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We find explicit change-of-basis formulas between Eisenstein 
series attached to cusps, and newform Eisenstein series 
attached to pairs of primitive Dirichlet characters. As a 
consequence, we prove a Bruggeman–Kuznetsov formula for 
newforms of square-free level and trivial nebentypus.
We also derive, in explicit form, the Fourier expansion, Hecke 
eigenvalues, Atkin–Lehner pseudo-eigenvalues, and other data 
associated to these Eisenstein series, with arbitrary integer 
weight, level, and nebentypus.
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1. Introduction

Let N be a positive integer, and consider the space of automorphic forms of level N , 
weight k ∈ Z, and nebentypus ψ modulo N . There are at least two natural choices of how 
to decompose the space spanned by the Eisenstein series. One is to use Eisenstein series 
Ea(z, s, ψ) attached to cusps and the other is to use Eisenstein series Eχ1,χ2(z, s) attached 
to pairs of Dirichlet characters, which has a natural interpretation from representation
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theory. The decomposition along cusps is quite convenient from the point of view of 
the spectral decomposition and the Parseval formula since in essence Eisenstein series 
attached to inequivalent cusps are orthogonal. The decomposition with Dirichlet charac-
ters is friendly when studying the L-functions associated to automorphic forms. Clearly, 
these two features are in conflict with each other.

One of the main goals of this paper is to explicitly work out the translations between 
these different bases, and to use this information to derive some other useful formulas. 
These change of basis formulas appear as Theorems 6.1 and 7.1.

Along the way, we derive the Fourier expansion (see Proposition 4.1), allowing us to 
derive the functional equation of Eχ1,χ2(z, s) under s → 1 − s. The Fourier expansion 
also shows that Eχ1,χ2 is an eigenfunction of all the Hecke operators, and gives explicit 
formulas for the Hecke eigenvalues. We additionally examine the Mellin transform of the 
Eisenstein series Eχ1,χ2(iy, s), leading to a complementary functional equation related 
to the functional equation of the Dirichlet L-functions.

After developing the change of basis formulas, in Section 8 we examine the orthogo-
nality properties of the various types of Eisenstein series.

In Section 9, we explicitly derive the action of the Atkin–Lehner operators. This is 
helpful for studying the behavior of Eisenstein series around different cusps (e.g. see [BJ]
for a recent application).

As a culmination of all this work, in Section 10 we derive a Bruggeman–Kuznetsov 
formula restricted to newforms, in the special case where the level is squarefree, the 
nebentypus is principal, and the weight is 0. This is an extension of the derivation of 
the Petersson formula for newforms of [PY], which proceeds by a sieving argument. 
The method of [PY] may be easily modified to sieve for cuspidal Maass newforms, but 
unfortunately the same approach does not immediately carry over to sieve the continuous 
spectrum. This sieving argument is a requirement to prove the Bruggeman–Kuznetsov 
formula for newforms. The material developed in this paper may be used to sieve the 
Eisenstein series in a close analogy to the cusp forms.

In [PY], the newform Petersson formula is the crucial initial step to set up the cu-
bic moment which is in turn used to prove a strong subconvexity bound for twisted 
L-functions L(f ⊗χq, 1/2) where f is a holomorphic newform of squarefree level N , and 
χq is a quadratic character of conductor q. This paper generalized the groundbreaking 
work of Conrey and Iwaniec [CI], which required N |q. With the aid of the newform 
Bruggeman–Kuznetsov formula, the tools are now in place to allow for f to be a Maass 
newform. The arithmetical aspects of [PY] will be the same, but some of the analytical 
aspects (e.g., integral transforms with Bessel functions) will look somewhat different. 
Conrey and Iwaniec [CI] successfully treated both the holomorphic forms and Maass 
forms in tandem, so it is reasonable to expect that the subconvexity bound of [PY] may 
be extended to Maass forms. A motivation for this extension is the hybrid equidistri-
bution of Heegner points as both the level and discriminant vary (as in [LMY]); such a 
result would immediately improve many of the exponents in [LMY].
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An overarching goal of this paper is to provide, in one place, and in explicit form, 
many of the basic properties of Eisenstein series, using the classical language. Many 
special cases (e.g., with principal nebentypus, or primitive nebentypus, or weight k = 0, 
or with holomorphic forms, . . . ) are scattered throughout the literature, and the author 
found [Hux] [I1] [I2] [DFI] [DS] [KL] particularly useful references.

2. Acknowledgments

I thank Peter Humphries and Jiakun Pan for useful feedback and corrections on earlier 
drafts of this paper, and especially E. Mehmet Kıral for many conversations on this work. 
I also thank Andrew Booker and Min Lee for informing me of their independent work with 
Andreas Stömbergsson on the change-of-basis formulas, and Gergely Harcos, Abhishek 
Saha, and Rainer Schulze-Pillot for conversations on orthogonalization. Finally, I thank 
the referee for valuable suggestions.

3. Definitions

3.1. Eisenstein series attached to cusps

Let Γ = Γ0(N), suppose ψ is a Dirichlet character modulo N , and let k ∈ Z. We 
study automorphic functions f on Γ of weight k and nebentypus ψ, which satisfy the 
transformation formula

f(γz) = j(γ, z)kψ(γ)f(z),

where ψ(γ) = ψ(d), with d denoting the lower-right entry of γ, and where

j(γ, z) = cz + d

|cz + d| .

Since −I ∈ Γ0(N), a necessary condition for a nonzero automorphic function to exist is 
that

ψ(−1) = (−1)k.

Let a be a cusp for Γ, and let σa be a scaling matrix for a, which means σa∞ = a, and 
σ−1
a Γaσa = Γ∞ = {±( 1 b

1 ) : b ∈ Z}. Let τa = σa( 1 1
1 )σ−1

a , so that ±τa generate Γa, the 
stabilizer of a in Γ. We say that a is singular for ψ if ψ(τa) = 1. The Eisenstein series of 
nebentypus ψ and weight k attached to the cusp a is defined by

Ea(z, s, ψ) =
∑

ψ(γ)j(σ−1
a γ, z)−k(Im σ−1

a γz)s, (3.1)

γ∈Γa\Γ
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initially for Re(s) > 1. Since we generally have no need to combine Eisenstein series with 
different weights, we suppress the weight in the notation.

The definition of singular given above disagrees with some definitions in the literature, 
which seemingly allowed ψ(τa) to be −1 for k odd. Under this assumption, Ea(z, s, ψ)
would be ill-defined, because the summand would change sign under γ → τaγ.

One may check that Ea is independent of the choice of scaling matrix. Moreover, if a
and b = γa are Γ-equivalent cusps, then

Eγa(z, s, ψ) = ψ(γ)Ea(z, s, ψ), (3.2)

correcting a remark of [DFI, p. 505].

3.2. Eisenstein series attached to characters

We draw inspiration from Huxley’s paper [Hux], but refer the reader to [KL, Chapter 
5] for a more motivated definition. Let χ1, χ2 be Dirichlet characters modulo q1, q2, 
respectively, with χ1(−1)χ2(−1) = (−1)k. Define

Eχ1,χ2(z, s) = 1
2

∑
(c,d)=1

(q2y)sχ1(c)χ2(d)
|cq2z + d|2s

( |cq2z + d|
cq2z + d

)k

. (3.3)

One can check directly that Eχ1,χ2 is automorphic on Γ0(q1q2) of weight k and neben-
typus χ1χ2. However, we can give a more structural view as follows.1 With χ1, χ2 as 
above, define

θ

(
a b
c d

)
= χ1(c)χ2(d), (3.4)

for a, b, c, d ∈ Z and ad − bc = 1. Also define σ = (
√
q2

1/√q2
), which satisfies σz = q2z. 

Then Eχ1,χ2(z, s) = Eθ(z, s), where Eθ is defined by

Eθ(z, s) =
∑

γ∈Γ∞\Γ0(1)

θ(γ)j(γ, σz)−kIm(γσz)s. (3.5)

It is easy to check that σΓ0(q1q2)σ−1 = Γ0(q1, q2), where this latter group denotes the 
subgroup of SL2(Z) with lower-left entry divisible by q1, and upper-right entry divisible 
by q2. Moreover, if τ ∈ Γ0(q1q2), and τ ′ ∈ Γ0(q1, q2) is defined by στ = τ ′σ, then the 
lower-right entry of τ ′ is the same as the lower-right entry of τ . Finally, one directly 
checks that if γ ∈ SL2(Z) and τ ′ ∈ Γ0(q1, q2), then

1 The author thanks E. Mehmet Kıral for pointing out this setup.
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θ(γτ ′) = θ(γ)(χ1χ2)(d′), (3.6)

where d′ is the lower-right entry of τ ′.
With these properties, we may now check the automorphy of Eθ. For τ ∈ Γ0(q1q2), 

and τ ′ defined by στ = τ ′σ, we have

Eθ(τz, s) =
∑

γ∈Γ∞\Γ0(1)

θ(γ)j(γ, τ ′σz)−kIm(γτ ′σz)s. (3.7)

Changing variables by γ → γτ ′ −1, using j(γτ ′ −1, τ ′σz)−k = j(γ, σz)−kj(τ ′, σz)k, and 
finally j(τ ′, σz) = j(τ, z) (check this one directly from the definitions), we complete the 
proof that Eθ has weight k, nebentypus χ1χ2, and level q1q2.

By Möbius inversion, we have

L(2s, χ1χ2)Eχ1,χ2(z, s) = 1
2
∑′

c,d∈Z

(q2y)sχ1(c)χ2(d)
|cq2z + d|2s

( |cq2z + d|
cq2z + d

)k

=: Gχ1,χ2(z, s), (3.8)

with the prime denoting that the term c = d = 0 is omitted. With k = 0, Huxley’s 
notation for our Eχ1,χ2(z, s) is Eχ2

χ1
(q2z, s), and our Gχ1,χ2(z, s) is Huxley’s Bχ2

χ1
(q2z, s).

The reader interested in holomorphic Eisenstein series of weight k ≥ 3 should consider

Eχ1,χ2,k(z) := (q2y)−k/2Eχ1,χ2(z, k
2 ) = 1

2
∑

(c,d)=1

χ1(c)χ2(d)
(cq2z + d)k , (3.9)

which satisfies Eχ1,χ2,k(az+b
cz+d ) = (cz + d)k(χ1χ2)(d)Eχ1,χ2,k(z), for ( a b

c d
) ∈ Γ0(q1q2).

3.3. Remarks

We refer the reader to [DFI, Section 4] for a more comprehensive overview of the space 
L2(Γ0(N)\H, ψ), including a discussion on the relevant differential operators.

Weisinger [W] has developed a newform theory for Eisenstein series of weight k and 
nebentypus ψ in the holomorphic setting. The newforms of level q1q2 are the functions 
Eχ1,χ2,k(z) where χi is primitive modulo qi, i = 1, 2, and χ1χ2 = ψ. The space of 
Eisenstein series of level N is spanned by Eχ1,χ2,k(Bz) where Bq1q2|N .

In [Hux], Huxley calculated the scattering matrix for the congruence subgroups Γ0(N), 
Γ1(N), and Γ(N), with trivial nebentypus and weight 0. For each of these groups, he 
related Eisenstein series attached to characters to Eisenstein series attached to cusps on 
Γ(N).
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4. Fourier expansion and consequences

4.1. The Fourier expansion

For k = 0, Huxley [Hux] stated (without proof) the Fourier expansion of Eχ1,χ2(z, s); 
a proof may be found in [KL, Section 5.6]. For general k, and χ1χ2 primitive, [DFI] have 
developed the Fourier expansion. One may also find a Fourier expansion for Eχ1,χ2,k in 
[DS]. The author was not able to locate a formula for general k, s, χ1, χ2.

It is convenient to consider the “completed” Eisenstein series defined by

E∗
χ1,χ2

(z, s) := (q2/π)s

i−kτ(χ2)
Γ(s + k

2 )L(2s, χ1χ2)Eχ1,χ2(z, s),

where τ(χ2) denotes the Gauss sum.

Proposition 4.1. Suppose χi is primitive modulo qi, i = 1, 2, and (χ1χ2)(−1) = (−1)k. 
Then

E∗
χ1,χ2

(z, s) = e∗χ1,χ2
(y, s) +

∑
n �=0

λχ1,χ2(n, s)√
|n|

e(nx)
Γ(s + k

2 )
Γ(s + k

2 sgn(n))
W k

2 sgn(n),s− 1
2
(4π|n|y),

where

e∗χ1,χ2
(y, s) = δq1=1q

2s
2

π−s

i−kτ(χ2)
Γ(s + k

2 )L(2s, χ2)ys

+ δq2=1q
2−2s
1

π−(1−s)

i−kτ(χ1)
Γ(1 − s + k

2 )L(2 − 2s, χ1)y1−s,

(4.1)

λχ1,χ2(n, s) = χ2(sgn(n))
∑

ab=|n|
χ1(a)χ2(b)

( b

a

)s− 1
2
, (4.2)

and Wα,β is the Whittaker function. In particular, if k = 0, then

E∗
χ1,χ2

(z, s) = e∗χ1,χ2
(y, s) + 2√y

∑
n �=0

λχ1,χ2(n, s)e(nx)Ks− 1
2
(2π|n|y).

Convention. Here and throughout we take the convention that the principal character 
modulo 1 is primitive.

Proof. We have

Gχ1,χ2(z, s) =
∑
n∈Z

e(nx)cn(y), cn(y) =
1∫

0

Gχ1,χ2(x + iy, s)e(−nx)dx,

and inserting (3.8), we have
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cn(y) = 1
2
∑′

c,d∈Z

χ1(c)χ2(d)(q2y)s
1∫

0

e(−nx)
|cq2(x + iy) + d|2s

( |cq2(x + iy) + d|
cq2(x + iy) + d

)k

dx.

Extracting the term c = 0, which only occurs for q1 = 1, we obtain

cn(y) = δq1=1δn=0(q2y)sL(2s, χ2) + bn(y),

where

bn(y) =
∑
c≥1

∑
d∈Z

χ1(c)χ2(d)(q2y)s
1∫

0

e(−nx)
|cq2(x + iy) + d|2s

( |cq2(x + iy) + d|
cq2(x + iy) + d

)k

dx.

Changing variables x → x − d
cq2

, we obtain

bn(y) = (q2y)s
∑
c≥1

χ1(c)
(cq2)2s

∑
d∈Z

χ2(d)e
( nd

cq2

) d
cq2

+1∫
d

cq2

e(−nx)
|x + iy|2s

( |x + iy|
x + iy

)k

dx.

