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Fig. 1. We propose a novel physically-motivated cascaded CNN architecture for recovering arbitrary shape and spatially-varying BRDF from a single mobile

phone image. (a) Input image in unconstrained indoor environment with flash enabled. (b) Relighting output using estimated shape and SVBRDF. (c) Rendering

output in novel illumination. (d–g) Diffuse albedo, roughness, depth and surface normals estimated using our framework. (h) Normals estimated using a

single-stage network. Our cascade design leads to accurate outputs through global reasoning, iterative refinement and handling of global illumination.

Reconstructing shape and reflectance properties from images is a highly

under-constrained problem, and has previously been addressed by using

specialized hardware to capture calibrated data or by assuming known (or

highly constrained) shape or reflectance. In contrast, we demonstrate that

we can recover non-Lambertian, spatially-varying BRDFs and complex ge-

ometry belonging to any arbitrary shape class, from a single RGB image

captured under a combination of unknown environment illumination and

flash lighting. We achieve this by training a deep neural network to regress

shape and reflectance from the image. Our network is able to address this

problem because of three novel contributions: first, we build a large-scale

dataset of procedurally generated shapes and real-world complex SVBRDFs

that approximate real world appearance well. Second, single image inverse

rendering requires reasoning at multiple scales, and we propose a cascade

network structure that allows this in a tractable manner. Finally, we incor-

porate an in-network rendering layer that aids the reconstruction task by

handling global illumination effects that are important for real-world scenes.

Together, these contributions allow us to tackle the entire inverse rendering

problem in a holistic manner and produce state-of-the-art results on both

synthetic and real data.
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1 INTRODUCTION

Estimating the shape and reflectance properties of an object using

a single image acquired “in-the-wild” is a long-standing challenge

in computer vision and graphics, with applications ranging from

3D design to image editing to augmented reality. But the inherent

ambiguity of the problem, whereby different combinations of shape,

material and illumination might result in similar appearances, poses

a significant hurdle. Consequently, early approaches have attempted

to solve restricted sub-problems by imposing domain-specific priors

on shape and/or reflectance [Barron and Malik 2015; Blanz and

Vetter 1999; Oxholm and Nishino 2016]. Even with recent advances

through deep learning based data-driven priors for inverse rendering

problems, disentangling the complex factors of variation represented

by arbitrary shape and spatially-varying bidirectional reflectance

distribution function (SVBRDF) has, as yet, remained unsolved.

In this work, we take a step towards that goal by proposing a

novel convolutional neural network (CNN) framework to estimate

shape — represented as depth and surface normals — and SVBRDF —

represented as diffuse albedo and specular roughness — from a single

mobile phone image captured under largely uncontrolled conditions.
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This represents a significant advance over recent works that either

consider SVBRDF estimation from near-planar samples [Aittala et al.

2016; Deschaintre et al. 2018; Li et al. 2017a, 2018], or estimate shape

for Lambertian or homogeneous materials [Barron and Malik 2015;

Georgoulis et al. 2017; Liu et al. 2017]. The steep challenge of this

goal requires a holistic approach that combines prudent image acqui-

sition, a large-scale training dataset, and novel physically-motivated

networks that can efficiently handle this increased complexity.

Several recent works have demonstrated that a collocated source-

sensor setup leads to advantages for material estimation, since

higher frequencies for specular components are easily observed

and distractors such as shadows are eliminated [Aittala et al. 2016,

2015; Hui et al. 2017]. We use a mobile phone for imaging and mimic

this setup by using the flash as illumination. Note that our images

are captured under uncontrolled environment illumination, and not

a dark room. Our only assumption is that the flash illumination is

dominant, which is true for most scenarios.

Previous inverse rendering methods have utilized 3D shape repos-

itories with homogeneous materials [Liu et al. 2017; Rematas et al.

