y is uniquely determined by xy =

(fo) (Né) . Once this choice is made, one can check that (6.12) holds using (6.13). The

only remaining loose end is to check that this purported choice of x = X(f 0) ( Vo) has
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modulus dividing (f, N’). That is, we need that the fo-part of ¢; divides (f, N’), and
similarly that the Nj-part of g2 divides (f, N'). Note that

N’ f
N' = N N f= fo x % )
=~ 0 g
N{-part ~ fo-part ~—
fo-part N{-part
and also that
/ N’
Ny= L x =
~—~ ~—

N{-part  fo-part

These equations show that the fo-part of N’ equals the fo-part of (f, N') (both are equal
to %), and so we conclude that the fo-part of ¢; divides (f, N'). A similar argument
holds for the Nj-part for the other factor. This shows the claim, and completes the proof
of Theorem 6.1. O

7. Inversion

The purpose of this section is to invert (6.1), which is given by the following;:

Theorem 7.1. Let x;, i = 1,2, be primitive characters modulo q; with q1qg2|N, and write
N = qig2L. Suppose B|L, and write L = AB. Then

EXLXQ(BZ& 5)
1(d)xa(e N s *
= ZZ : ((d>e)§s( ) ( )) Z Xl(_u)E gir (Z’ 8’¢)'

(q2& Q1£ wag BL
d|A e|B e d 7y (mod (g2 22 ,q1 4¢)) ‘
(d,e)=1

(7.1)

Here the sum is over u is over a set of representatives for (Z/(q22%,q142)Z)*, chosen
coprime to N, and v is modulo N, induced by x1Xz-

Remark. Note that % ranges over certain divisors of L, so that Ey, ,(Bz,s) is a linear
combination of Eﬁ’s with f’s constrained by ¢o|f and f|gaL.

Within the proof of Theorem 7.1, we shall develop and use properties of functions
Dy, xs,(2, 5,7) defined by

DX11X21f(ZVSV¢) = Z Xl(_u)Eﬁ(zasﬂ/})v (7.2)
u (mod (f,N/f))

where x; is primitive modulo ¢;, N = q1q2L, x1X2 =~ ¥, ¢2|f and f|g2L. Notice that
(7.1) may be expressed as
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X1 1
Xl X2 (BZ S ZZ ( Bd ) DX17X27q2—(Z S /IZ}) (73)
/A e\B 271 g
(d,e)=

It is not obvious from (7.2) that D,, ,,, s is well-defined. To see this, first note

N/ 4 N/
1= ngo)xg 0) — ,(/)(NO)ngO)Xé o). (74)

Now, w(Nf/))(u)E . is well-defined, as observed in the paragraph preceding Lemma 6.2.

In addition, one may directly check that ng 0 g periodic modulo f (since fo|f) and

modulo N’ (since ¢;|N’), and is therefore periodic modulo (f, N'). A similar argument

holds for y$™.

Proof. Let q1,q¢2, L, A, B be as in the statement of the theorem. Set f = ng, where g|L.
Then N' = N/f = aiL/g, (f,N') = (@29, 01 %), and N” = L0 Our first

VD~ (a9, Q1*)
step is to derive a formula for Dy, ,, (2, s,) by inserting (6.1) into the definition (7.2),

giving

! (2
DXl,Xz,f(szaw) = (N o((f, N/f Z Z Z w

T ol (o ) T2 T 12X0,N)

n2 (mod k2)
MmNz
u(a (b)ng() bf * _
> X B (o) Y alwm-w),
alf X 2w (mod (£,N/£))

(a k?z) l(b kl) 1

We claim the inner sum over u equals ¢((f, N')) if x1 = n1, and vanishes otherwise.
For this, apply (7.4) to both x; and 7, which implies that the sum vanishes unless
ng‘)) = n(f‘)) and X(N 0 — néN‘S), recalling that the characters are primitive and that
(fo, N§j) = 1. Using (7.4) again, we deduce that x; = ;. It is also necessary to verify
that the value k1 = ¢1 does indeed occur in the sum, which follows from % = q1§ and
g|L; similarly, ks = g2 occurs since ¢ f.

We may next see that from n173 ~ ¢ ~ y1Xz that 72 = x2 (whence ks = ¢3). Thus

DXl ,Xz,ng(Z S 1/})

1 L(2s, x1x2) u bg
= E E E - 7.5
~ (fN)s L(23 X1X2X0,N) s 4L 1(B)x2(a) Xl’Xg( a Z’8>’ (7.5)

using additionally that a|f may be replaced by a|g and similarly b|§ since (a,qz) = 1
and (b, Q1) =1.

Next we interject an elementary inversion formula for certain arithmetical functions.
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Lemma 7.2. Let w;, i = 1,2 be completely multiplicative functions and suppose K is an
arbitrary function defined on the divisors of some positive integer L. For g|L, define

Ja) = 3 3 nl@pbs @y m)K (%), (76)

- a
alg b L

Then with AB = L, we have

K(B) = (H(1 - w1w2(p))_1) 3 wl(d)WQ(e)J(ﬁ). (7.7)

(&
p|L d|A e|B
(d,e)=1

We defer the proof of the lemma to Section 11 in order to complete the proof of The-

N s L(2s,x1x2X0,N)
(029,01 5) ) L(2s,x1x2) Dy, x2.29(2: 5, 9),

K(B) = Ey, x,(Bz,s), and w;(n) = x;(n)n™°, obtaining

orem 7.1. We apply the lemma with J(g) = (

Brana(B2.8) = [0 5 () 30 3 Mol

plL d|A e|B
(d,e)=1
( N )SL(287X1X2X0,N)
(B4, qude)/  L(2s,xaxz) — X

Ba(z,8).