Next break up the sum over d into arithmetic progressions modulo cq2, giving

bn(y) = (q2y)s
∑
c≥1

χ1(c)
(cq2)2s

∑
r (mod cq2)

χ2(r)e
( nr

cq2

)∑
�∈Z

r+�cq2
cq2

+1∫
r+�cq2

cq2

e(−nx)
|x + iy|2s

( |x + iy|
x + iy

)k

dx.

The sum over � forms the complete integral over R, and the sum over r satisfies

∑
r (mod cq2)

χ2(r)e
( nr

cq2

)
= cδ(c|n)τ(χ2, n/c) = cδ(c|n)χ2(n/c)τ(χ2),

where the final equation holds for all n provided χ2 is primitive (see [IK, (3.12)]). The 
integral may be evaluated with [GR, 3.384.9], but it takes some care to transform the 
integral into this template. We have

∞∫
−∞

e(−nx)
|x + iy|2s

( |x + iy|
x + iy

)k

dx = y1−2s
∞∫

−∞

e(−nxy)
|x + i|2s−k

(x + i)−kdx.

Then we note (x +i)−k = i−k(1 −ix)−k, |x +i|2s−k = |1 +ix|2s−k = (1 +ix)s− k
2 (1 −ix)s− k

2 , 
which is valid since arg(1 ± ix) ∈ (−π/2, π/2). Thus the integral we want is
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y1−2si−k

∞∫
−∞

exp(−2πinxy)dx
(1 + ix)s− k

2 (1 − ix)s+ k
2

= y1−2si−k (2π)2−s(2π|n|y)s−1

Γ(s + k
2 sgn(n))

W k
2 sgn(n),s− 1

2
(4π|n|y),

valid for n �= 0 and Re(s) > 1
2 . This simplifies as

y−si−kπs|n|s−1

Γ(s + k
2 sgn(n))

W k
2 sgn(n),s− 1

2
(4π|n|y).

We note the special cases (see [GR, (9.235.2)], [DFI, (4.21)]):

W k
2 sgn(n),s− 1

2
(4π|n|y) =

⎧⎨
⎩2

√
|n|yKs− 1

2
(2π|n|y) k = 0, n �= 0,

(4πny)k/2 exp(−2πny), s = k/2 > 0, n ≥ 1.
(4.3)

When n = 0, we have from [GR, (8.381.1)]

∞∫
−∞

1
|x + iy|2s

( |x + iy|
x + iy

)k

dx = i−k(2π)(2y)1−2s Γ(2s− 1)
Γ(s + k

2 )Γ(s− k
2 )

.

Thus, b0(y) = 0 if q2 > 1, and for n �= 0, we have

bn(y) = (q2y)s
∑
c≥1

χ1(c)
(cq2)2s

cδ(c|n)χ2(n/c)τ(χ2)
y−si−kπs|n|s−1

Γ(s + k
2 sgn(n))

W k
2 sgn(n),s− 1

2
(4π|n|y).

Simplifying gives the desired formula for the nonzero Fourier coefficients.
For the constant term, we obtain

c0(y) = δq1=1(q2y)sL(2s, χ2) + δq2=1y
1−sL(2s− 1, χ1)i−k (2π)21−2sΓ(2s− 1)

Γ(s + k
2 )Γ(s− k

2 )
.

We now simplify this. The functional equation of L(2s − 1, χ1) gives

L(2s− 1, χ1) =
√
q1

i−δ1τ(χ1)

(q1
π

) 3
2−2s Γ(1 − s + δ1

2 )
Γ(s− 1

2 + δ1
2 )

L(2 − 2s, χ1),

where δ1 = 0 if χ1(−1) = 1, and δ1 = 1 if χ1(−1) = −1. Also, note

Γ(2s− 1) = π−1/222s−2Γ(s− 1 )Γ(s).
2
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Therefore,

c0(y) = δq1=1q
s
2L(2s, χ2)ys

+ δq2=1q
2−2s
1

π2s−1

i−δ1τ(χ1)
Γ(1 − s + δ1

2 )
Γ(s− 1

2 + δ1
2 )

i−k Γ(s− 1
2 )Γ(s)

Γ(s + k
2 )Γ(s− k

2 )
L(2 − 2s, χ1)y1−s.

Consider

γ(s, δ1, k) =
Γ(s− 1

2 )Γ(s)Γ(1 − s + δ1
2 )

Γ(s− 1
2 + δ1

2 )Γ(s− k
2 )Γ(1 − s + k

2 )
.

Note that in our application, δ1 ≡ k (mod 2). Using standard gamma function identities, 
we obtain

γ(s, δ1, k) =
{

(−1)k/2, k even,
(−1)(k−1)/2, k odd,

whence i−k+δ1γ(s, δ1, k) = 1. Therefore,

c0(y) = δq1=1q
s
2L(2s, χ2)ys + δq2=1q

2−2s
1

π2s−1

τ(χ1)
Γ(1 − s + k

2 )
Γ(s + k

2 )
L(2 − 2s, χ1)y1−s.

Then using e∗χ1,χ2
(y, s) = (q2/π)s

i−kτ(χ2)Γ(s + k
2 )c0(y) completes the proof. �

Note that
∞∑

n=1

λχ1,χ2(n, s)
nu

= L(u + s− 1
2 , χ1)L(u + 1

2 − s, χ2). (4.4)

4.2. Functional equations

The Fourier coefficient satisfies the functional equation

λχ1,χ2(n, 1 − s) = (χ1χ2)(sgn(n))λχ2,χ1(n, s). (4.5)

As for the Eisenstein series itself, we have

Proposition 4.2. Suppose χi is primitive modulo qi, i = 1, 2, and (χ1χ2)(−1) = (−1)k. 
Then E∗

χ1,χ2
(z, s) extends to a meromorphic function for all s ∈ C. Moreover, it satisfies 

the functional equation

E∗
χ1,χ2

(z, s) = E∗
χ2,χ1

(z, 1 − s). (4.6)

If k ≥ 0 and q1q2 > 1, then E∗
χ ,χ (z, s) is analytic for all s ∈ C.
1 2
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Remark. For k < 0, the multiplication by Γ(s + k
2 ) produces some poles of E∗

χ1,χ2
(z, s). 

If desired, one could form the completed Eisenstein series by multiplication by Γ(s − k
2 )

instead of Γ(s + k
2 ), leading to a slightly different functional equation following from (4.7)

below.

Proof. First consider the case with q1, q2 > 1. From the Fourier expansion, we have

E∗
χ1,χ2

(z, 1 − s) =
∞∑

n=1

λχ1,χ2(n, 1 − s)√
n

e(nx)W k
2 ,s− 1

2
(4π|n|y)

+
∞∑

n=1

λχ1,χ2(−n, 1 − s)√
n

e(−nx)
Γ(1 − s + k

2 )
Γ(1 − s− k

2 )
W− k

2 ,s− 1
2
(4π|n|y).

Since the Whittaker function has exponential decay, uniformly for s on compact sets, 
we see that E∗

χ1,χ2
(z, 1 − s) extends to a meromorphic function with possible poles at 

s = k
2 + � with � a nonnegative integer.

Using (4.5), χ1(−1)χ2(−1) = (−1)k, and

Γ(1 − s + k
2 )

Γ(1 − s− k
2 )

= (−1)k
Γ(s + k

2 )
Γ(s− k

2 )
, (4.7)

we obtain the functional equation. Moreover, the poles at 1 − s with s = k
2 + � are 

removable, provided k ≥ 0.
Next consider the case with q1 = 1 or q2 = 1. The non-constant terms in the Fourier 

expansion have the same analytic properties as in the case with q1, q2 > 1, so it suffices to 
examine the constant term e∗χ1,χ2

(y, s). By inspection of (4.1), it satisfies the functional 
equation

e∗χ1,χ2
(y, 1 − s) = e∗χ2,χ1

(y, s).

The coefficient of ys is analytic except possibly for poles at s = −k
2 − �, with � a non-

negative integer. If k ≥ 0 then these poles are canceled by the trivial zeros of L(2s, χ2). 
Similarly, the coefficient of y1−s is analytic except for possible poles at s = k

2 +1 +�, with 
� a nonnegative integer. These points occur at 2 − 2s = −k − 2� and are also canceled
by trivial zeros of L(2 − 2s, χ1), provided k ≥ 0. �

We are also interested in the Mellin transform of E∗
χ1,χ2

(iy, s) and its functional equa-
tion. A motivation for this explicit calculation comes from the evaluation of restriction 
norms of automorphic forms, as in [Y]. See [DFI, Section 8] for this calculation with cusp 
forms. The reader only interested in the change of basis formulas may wish to skip these 
calculations.

Assume that χ1 and χ2 are primitive with q1, q2 > 1, so the constant term vanishes. 
We have
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∞∫
0

E∗
χ1,χ2

(iy, s)(q1q2)u/2yu
dy

y

= (q1q2)u/2
∞∑

n=1

λχ1,χ2(n, s)√
n

∞∫
0

(
W k

2 ,s− 1
2
(4πny) + ε2

Γ(s + k
2 )

Γ(s− k
2 )

W− k
2 ,s− 1

2
(4πny)

)
yu

dy

y
,

(4.8)

with εi = χi(−1), for i = 1, 2. Changing variables y → y
πn , and evaluating the Dirichlet 

series using (4.4), we have

∞∫
0

E∗
χ1,χ2

(iy, s)(q1q2)u/2yu
dy

y

= 1√
π

(q1
π

)u
2
(q2
π

)u
2
L(1

2 + u + s− 1
2 , χ1)L(1

2 + u + 1
2 − s, χ2)Φε2

k (u + 1
2 , s−

1
2 ),

(4.9)

where as in [DFI, (8.25)]

Φε
k(α, β) =

√
π

∞∫
0

(
W k

2 ,β
(4y) + ε

Γ(β + 1+k
2 )

Γ(β + 1−k
2 )

W− k
2 ,β

(4y)
)
yα−

1
2
dy

y
. (4.10)

Actually, our definition of Φε
k differs from [DFI] in that we have not divided by 4 in the 

right hand side of (4.10). This integral is evaluated in [DFI, Lemma 8.2], for k ≥ 0, but 
the value stated there is not quite correct. The correct formula is

Φε
k(α, β) = pεk(α, β)Γ

(α + β + 1−ε(−1)k
2

2

)
Γ
(α− β + 1−ε

2
2

)
, (4.11)

and pεk(α, β) is a certain polynomial in α, defined recursively. The formula of [DFI] is 
incorrect in a few ways. One simple mistake is that it is off by a factor of 4, explaining 
our change in definition, and the more important error boils down to interchanging 1−ε

2

and 1−ε(−1)k
2 in the gamma factors, which arises from a typo early in the calculation of 

[DFI]. A side effect of this typo is that the formula for pεk(α, β) needs correction. We 
have devoted Section 12 to correcting the evaluation of Φε

k.
For k = 0, 1, the polynomial is given by

pε0(α, β) = 1+ε
2 , pε1(α, β) = 1.

Note that if ε = ε2, then ε2(−1)k = ε1, and so in our desired application the gamma 
factors match those of the Dirichlet L-functions appearing in (4.9) (only after the cor-
rection (4.11)), keeping in mind how the gamma factor depends on the parity of the 
character.
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Define Λ(s, χ) = (q/π)s/2Γ( s+δ
2 )L(s, χ) for a primitive Dirichlet character modulo q, 

with δ = 1−χ(−1)
2 . Then, for k = 0, 1, and χ1, χ2 primitive we have

∞∫
0

E∗
χ1,χ2

(iy, s)(q1q2)u/2yu
dy

y
= δ3q

−s
2

1 q
s−1
2

2 Λ(1
2 + u + s− 1

2 , χ1)Λ(1
2 + u + 1

2 − s, χ2),

where δ3 = 1 unless k = 0 and ε1 = ε2 = −1, in which case δ3 = 0.
From the functional equation Λ(s, χ) = ε(χ)Λ(1 − s, χ), we see that (4.8) satisfies

∞∫
0

E∗
χ1,χ2

(iy, s)(q1q2)u/2yu
dy

y
= ε(χ1)ε(χ2)q

1
2−s
1 q

s− 1
2

2

∞∫
0

E∗
χ2,χ1

(iy, s)(q1q2)−u/2y−u dy

y
.

On the other hand, if we apply the Fricke involution to E∗
χ1,χ2

, which maps y to 1
q1q2y

, 
then we get that

∞∫
0

E∗
χ1,χ2

(iy, s)(q1q2)u/2yu
dy

y
=

∞∫
0

E∗
χ1,χ2

( i

q1q2y
, s
)
(q1q2)−u/2y−u dy

y
.

Hence for δ3 = 1, we have

E∗
χ1,χ2

( i

q1q2y
, s
)

= ε(χ1)ε(χ2)q
1
2−s
1 q

s− 1
2

2 E∗
χ2,χ1

(iy, s). (4.12)

In Section 9, we will explicitly derive the action of all the Atkin–Lehner operators for χi

even or odd, which will generalize (4.12) (which only covers the Fricke involution, and 
additionally required χ1 and χ2 to be primitive). This provides a pleasant consistency 
check.

4.3. Hecke operators

One simple consequence of the explicit calculation of the Fourier expansion, particu-
larly the Euler product formula implied by (4.4), is that this shows that Eχ1,χ2(z, s) is 
an eigenfunction of all the Hecke operators, including p|q1q2. We have that

TnEχ1,χ2(z, 1/2 + it) = λχ1,χ2(n, 1/2 + it)Eχ1,χ2(z, 1/2 + it). (4.13)

In particular, if p|(q1, q2) then TpEχ1,χ2 = 0.
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4.4. Holomorphic forms

It would be negligent not to extract information on the holomorphic Eisenstein series 
defined by (3.9). Formally specializing s = k/2, we obtain

E∗
χ1,χ2

(z, k/2) = e∗χ1,χ2
(y, k/2) +

∞∑
n=1

λχ1,χ2(n, k/2)√
n

e(nx)(4πny)k/2 exp(−2πny),

using (4.3) to simplify the Whittaker function. In the constant term, we have 
δq2=1L(2 − k, χ1) = 0 for k ≥ 2. Therefore, for k ≥ 2 we have

( q2
2π )kΓ(k)L(k, χ1χ2)

i−kτ(χ2)
Eχ1,χ2,k(z) = δq1=1

( q2
2π )kΓ(k)L(k, χ1χ2)

i−kτ(χ2)

+
∞∑

n=1
λχ1,χ2(n, k/2)n

k−1
2 e(nz).

Compare with [DS, Theorem 4.5.1], and note

λχ1,χ2(n, k/2)n
k−1
2 =

∑
ab=n

χ1(a)χ2(b)bk−1.

Since the original definition of Eχ1,χ2(z, s) converges absolutely for Re(s) > 1, then 
certainly we may set s = k/2 for k ≥ 3. When k = 2, then since the completed Eisenstein 
series is entire in s, we may also set s = k/2 = 1, except when q1 = q2 = 1 in which case 
the level 1 Eisenstein series (with χ1 = χ2 = 1) has a pole at s = 1. See [DS, Section 4.6]
for a description of the linear space of weight 2 Eisenstein series.

We may also examine k = 1. Suppose q1, q2 > 1 for ease of discussion; then we may 
set s = k/2 = 1/2. One interesting feature here is that for weight 1, λχ1,χ2(n, 1/2) =
λχ2,χ1(n, 1/2) for n ≥ 1 (see (4.5)) showing that Eχ1,χ2,1(z) is a scalar multiple of 
Eχ2,χ1,1(z). This corresponds, roughly, to the fact that the dimension of the space of 
holomorphic Eisenstein series of weight 1 is about half that of the corresponding space 
of odd weight k ≥ 3. See [DS, Section 4.8] for precise statements.

5. Preliminary formulas

Now we embark on proving the change of basis formulas.

5.1. Primitive and non-primitive

Lemma 5.1. Suppose that χi has modulus qi, and is induced by the primitive character 
χ∗
i of modulus q∗i . Then
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Eχ1,χ2(z, s) = L(2s, χ∗
1χ

∗
2)

L(2s, χ1χ2)
∑
a|q1

∑
b|q2

μ(a)χ∗
1(a)μ(b)χ∗

2(b)
(ab)s Eχ∗

1 ,χ
∗
2

(aq2
bq∗2

z, s
)
.

Remarks. Within the sum, we may restrict to (b, q∗2) = 1, which implies bq∗2 |q2, and so 
aq2
bq∗2

is an integer. Similarly, we may assume (a, q∗1) = 1 which gives that aq2bq∗2
is a divisor 

of q1q2q∗1q
∗
2
.

Proof. The desired formula is equivalent to

Gχ1,χ2(z, s) =
∑
a|q1

∑
b|q2

μ(a)χ∗
1(a)μ(b)χ∗

2(b)
(ab)s Gχ∗

1 ,χ
∗
2

(aq2
bq∗2

z, s
)
.

By definition,

Gχ1,χ2(z, s) = 1
2

∑′

c,d∈Z

(c,q1)=1
(d,q2)=1

(q2y)sχ∗
1(c)χ∗

2(d)
|cq2z + d|2s

( |cq2z + d|
cq2z + d

)k

.

By Möbius inversion, we deduce

Gχ1,χ2(z, s) =
∑
a|q1

∑
b|q2

μ(a)μ(b)χ∗
1(a)χ∗

2(b)
1
2
∑′

c,d∈Z

(q2y)sχ∗
1(c)χ∗

2(d)
|acq2z + bd|2s

( |acq2z + bd|
acq2z + bd

)k

.

For the inner sum above, we have

1
2
∑′

c,d∈Z

(q2y)sχ∗
1(c)χ∗

2(d)
|acq2z + bd|2s

( |acq2z + bd|
acq2z + bd

)k

= 1
(ab)s

1
2
∑′

c,d∈Z

(q∗2
aq2
bq∗2

y)sχ∗
1(c)χ∗

2(d)
|cq∗2 aq2

bq∗2
z + d|2s

( |cq∗2 aq2
bq∗2

z + d|
cq∗2

aq2
bq∗2

z + d

)k

,

which is none other than (ab)−sGχ∗
1 ,χ

∗
2 (

aq2
bq∗2

z, s). �
5.2. Notation and results from [KY]

As shown in [KY, Proposition 3.1] (see also [DS, Section 3.8]), a complete set of 
inequivalent cusps for Γ0(N) is given by 1

w = 1
uf where f |N and u runs modulo (f, N/f), 

coprime to the modulus, after choosing a representative coprime to N (such a choice can 
always be achieved). With this choice of representative, then 1

uf ∼ u
f (equivalent in 

Γ0(N)), and so by (3.2), Eu
f

= ψ(γ)E 1
uf

, where γ( 1
uf ) = u

f . One may easily check that 
any γ satisfying this equation has lower-right entry d congruent to u modulo both f and 



M.P. Young / Journal of Number Theory 199 (2019) 1–48 15
N ′ = N/f . Thus d ≡ u (mod [f, N ′]). In Lemma 5.4 below, we show that u/f is singular 
for ψ iff ψ has period dividing [f, N ′], and therefore ψ(γ) = ψ(u). That is,

Eu
f
(z, s, ψ) = ψ(u)E 1

uf
(z, s, ψ). (5.1)

We will generally work with cusps of the form 1
uf , but one may convert to uf using (5.1).

Proposition 5.2 ([KY], Proposition 3.3). Let c = 1/w be a cusp of Γ = Γ0(N), and set

N = (N,w)N ′ w = (N,w)w′, N ′ = (N ′, w)N ′′. (5.2)

The stabilizer of 1/w is given as

Γ1/w =
{
±τn1/w : n ∈ Z

}
, where τn1/w =

(
1 − wN ′′n N ′′n
−w2N ′′n 1 + wN ′′n

)
, (5.3)

and one may choose the scaling matrix as

σ1/w =
(

1 0
w 1

)(√
N ′′ 0
0 1/

√
N ′′

)
. (5.4)

Remark. With this choice of scaling matrix, we have

σ−1
1/wτ1/wσ1/w =

(
1 1

1

)
, (5.5)

which is important in the context of checking if 1/w is singular for a Dirichlet character 
ψ (recall the discussion in Section 3.1). One should also observe that N |w2N ′′ to see 
that τ1/w ∈ Γ0(N).

We next quote a double coset calculation from [KY], in the special case a = ∞, in 
which case the notation from [KY] specializes with r = N , s = 1:

Lemma 5.3 ([KY], Lemma 3.5). Let c = 1/w be any cusp of Γ = Γ0(N) and a = 1/N ∼
∞. Let the scaling matrix σ1/w be as in (5.4), and take σ∞ = I. Then

σ−1
1/wΓσ∞ =

{( A√
N ′′

B√
N ′′

C
√
N ′′ D

√
N ′′

)
:
(
A B
C D

)
∈ SL2(Z), C ≡ −wA (mod N)

}
. (5.6)

It is convenient to translate the notation a bit. With w = uf as above, we have

N ′ = N

f
, N ′′ = N ′

(f,N ′) , w′ = u.
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5.3. Singular cusps

Lemma 5.4. Let ψ be a Dirichlet character modulo N , and let a = 1
uf with f |N , and 

(u, N) = 1. Then a is singular for ψ if and only if ψ is periodic modulo N
(f,N/f) , equiva-

lently, the primitive character inducing ψ has modulus dividing N
(f,N/f) .

Remarks. In case ψ is primitive modulo N , then the singular cusps for ψ are the 
Atkin–Lehner cusps 1/f with (f, N/f) = 1. Also, observe N

(f,N/f) = [f, N/f ], and so 

in particular, N and N
(f,N/f) share the same prime factors.

Proof. By Proposition 5.2 and (5.5), the cusp 1
w = 1

uf is singular for ψ iff ψ(1 +wN ′′t) =
1 for all t ∈ Z. Since wN ′′ = N

(f,N/f)u, the condition that 1/w is singular for ψ is seen 

to be equivalent to ψ(1 + N
(f,N/f) t) = 1 for all t ∈ Z.

Let χ be a Dirichlet character modulo N , and suppose d|N . It is an elementary exercise 
to show that χ is induced by a character of modulus d if and only if χ(1 + dk) = 1 for 
all k ∈ Z such that (1 + dk, N) = 1. This exercise completes the proof. �
Corollary 5.5. Suppose ψ is a Dirichlet character modulo N , induced by a primitive 
character ψ∗ of conductor N∗|N . Then the number of singular cusps for ψ equals

∑
f |N

(f,N/f)| N
N∗

ϕ((f,N/f)).

6. Decomposition of Ea

Our first main result decomposes E 1
uf

in terms of Eχ1,χ2 ’s.

Theorem 6.1. Let notation be as in Section 5.2, and let χ0,N denote the principal char-
acter modulo N . Then

E 1
uf

(z, s, ψ) = 1
(fN ′′)s

1
ϕ((f,N/f))

∑
q1|Nf

∑
q2|f

∑∗

χ1 (mod q1)
χ2 (mod q2)
χ1χ2	ψ

χ1(−u) L(2s, χ1χ2)
L(2s, χ1χ2χ0,N )

∑
a|f

(a,q2)=1

∑
b|Nf

(b,q1)=1

μ(a)μ(b)χ1(b)χ2(a)
(ab)s Eχ1,χ2

( bf

aq2
z, s

)
, (6.1)

where the sum is over primitive characters χi modulo qi, and χ1χ2 � ψ means that both 
sides are induced by the same primitive character.
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Booker, Lee, and Strömbersson (personal communication) have independently proved 
Theorem 6.1 as well as the inversion formula in Theorem 7.1. They use these formulas, 
as well as the functional equation of Eχ1,χ2 , to work out the scattering matrix for Γ0(N)
with arbitrary nebentypus. Previously, Huxley [Hux] considered the trivial nebentypus 
case.

Remarks. Suppose that ψ is primitive of conductor N , so that the cusp 1
uf is singular 

iff (f, N/f) = 1, and so we may take u = 1. Then (6.1) simplifies as

E1/f (z, s, ψ) = χ1(−1)
Ns

Eχ1,χ2(z, s), (6.2)

where χ1 is modulo N/f and χ2 is modulo f , and χ1χ2 = ψ. This type of identity is 
implicit in [DFI], where the authors explicitly evaluated many properties of the Eisenstein 
series when the nebentypus is primitive. In another special case where N is square-free 
and ψ is principal, then (6.1) reduces to [CI, (3.25)].

Theorem 6.1 shows in an explicit form that the space of Eisenstein series is spanned 
by Eχ1,χ2(Bz, s) with q1q2B|N , and χ1χ2 � ψ, as expected from the discussion in 
Section 3.3.

The proof of Theorem 6.1 is long, so we break the proof into more managable pieces. 
We begin with some notation. From Lemma 5.4, the cusp 1

uf is singular iff ψ is peri-
odic modulo [f, N ′]. There exist integers f0|f and N ′

0|N ′ so that [f, N ′] = f0N
′
0 and 

(f0, N ′
0) = 1. The choices of f0 and N ′

0 may not be unique in case there is a prime power 
exactly dividing both f and N ′. Then we may write ψ = ψ(f0)ψ(N ′

0) according to this 
factorization. We remark that f0 and N ′

0 are useful within the proof of Theorem 6.1, yet 
they are not present in the final formula (6.1).

With this notation in place, it is helpful for later to record that if u ≡ u′ (mod (f, N ′))
(both coprime to N), then E 1

uf
(z, s, ψ) = ψ(N ′

0)(u′u)E 1
u′f

(z, s, ψ), following from (3.2)
and a calculation of the lower-right entry of a matrix γ such that γ 1

uf = 1
u′f . Put another 

way, ψ(N ′
0)(u)E 1

uf
(z, s, ψ) is a well-defined function of u (mod (f, N ′)).

Lemma 6.2. With notation as above, we have

E 1
uf

(z, s, ψ) = δf=Nys + ys

(N ′′)s
∑

(D,fC′)=1
C′>0, (C′,N ′)=1

D≡−C′u (mod (f,N ′))

ψ(N ′
0)(−uC ′)ψ(f0)(D)
|C ′fz + D|2s

( |C ′fz + D|
C ′fz + D

)k

.

(6.3)

Proof. From (3.1), and changing variables, we have

E1/w(z, s, ψ) =
∑

γ∈Γ \Γ
ψ(γ)j(σ−1

1/wγ, z)
−kIm(σ−1

1/wγz)
s

1/w
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=
∑

τ∈Γ∞\σ−1
1/wΓ

ψ(σ1/wτ)j(τ, z)−kIm(τz)s.

For the evaluation of ψ(σ1/wτ), note that

(
1 0
w 1

)(√
N ′′ 0
0 1/

√
N ′′

)(
A√
N ′′

B√
N ′′

C
√
N ′′ D

√
N ′′

)
=

(
A B

C + Aw D + Bw

)
.

As a consistency check, observe that if we translate τ on the left by ( 1 n
0 1 ) then that 

replaces B by B + DnN ′′, and so the lower-right entry changes from D + Bw to D +
Bw + DwnN ′′. Since wN ′′ = u N

(f,N ′) , and ψ is assumed to be periodic modulo N
(f,N ′) , 

this shows that ψ is well-defined under such translations.
Next we need to work out representatives for Γ∞\σ−1

1/wΓ, in terms of the lower row 
of matrices occurring in (5.6). In the case of the identity coset with C = 0, D = 1, we 
obtain ψ(D + Bw) = ψ(1 + Bw) = ψ(1) = 1, since this coset occurs only when f = N , 
i.e., 1

uf ∼ ∞. This leads to the term δf=Nys.
From now on, consider the non-identity cosets. Note that the action of Γ∞ does not 

affect the congruence linking A to C. Consider the conditions

C > 0, (C,D) = 1, C = fC ′, (C ′, N ′) = 1, and D ≡ −uC ′ (mod (f,N ′)).
(6.4)

We claim that

Γ∞\σ−1
1/wΓ = δf=NΓ∞ ∪

{(
∗ ∗

C
√
N ′′ D

√
N ′′

)
: (6.4) holds

}
, (6.5)

as a disjoint union. Moreover, the value of ψ(σ1/wτ) is determined by the conditions 
(6.4) (we will derive a formula for it within the proof).

Proof of claim. First assume that (6.4) holds. From (C, D) = 1, there exist integers 
A0, B0 so that A0D−B0C = 1. Then A0 ≡ D (mod C), and so from the congruence on 
D in (6.4), and the fact that f |C, we have A0 ≡ −C ′u (mod (f, N ′)). Let x, y ∈ Z be 
such that A0 = −uC ′ + fx + N ′y. We next want to find n ∈ Z so that A = A0 + nC

satisfies C ≡ −wA (mod N), which in turn is equivalent to A ≡ −uC ′ (mod N ′). For 
this, we have A = −uC ′ +fx +N ′y+nC ′f ≡ −uC ′ +f(x +nC ′) (mod N ′), so choosing 
n ≡ −xC ′ (mod N ′) finishes the job.