Note that [, (1 —p **x1(p)x2(p)) ™" = [L,;n(1 — " *x1(p)x2(p))~", so this factor
cancels the ratio of Dirichlet L-functions. Inserting (7.2) into the above formula for

E, ., x.(Bz,s) and simplifying, we obtain the theorem. O
8. Orthogonality properties
8.1. Orthogonal decomposition into newforms

With Theorems 6.1 and 7.1 in hand, we may now study the orthogonality properties of
Eisenstein series attached to Dirichlet characters. Let & ,,(N) be the finite-dimensional
vector space defined by

Etw(N) =span{E,(z,1/2 +it,v) : a is singular for ¢},

and define a formal inner product (, )gis on this space by

%<Eu('a 1/2 + ’Lt7,(/})7 Eb('7 1/2 + Zt7 w)>Eis = 5(1[1; (81)

extended bilinearly. This inner product is natural to use since the spectral decomposition
of L?(T'g(N),) in terms of Eisenstein series attached to cusps (as in [DFI, Proposi-
tions 4.1, 4.2]) corresponds essentially to (8.1); see Section 8.3 for more discussion.
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Perhaps it is worthy of explanation that the dimension of & ,(IN) equals the number
of singular cusps for v, except possibly for ¢ = 0, and therefore this inner product is
well-defined. The key is to study the Fourier expansion of E,4(z,1/241t, 1)) at the various
cusps. One may easily show that if cy'/2+it 4 dyl/2=it = /y1/2+it 4 'y1/2=1t for infinitely
many values of y, and ¢ # 0, then ¢ = ¢/ and d = d’. Now suppose that

Eo(2,1/2 +it,¢) = Y capBe(z,1/2 +it,1)),
b

for some constants cq 5. Equating coefficients of y'/2+% in the Fourier expansions at the
arbitrary cusp ¢, we have

1/244t __ 1/2+it __ 1/2+it
5a:cy /24t — § Ca,bab:cy /it — Ca,clY /2+i .
b

Hence ¢4, = 0q=, which precisely means that the Eisenstein series attached to cusps
are linearly independent, for ¢ # 0. We should also observe that the constant terms of
all Eisenstein series are analytic for s = 1/2 + it, except possibly at ¢ = 0, by inspection
of (4.1).

Theorem 8.1. Let ¢ be a character modulo N with conductor N*. For f|N, (f, N/f)\Nﬂ,
qﬂ%, q2|f, and x; primitive modulo q; satisfying x1x2 ~ 1, let Dy, y,.¢(2,5) be defined

by (7.2). Then the functions Dy, v, f(z,s) form an orthogonal basis for & ,(N).

Proof. These functions are defined by (7.2), but also may be given by (7.5). The formula
(7.3) allows one to express E,, , in terms of D’s, while (7.2) may be inverted by inserting
(7.5) into (6.1), giving

1 o
Eif(z’sﬂvb) = S((f. N/ Z Z Z X1 (=u) Dy, xo. (2,8, ). (8.2)
g e((f,N/F) =

a1 | % a2lfx1 (mod 1)

xz2 (mod q2)

X1X222%
This formula shows the functions D,, y, s form a spanning set for & (V).
To show these functions are orthogonal, we simply combine (7.2) and (8.1), giving

1
E<DX1,X2,f17DTI1,772,f2> = 5f1:f26X1:7715X2:n250((fa N/f)),

where we have let f = f; = fo. In particular, for a fixed f for which (f, N/f)\Ni
(equivalently, N*|[f, N/f]), there is a bijection between u (mod (f, N/f)), coprime to
the modulus, and pairs of characters x1, x2 so that x1x2 ~ . That is, the number of
such pairs of characters equals o((f, N/f)). O

Next we turn to the orthogonality properties of E,, ,,. We deduce from (7.3) that
Ey, x.(B1z,1/2 +it) is orthogonal to Ej, ,,(B2z,1/2 +it) unless x; =71 and x2 = 7.
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This shows that, for a given x1, x2, the set of functions Dy, y, ¢.4(2,s) with g|L forms
an orthogonal set for the “oldclass” formed from E,, ,(z,s), that is, the subspace

& 71’( X1 Xz) = Span{EleXQ(Bzvl/2+it) B|L}7

where ¢1¢2 L = N. By dimension-counting, we see that {Dy, y,.¢.4(2, $) : g|L} then forms
an orthogonal basis for this oldclass, and so the functions E,, ,,(Bz,1/2+it) also form
a basis for this subspace (not in general orthogonal, however).

Summarizing, we have shown

& w @ @ & 1/1 XlaXz) (8-3)

q192L=N x; (mod q1)
X2 (mod g2)
X1X2~>Y
where, as observed earlier in this section, this is an orthogonal decomposition. This is
an extension of Weisinger’s newform theory to the non-holomorphic setting. Following
Weisinger, define an Eisenstein newform of level M to be an Eisenstein series of the
form E, y,(z,1/2 4 it), where x; is primitive modulo ¢;, ¢ = 1,2, with ¢1g2 = M. Let
;w(M ) denote the set of Eisenstein newforms of level M, nebentypus v, and spectral
parameter ¢t. Then we may re-write (8.3) as

GuN)= P P EuLiF). (8.4)

LM=N Fe#; (M)

Needless to say, the above decompositions completely parallel the decomposition of
cuspidal newforms as in [ALe] [ALi], which gives

St (N @ @ St;w(Ls ),

LM=N feH; (M)

where Sy, (V) is the (finite-dimensional) space of cusp forms with spectral parameter ;
and nebentypus v, Ht*] W(M ) is the set of newforms of level M with spectral parameter
tj, and S;, 4 (L; f) = span{f(£z) : £|L}.

8.2. Summary remarks

For clarity, we summarize the statements of the change-of-basis formulas with some
alternative notation. We take this opportunity to make explicit certain facts that were
perhaps only implicit within the proofs.

Let v be a Dirichlet character modulo NV, of conductor Ny. The cusp uLf ~ % is singu-
lar with respect to ¢ iff (f, N/f)|]\%, or alternatively, Ny|[f, N/ f]. There are o((f, N/ f))
inequivalent (singular) cusps u/f with denominator f. Moreover, there exists a bijec-
tion between these cusps, and pairs of characters (x1, x2) with qﬂ%, gz2|f, xi primitive
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modulo ¢;, i = 1,2, and x1X2 =~ %. This bijection was observed within the proof of
Theorem 8.1 by comparing dimensions, but can be seen directly as follows. The parts of
X1, X2 of moduli away from (f, N/f) are uniquely determined by the equation x1xz2 ~ v
(and there will exist at least one such pair of characters, since Ny|[f, N/f]). After that,
we are free to multiply both y; and x2 by the same Dirichlet character modulo (f, N/ f).
Let U s denote the set of pairs of such characters, so [¥¢| = o((f, N/f)).

For (x1,x2) € ¥y, we may define D, ,, ;(2,s,%) by (7.2). This formula is inverted
by (8.2), which in the new notation reads

1 _
(z,8,9) = W (Xl’ge\yf X1 (=) Dy, o, 1 (25 8,7). (8.5)

Lf

One may wish to focus on the pair of characters themselves intrinsically, and to forget
about the ambient f. Suppose that gi1q2|N, say N = q1g2L, x; is primitive of modulus
¢i, t =1,2, and x1x2 ~ ¢. We claim that (x1,x2) € ¥y if and only if f = ¢ga2g with g|L.
This is easy to check, because the condition ¢s|f means that f = gog for some g, and
since ]}’ = ‘hL , the condition q;| % 7 means g|L. In particular, there always exists such an
f so that (Xl,XQ) € U;. Moreover, the same character pair (x1, x2) lies in 7(L) sets ¥y.

Now suppose that (x1,Xx2) € ®g.g With g|L. Then (7.5) becomes

DX17X27Q29(Z7 5, 1/))

(%9&1%)8 L(2s,x1x2) p(a) (D) b
— ? /PN b a)E e[ Z2,8),

Ns L(2s, x1X2X0,N) azlgz% (ab)® x1(b)xz2(a)Ey, x (a )
g9

which is inverted by (7.3).

The D-functions are useful because they may be naturally parameterized either by
f and ¥y or alternatively by the (intrinsic) pairs of characters, along with g|L. Hence,
they give a natural intermediate basis between the E%f and the F, ,,.

8.3. Remarks on the spectral decomposition

The continuous part of the spectral decomposition, as in [DFI, Proposition 4.1], for
instance, takes the form

fris (2 / Z —(f, Ea) Ea(2,1/2 + it, )dt, (8.6)

where f € L?(Tg(N), ). It is desirable to express this formula in terms of an alternative
basis, as in, for instance, Section 8.1, without having to go through the analytic aspects
of the spectral decomposition.
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Proposition 8.2. Let B(t,v, N) denote an orthogonal basts for & 4(N), and suppose f, g €
L?(To(N), ). Then

FEB(t,1,N) (B, F) s FeB(t,,N) (F F) s
are independent of the choice of basis.

Note that with F' = E,, we have (F, F)gis = 4w, and the first expression in (8.7)
agrees with the integrand in (8.6). Likewise, the second formula in (8.7) is the continuous
spectrum part of (f, g) in Parseval’s formula. These formulas are not quite the standard
formulas for the projection of a vector f onto a finite-dimensional inner product space,
and (f, g), respectively, because the inner products in the numerators are different from
the inner products in the denominators. Nevertheless, the formulas follow from standard
linear algebra calculations.

Proof. Let G run over an alternative basis, say B'(t, 1, N), and define the change of basis
coefficients by F' = 3" . cr,cG, where cpg = é . >>E‘S Note that, if G,G' € B'(t,4, N),
then

Z CFGCRG _ Z (G, F)gis(F, G")gis
(F, F)gis (G, G)eis(G", G")Eis(F, F)Eis

<G7 G/>Eis 5G:G’

TG GG, e (G, G

(8.8)

Applying (8.8), we have

I __ <f7 G>
Z <F F EISF EF:%: F, F EISCRG%;CF,G/G = EG: mG (8.9)

showing that the first formula in (8.7) is independent of basis. A nearly-identical proof
works for the second formula in (8.7). O

As a consequence of Proposition 8.2 and the discussion from Section 8.1, we have

fsx) = Y S / > %F(z)dt, (8.10)

9192 L=Nx1 (mod 1) oo FEBt, ¢ (LiEx; xz) s
x2 (mod g2)
X1X2>Y
where By (L; Ey, y,) denotes any orthogonal basis for & (L; Ey, ,). In order to make
this practical, we need to find an explicit orthogonal basis for & ,(L; Ey, ,), which
motivates the material in the following subsection.
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8.4. An inner product calculation

Let M = q192, N = ML, and let x; be primitive modulo ¢;. We wish to evaluate

Ly, xo(B1,Ba; N) := %<Ex1,xz(3127 1/2 4 it), By, xo (B22,1/2 +it)) v, (8.11)
where By, By|L, and the inner product is on Eisenstein series of level N.

The motivation to evaluate this inner product is to unify it with a corresponding
formula for cuspidal newforms, for which see [BM, p. 473] (for principal nebentypus) and
[Hum, Lemma 3.13] (for arbitrary nebentypus). Schulze-Pillot and Yenirce [S-PY] have
also elegantly derived the analogous formula for holomorphic newforms of arbitrary level
and nebentypus, using only Hecke theory. This is desirable in order to find orthonormal
bases for the oldclasses S, ,(L; f) and &, (L; F') that are constructed from the newforms
in identical ways, which is useful to treat the discrete spectrum and the continuous
spectrum on an equal footing. In Section 10.2 below, we illustrate this idea by proving a
Bruggeman—Kuznetsov formula for newforms of squarefree level and trivial nebentypus
(these restrictions on the level and nebentypus arise from the assumptions in place
in [PY]).

Lemma 8.3. Let notation be as above. Then

IXth(BhB?;N) o ( By )
X1, X2

I (1,1;N)

By
Ao (2, 8.12
X1:X2 (B1,By)/ X% <(31,B2)> (8.12)

where Ay, v, (n) is the multiplicative function defined for B > 1 by

5 _ M (07) = xix2a @) A e (07 72) (8.13)
pB/2(1 4+ xo(p)p~1)

AXl:Xz (p

Here Ay, v, (n) is shorthand for Ay, y,(n,1/2+1it) originally defined by (4.2), and where
for B =1 we define Ay, y,(p~') = 0. Moreover, xo is the principal character modulo

q192-

The form of (8.13) is in perfect accord with the cuspidal case of [Hum, Lemma 3.13].

The method of Blomer and Mili¢evi¢ proceeds by unfolding and Rankin—Selberg the-
ory; this method may not be used for Eisenstein series due to the lack of convergence.
As a substitute, we use the change-of-basis formulas and orthogonality of E,’s.

Proof. Write A; = L/B;, i = 1,2. Then from Theorem 7.1, we have

IX17X2(BlvB2;N)
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. Bid A
LAY Yy Ml ey el b )
s o1 Bs dol s col Do (dierdaes)/? \dyiey (g2 B;f17Q1—A§161) .
(dl,el) 1 (dz,ez) 1
Bidy _ Bada
eq eo
f Bidy
e1

Parameterizing by the value o , we have

R, -
Ly (B, B N)=NY 2 (a2 qu)G(Bl,R)G(BQ,R), (8.14)

R|L QQR q1 R)

where

G(BL,R) =Y. xi(d)xa(e)

1/24it
d|A; €‘B1 (de)