Next we show the conditions (6.4) follow from the conditions on the right hand 
side of (5.6). This can be seen as follows. The determinant equation obviously implies 
(C, D) = 1, and using the congruence we have 1 = AD − BC ≡ A(D + Bw) (mod N), 
whence (A, N) = 1, and so (C, N) = (w, N) = f . That is, we may write C = fC ′

with (C ′, N ′) = 1. The congruence on D follows from D ≡ A (mod |C|) and A ≡ −uC ′
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(mod N ′), which together give D ≡ −uC ′ (mod (f, N ′)), as claimed. The condition 
C > 0 may be arranged by multiplication by −I.

Finally, we show that ψ(σ1/wτ) only depends on the data appearing in (6.4). Explicitly,

ψ(σ1/wτ) = ψ(A) = ψ(N ′
0)(−uC ′)ψ(f0)(D). (6.6)

We first show that given C, D ∈ Z satisfying (6.4), the value of ψ(A) is uniquely 
determined. The determinant condition on A is A ≡ D (mod C) and the congruence is 
A ≡ −uC ′ (mod N ′). This determines A modulo the least common multiple of C and 
N ′, namely CN ′

(C,N ′) = CN ′

(f,N ′) = CN ′′ (one can also see how the left Γ∞ action translates 
A by this). The condition that these two congruences on A are consistent is precisely the 
congruence on D in (6.4). These two congruences on A uniquely determine A modulo 
C′fN ′

(f,N/f) = C ′ N
(f,N/f) . Since ψ is periodic modulo N

(f,N/f) , this means that ψ(A) is uniquely 
determined. Finally, we need to show (6.6).

We take an interlude to discuss the problem in more general terms. Suppose that we 
have a pair of congruences x ≡ a (mod Q) and x ≡ b (mod R), and for consistency, we 
have a ≡ b (mod (Q, R)). We wish to evaluate χ(x), where χ is a Dirichlet character 
modulo [Q, R]. There exist integers Q0, R0 with the following properties:

Q0|Q, R0|R, [Q,R] = Q0R0, (Q0, R0) = 1.

One may check that

(Q,R) = Q

Q0

R

R0
, and (Q0, Q/Q0) = 1 = (R0, R/R0).

The former equation follows from (Q, R) = QR
[Q,R] , and the latter follows by noting that 

a prime power pk exactly dividing Q0 has either k = 0 or pk exactly dividing Q (and 
similarly for prime powers dividing R0). We also have that R

R0
|Q0 and Q

Q0
|R0, which is 

deduced from (R/R0, Q0) = (R/R0, R0Q0) = (R/R0, [R, Q]) = R/R0, and similarly for 
the other formula.

Using the above coprimality formulas, the system of congruences is equivalent to x ≡ a

(mod Q0) and x ≡ b (mod R0), under the consistency condition a ≡ b (mod (Q, R)). 
Corresponding to the above notation, we may write χ = χ1χ2 where χ1 is modulo Q0
and χ2 is modulo R0, and then χ(x) = χ1(a)χ2(b). This discussion proves the claim, and 
completes the proof of the lemma. We recall for emphasis that the consistency condition 
is recorded in (6.4). �
Proof of Theorem 6.1. We continue with (6.3). The first step is to detect the con-
gruence D ≡ −C ′u (mod (f, N ′)) with Dirichlet characters; for this, observe that 
(DC ′u, (f, N ′)) = 1 holds from the other listed coprimality conditions. Thus
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E 1
uf

(z, s, ψ) = δf=Nys +
[ ys

(N ′′)s

ϕ((f,N ′))
∑

χ (mod (f,N ′))

(χψ(N ′
0))(−u)

∑
(D,fC′)=(C′,N ′)=1

C′≥1

(χψ(N ′
0))(C ′)(χψ(f0))(D)
|C ′fz + D|2s

( |C ′fz + D|
C ′fz + D

)k]
. (6.7)

Next we claim that we may omit some of the above coprimality conditions. The 
modulus of χψ(N ′

0) is the least common multiple of (f, N ′) and N ′
0, and equals

(f,N ′)N ′
0

(f,N ′, N ′
0)

= (f,N ′)N ′
0f0

(f,N ′
0)f0

= N

( f
f0
f0, N ′

0)f0
= N

(f, f0N ′
0)

= N

f
= N ′.

Therefore we may omit the condition (C ′, N ′) = 1. A similar calculation shows that the 

modulus of χψ(f0) is f , and that we may omit the condition (D, f) = 1. Thus

E 1
uf

(z, s, ψ) = δf=Nys +
[ ys

(N ′′)s

ϕ((f,N ′))
∑

χ (mod (f,N ′))

(χψ(N ′
0))(−u)

∑
(D,C′)=1

C′≥1

(χψ(N ′
0))(C ′)(χψ(f0))(D)
|C ′fz + D|2s

( |C ′fz + D|
C ′fz + D

)k]
.

The term C ′ = 0 may be returned to the sum, because it only occurs when N ′ = 1 (i.e., 
f = N), and then consulting (3.3), we have

E 1
uf

(z, s, ψ) = 1
(fN ′′)s

1
ϕ((f,N ′))

∑
χ (mod (f,N ′))

(χψ(N ′
0))(−u)E

χψ(N′
0),χψ

(f0)(z, s). (6.8)

Applying Lemma 5.1, we have

E 1
uf

(z, s, ψ) = 1
(fN ′′)s

1
ϕ((f,N ′))

∑
χ (mod (f,N ′))

(χψ(N ′
0))(−u)L(2s, (χψ(N ′

0))∗(χψ(f0))∗)

L(2s, χ2ψ(N ′
0)ψ

(f0))

∑
a|f

∑
b|N ′

μ(a)μ(b)(χψ(N ′
0))∗(b)(χψ(f0))∗(a)
(ab)s E(χψ(N′

0))∗,(χψ(f0))∗

( bf

aq2
z, s

)
, (6.9)

where q2 (say) is the conductor of (χψ(f0))∗.
Next we set (χψ(N ′

0))∗ = χ1 and (χψ(f0))∗ = χ2, where χi is primitive of modulus qi, 
i = 1, 2. Note that
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L(2s, (χψ(N ′
0))∗(χψ(f0))∗)

L(2s, χ2ψ(N ′
0)ψ

(f0))
=

∏
p|N

(
1 − χ1(p)χ2(p)

p2s

)−1
, (6.10)

which only depends on χ1χ2. Also, a necessary condition on χ1 and χ2 is that χ1χ2 � ψ. 
Therefore, by moving the sum over χ to the inside, we have

E 1
uf

(z, s, ψ) = 1
(fN ′′)s

1
ϕ((f,N ′))

∑
q1|N ′

∑
q2|f

∑∗

χ1 (mod q1)
χ2 (mod q2)
χ1χ2	ψ

χ1(−u)
∏
p|N

(
1 − χ1(p)χ2(p)

p2s

)−1

∑
a|f

∑
b|N ′

μ(a)μ(b)χ1(b)χ2(a)
(ab)s Eχ1,χ2

( bf

aq2
z, s

) ∑
χ (mod (f,N ′))

δ(χ, χ1, χ2, ψ) (6.11)

where δ(χ, χ1, χ2, ψ) is the indicator function of

(χψ(N ′
0))∗ = χ1, (χψ(f0))∗ = χ2. (6.12)

Our claim is that 
∑

χ δ(χ, χ1, χ2, ψ) = 1 under the conditions appearing in (6.11), which 
will give (6.1), concluding the proof of the theorem.

Now we prove the claim. Using that (f0, N ′
0) = 1 and that a prime divides N iff it 

divides f0N
′
0 = [f, N ′], we may uniquely factor χi = χ

(f0)
i χ

(N ′
0)

i where χ(f0)
i has modulus 

dividing f0, and χ(N ′
0)

i has modulus dividing N ′
0. We may also factor χ in the same way, 

by χ = χ(f0)χ(N ′
0); in addition, we may suppose that χ is primitive of modulus dividing 

(f, N ′). Recall also that ψ(N ′
0) has modulus N ′

0, and ψ(f0) has modulus f0. Thus the 
assumption χ1χ2 � ψ is equivalent to

χ
(N ′

0)
1 χ2

(N ′
0) � ψ(N ′

0), and χ
(f0)
1 χ2

(f0) � ψ(f0). (6.13)

The condition (χψ(N ′
0))∗ = χ1 from (6.12) is in turn equivalent to

χ(f0)(χ(N ′
0)ψ(N ′

0))∗ = χ
(f0)
1 χ

(N ′
0)

1 , (6.14)

that is,

χ(f0) = χ
(f0)
1 and (χ(N ′

0)ψ(N ′
0))∗ = χ

(N ′
0)

1 . (6.15)

Likewise, for the equation with χ2, we obtain

χ(N ′
0) = χ

(N ′
0)

2 and (χ(f0)ψ
(f0))∗ = χ

(f0)
2 . (6.16)

From these two displayed equations, we see that χ is uniquely determined by χ =
χ

(f0)
1 χ

(N ′
0)

2 . Once this choice is made, one can check that (6.12) holds using (6.13). The 

only remaining loose end is to check that this purported choice of χ = χ
(f0)
1 χ

(N ′
0)

2 has 
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modulus dividing (f, N ′). That is, we need that the f0-part of q1 divides (f, N ′), and 
similarly that the N ′

0-part of q2 divides (f, N ′). Note that

N ′ = N ′
0︸︷︷︸

N ′
0-part

× N ′

N ′
0︸︷︷︸

f0-part

, f = f0︸︷︷︸
f0-part

× f

f0︸︷︷︸
N ′

0-part

,

and also that

(f,N ′) = f

f0︸︷︷︸
N ′

0-part

× N ′

N ′
0︸︷︷︸

f0-part

.

These equations show that the f0-part of N ′ equals the f0-part of (f, N ′) (both are equal 
to N ′

N ′
0
), and so we conclude that the f0-part of q1 divides (f, N ′). A similar argument 

holds for the N ′
0-part for the other factor. This shows the claim, and completes the proof 

of Theorem 6.1. �
7. Inversion

The purpose of this section is to invert (6.1), which is given by the following:

Theorem 7.1. Let χi, i = 1, 2, be primitive characters modulo qi with q1q2|N , and write 
N = q1q2L. Suppose B|L, and write L = AB. Then

Eχ1,χ2(Bz, s)

=
∑
d|A

∑
e|B

(d,e)=1

χ1(d)χ2(e)
(de)s

( N

(q2 Bd
e , q1

Ae
d )

)s ∑∗

u (mod (q2 Bd
e ,q1

Ae
d ))

χ1(−u)E 1
uq2 Bd

e

(z, s, ψ).

(7.1)

Here the sum is over u is over a set of representatives for (Z/(q2 Bd
e , q1 Ae

d )Z)∗, chosen 
coprime to N , and ψ is modulo N , induced by χ1χ2.

Remark. Note that Bd
e ranges over certain divisors of L, so that Eχ1,χ2(Bz, s) is a linear 

combination of E 1
uf

’s with f ’s constrained by q2|f and f |q2L.
Within the proof of Theorem 7.1, we shall develop and use properties of functions 

Dχ1,χ2,f (z, s, ψ) defined by

Dχ1,χ2,f (z, s, ψ) =
∑∗

u (mod (f,N/f))

χ1(−u)E 1
uf

(z, s, ψ), (7.2)

where χi is primitive modulo qi, N = q1q2L, χ1χ2 � ψ, q2|f and f |q2L. Notice that 
(7.1) may be expressed as
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Eχ1,χ2(Bz, s) = Ns
∑
d|A

∑
e|B

(d,e)=1

χ1(d)χ2(e)
(de)s

1
(q2 Bd

e , q1
Ae
d )s

Dχ1,χ2,q2
Bd
e

(z, s, ψ). (7.3)

It is not obvious from (7.2) that Dχ1,χ2,f is well-defined. To see this, first note

χ1 = χ
(f0)
1 χ

(N ′
0)

1 = ψ(N ′
0)χ

(f0)
1 χ

(N ′
0)

2 . (7.4)

Now, ψ(N ′
0)(u)E 1

uf
is well-defined, as observed in the paragraph preceding Lemma 6.2. 

In addition, one may directly check that χ(f0)
1 is periodic modulo f (since f0|f) and 

modulo N ′ (since q1|N ′), and is therefore periodic modulo (f, N ′). A similar argument 
holds for χ(N ′

0)
2 .

Proof. Let q1, q2, L, A, B be as in the statement of the theorem. Set f = q2g, where g|L. 
Then N ′ = N/f = q1L/g, (f, N ′) = (q2g, q1 L

g ), and N ′′ = N ′

(N ′,f) = q1
L
g

(q2g,q1 L
g ) . Our first 

step is to derive a formula for Dχ1,χ2,f (z, s, ψ) by inserting (6.1) into the definition (7.2), 
giving

Dχ1,χ2,f (z, s, ψ) = 1
(fN ′′)s

1
ϕ((f,N/f))

∑
k1|Nf

∑
k2|f

∑∗

η1 (mod k1)
η2 (mod k2)
η1η2	ψ

L(2s, η1η2)
L(2s, η1η2χ0,N )

∑
a|f

(a,k2)=1

∑
b|Nf

(b,k1)=1

μ(a)μ(b)η1(b)η2(a)
(ab)s Eη1,η2

( bf

ak2
z, s

) ∑∗

u (mod (f,N/f))

χ1(−u)η1(−u).

We claim the inner sum over u equals ϕ((f, N ′)) if χ1 = η1, and vanishes otherwise. 
For this, apply (7.4) to both χ1 and η1, which implies that the sum vanishes unless 
χ

(f0)
1 = η

(f0)
1 and χ(N ′

0)
2 = η

(N ′
0)

2 , recalling that the characters are primitive and that 
(f0, N ′

0) = 1. Using (7.4) again, we deduce that χ1 = η1. It is also necessary to verify 
that the value k1 = q1 does indeed occur in the sum, which follows from Nf = q1

L
g and 

g|L; similarly, k2 = q2 occurs since q2|f .
We may next see that from η1η2 � ψ � χ1χ2 that η2 = χ2 (whence k2 = q2). Thus

Dχ1,χ2,q2g(z, s, ψ)

= 1
(fN ′′)s

L(2s, χ1χ2)
L(2s, χ1χ2χ0,N )

∑
a|g

∑
b|Lg

μ(a)μ(b)
(ab)s χ1(b)χ2(a)Eχ1,χ2

(bg
a
z, s

)
, (7.5)

using additionally that a|f may be replaced by a|g and similarly b|Lg since (a, q2) = 1
and (b, q1) = 1.