(d e)=
=R

e

Based on the multiplicative structure of (8.14), we may write

By Bt ) = N T 10,772 22,
p|L

say. By abuse of notation, we replace v,(B;) by B;, and focus on a single prime p. We

have
d e
B, Ry _ x1(p9)xz(p°)
G(p~,p") = Z mv (8.15)
0<d<A; 0<e<B;
(pd7pe):1
B;+d—e=R
and
o((pr2t B pntl—Hy) T
Raor™) :0<%:<L (pet R, pntL—R) G(p", p™")G(pP2, p), (8.16)

where again we have replaced v, (L) by L, and similarly for ¢, g2.
It is easy to see that

I(P) (p) Ba

X1, Xz( B1 sz) = le,XQ(p ,pBl)v (8.17)

and one may also easily verify

& WP pP) =10 (p" P ph P, (8.18)
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To prove Lemma 8.3, we need three key facts. First, we claim that I,(fi),xz (pBr, pB2)

is unchanged under the replacements B; — B; — min(By, By). In other words, if we let
Bi = (Bl,BQ)BZI», then

IXl,Xz(BlaB2;N) :IX1,X2(B£7B5;N)' (8'19)

This matches a corresponding formula for cusp forms (see [BM, p. 473]). Secondly, we
claim that for B > 1, we have

Ayy, pB Ayixe (D
®.,(1,p"%) = %() - w(p)%, (8.20)

where ¥ = x1Xz is the nebentypus of E,, ,. Finally, we claim

(1—p1), pl(q1,q2)
17 p|Q1ap)f(I2
v (1,1) = (8.21)
1, plaz,pt @
(1+p 1), 1 aqiqe.

Taking these three facts for granted momentarily, we finish the proof. The only apparent
discrepancy is that if p|(q1,¢2), then the denominator in (8.13) does not seem to agree
with (8.21) when p|(q1, g2). However, in this case, A(p®) = 0, so there is agreement after
all.

All three facts follow from a more careful evaluation of Iff;),xz (pPr,pP2). If B; < R
then within (8.15) this means e = 0 and d = R — B;, while if B; > R then this means
d =0 and e = B; — R. Hence,

) B )

B
IX17X2 (p 1’

pt R pntL-R x2(p Xz (p??
pgz) _ Z <P(( )) ( (

= +R +L—R (B1—R)(1/2+it)+(B2—R)(1/2—it)
OSRSmiH(Bl sz) (pQ2 7pq1 ) P N

RfBl) B27R)

LY (et put M)  xalp Xa(p
i (pQZ"FR’plh-’rL—R) p(R—Bl)(1/2+it)+(Bz—R)(1/2—it)
1<RI B>

LY (et put M) e (@® )X ()
(pa2+R pa+tLl—R)  p(Bi—R)(1/2+it)+(R—Bz2)(1/2—it)

By<R<B;

R—Bg)

N > e((p@ i, prtE=R)) (R P)xalp

(pt2t B puitL=R)  p(R=B)(1/2+it)+(R—B2)(1/2=it) (8.22)

max(B1,B2)<R<L

Of course, at least one of the two middle terms above is an empty sum.
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We first deal with the easiest cases with p|qiq2, where we show

(1—p 1)0B,=B,, pl(q1,92),
Bz) — X2(pBlfBz )pmin(Bl,)_rgZ,),B’ﬁ;szit(JE;l732)7 p|q1,pfq2, (8.23)
min(Bl,BQ)—%—it(Bg—Bl)

(p)

B
L s (™,

p

x1(pP2=P1)p pla2,pt a1

BlfBz) BQ*Bl)

Here the expression ya(p is interpreted to be Xz (p in case By > Bj, and

similarly for x;.

Proof of (8.23). For p|(q1,¢2), all the terms in (8.22) vanish except R = By = By, giving
the claimed formula. One may read off the local version of (8.19) in case p|q1 2.

In case p|q1, p1 g2 then the second, third, and fourth lines of (8.22) vanish, and so we
obtain the claimed formula by evaluating the geometric series.

The case p|ga, pt ¢1 may be derived from the previous case by using (8.18). O

Now assume that p 1 ¢1¢2. We claim that

1P 0" p™) = (1+p™h), if Bi=B, (8.24)

and if By < B», then Ig)’m (pBr, pP2) equals

By By By—B;—1 ; _
xa(p™2 ) xa(p™2 ") (1—p~h) 22:1 (xaxe) (@) n xi(pP )
p(B—BO(/2=i) T p(Ba—Bn(/2=i) P PRt p(B2a=BD)(1/2+i0)
=1
(8.25)

The case Bs < By may be derived from (8.25), using (8.17) or (8.18). In all cases, we
see that

7P

X1,X2 (pBl ’

Bz) — 7(p)

— IXl o (pBl 7min(Bl,Bg),pBgfmin(Bl,Bg)% (826)

p

and consequently, we obtain the first key fact, (8.19).
It is a pleasant coincidence that (8.25) agrees with (8.23) for By < Ba.

Proofs of (8.24) and (8.25). For the terms in (8.22) with R < min(Bj, Bs), we obtain

X2(pBliBz) Z @((pRvpLiR)) R (827)

pB142>32 1it(B1—Ba) (pRpr—R)*p .

0<R<min(B1,B2)
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If min(B, B2) < L, then (8.27) simplifies as

E(pBg—Bl >pmin(Bl,Bg)

pw—it(Bz—Bl)

If By = By = L, then (8.27) becomes

xa(pPr—P2)
p@Jrit(BlfBg)

("t +ph)y =1 +ph.

For the terms in (8.22) with B; < R < B, we obtain

(™) 5 w((pR,pL ) Caaxz) (@)
p(B2=B1)(1/2=iD) 55, (pE, pL—R) pRit(R=B1)
If By < L this simplifies as
— _ By—B
xa(p”2 ") QZ " hax2) (')
p(32 By)(1/2— 'Lt) 21t] ’
j=1

while if By = L, it instead equals

— B Ba—B—1 4 _

Xa(p ) ((1_ -1 22:1 (xaxe2) (@) n (xax2) (™ Bl))

p(Ba—B1)(1/2=it) p - p2iti p2it(Bz—B1) )’
=

Finally, for the terms with max(B;, Bs) < R < L, we obtain

1 Xl (szfBl) pmin(Bl,BQ)

]; pit(B2—B1) pw

Combining everything, we obtain (8.24) in case By = Bs. Similarly, in case By <
Bs; = L, then we obtain (8.25). If By < By < L, then we obtain (8.25) after some
simplifications, taking the term j = By — B; out from the inner sum. 0O

We deduce the third key fact (8.21), from (8.23) and (8.24).
Recalling the definition (4.2), it is not difficult to derive the second key fact (8.20)
from (8.25). This completes the proof. O