Next we interject an elementary inversion formula for certain arithmetical functions.
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Lemma 7.2. Let ωi, i = 1, 2 be completely multiplicative functions and suppose K is an 
arbitrary function defined on the divisors of some positive integer L. For g|L, define

J(g) =
∑
a|g

∑
b|Lg

μ(a)μ(b)ω2(a)ω1(b)K
(bg
a

)
. (7.6)

Then with AB = L, we have

K(B) =
(∏

p|L
(1 − ω1ω2(p))−1

)∑
d|A

∑
e|B

(d,e)=1

ω1(d)ω2(e)J
(Bd

e

)
. (7.7)

We defer the proof of the lemma to Section 11 in order to complete the proof of The-
orem 7.1. We apply the lemma with J(g) = ( N

(q2g,q1 L
g ) )

s L(2s,χ1χ2χ0,N )
L(2s,χ1χ2) Dχ1,χ2,q2g(z, s, ψ), 

K(B) = Eχ1,χ2(Bz, s), and ωi(n) = χi(n)n−s, obtaining

Eχ1,χ2(Bz, s) =
∏
p|L

(1 − p−2sχ1(p)χ2(p))−1
∑
d|A

∑
e|B

(d,e)=1

χ1(d)χ2(e)
(de)s

( N

(q2 Bd
e , q1

Ae
d )

)sL(2s, χ1χ2χ0,N )
L(2s, χ1χ2)

Dχ1,χ2,q2
Bd
e

(z, s).

Note that 
∏

p|L(1 − p−2sχ1(p)χ2(p))−1 =
∏

p|N (1 − p−2sχ1(p)χ2(p))−1, so this factor 
cancels the ratio of Dirichlet L-functions. Inserting (7.2) into the above formula for 
Eχ1,χ2(Bz, s) and simplifying, we obtain the theorem. �
8. Orthogonality properties

8.1. Orthogonal decomposition into newforms

With Theorems 6.1 and 7.1 in hand, we may now study the orthogonality properties of 
Eisenstein series attached to Dirichlet characters. Let Et,ψ(N) be the finite-dimensional 
vector space defined by

Et,ψ(N) = span{Ea(z, 1/2 + it, ψ) : a is singular for ψ},

and define a formal inner product 〈, 〉Eis on this space by

1
4π 〈Ea(·, 1/2 + it, ψ), Eb(·, 1/2 + it, ψ)〉Eis = δab, (8.1)

extended bilinearly. This inner product is natural to use since the spectral decomposition 
of L2(Γ0(N), ψ) in terms of Eisenstein series attached to cusps (as in [DFI, Proposi-
tions 4.1, 4.2]) corresponds essentially to (8.1); see Section 8.3 for more discussion.
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Perhaps it is worthy of explanation that the dimension of Et,ψ(N) equals the number 
of singular cusps for ψ, except possibly for t = 0, and therefore this inner product is 
well-defined. The key is to study the Fourier expansion of Ea(z, 1/2 +it, ψ) at the various 
cusps. One may easily show that if cy1/2+it+dy1/2−it = c′y1/2+it+d′y1/2−it for infinitely 
many values of y, and t �= 0, then c = c′ and d = d′. Now suppose that

Ea(z, 1/2 + it, ψ) =
∑
b

ca,bEb(z, 1/2 + it, ψ),

for some constants ca,b. Equating coefficients of y1/2+it in the Fourier expansions at the 
arbitrary cusp c, we have

δa=cy
1/2+it =

∑
b

ca,bδb=cy
1/2+it = ca,cy

1/2+it.

Hence ca,c = δa=c, which precisely means that the Eisenstein series attached to cusps 
are linearly independent, for t �= 0. We should also observe that the constant terms of 
all Eisenstein series are analytic for s = 1/2 + it, except possibly at t = 0, by inspection 
of (4.1).

Theorem 8.1. Let ψ be a character modulo N with conductor N∗. For f |N , (f, N/f)| N
N∗ , 

q1|Nf , q2|f , and χi primitive modulo qi satisfying χ1χ2 � ψ, let Dχ1,χ2,f (z, s) be defined 
by (7.2). Then the functions Dχ1,χ2,f (z, s) form an orthogonal basis for Et,ψ(N).

Proof. These functions are defined by (7.2), but also may be given by (7.5). The formula 
(7.3) allows one to express Eχ1,χ2 in terms of D’s, while (7.2) may be inverted by inserting 
(7.5) into (6.1), giving

E 1
uf

(z, s, ψ) = 1
ϕ((f,N/f))

∑
q1|Nf

∑
q2|f

∑∗

χ1 (mod q1)
χ2 (mod q2)
χ1χ2	ψ

χ1(−u)Dχ1,χ2,f (z, s, ψ). (8.2)

This formula shows the functions Dχ1,χ2,f form a spanning set for Et,ψ(N).
To show these functions are orthogonal, we simply combine (7.2) and (8.1), giving

1
4π 〈Dχ1,χ2,f1 , Dη1,η2,f2〉 = δf1=f2δχ1=η1δχ2=η2ϕ((f,N/f)),

where we have let f = f1 = f2. In particular, for a fixed f for which (f, N/f)| N
N∗

(equivalently, N∗|[f, N/f ]), there is a bijection between u (mod (f, N/f)), coprime to 
the modulus, and pairs of characters χ1, χ2 so that χ1χ2 � ψ. That is, the number of 
such pairs of characters equals ϕ((f, N/f)). �

Next we turn to the orthogonality properties of Eχ1,χ2 . We deduce from (7.3) that 
Eχ1,χ2(B1z, 1/2 + it) is orthogonal to Eη1,η2(B2z, 1/2 + it) unless χ1 = η1 and χ2 = η2. 
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This shows that, for a given χ1, χ2, the set of functions Dχ1,χ2,q2g(z, s) with g|L forms 
an orthogonal set for the “oldclass” formed from Eχ1,χ2(z, s), that is, the subspace

Et,ψ(L;Eχ1,χ2) := span{Eχ1,χ2(Bz, 1/2 + it) : B|L},

where q1q2L = N . By dimension-counting, we see that {Dχ1,χ2,q2g(z, s) : g|L} then forms 
an orthogonal basis for this oldclass, and so the functions Eχ1,χ2(Bz, 1/2 + it) also form 
a basis for this subspace (not in general orthogonal, however).

Summarizing, we have shown

Et,ψ(N) =
⊕

q1q2L=N

⊕∗

χ1 (mod q1)
χ2 (mod q2)
χ1χ2	ψ

Et,ψ(L;Eχ1,χ2), (8.3)

where, as observed earlier in this section, this is an orthogonal decomposition. This is 
an extension of Weisinger’s newform theory to the non-holomorphic setting. Following 
Weisinger, define an Eisenstein newform of level M to be an Eisenstein series of the 
form Eχ1,χ2(z, 1/2 + it), where χi is primitive modulo qi, i = 1, 2, with q1q2 = M . Let 
H∗

t,ψ(M) denote the set of Eisenstein newforms of level M , nebentypus ψ, and spectral 
parameter t. Then we may re-write (8.3) as

Et,ψ(N) =
⊕

LM=N

⊕
F∈H∗

t,ψ(M)

Et,ψ(L;F ). (8.4)

Needless to say, the above decompositions completely parallel the decomposition of 
cuspidal newforms as in [ALe] [ALi], which gives

Stj ,ψ(N) =
⊕

LM=N

⊕
f∈H∗

tj ,ψ
(M)

Stj ,ψ(L; f),

where Stj ,ψ(N) is the (finite-dimensional) space of cusp forms with spectral parameter tj
and nebentypus ψ, H∗

tj ,ψ
(M) is the set of newforms of level M with spectral parameter 

tj , and Stj ,ψ(L; f) = span{f(�z) : �|L}.

8.2. Summary remarks

For clarity, we summarize the statements of the change-of-basis formulas with some 
alternative notation. We take this opportunity to make explicit certain facts that were 
perhaps only implicit within the proofs.

Let ψ be a Dirichlet character modulo N , of conductor Nψ. The cusp 1
uf ∼ u

f is singu-
lar with respect to ψ iff (f, N/f)| N

Nψ
, or alternatively, Nψ|[f, N/f ]. There are ϕ((f, N/f))

inequivalent (singular) cusps u/f with denominator f . Moreover, there exists a bijec-
tion between these cusps, and pairs of characters (χ1, χ2) with q1|N , q2|f , χi primitive 
f
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modulo qi, i = 1, 2, and χ1χ2 � ψ. This bijection was observed within the proof of 
Theorem 8.1 by comparing dimensions, but can be seen directly as follows. The parts of 
χ1, χ2 of moduli away from (f, N/f) are uniquely determined by the equation χ1χ2 � ψ

(and there will exist at least one such pair of characters, since Nψ|[f, N/f ]). After that, 
we are free to multiply both χ1 and χ2 by the same Dirichlet character modulo (f, N/f). 
Let Ψf denote the set of pairs of such characters, so |Ψf | = ϕ((f, N/f)).

For (χ1, χ2) ∈ Ψf , we may define Dχ1,χ2,f (z, s, ψ) by (7.2). This formula is inverted 
by (8.2), which in the new notation reads

E 1
uf

(z, s, ψ) = 1
ϕ((f,N/f))

∑
(χ1,χ2)∈Ψf

χ1(−u)Dχ1,χ2,f (z, s, ψ). (8.5)

One may wish to focus on the pair of characters themselves intrinsically, and to forget 
about the ambient f . Suppose that q1q2|N , say N = q1q2L, χi is primitive of modulus 
qi, i = 1, 2, and χ1χ2 � ψ. We claim that (χ1, χ2) ∈ Ψf if and only if f = q2g with g|L. 
This is easy to check, because the condition q2|f means that f = q2g for some g, and 
since Nf = q1L

g , the condition q1|Nf means g|L. In particular, there always exists such an 
f so that (χ1, χ2) ∈ Ψf . Moreover, the same character pair (χ1, χ2) lies in τ(L) sets Ψf .

Now suppose that (χ1, χ2) ∈ Φq2g with g|L. Then (7.5) becomes

Dχ1,χ2,q2g(z, s, ψ)

=
(q2g, q1 L

g )s

Ns

L(2s, χ1χ2)
L(2s, χ1χ2χ0,N )

∑
a|g

∑
b|Lg

μ(a)μ(b)
(ab)s χ1(b)χ2(a)Eχ1,χ2

(bg
a
z, s

)
,

which is inverted by (7.3).
The D-functions are useful because they may be naturally parameterized either by 

f and Ψf or alternatively by the (intrinsic) pairs of characters, along with g|L. Hence, 
they give a natural intermediate basis between the E 1

uf
and the Eχ1,χ2 .

8.3. Remarks on the spectral decomposition

The continuous part of the spectral decomposition, as in [DFI, Proposition 4.1], for 
instance, takes the form

fEis(z) :=
∞∫

−∞

∑
a

1
4π 〈f,Ea〉Ea(z, 1/2 + it, ψ)dt, (8.6)

where f ∈ L2(Γ0(N), ψ). It is desirable to express this formula in terms of an alternative 
basis, as in, for instance, Section 8.1, without having to go through the analytic aspects 
of the spectral decomposition.
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Proposition 8.2. Let B(t, ψ, N) denote an orthogonal basis for Et,ψ(N), and suppose f, g ∈
L2(Γ0(N), ψ). Then

∑
F∈B(t,ψ,N)

〈f, F 〉
〈F, F 〉Eis

F (z), and
∑

F∈B(t,ψ,N)

〈f, F 〉〈F, g〉
〈F, F 〉Eis

(8.7)

are independent of the choice of basis.

Note that with F = Ea, we have 〈F, F 〉Eis = 4π, and the first expression in (8.7)
agrees with the integrand in (8.6). Likewise, the second formula in (8.7) is the continuous
spectrum part of 〈f, g〉 in Parseval’s formula. These formulas are not quite the standard 
formulas for the projection of a vector f onto a finite-dimensional inner product space, 
and 〈f, g〉, respectively, because the inner products in the numerators are different from 
the inner products in the denominators. Nevertheless, the formulas follow from standard 
linear algebra calculations.

Proof. Let G run over an alternative basis, say B′(t, ψ, N), and define the change of basis 
coefficients by F =

∑
G cF,GG, where cF,G = 〈F,G〉Eis

〈G,G〉Eis
. Note that, if G, G′ ∈ B′(t, ψ, N), 

then

∑
F

cF,GcF,G′

〈F, F 〉Eis
=

∑
F

〈G,F 〉Eis〈F,G′〉Eis

〈G,G〉Eis〈G′, G′〉Eis〈F, F 〉Eis

= 〈G,G′〉Eis

〈G,G〉Eis〈G′, G′〉Eis
= δG=G′

〈G,G〉Eis
.

(8.8)

Applying (8.8), we have

∑
F

〈f, F 〉
〈F, F 〉Eis

F =
∑
F

∑
G

〈f,G〉
〈F, F 〉Eis

cF,G

∑
G′

cF,G′G′ =
∑
G

〈f,G〉
〈G,G〉Eis

G, (8.9)

showing that the first formula in (8.7) is independent of basis. A nearly-identical proof 
works for the second formula in (8.7). �

As a consequence of Proposition 8.2 and the discussion from Section 8.1, we have

fEis(z) =
∑

q1q2L=N

∑∗

χ1 (mod q1)
χ2 (mod q2)
χ1χ2	ψ

∞∫
−∞

∑
F∈Bt,ψ(L;Eχ1,χ2 )

〈f, F 〉
〈F, F 〉Eis

F (z)dt, (8.10)

where Bt,ψ(L; Eχ1,χ2) denotes any orthogonal basis for Et,ψ(L; Eχ1,χ2). In order to make 
this practical, we need to find an explicit orthogonal basis for Et,ψ(L; Eχ1,χ2), which 
motivates the material in the following subsection.
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8.4. An inner product calculation

Let M = q1q2, N = ML, and let χi be primitive modulo qi. We wish to evaluate

Iχ1,χ2(B1, B2;N) := 1
4π 〈Eχ1,χ2(B1z, 1/2 + it), Eχ1,χ2(B2z, 1/2 + it)〉N , (8.11)

where B1, B2|L, and the inner product is on Eisenstein series of level N .
The motivation to evaluate this inner product is to unify it with a corresponding 

formula for cuspidal newforms, for which see [BM, p. 473] (for principal nebentypus) and 
[Hum, Lemma 3.13] (for arbitrary nebentypus). Schulze-Pillot and Yenirce [S-PY] have 
also elegantly derived the analogous formula for holomorphic newforms of arbitrary level 
and nebentypus, using only Hecke theory. This is desirable in order to find orthonormal 
bases for the oldclasses Stj ,ψ(L; f) and Et,ψ(L; F ) that are constructed from the newforms 
in identical ways, which is useful to treat the discrete spectrum and the continuous 
spectrum on an equal footing. In Section 10.2 below, we illustrate this idea by proving a 
Bruggeman–Kuznetsov formula for newforms of squarefree level and trivial nebentypus 
(these restrictions on the level and nebentypus arise from the assumptions in place 
in [PY]).

Lemma 8.3. Let notation be as above. Then

Iχ1,χ2(B1, B2;N)
Iχ1,χ2(1, 1;N) = Aχ1,χ2

( B2

(B1, B2)

)
Aχ1,χ2

( B1

(B1, B2)

)
, (8.12)

where Aχ1,χ2(n) is the multiplicative function defined for B ≥ 1 by

Aχ1,χ2(pB) = λχ1,χ2(pB) − χ1χ2(p)p−1λχ1,χ2(pB−2)
pB/2(1 + χ0(p)p−1)

. (8.13)

Here λχ1,χ2(n) is shorthand for λχ1,χ2(n, 1/2 + it) originally defined by (4.2), and where 
for B = 1 we define λχ1,χ2(p−1) = 0. Moreover, χ0 is the principal character modulo 
q1q2.

The form of (8.13) is in perfect accord with the cuspidal case of [Hum, Lemma 3.13].
The method of Blomer and Milićević proceeds by unfolding and Rankin–Selberg the-

ory; this method may not be used for Eisenstein series due to the lack of convergence. 
As a substitute, we use the change-of-basis formulas and orthogonality of Ea’s.

Proof. Write Ai = L/Bi, i = 1, 2. Then from Theorem 7.1, we have

Iχ1,χ2(B1, B2;N)
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= N
∑
d1|A1

∑
e1|B1

(d1,e1)=1

∑
d2|A2

∑
e2|B2

(d2,e2)=1
B1d1
e1

=B2d2
e2

χ1(d1d2)χ2(e1e2)
(d1e1d2e2)1/2

(d2e2

d1e1

)itϕ((q2 B1d1
e1

, q1
A1e1
d1

))
(q2 B1d1

e1
, q1

A1e1
d1

)
.

Parameterizing by the value of B1d1
e1

, we have

Iχ1,χ2(B1, B2;N) = N
∑
R|L

ϕ((q2R, q1
L
R ))

(q2R, q1
L
R )

G(B1, R)G(B2, R), (8.14)

where

G(Bi, R) =
∑
d|Ai

∑
e|Bi

(d,e)=1
Bid
e =R

χ1(d)χ2(e)
(de)1/2+it

.

Based on the multiplicative structure of (8.14), we may write

Iχ1,χ2(B1, B2;N) = N
∏
p|L

I(p)
χ1,χ2

(pνp(B1), pνp(B2)),

say. By abuse of notation, we replace νp(Bi) by Bi, and focus on a single prime p. We 
have

G(pBi , pR) =
∑

0≤d≤Ai

∑
0≤e≤Bi

(pd,pe)=1
Bi+d−e=R

χ1(pd)χ2(pe)
p(d+e)(1/2+it) , (8.15)

and

I(p)
χ1,χ2

(pB1 , pB2) =
∑

0≤R≤L

ϕ((pq2+R, pq1+L−R))
(pq2+R, pq1+L−R) G(pB1 , pR)G(pB2 , pR), (8.16)

where again we have replaced νp(L) by L, and similarly for q1, q2.
It is easy to see that

I
(p)
χ1,χ2(pB1 , pB2) = I(p)

χ1,χ2
(pB2 , pB1), (8.17)

and one may also easily verify

I(p)
χ ,χ (pB1 , pB2) = I(p)

χ ,χ (pL−B1 , pL−B2). (8.18)

1 2 2 1
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To prove Lemma 8.3, we need three key facts. First, we claim that I(p)
χ1,χ2(pB1 , pB2)

is unchanged under the replacements Bi → Bi − min(B1, B2). In other words, if we let 
Bi = (B1, B2)B′

i, then

Iχ1,χ2(B1, B2;N) = Iχ1,χ2(B′
1, B

′
2;N). (8.19)

This matches a corresponding formula for cusp forms (see [BM, p. 473]). Secondly, we 
claim that for B ≥ 1, we have

I(p)
χ1,χ2

(1, pB) = λχ1,χ2(pB)
p

B
2

− ψ(p)λχ1,χ2(pB−2)
p

B+2
2

, (8.20)

where ψ = χ1χ2 is the nebentypus of Eχ1,χ2 . Finally, we claim

I(p)
χ1,χ2

(1, 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − p−1), p|(q1, q2)
1, p|q1, p � q2

1, p|q2, p � q1

(1 + p−1), p � q1q2.

(8.21)

Taking these three facts for granted momentarily, we finish the proof. The only apparent 
discrepancy is that if p|(q1, q2), then the denominator in (8.13) does not seem to agree 
with (8.21) when p|(q1, q2). However, in this case, λ(pB) = 0, so there is agreement after 
all.

All three facts follow from a more careful evaluation of I(p)
χ1,χ2(pB1 , pB2). If Bi ≤ R

then within (8.15) this means e = 0 and d = R − Bi, while if Bi ≥ R then this means 
d = 0 and e = Bi −R. Hence,

I(p)
χ1,χ2

(pB1 , pB2) =
∑

0≤R≤min(B1,B2)

ϕ((pq2+R, pq1+L−R))
(pq2+R, pq1+L−R)

χ2(pB1−R)χ2(pB2−R)
p(B1−R)(1/2+it)+(B2−R)(1/2−it)

+
∑

B1<R≤B2

ϕ((pq2+R, pq1+L−R))
(pq2+R, pq1+L−R)

χ1(pR−B1)χ2(pB2−R)
p(R−B1)(1/2+it)+(B2−R)(1/2−it)

+
∑

B2<R≤B1

ϕ((pq2+R, pq1+L−R))
(pq2+R, pq1+L−R)

χ2(pB1−R)χ1(pR−B2)
p(B1−R)(1/2+it)+(R−B2)(1/2−it)

+
∑

max(B1,B2)<R≤L

ϕ((pq2+R, pq1+L−R))
(pq2+R, pq1+L−R)

χ1(pR−B1)χ1(pR−B2)
p(R−B1)(1/2+it)+(R−B2)(1/2−it) . (8.22)

Of course, at least one of the two middle terms above is an empty sum.
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We first deal with the easiest cases with p|q1q2, where we show

I(p)
χ1,χ2

(pB1 , pB2) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − p−1)δB1=B2 , p|(q1, q2),
χ2(pB1−B2)pmin(B1,B2)−B1+B2

2 −it(B1−B2), p|q1, p � q2,

χ1(pB2−B1)pmin(B1,B2)−B1+B2
2 −it(B2−B1) p|q2, p � q1.

(8.23)

Here the expression χ2(pB1−B2) is interpreted to be χ2(pB2−B1) in case B2 > B1, and 
similarly for χ1.

Proof of (8.23). For p|(q1, q2), all the terms in (8.22) vanish except R = B1 = B2, giving 
the claimed formula. One may read off the local version of (8.19) in case p|q1q2.

In case p|q1, p � q2 then the second, third, and fourth lines of (8.22) vanish, and so we 
obtain the claimed formula by evaluating the geometric series.

The case p|q2, p � q1 may be derived from the previous case by using (8.18). �
Now assume that p � q1q2. We claim that

I(p)
χ1,χ2

(pB1 , pB2) = (1 + p−1), if B1 = B2, (8.24)

and if B1 < B2, then I(p)
χ1,χ2(pB1 , pB2) equals

χ2(pB2−B1)
p(B2−B1)(1/2−it) + χ2(pB2−B1)

p(B2−B1)(1/2−it) (1 − p−1)
B2−B1−1∑

j=1

(χ1χ2)(pj)
p2itj + χ1(pB2−B1)

p(B2−B1)(1/2+it) .

(8.25)

The case B2 < B1 may be derived from (8.25), using (8.17) or (8.18). In all cases, we 
see that

I(p)
χ1,χ2

(pB1 , pB2) = I(p)
χ1,χ2

(pB1−min(B1,B2), pB2−min(B1,B2)), (8.26)

and consequently, we obtain the first key fact, (8.19).
It is a pleasant coincidence that (8.25) agrees with (8.23) for B1 < B2.

Proofs of (8.24) and (8.25). For the terms in (8.22) with R ≤ min(B1, B2), we obtain

χ2(pB1−B2)
p

B1+B2
2 +it(B1−B2)

∑
0≤R≤min(B1,B2)

ϕ((pR, pL−R))
(pR, pL−R) pR. (8.27)
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If min(B1, B2) < L, then (8.27) simplifies as

χ2(pB2−B1)pmin(B1,B2)

p
B1+B2

2 −it(B2−B1)
.

If B1 = B2 = L, then (8.27) becomes

χ2(pB1−B2)
p

B1+B2
2 +it(B1−B2)

(pL−1 + pL) = (1 + p−1).

For the terms in (8.22) with B1 < R ≤ B2, we obtain

χ2(pB2−B1)
p(B2−B1)(1/2−it)

∑
B1<R≤B2

ϕ((pR, pL−R))
(pR, pL−R)

(χ1χ2)(pR−B1)
p2it(R−B1)

.

If B2 < L this simplifies as

χ2(pB2−B1)
p(B2−B1)(1/2−it) (1 − p−1)

B2−B1∑
j=1

(χ1χ2)(pj)
p2itj ,

while if B2 = L, it instead equals

χ2(pB2−B1)
p(B2−B1)(1/2−it)

(
(1 − p−1)

B2−B1−1∑
j=1

(χ1χ2)(pj)
p2itj + (χ1χ2)(pB2−B1)

p2it(B2−B1)

)
.

Finally, for the terms with max(B1, B2) < R ≤ L, we obtain

1
p

χ1(pB2−B1)
pit(B2−B1)

pmin(B1,B2)

p
B1+B2

2
.

Combining everything, we obtain (8.24) in case B1 = B2. Similarly, in case B1 <

B2 = L, then we obtain (8.25). If B1 < B2 < L, then we obtain (8.25) after some 
simplifications, taking the term j = B2 −B1 out from the inner sum. �

We deduce the third key fact (8.21), from (8.23) and (8.24).
Recalling the definition (4.2), it is not difficult to derive the second key fact (8.20)

from (8.25). This completes the proof. �
8.5. An alternative orthonormal basis

Blomer and Milićević [BM, Lemma 9] constructed an orthonormal basis of the oldclass 
Stj ,ψ0(L; f∗) where f∗ is a cuspidal newform of level M which is L2 normalized with 
the level N Petersson inner product, and ψ0 denotes the principal character (see [Hum, 
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Lemma 3.15] for arbitrary nebentypus). Their basis takes the form {f (g) : g|L}, where 
f (g) =

∑
d|g ξg(d)f∗|d, where ξg(d) are certain arithmetical functions defined in terms 

of the Hecke eigenvalues of f∗. They check that the functions f (g) are orthonormal 
by expanding bilinearly, calculating 〈f∗|d, f∗|d′〉, for each d, d′|L, and evaluating the 
sums. Therefore, the same process shows that with the coefficients ξg(d) defined as for 
cusp forms, using the Hecke eigenvalues, then the linear combinations of normalized 
Eχ1,χ2(dz)’s also form an orthonormal basis for Et,ψ0(L; Eχ1,χ2). The crucial fact here is 
that Lemma 8.3 has the same form as [Hum, Lemma 3.15]. This basis can then be used 
in (8.10).

9. Atkin–Lehner operators

In this section, we explain how the Eχ1,χ2(Bz, s) and Dχ1,χ2,f (z, s, ψ) behave under 
the Atkin–Lehner operators.

9.1. Newforms

Essentially everything in this section was worked out by Weisinger [W] in the holo-
morphic setting.

Suppose that QR = N , and (Q, R) = 1, and define an Atkin–Lehner operator by

WQ =
(
Qr t
Nu Qv

)
,

where r, t, u, v ∈ Z, t ≡ 1 (mod Q), r ≡ 1 (mod R), and Qrv −Rut = 1 (so det(WQ) =
Q). The paper [ALi] is a good reference for these operators. The nebentypus ψ factors 
uniquely as ψ = ψ(Q)ψ(R) where ψ(Q) has modulus Q and ψ(R) has modulus R. Weisinger 
[W, p. 31] showed that if f is Γ0(N)-automorphic with nebentypus ψ, then f |WQ

, which 

is independent of r, t, u, v, is Γ0(N)-automorphic with nebentypus ψ(Q)
ψ(R). Here

f |WQ
(z) := j(WQ, z)−kf(WQz).

Moreover, Weisinger showed in essence that

Eχ1,χ2 |WQ
= c(Q)Eχ′

1,χ
′
2
, (9.1)

where the pseudo-eigenvalue c(Q) is an explicit constant depending on the χi (see (9.3)
below for a formula), and where the χ′

i are defined as follows. Write χi = χ
(Q)
i χ

(R)
i , and let 

χ′
1 = χ

(Q)
2 χ

(R)
1 and χ′

2 = χ
(Q)
1 χ

(R)
2 . Note that χ′

1χ
′
2 = χ1χ2, and that χ′

1χ
′
2 = ψ

(Q)
ψ(R). 

Actually, Weisinger worked, in effect, with the completed Eisenstein series E∗
χ1,χ2

which 
affects the calculation of the pseudo-eigenvalue, since one must take into account the 
Gauss sum which appears in (4.6).
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Proof of (9.1). We produce a proof of (9.1) which is of an elementary character, and 
somewhat different in flavor to that of Weisinger’s thesis.

Write qi = q
(Q)
i q

(R)
i , where q(Q)

1 q
(Q)
2 = Q and q(R)

1 q
(R)
2 = R. Define

q′1 = q
(Q)
2 q

(R)
1 , and q′2 = q

(Q)
1 q

(R)
2 ,

and observe that q′i is the modulus of χ′
i.