8.5. An alternative orthonormal basis
Blomer and Mili¢evi¢ [BM, Lemma 9] constructed an orthonormal basis of the oldclass

S, w0 (Ls f*) where f* is a cuspidal newform of level M which is L* normalized with
the level N Petersson inner product, and ¢y denotes the principal character (see [Hum,
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Lemma 3.15] for arbitrary nebentypus). Their basis takes the form {f) : g|L}, where
f@ = Zd|g &y(d) f*|a, where £,(d) are certain arithmetical functions defined in terms
of the Hecke eigenvalues of f*. They check that the functions f(9) are orthonormal
by expanding bilinearly, calculating (f*|q, f*|a/), for each d,d’|L, and evaluating the
sums. Therefore, the same process shows that with the coefficients {,(d) defined as for
cusp forms, using the Hecke eigenvalues, then the linear combinations of normalized
Ey, x»(dz)’s also form an orthonormal basis for & y,(L; Ey, y,). The crucial fact here is
that Lemma 8.3 has the same form as [Hum, Lemma 3.15]. This basis can then be used
in (8.10).

9. Atkin—Lehner operators

In this section, we explain how the E,, ,,(Bz,s) and Dy, y,.7(%,5,%) behave under
the Atkin—Lehner operators.

9.1. Newforms

Essentially everything in this section was worked out by Weisinger [W] in the holo-
morphic setting.
Suppose that QR = N, and (@, R) = 1, and define an Atkin—Lehner operator by

Q t
Wo = (NZ QU) ’

where r,t,u,v € Z,t =1 (mod @), r =1 (mod R), and Qrv — Rut =1 (so det(Wg) =
Q). The paper [ALi] is a good reference for these operators. The nebentypus ¥ factors
uniquely as 1) = (@ () where 1(@) has modulus Q and (") has modulus R. Weisinger
[W, p. 31] showed that if f is I'g(/V)-automorphic with nebentypus v, then f|w,,, which

is independent of 7, ¢, u, v, is o(N)-automorphic with nebentypus E(Q)w(m. Here

Flwo (2) == §(Wq, 2) " f(Wq2).

Moreover, Weisinger showed in essence that

EX17X2|WQ = C(Q)Ex’l,xév (91)

where the pseudo-eigenvalue ¢(Q) is an explicit constant depending on the x; (see (9.3)

below for a formula), and where the x} are defined as follows. Write x; = XZ(»Q)XZ(.R), and let
R R — _ Q)

Xo = xPx and xh = (VxS Note that xjx = x1x2, and that xjxj =3 ().

Actually, Weisinger worked, in effect, with the completed Eisenstein series EY, |, which

affects the calculation of the pseudo-eigenvalue, since one must take into account the

Gauss sum which appears in (4.6).
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Proof of (9.1). We produce a proof of (9.1) which is of an elementary character, and
somewhat different in flavor to that of Weisinger’s thesis.

Write ¢; = qZ(Q)ql( ), where q(Q) =@ and q(R)qu) R. Define
¢ =0V, and g =q?¢"?,

and observe that ¢, is the modulus of x;.
From the definition (3.5), we have

Ey(z,8)|lw, = j(WQ,z)_k Z 9(’;/)]'(’)/7UWQZ)_kIm(’yUWQz)S7 (9.2)
7€l \I'o(1)
where recall oz = ¢qo2. Let 0/ = (\/g 1/\/17), s0 o'z = ¢hz. It is straightforward to check
2
R
oo — (V@ 2wVt
Q V@) \ (P (Q)

A

where observe A € SLy(Z). One can also show directly that j(\,o'z) = j(Wgq, 2), and so

F(Wa, 2) Fj(yA ™ oWoz) ™" = j(v,0'2) 7"

Therefore, by changing variables v — yA™! in (9.2), we obtain

Eo(z,s)lwe = S 0(A")j(3,0"2) FIm(r0'2)",
V€T \T'o(1)

and so now our task is to understand #(yA™!). With v = (@ ) by direct calculation,

we have O(yA71) = Xl(qu @y dq( ) u)x2(— cq(R)t + dq(Q) ) Using the factorizations

Xi = XEQ)XE ). we obtain

0 = X Oxa (@D (it (@ o) (- x5 ).
Next we use that y; = ¥yx2 to simplify the above expression, getting
0(yA™") = X (X (@XIY (— )P @D (P u)p ™ (gD v)xE? (— Rut) x5 (Qrv).
To simplify further, we note
X2 (= Rut) x5 (Qrv) = x2(Qrv — Rut) =

using the determinant equation. Moreover, from ¢ = 1 (mod @), we have v« = —R
(mod Q), so @ (g{Mu) = TV (—g5™), and likewise ¥ (¢\?Vv) = 7 (¢{?). Tn all,
this discussion shows
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_ —(Q) —(R)
(A = 0/ (xs” (1) (a5 (657),
where 6 corresponds to x7, x5-
Thus the explicit pseudo-eigenvalue of the Atkin—Lehner operator is given with

—(R)

—(Q), (R
By (2:9)lwe = X5 (18 (@80 (65 By sy (205). O (9.3)

9.2. The Fricke involution
As a particularly important special case of (9.3), if @ = N, then we obtain

EXI:XZ <Z7 S)|WN = X2(_1)EX2’X1 (z7 5)

It is a slightly subtle point that Wy is not exactly the same operator as the Fricke
0 -1

involution wy == ( y

). Indeed, we have

Nr t —t r
Wy = (Nu Nv) = (—NU u) wWN,
——
YN ETO(N)

and note ¥(yn) = ¥(—1). For a I'g(IV)-automorphic function f of nebentypus ¥, we
have

Flonz) = Floy' W) = 0" W) (=15 (W, )" Flwy = (=15 (wn, )" flwy
Collecting these formulas, we obtain
i
E (75) = i *xo(=1)Ey, o, (iy, 5).
X1,X2 0192y X2( ) X2,X ( Yy )
For the completed Eisenstein series, we may derive for 1, xo primitive

y ( 1/2—5 5—1/2 . —kt61—5 i )
By (o s) = /700 A (1) () B, ()

Needless to say, this is compatible with (4.12), which had more restrictive conditions on
k and the parity of the characters.