From the definition (3.5), we have

Eθ(z, s)|WQ
= j(WQ, z)−k

∑
γ∈Γ∞\Γ0(1)

θ(γ)j(γ, σWQz)−kIm(γσWQz)s, (9.2)

where recall σz = q2z. Let σ′ = (
√
q′2

1/
√

q′2
), so σ′z = q′2z. It is straightforward to check

σWQ =
(√

Q √
Q

)(
q
(Q)
2 r q

(R)
2 t

q
(R)
1 u q

(Q)
1 v

)
︸ ︷︷ ︸

λ

σ′,

where observe λ ∈ SL2(Z). One can also show directly that j(λ, σ′z) = j(WQ, z), and so

j(WQ, z)−kj(γλ−1, σWQz)−k = j(γ, σ′z)−k.

Therefore, by changing variables γ → γλ−1 in (9.2), we obtain

Eθ(z, s)|WQ
=

∑
γ∈Γ∞\Γ0(1)

θ(γλ−1)j(γ, σ′z)−kIm(γσ′z)s,

and so now our task is to understand θ(γλ−1). With γ = ( a b
c d

), by direct calculation, 
we have θ(γλ−1) = χ1(cq(Q)

1 v − dq
(R)
1 u)χ2(−cq

(R)
2 t + dq

(Q)
2 r). Using the factorizations 

χi = χ
(Q)
i χ

(R)
i , we obtain

θ(γλ−1) = χ′
1(c)χ′

2(d)χ
(Q)
1 (−q

(R)
1 u)χ(R)

1 (q(Q)
1 v)χ(Q)

2 (−q
(R)
2 t)χ(R)

2 (q(Q)
2 r).

Next we use that χ1 = ψχ2 to simplify the above expression, getting

θ(γλ−1) = χ′
1(c)χ′

2(d)χ
(Q)
1 (−1)ψ(Q)(q(R)

1 u)ψ(R)(q(Q)
1 v)χ(Q)

2 (−Rut)χ(R)
2 (Qrv).

To simplify further, we note

χ
(Q)
2 (−Rut)χ(R)

2 (Qrv) = χ2(Qrv −Rut) = 1,

using the determinant equation. Moreover, from t ≡ 1 (mod Q), we have u ≡ −R

(mod Q), so ψ(Q)(q(R)
1 u) = ψ

(Q)(−q
(R)
2 ), and likewise ψ(R)(q(Q)

1 v) = ψ
(R)(q(Q)

2 ). In all, 
this discussion shows
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θ(γλ−1) = θ′(γ)χ(Q)
2 (−1)ψ(Q)(q(R)

2 )ψ(R)(q(Q)
2 ),

where θ′ corresponds to χ′
1, χ

′
2.

Thus the explicit pseudo-eigenvalue of the Atkin–Lehner operator is given with

Eχ1,χ2(z, s)|WQ
= χ

(Q)
2 (−1)ψ(Q)(q(R)

2 )ψ(R)(q(Q)
2 )Eχ′

1,χ
′
2
(z, s). � (9.3)

9.2. The Fricke involution

As a particularly important special case of (9.3), if Q = N , then we obtain

Eχ1,χ2(z, s)|WN
= χ2(−1)Eχ2,χ1(z, s).

It is a slightly subtle point that WN is not exactly the same operator as the Fricke 
involution ωN := ( 0 −1

N 0 ). Indeed, we have

WN =
(
Nr t
Nu Nv

)
=

(
−t r

−Nv u

)
︸ ︷︷ ︸

γN∈Γ0(N)

ωN ,

and note ψ(γN ) = ψ(−1). For a Γ0(N)-automorphic function f of nebentypus ψ, we 
have

f(ωNz) = f(γ−1
N WNz) = j(γ−1

N ,WNz)kψ(−1)j(WN , z)kf |WN
= ψ(−1)j(ωN , z)kf |WN

.

Collecting these formulas, we obtain

Eχ1,χ2

( i

q1q2y
, s
)

= i−kχ2(−1)Eχ2,χ1(iy, s).

For the completed Eisenstein series, we may derive for χ1, χ2 primitive

E∗
χ1,χ2

( i

q1q2y
, s
)

= q
1/2−s
1 q

s−1/2
2 i−k+δ1−δ2χ2(−1)ε(χ1)ε(χ2)E∗

χ2,χ1
(iy, s).

Needless to say, this is compatible with (4.12), which had more restrictive conditions on 
k and the parity of the characters.

9.3. Oldforms

For this subsection, we restrict attention to the trivial nebentypus case with k = 0, 
and χ1 = χ2 = χ of modulus �1 = �2 = �. Viewing Eχ,χ(Bz) as on Γ0(�2M) with B|M , 
we need to see how it operates under the larger collection of Atkin–Lehner operators for 
this subgroup. Suppose q is a prime so that qα||M�2, qβ ||M , (so qα−β ||�2), and qγ ||B. If 
γ ≤ β , then [ALe, Lemma 26] showed
2
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(Eχ,χ|B)|Wq
= (Eχ,χ|W ′

q
)|B′ ,

where we now describe what this means. First, f |B = f(Bz). The operator Wq is the 
Atkin–Lehner involution for the group Γ0(�2M), while W ′

q is the one associated to Γ0(�2). 
Finally, B′ is defined by setting B = qγB0 where q � B0, and then B′ = qβ−γB0. Thus, 
we have for γ ≤ β

2 that

(Eχ,χ(Bz, s))|Wq
= χ(q)(−1)Eχ,χ(B′z, s), (9.4)

where qj ||�2 (so j = α− β). If γ > β
2 , then the same formula holds, as can be proved by 

doing the same calculation for Eχ,χ(qβ−γB0z, s).
For each prime q dividing M�2, the map B → B′ is an involution on the set of divisors 

of M . Note that if q|� but q � M , then B′ = B.
Thus, the Atkin–Lehner operators permute the functions Eχ,χ(Bz, s), with a multipli-

cation by χ(q)(−1). The corresponding property for cusp forms was important in [KY], 
showing that the Fourier coefficients of f |B at an Atkin–Lehner cusp are essentially the 
same as at infinity.

It may be interesting to mention that the Atkin–Lehner operators also permute the 
functions Dχ,f (z, s) := Dχ,χ,f (z, s, 1) (originally defined by (7.2)), since this is a desirable 
property of an orthonormal basis.

Proposition 9.1. Let f = �g, with g|M , and let Wq be the Atkin–Lehner involution on 
Γ0(�2M) with q|�2M . Suppose qj ||�2. Then

Dχ,�g|Wq
= χ(q)(−1)Dχ,�g′ .

Remark. If q|� but q � M , then g′ = g, and the claimed formula follows immediately from 
(9.4), since B′ = B.

Proof. From (7.5) we have

(M�)sL(2s, χ2χ0,N )
L(2s, χ2) Dχ,�g(z, s) = (g,M/g)s

∑
a|g

∑
b|Mg

μ(a)μ(b)
(ab)s χ(ab)Eχ,χ

(bg
a
z, s

)
. (9.5)

Let Δ denote the right hand side of (9.5). Then by (9.4), Δ|Wq
has the same expression 

but with (bg/a) replaced by (bg/a)′, and multiplied by χ(q)(−1).
By abuse of notation, write M = qMM0, g = qgg0, and within the sum we write 

a = qaa0 and b = qbb0. Then we have

Δ = (g0,M0/g0)s
∑
a0|g0

∑
b0|M0

μ(a0)μ(b0)(qg, qM−g)s

(a0b0)s
χ(a0b0)
g0
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∑
0≤a≤g

∑
0≤b≤M−g

μ(qa)μ(qb)
(qaqb)s χ(qaqb)Eχ,χ

(
qb+g−a b0g0

a0
z, s

)
.

Similarly,

Δ|Wq
= χ(q)(−1)(g0,M0/g0)s

∑
a0|g0

∑
b0|M0

g0

μ(a0)μ(b0)(qg, qM−g)s

(a0b0)s
χ(a0b0)

∑
0≤a≤g

∑
0≤b≤M−g

μ(qa)μ(qb)
(qaqb)s χ(qaqb)Eχ,χ

(
(qb+g−a)′ b0g0

a0
z, s

)
.

According to the discussion preceding Proposition 9.1, (qb+g−a)′ = qM−(b+g−a), and 
(qg)′ = qM−g, or in additive notation, g′ = M − g. Finally, switching the roles of a and 
b, and applying the substitution g′ = M − g completes the proof. �
10. Bruggeman–Kuznetsov for newforms

In this section, we use some of the material developed in this paper to give a 
Bruggeman–Kuznetsov formula for newforms, which extends the newform Petersson for-
mula derived in [PY].

10.1. Statement of Bruggeman–Kuznetsov

Suppose that uj form an orthonormal basis of Hecke–Maass cusp forms of level N
and nebentypus ψ, and write

uj(z) =
∑
n �=0

ρj(n)e(nx)W0,itj (4π|n|y),

where

W0,itj (4πy) = 2√yKitj (2πy).

Similarly, write

Ea(z, s, ψ) = δa=∞ys + ρa,ψ(s)y1−s +
∑
n �=0

ρa,ψ(n, s)e(nx)W0,s− 1
2
(4π|n|y).

Renormalize the coefficients by defining

νj(n) =
(

4π|n|
cosh(πtj)

)1/2

ρj(n), νa,t(n) =
(

4π|n|
cosh(πt)

)1/2

ρa,ψ(n, 1/2 + it).

If uj is a newform we have νj(n) = νj(1)λj(n), where λj(n) are the Hecke eigenvalues.
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The Bruggeman–Kuznetsov formula for mn > 0 reads as

∑
j

νj(m)νj(n)h(tj) +
∑
a

1
4π

∞∫
−∞

νa,t(m)νa,t(n)h(t)dt

= δm=ng0 +
∑

c≡0 (mod N)

Sψ(m,n; c)
c

g
(4π

√
mn

c

)
, (10.1)

where

g0 = 1
π

∞∫
−∞

t tanh(πt)h(t)dt, g(x) = 2i
∞∫

−∞

J2it(x)
cosh(πt) th(t)dt,

and

Sψ(m,n; c) =
∑∗

x (mod c)

ψ(x)e
(xm + xn

c

)
.

We may wish to only choose an orthogonal basis of cusp forms instead of an orthonor-
mal basis; the formula is modified by dividing by 〈uj, uj〉, for then νj(m)νj(n)

〈uj ,uj〉 is invariant 
under re-scaling. The inner product is

〈uj , uj〉 =
∫

Γ0(N)\H

|uj(z)|2
dxdy

y2 .

This normalization explains why the diagonal term on the right hand side of (10.1) does 
not grow with N .

Next we discuss how (10.1) changes if we choose an alternative basis of Eisenstein 
series. Let {F} be an orthogonal basis for the space of Eisenstein series, with inner 
product defined formally as in Section 8. Here we view the spectral parameter t as held 
fixed, so the dimension of this space equals the number of singular cusps for ψ.

We claim the quantity

∑
F orthogonal basis

νF,t(m)νF,t(n)
〈F, F 〉Eis

is independent of the orthogonal basis. This follows from Proposition 8.2, since one may 
interpret this expression as the part of 〈Pn, Pm〉 coming from the continuous spectrum, 
for some generalized Poincare series (or integrals thereof).

Hence, we may re-phrase the Bruggeman–Kuznetsov formula using the decomposition 
into newforms as in (8.3). That is, we have
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∑
a

1
4π

∞∫
−∞

νa,t(m)νa,t(n)h(t)dt

=
∑

LM=N

1
4π

∞∫
−∞

∑
Eχ1,χ2∈H∗

t,ψ(M)

∑
F orthogonal basis
for Et,ψ(L;Eχ1,χ2 )

νF,t(m)νF,t(n)
〈F, F 〉Eis

h(t)dt. (10.2)

This is analogous with the decomposition of cusp forms into newforms, which gives

∑
j

νj(m)νj(n)h(tj) =
∑

LM=N

∑
f∈H∗

tj,ψ
(M)

∑
F orthogonal basis

for Stj ,ψ
(L;f)

νF (m)νF (n)
〈F, F 〉 . (10.3)

The formula (10.2) is not original; one may alternatively consult [BHM, (2.11)] or [KL, 
(7.32)].

10.2. Bruggeman–Kuznetsov for newforms, squarefree level

For the rest of this section, suppose N is square-free, and ψ is the principal character. 
Let us fix a function h, which we suppress from the notation, and define ΔN(m, n) as the 
left hand side of (10.1). Also, write ΔN = ΔN,0 + ΔN,∞ corresponding to the cuspidal 
part and the Eisenstein part, separately (so ΔN,0 equals (10.3), and ΔN,∞ equals (10.2)). 
Let Δ∗

N,0 denote the newform analog of ΔN,0, where the Maass forms are restricted to 
be newforms of level N . That is, set

Δ∗
N,0(m,n) =

∑
tj

h(tj)
∑

f∈H∗
tj

(M)

νf (m)νf (n)
〈f, f〉 .

A nearly-identical proof to that in [PY] gives a formula for Δ∗
N,0 in terms of ΔM,0’s 

and vice-versa. Precisely, with x = 0, we have

ΔN,x(m,n) =
∑

LM=N

1
ν(L)

∑
�|L∞

�

ν(�)2
∑

d1,d2|�
c�(d1)c�(d2)

∑
u|(m,L)
v|(n,L)

uv

(u, v)
μ( uv

(u,v)2 )
ν( uv

(u,v)2 )

∑
a|(m

u , u
(u,v) )

b|(n
v , v

(u,v) )

∑
e1|(d1,

m
a2(u,v) )

e2|(d2,
n

b2(u,v) )

Δ∗
M,x

( md1

a2e2
1(u, v)

,
nd2

b2e2
2(u, v)

)
, (10.4)

where a definition of the coefficients c�(d) may be found in [PY] (we have no need of 
them here). This formula is inverted by
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Δ∗
N,x(m,n) =

∑
LM=N

μ(L)
ν(L)

∑
�|L∞

�

ν(�)2
∑

d1,d2|�
c�(d1)c�(d2)

∑
u|(m,L)
v|(n,L)

uv

(u, v)
μ( uv

(u,v)2 )
ν( uv

(u,v)2 )

∑
a|(m

u , u
(u,v) )

b|(n
v , v

(u,v) )

∑
e1|(d1,

m
a2(u,v) )

e2|(d2,
n

b2(u,v) )

ΔM,x

( md1

a2e2
1(u, v)

,
nd2

b2e2
2(u, v)

)
. (10.5)

The proof of [PY] only uses Hecke theory, and so all the arguments carry through without 
any substantial changes.

The goal of the rest of this section is to show that (10.4) and (10.5) hold equally well 
for the continuous spectrum, that is, with x = ∞. Then since ΔN = ΔN,0 + ΔN,∞, and 
likewise for Δ∗

M , we obtain analogous formulas for ΔN and Δ∗
M .

When N is square-free and ψ is principal, then the decomposition (8.4) simplifies 
since H∗

t (M) = {0} for M �= 1, and H∗
t (1) is the level 1 Eisenstein series, E(z, 1/2 + it). 

So, define Δ∗
M,∞(m, n) = 0 unless M = 1, in which case Δ∗

1,∞(m, n) = Δ1,∞(m, n).
For the analysis of ΔN,∞ to proceed in parallel with that of ΔN,0, we need to pick 

a basis for Et(L; E) analogous to the one chosen in [PY]. Instead of the Ea or Dχ,�, we 
start with E, the level 1 Eisenstein series. Let φ be a function defined on the divisors 
of N , satisfying φ(p) = ±1, extended multiplicatively. There are τ(N) such functions φ, 
since N is squarefree. Then define

Eφ =
∑
d|N

φ(d)E|Wd
, (10.6)

which is on Γ0(N). Here Wd is the Atkin–Lehner involution, and from (9.4), we have 
(E|Wd

)(z, 1/2 + it) = E(dz, 1/2 + it). It follows from (10.6) that Eφ|Wd
= φ(d)Eφ, and 

so these functions form an orthogonal basis for Et(N ; E). Thus,

ΔN,∞(m,n) =
∞∫

−∞

h(t)Tt(m,n)dt, Tt(m,n) =
∑
φ

νEφ,t(m)νEφ,t(n)
〈Eφ, Eφ〉

.

Now we wish to evaluate Tt(m, n) in an analogous way to [PY].
As in [PY, (2.5)], we have

〈Eφ, Eφ〉 = τ(N)
∑
d|N

φ(d)〈E|Wd
, E〉.

Next we claim

〈Et|Wd
, Et〉 = τit(d)

√
d

ν(d) 〈Et, Et〉, (10.7)

where ν(d) =
∏

p|d(p + 1), which is the index of Γ0(d) in Γ0(1) for square-free d. When 
E is replaced by a cuspidal newform, then this was proved by Abbes and Ullmo [AU]. 
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More general inner product calculations may be found in Section 8.4, but the case here 
is brief enough that a direct evaluation is desirable.

Returning to Theorem 7.1, we see that

E(Bz, s) = Ns
∑
d|A
e|B

1
(de)sE

1
Bd/e

(z, s).

Therefore,

〈Et|WB
, Et〉 = N

∑
a|N

1
a1/2+it

∑
b|B,c|NB

1
(bc)1/2−it

〈E 1
a
, E 1

Bc/b
〉.

Here the inner product vanishes unless a = B
b c. Thus we obtain

1
4π 〈Et|WB

, Et〉 = N
(∑

b|B

1
(B/b)1/2+itb1/2−it

)(∑
c|NB

1
c

)
= τit(B)

√
Bν(N/B).

Taking B = 1, we get 1
4π 〈Et, Et〉 = ν(N), and so (10.7) follows, as well as

〈Et, Et〉N = ν(N)〈Et, Et〉1 (10.8)

where the subscript on the inner product symbol denotes the level of the group to which 
the inner product is attached. Hence

〈Eφ, Eφ〉 = τ(N)〈E,E〉
∏
p|N

(
1 + φ(p)τit(p)p1/2

ν(p)

)
,

which is the analog of [PY, (2.6)].
By a direct calculation with the Fourier expansion, we have

νEφ
(m) =

∑
u|(m,N)

φ(u)u1/2νE(m/u) = νE(1)
∑

u|(m,N)

φ(u)u1/2λE(m/u),

where λE(n) = τiT (n); this is the analog of [PY, (2.8)]. We therefore need to evaluate 
the inner sum over φ, namely

Tt(m,n) = 1
τ(N)〈E,E〉N

∑
φ

λEφ
(m)λEφ

(n)
∏
p|N

(
1 + φ(p)λE(p)p1/2

ν(p)

)−1
, (10.9)

where we have used (10.7). Here (10.9) is analogous to [PY, (3.2)]. At this point, all 
the calculations of Tt(m, n) run completely parallel to those in [PY, Section 3], since 
the formulas that were used there are: Hecke relations, (10.7), and (10.8), which are the 
same in both cases of cusp forms vs. Eisenstein.
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Therefore, (10.4) holds with x = ∞. We also claim that the inversion formula (10.5)
holds with x = ∞. The key to this is that the inversion formula proved in [PY, Section 
4] is a combinatorial formula proved by inclusion–exclusion and does not depend on 
any properties of Δ∗

M,∞. Similarly, the intermediate hybrid formulas appearing in [PY, 
Section 5] also extend to the Bruggeman–Kuznetsov formula; these only rely in the 
previous formulas and Hecke relations which hold equally well in both the Maass and 
Eisenstein cases.

One may then set up the hybrid cubic moment for Maass forms as in [PY, (8.7)]: 
there exist positive weights ωuj

and ωt so that we define

M(r, q) =
∑

uj new, level rq′
q′|q̃

ωuj
h(tj)L(1/2, uj ⊗ χq)3

+ 1
4π

∞∫
−∞

∑
Et new, level rq′

q′|q̃

ωth(t)L(1/2, Et ⊗ χq)3dt.

Actually this sum over Et is empty except when r = 1 and q′ = 1 in which case the 
problem reduces to the one treated in [CI]. Now one may approach M(r, q) as in [PY], 
just as the original paper of Conrey–Iwaniec [CI] dealt equally well with Maass forms 
and holomorphic forms.

11. Proof of the inversion formula

Proof of Lemma 7.2. Write

K =
∑
d|A

∑
e|B

(d,e)=1

ω1(d)ω2(e)J
(Bd

e

)
,

so the desired identity is K = K(B) 
∏

p|L(1 −ω1(p)ω2(p)). Inserting the definition (7.6), 
we have

K =
∑
d|A
e|B

(d,e)=1

∑
a|Bd

e

∑
b|Ae

d

μ(a)μ(b)ω1(bd)ω2(ae)K
(bdB

ae

)
.

Reversing the orders of summation, we obtain

K =
∑
a|L

∑
b|L

∑
d|A,Bd≡0 (mod ae)
e|B,Ae≡0 (mod bd)

μ(a)μ(b)ω1(bd)ω2(ae)K
(bdB

ae

)
.

(d,e)=1
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Now let (a, d) = g and (b, e) = h and write d = gd′ and e = he′, giving

K =
∑
a|L

∑
b|L

∑
g|(a,A)

∑
h|(b,B)

∑
d′|Ag ,Bd′≡0 (mod a

g he
′)

e′|Bh ,Ae′≡0 (mod b
h gd′)

(d′, ag )=1, (e′, b
h )=1

(gd′,he′)=1

μ(a)μ(b)ω1(bgd′)ω2(ahe′)K
(bgd′B

ahe′

)
.

Now since (d′, aghe
′) = 1, the first congruence condition is equivalent to aghe

′|B (which 

automatically implies e′|Bh , so this latter condition may be omitted since it is redundant). 
Similarly, the second congruence is equivalent to bhgd

′|A. Next we move the sums over g
and h to the outside, and define a = ga′, b = hb′. Simplifying, we obtain

K =
∑
g|A

∑
h|B

∑
a′|Lg

∑
b′|Lh

∑
a′he′|B
b′gd′|A

(d′,a′)=1
(e′,b′)=1

(gd′,he′)=1

μ(ga′)μ(hb′)ω1(b′ghd′)ω2(a′ghe′)K
(b′d′B

a′e′

)
.

Next expand μ(ga′) = μ(g)μ(a′), recording the coprimality condition (a′, g) = 1, and 
similarly for μ(hb′). Then

K =
∑

a′he′|B
b′gd′|A

(d′g,a′)=1
(e′h,b′)=1
(gd′,he′)=1

μ(g)μ(a′)μ(h)μ(b′)ω1(b′ghd′)ω2(a′ghe′)K
(b′d′B

a′e′

)
.

Now let (a′, b′) = r, and write a′ = ra′′, b′ = rb′′ where now (a′′, b′′) = 1. Then

K =
∑

a′′rhe′|B
b′′rgd′|A

(... )

μ(g)μ(a′′)μ2(r)μ(h)μ(b′′)ω1(b′′rghd′)ω2(a′′rghe′)K
(b′′d′B

a′′e′

)
,

where (. . . ) represents the following coprimality conditions:

(d′g, a′′r) = 1, (e′h, b′′r) = 1, (gd′, he′) = 1, (a′′, b′′) = 1, (a′′b′′, r) = 1. (11.1)

Now let a′′e′ = α be a new variable, and likewise b′′d′ = β; the coprimality conditions 
in (11.1) translate into these conditions: (α, β) = 1, (α, rg) = 1, (β, rh) = 1, and (r, gh) =
(g, h) = 1. Note that a′′ and b′′ do not occur in this list of conditions. Thus we obtain

K =
∑

rhα|B
rgβ|A

μ(g)μ2(r)μ(h)ω1(rghβ)ω2(rghα)K
(βB

α

) ∑
a′′|α

∑
b′′|β

μ(a′′)μ(b′′),
(... )
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where now (. . . ) represents the coprimality conditions translated into the new variables. 
The upshot is that Möbius inversion gives α = β = 1, and we obtain K = κK(B), where

κ :=
∑

rh|B, rg|A,
(r,gh)=1, (g,h)=1

μ(g)μ2(r)μ(h)(ω1ω2)(rgh).

We claim that κ =
∏

p|AB(1 − ω1(p)ω2(p)), which may be checked prime-by-prime by 
brute force. �
12. Mellin transform of Whittaker function

In this section, we take the opportunity to correct [DFI, Lemma 8.2]. The overall 
method of [DFI] is valid, but a typo early in the derivation makes it difficult to correct 
the mistake without going through the entire process again.

Recall the definition

Φε
k(s, β) =

√
π

∞∫
0

(
W k

2 ,β
(4y) + ε

Γ(β + 1+k
2 )

Γ(β + 1−k
2 )

W− k
2 ,β

(4y)
)
ys−

1
2
dy

y
,

where ε = ±1, and that we wish to show

Φε
k(s, β) = pεk(s, β)Γ

(s + β + 1−ε(−1)k
2

2

)
Γ
(s− β + 1−ε

2
2

)
,

where pεk(s, β) is a certain polynomial defined recursively below.
The first step of the derivation in [DFI] is to give two recursion formulas for the 

Whittaker function, the first of which contains a typo. The corrected formulas are (cf. 
[DLMF, (13.15.10), (13.15.12)])

2β
√
y
Wα,β(y) = Wα+ 1

2 ,β+ 1
2
(y) −Wα+ 1

2 ,β− 1
2
(y)

= (β − α + 1
2 )Wα− 1

2 ,β+ 1
2
(y) + (β + α− 1

2 )Wα− 1
2 ,β− 1

2
(y).

Next define

V ε
k,β(y) = W k

2 ,β
(4y) + ε

Γ(β + 1+k
2 )

Γ(β + 1−k
2 )

W− k
2 ,β

(4y). (12.1)

The above recursion formulas give

2β
√ V ε

k,β(y ) = (β + 1−k
2 )W k−1

2 ,β+ 1
2
(y) + (β + k−1

2 )W k−1
2 ,β− 1

2
(y)
y 4
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+ ε
Γ(β + 1+k

2 )
Γ(β + 1−k

2 )

(
W 1−k

2 ,β+ 1
2
(y) −W 1−k

2 ,β− 1
2
(y)

)
,

and using Γ(s + 1) = sΓ(s), we derive

β
√
y
V ε
k,β(y) = (β + 1−k

2 )V ε
k−1,β+ 1

2
(y) + (β + k−1

2 )V −ε
k−1,β− 1

2
(y),

which replaces [DFI, (8.28)]. Then on integration, we derive

Φε
k(s, β) = (1 − k−1

2β )Φε
k−1(s + 1

2 , β + 1
2 ) + (1 + k−1

2β )Φ−ε
k−1(s + 1

2 , β − 1
2 ),

for β �= 0. When k = 0, then the formula for V ε
0,β(y) given in [DFI, p. 532] is correct, 

and by [GR, (6.561.16)], we derive

Φε
0(s, β) =

(1 + ε

2

)
Γ
(s + β

2

)
Γ
(s− β

2

)
,

which differs from [DFI, (8.30)] by a factor 1
4 . This shows the claimed formula for Φε

0
with pε0 = 1+ε

2 .
Now proceed by induction on k ≥ 1. We obtain

Φε
k(s, β) = (1 − k−1

2β )pεk−1(s + 1
2 , β + 1

2 )Γ
(s + β + 1 + 1−ε(−1)k−1

2
2

)
Γ
(s− β + 1−ε

2
2

)

+ (1 + k−1
2β )p−ε

k−1(s + 1
2 , β − 1

2 )Γ
(s + β + 1+ε(−1)k−1

2
2

)
Γ
(s− β + 1 + 1+ε

2
2

)
.

Next we use

Γ
(s + β + 1 + 1−ε(−1)k−1

2
2

)
= Γ

(s + β + 1−ε(−1)k
2

2

)
×

{
1, ε = −(−1)k
s+β

2 , ε = (−1)k.

And similarly,

Γ
(s− β + 1 + 1+ε

2
2

)
= Γ

(s− β + 1−ε
2

2

)
×

{
1, ε = −1
s−β

2 , ε = 1.

Therefore, we obtain a recursion

pεk(s, β) = (1 − k−1
2β )pεk−1(s + 1

2 , β + 1
2 ) ×

{
1, ε = −(−1)k
s+β

2 , ε = (−1)k

}

+ (1 + k−1
2β )p−ε

k−1(s + 1
2 , β − 1

2 ) ×
{

1, ε = −1
s−β , ε = 1

}
.

(12.2)
2
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By direct calculation, we have

p+
1 (s, β) = 1 p−1 (s, β) = 1

p+
2 (s, β) = s− 1

2 p−2 (s, β) = 2

p+
3 (s, β) = 2s− 1 − β p−3 (s, β) = 2s− 1 + β

p+
4 (s, β) = 2(s− 1

2 )2 − β2 + 1
4 p−4 (s, β) = 4(s− 1

2 ).

Compared with [DFI, (p. 533)], the sign on β is reversed.
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