9.3. Oldforms

For this subsection, we restrict attention to the trivial nebentypus case with & = 0,
and x1 = x2 = x of modulus ¢; = l5 = {. Viewing E, ,(Bz) as on I'q(¢>?M) with B|M,
we need to see how it operates under the larger collection of Atkin-Lehner operators for
this subgroup. Suppose ¢ is a prime so that ¢%||M¢2, ¢°||M, (so ¢®~#||¢?), and ¢"||B. If
v < g, then [ALe, Lemma 26] showed
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(ExxlB)lw, = (Exxlw)lp

where we now describe what this means. First, f|g = f(Bz). The operator Wy is the
Atkin-Lehner involution for the group Io(¢2M), while W} is the one associated to T'o(£?).
Finally, B’ is defined by setting B = ¢7 By where ¢ { By, and then B’ = ¢°~7By. Thus,
we have for v < g that

(EX,X(BZaS)”Wq = X(Q)<_1>EX7X<BIZvS)’ (9.4)

where ¢/[|¢? (so j = a— ). If v > g, then the same formula holds, as can be proved by
doing the same calculation for E, ,(¢°~7Boz, s).

For each prime ¢ dividing M2, the map B — B’ is an involution on the set of divisors
of M. Note that if ¢|¢ but ¢t M, then B’ = B.

Thus, the Atkin-Lehner operators permute the functions E,, , (Bz, s), with a multipli-
cation by X(‘J)(—l). The corresponding property for cusp forms was important in [KY],
showing that the Fourier coefficients of f|p at an Atkin—Lehner cusp are essentially the
same as at infinity.

It may be interesting to mention that the Atkin—Lehner operators also permute the
functions Dy (z,s) := Dy, y,f(2,s,1) (originally defined by (7.2)), since this is a desirable
property of an orthonormal basis.

Proposition 9.1. Let f = lg, with g|M, and let W, be the Atkin—Lehner involution on
To(2M) with q[¢>M . Suppose ¢?||(?. Then

DX7€g|Wq = X(q) (_1)Dx,fg’-

Remark. If ¢|¢ but g ¥ M, then ¢’ = g, and the claimed formula follows immediately from
(9.4), since B’ = B.

Proof. From (7.5) we have

(Mf)S%DX’@g(zs (g, M/g)* ZZM X )EX,X(%QZ,S). (9.5)

alg |22

Let A denote the right hand side of (9.5). Then by (9.4), Alw, has the same expression
but with (bg/a) replaced by (bg/a)’, and multiplied by x(®(—1).

By abuse of notation, write M = ¢™ My, g = ¢9go, and within the sum we write
a = ¢%ao and b = ¢°by. Then we have

a M=g)s
= (90, Mo/g0)* > Y lao) aobo) )X(aobo)

@090 bo| 0
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Z Z ‘u(qa)ﬂ(zb) X(qaqb)EX,X (qlﬂrg*aboﬁz7 S) )

a b
a
0Zatgocici—g (1"T) 0

Similarly,

a )(q9, gM—9)*
Alw, = X9 (=1)(g0, Mo/g0)°* Y plao)u (a b J: ) x(aobo)
0190 by| H0 070

a b
D> p(g )i(z)X(qaqb)E%X((qurg*a)/bOﬂZ’5)_

a
a
0Zatgocicii—y (1" 0

According to the discussion preceding Proposition 9.1, (g°t9-¢) = ¢M~-(+9-a) and
(q9) = ¢™~9, or in additive notation, ¢’ = M — g. Finally, switching the roles of a and
b, and applying the substitution ¢’ = M — g completes the proof. O

10. Bruggeman—Kuznetsov for newforms

In this section, we use some of the material developed in this paper to give a
Bruggeman-Kuznetsov formula for newforms, which extends the newform Petersson for-
mula derived in [PY].

10.1. Statement of Bruggeman—Kuznetsov

Suppose that u; form an orthonormal basis of Hecke-Maass cusp forms of level N
and nebentypus v, and write

Z pj(n)e(nx)Wo it (4m|nly),
n#0

where
Wo,itj (4my) = 2\/§Kitj (27y).

Similarly, write

Ba(2,8,1) = Sazooy® + pau(5)Y"° + D pa(n, 8)e(na) Wy ,_1 (47 |nly).
n#0

Renormalize the coeflicients by defining

vy(n) = (L”'Om pi(n). ves(n) = (L”'))W pau(n, 1/2 + it).

cosh(rt; cosh(mt

If u; is a newform we have v;(n) = v;(1)A;(n), where A\;(n) are the Hecke eigenvalues.
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The Bruggeman—Kuznetsov formula for mn > 0 reads as

Z vi(m)v;(n)h(t;) + Z i / Vot (M) g (n)h(t)dt

= Gmnto + > Sw(mc’n;c)g(h‘/m) (10.1)

c
¢=0 (mod N)
where
1 7 . 7 Jgit(x)
90=— /ttan (wt)h(t)dt, g(z) z/cosh(wt)th(t)dt,
and
* rm +Tn
Sy(m,n;c) = Z ¢(x)e(f)

z (mod c)

We may wish to only choose an orthogonal basis of cusp forms instead of an orthonor-

v (m)v;(n)
(uj 7uj>

mal basis; the formula is modified by dividing by (u;,u;), for then is invariant

under re-scaling. The inner product is

(uj, uj) = |uj(2)

Lo (N)\H

2 dzxdy
v

This normalization explains why the diagonal term on the right hand side of (10.1) does
not grow with N.

Next we discuss how (10.1) changes if we choose an alternative basis of Eisenstein
series. Let {F'} be an orthogonal basis for the space of Eisenstein series, with inner
product defined formally as in Section 8. Here we view the spectral parameter t as held
fixed, so the dimension of this space equals the number of singular cusps for ).

We claim the quantity

vei(m)ve(n)
F orthogonal basis <F’ F>Eis
is independent of the orthogonal basis. This follows from Proposition 8.2, since one may
interpret this expression as the part of (P,, P,;,) coming from the continuous spectrum,
for some generalized Poincare series (or integrals thereof).

Hence, we may re-phrase the Bruggeman—Kuznetsov formula using the decomposition
into newforms as in (8.3). That is, we have



40 M.P. Young / Journal of Number Theory 199 (2019) 1-48

oo

Zﬁ/”a,t(m)m(n)h(t)dt

-y i / ) ) 3 —”szgg’;gfs(n)h(t)dt. (10.2)

LM=N €M} (M) F orthogonal basis
X1,X2 t,
for €y (L;Exq,xs)

— 0o

This is analogous with the decomposition of cusp forms into newforms, which gives

S umpmmht) = S S 3 W (10.3)

J LM=N feH}, w(M) F orthogonal basis
i for S, o (Lif)

The formula (10.2) is not original; one may alternatively consult [BHM, (2.11)] or [KL,
(7.32)].

10.2. Bruggeman—Kuznetsov for newforms, squarefree level

For the rest of this section, suppose N is square-free, and ) is the principal character.
Let us fix a function h, which we suppress from the notation, and define A x(m,n) as the
left hand side of (10.1). Also, write Ay = An g + AN, corresponding to the cuspidal
part and the Eisenstein part, separately (so Ay o equals (10.3), and Ay  equals (10.2)).
Let A7V,0 denote the newform analog of Ay g, where the Maass forms are restricted to
be newforms of level N. That is, set

. ve(m)vy(n)
Anolmn) =S "h(t) Y Lol
o ts FEH}, (M) 2 f)

A nearly-identical proof to that in [PY] gives a formula for A} o in terms of Apro’s
and vice-versa. Precisely, with x = 0, we have

1 J4 w M)
Bvxlmm)= 37 o ST o D aldeld) Y0 ot

LM=N £ L= dy,dalt u|(m,L)
v|(n,L)

. d d
Z Z A (aze?(ul, v)’ b%g(i, ) )’ (104)

al(% s i) ellda, oop=y)

bI(T s wmay) e2|(d2; 32, —5)

where a definition of the coefficients c¢¢(d) may be found in [PY] (we have no need of
them here). This formula is inverted by
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) L) uv M uu:)} 7)
Nax(m,n) = Z 5EL) Z 02 Z ce(dy)ce(ds) Z (u,v) V(—(—m,—) ;

LM=N L| L~ dy,da |l wu|(m,L)
v|(n,L)

S sttt ws

alCs meay) el(ds zin—s)
bl(%

v (u, v)) €2|(d2;m)

The proof of [PY] only uses Hecke theory, and so all the arguments carry through without
any substantial changes.

The goal of the rest of this section is to show that (10.4) and (10.5) hold equally well
for the continuous spectrum, that is, with x = co. Then since Ay = Ay 0+ AN 0, and
likewise for A%,, we obtain analogous formulas for Ay and A%,.

When N is square-free and 1 is principal, then the decomposition (8.4) simplifies
since Hj (M) = {0} for M # 1, and H; (1) is the level 1 Eisenstein series, E(z, 1/2 + it).
So, define A}, (m,n) =0 unless M = 1, in which case A} (m,n) = A1 (m,n).

For the analysis of Ay o to proceed in parallel with that of Ay, we need to pick
a basis for & (L; ) analogous to the one chosen in [PY]. Instead of the E, or D, ,, we
start with F, the level 1 Eisenstein series. Let ¢ be a function defined on the divisors
of N, satisfying ¢(p) = £1, extended multiplicatively. There are 7(NN) such functions ¢,
since N is squarefree. Then define

Ey = ¢(d)Elw,, (10.6)
d|N
which is on I'o(NN). Here Wy is the Atkin-Lehner involution, and from (9.4), we have
(Elw,)(z,1/2 +1it) = E(dz,1/2 + it). It follows from (10.6) that Ey|w, = ¢(d)Ey, and
so these functions form an orthogonal basis for £&(N; E). Thus,

T v, 1(m)v, «(n)
A = h(t)T; dt T; = & g .
Woe(m.m) 4 T, Tigm,n) = 3 2
Now we wish to evaluate T;(m,n) in an analogous way to [PY].
Asin [PY, (2.5)], we have
(Eg, Eg) =7(N) Y _ ¢(d)(Elw,, E).
N
Next we claim
T (d)Vd
(Eilwa, By = TV g gy (10.7)

v(d)

where v(d) = led(p + 1), which is the index of T'g(d) in T'g(1) for square-free d. When
E is replaced by a cuspidal newform, then this was proved by Abbes and Ullmo [AU]J.
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More general inner product calculations may be found in Section 8.4, but the case here
is brief enough that a direct evaluation is desirable.
Returning to Theorem 7.1, we see that

E(Bz,5) =N*)_ ' 5, (2,5).

o (de)m me
e|B
Therefore,
1 1
(Etlws, Br) = NZ ql/2+it Z (be) 172t (Ex, B o).
a|lN b|B,e| X

Here the inner product vanishes unless a = %c. Thus we obtain

ﬁwt'WB’Et) = N(; (B/b)l/Z}ritblﬂ—it) (ZN %) = 7u(B)VBv(N/B).

ol &
Taking B = 1, we get ;=(Ey, E;) = v(N), and so (10.7) follows, as well as
<Et7 Et>N = V(N) <Eta Et>1 (108)

where the subscript on the inner product symbol denotes the level of the group to which
the inner product is attached. Hence

o (p)7it (p)p'/? )

(Bo, Bo) = (N)(E, B) [T (1+ ZF500

p|N

which is the analog of [PY, (2.6)].
By a direct calculation with the Fourier expansion, we have

ve,(m Z p(u)u'?vg(m/u) = vg(1 Z P(u)u'?Xg(m/u),

ul(m,N) u|(m,N)

where Ag(n) = 7;r(n); this is the analog of [PY, (2.8)]. We therefore need to evaluate
the inner sum over ¢, namely

Ty(m.n) = —— s ZA% m)Ag, (n )H(1+M)_l, (10.9)

oIV v(p)

where we have used (10.7). Here (10.9) is analogous to [PY, (3.2)]. At this point, all
the calculations of Ti(m,n) run completely parallel to those in [PY, Section 3], since
the formulas that were used there are: Hecke relations, (10.7), and (10.8), which are the
same in both cases of cusp forms vs. Eisenstein.
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Therefore, (10.4) holds with x = co. We also claim that the inversion formula (10.5)
holds with x = co. The key to this is that the inversion formula proved in [PY, Section
4] is a combinatorial formula proved by inclusion—exclusion and does not depend on
any properties of A*M,Oo. Similarly, the intermediate hybrid formulas appearing in [PY,
Section 5] also extend to the Bruggeman—Kuznetsov formula; these only rely in the
previous formulas and Hecke relations which hold equally well in both the Maass and
Eisenstein cases.

One may then set up the hybrid cubic moment for Maass forms as in [PY, (8.7)]:
there exist positive weights w,; and w; so that we define

Mg = Y wuh(t)L(1/2,u; ® xg)°

u; new, level rq’
q'|g

/ ) wih(t)L(1/2, B; @ xq)°dt.

— oo Et new, level rq’

Actually this sum over F; is empty except when r = 1 and ¢’ = 1 in which case the
problem reduces to the one treated in [CI]. Now one may approach M(r,q) as in [PY],
just as the original paper of Conrey—Iwaniec [CI] dealt equally well with Maass forms
and holomorphic forms.

11. Proof of the inversion formula

Proof of Lemma 7.2. Write

SOV ECHC ST
d|A e|B
(d,e)=1

so the desired identity is K = K(B) ][, (1 —w1(p)w2(p)). Inserting the definition (7.6),
we have

Z Z Z b)wr ( bd)wg(ae)K(—de).
d||A a B4 p| Ae ae
elB

(d,e)=1

Reversing the orders of summation, we obtain

k=% 3 u(a)u(b)wl(bd)w(ae)f((%).

a|L b|L d|A,Bd=0 (mod ae)
e|B,Ae=0 (mod bd)
(d,e)=1
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Now let (a,d) = g and (b,e) = h and write d = gd’ and e = he’, giving

bgd' B
K= ZZ Z Z Z ,u(a)u(b)wl(bgd’)wg(ahe’)K( chhe’ )
alL b|L g|(a,A) h|(b,B) d’|4,Bd'=0 (mod <he')
e'| £, Ae’=0 (mod %gd’)
(d,7%)=11 (e/,%)=1
(gd’,he’)=1

Now since (d', $he’) = 1, the first congruence condition is equivalent to £he’|B (which
automatically implies ¢/| % so this latter condition may be omitted since it is redundant).
Similarly, the second congruence is equivalent to % gd’'|A. Next we move the sums over g
and h to the outside, and define a = ga’, b = hd'. Simplifying, we obtain

= Z Z Z Z Z M(ga/)ﬂ(hb/)wl(b/ghd/)wz(a/ghe’)K(b;cllljxg).

€
g|A h|B a/|L b|L  a’he'|B

(gd/ he’ )—

Next expand p(ga’) = u(g)u(a’), recording the coprimality condition (a’,g) = 1, and
similarly for p(hb’). Then

/ / / ! A ! b/dlB

K= Y ulo)n(@)u(k)u(t e (¥'ghd Jwa(a'ghe ) K (=27 ).
a’he’|B
b gd’ A
(d'g,a")=1
(e'h b/):
(gd’,he’)=1

Now let (a’,b") = r, and write ' = ra”, b’ = rb” where now (a”,b”) = 1. Then

v'd' B
K=Y wulghula")(r)p(h)ud" e (6" rghd ws(a"rghe’) K (T/e/ ).
a''rhe’|B
b rgd'|A

()

where (...) represents the following coprimality conditions:

(dg,a’r)y=1, (ht'r)=1, (gd he')=1, (", b")=1, (a"b",r)=1. (11.1)
Now let a”’e’ = a be a new variable, and likewise b”d’ = (3; the coprimality conditions

n (11.1) translate into these conditions: (o, 8) = 1, (a,7g) = 1, (8,rh) = 1, and (r, gh) =

(g,h) = 1. Note that a” and b"” do not occur in this list of conditions. Thus we obtain

K= 3 o (umer(rahesraha)k (22 ) S S pla ),
rha|B a’|a |8
[y
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where now (... ) represents the coprimality conditions translated into the new variables.
The upshot is that Mobius inversion gives « = § = 1, and we obtain K = kK (B), where

K= S w@pP(r)p(h)(wiws)(rgh).
rh|B, rg|A,
(r.gh)=1, (g,h)=1

We claim that k = leAB(l — w1 (p)wa(p)), which may be checked prime-by-prime by
brute force. O

12. Mellin transform of Whittaker function

In this section, we take the opportunity to correct [DFI, Lemma 8.2]. The overall
method of [DFT] is valid, but a typo early in the derivation makes it difficult to correct
the mistake without going through the entire process again.

Recall the definition

€ — M2 7 ) s—5 2J
D7 (s,0) = \/EO/ (Wgﬁ(ély) +€1"(ﬂ+ %>W7%’5(4y)>y .
where € = +1, and that we wish to show
i
S_A'_ﬁ_‘_ﬂ S_ﬁ_i'_ﬁ
@5 (s, 8) = pi(s. BT (——5—2— )0 (—5—2)

where pj, (s, 8) is a certain polynomial defined recursively below.

The first step of the derivation in [DFI] is to give two recursion formulas for the
Whittaker function, the first of which contains a typo. The corrected formulas are (cf.
[DLMF, (13.15.10), (13.15.12)])

2B
—Wap(y) =Wai1g.1(y) —Wei1g_1(y
NG 5(y) +2,/3+2( ) +3.8 2( )

= (ﬁ —a+ %)Wafé,,@Jr%(y) + (ﬁ + o — %)Wafé,,ﬁfé(y)‘

Next define
e N I( )
Vi s() 7W§’ﬁ(4y)+sf )W k 5(4y). (12.1)

The above recursion formulas give

2 2

28 . _ _
ﬁvm%) = B+ Wt g1 () + (B+ 55 Wit 51 (y)
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1-\(/6_,'_ 1+k:)<

T 5

W12k7ﬂ+ (y)7W1 k G- (y)),

7
and using I'(s + 1) = sI'(s), we derive

b
NG

which replaces [DFI, (8.28)]. Then on integration, we derive

VipW) =B+ 15V 5 @)+ (B+5HV 5 4 1),

(s, 8) = (1 =)@ 1 (s + 5,8+ 3) + (L + 55085 (s + 5.8 — 3),

for B # 0. When k = 0, then the formula for V§ ;(y) given in [DFI, p. 532] is correct,
and by [GR, (6.561.16)], we derive

st - (D7)

which differs from [DFI, (8.30)] by a factor . This shows the claimed formula for ®f
with p§ = 1=,

Now proceed by induction on k£ > 1. We obtain

s+ﬂ+1+—1 =21 )F<57ﬂ+1%)

@55, 8) = (1= 5 pia(s + 3,5+ 1)1 ( 5

+ (1455 pes (s + 5,8 - 3)T (5+5+W)F(sﬂ+1+1;€>.

Next we use

1—e(— 1)

1
F(s-I-/@-F +

And similarly,

F(s—5+1+1zj)zr(875+1—58)x 1, e=-1
2 2 B e=1.

Therefore, we obtain a recursion

. _(_1\k
p;(s,ﬁ)z(l—%)pi1(8+%75+%)X{£’+_6 . E_gk}

=1
+(1+k275 )pk 1(8+27B ) {5,—,@ c }
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By direct calculation, we have

pi(s,8) =1 py(s,0)=1
Pr(sB)=s-3 Py (5,8) =2
pi(s,8)=2s—1-0 p3(s,8)=25—1+8
pi(s.B)=2s— 3= B*+1  pi(s,B) =4(s—1)

Compared with [DFI, (p. 533)], the sign on f is reversed.
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