2016; Shi et al. 2017] or large-scale SVBRDFs with near-planar ge-

ometries [Deschaintre et al. 2018; Li et al. 2018]. While we utilize the

SVBRDF dataset of [Li et al. 2018], meaningfully applying them to 3D

models in a shape dataset is non-trivial. Moreover, category-specific

biases in repositories such as ShapeNet [Chang et al. 2015] might

mitigate the generalization ability of our learned model. To over-

come these limitations, we procedurally generate random shapes by

combining basic shape primitives on which the complex SVBRDFs

from our dataset are mapped. We generate a large-scale dataset of

216, 000 images with global illumination that reflects the distribution

of flash-illuminated images under an environment map.

Besides more descriptive datasets, disambiguating shape and

spatially-varying material requires novel network architectures that

can reason about appearance at multiple scales, for example, to un-

derstand both local shading and non-local shadowing and lighting

variations, especially in the case of unknown, complex geometry.We

demonstrate that this can be achieved through a cascade design; each

stage of the cascade predicts shape and SVBRDF parameters, but

these predictions and the error between images rendered with these

estimates and the input image are passed as inputs to subsequent

stages. This allows the network to imbibe this global feedback on

the rendering error, while performing iterative refinement through

the stages. In experiments, we demonstrate through quantitative

analysis and qualitative visualizations that the cascade structure is

crucial for accurate shape and SVBRDF estimation.

The forward rendering model is well-understood in computer

graphics, and can be used to aid the inverse problem by using a

fixed, in-network rendering layer to render the predicted shape and

material parameters and impose a “reconstruction” loss during train-

ing [Deschaintre et al. 2018; Innamorati et al. 2017; Li et al. 2018;

Liu et al. 2017; Shu et al. 2017; Tewari et al. 2018]. Tractable training

requires efficient rendering layers; thus, most previous works only

consider appearance under direct illumination. This is insufficient,

especially when dealing with arbitrary shapes. An important techni-

cal innovation of our network is a global illumination (GI) rendering

layer that also accounts for interreflections.1 While it is challenging

to directly predict the entire indirect component of an input image,

we posit that predicting the bounces of global illumination using a

CNN is easier and maintains differentiability. Thus, our GI render-

ing is implemented as a physically-motivated cascade, where each

stage predicts one subsequent bounce of global illumination. As a

result, besides SVBRDF and shape, the individual bounces of global

illumination are auxiliary outputs of our framework. A GI render-

ing layer also allows us to isolate the reconstruction error better,

thereby providing more useful feedback to the cascade structure.

Contributions. In summary, we make the following contributions:

• The first approach to simultaneously recover unknown shape

and SVBRDF using a single mobile phone image.

• A new large-scale dataset of images rendered with complex

shapes and spatially-varying BRDF.

• A novel cascaded network architecture that allows for global

reasoning and iterative refinement.

• A novel, physically-motivated global illumination rendering layer

that provides more accurate reconstructions.

2 RELATED WORK

Inverse rendering— the problem of reconstructing shape, reflectance,

and lighting from a set of images — is an extensively studied prob-

lem in computer vision and graphics. Traditional approaches to

this problem often rely on carefully designed acquisition systems

to capture multiple images under highly calibrated conditions [De-

bevec et al. 2000]. Significant research has also been done on the

subproblems of the inverse rendering problem: e.g., photometric

stereo methods that reconstruct shape assuming known reflectance

and lighting [Woodham 1980], and BRDF acquisition methods that

reconstruct material reflectance assuming known shape and light-

ing [Marschner et al. 1999; Matusik et al. 2003]. While recent works

have attempted to relax these assumptions and enable inverse ren-

dering in the “wild”, to the best of our knowledge, this paper is

the first to estimate both complex shape and spatially-varying non-

Lambertian reflectance from a single image captured under largely

uncontrolled settings. In this section, we focus on work that addresses

shape and material estimation from sparse images.

Shape and material estimation. Shape from shading methods re-

construct shape from single images captured under calibrated illumi-

nation, though they usually assume Lambertian reflectance [Johnson

and Adelson 2011]. This has been extended to arbitrary shape and

reflectance under known natural illumination [Oxholm and Nishino

2016]. Shape and reflectance can also be estimated from multiple im-

ages by using differential motion cues [Chandraker 2014], light field

inputs [Li et al. 2017b; Wang et al. 2017], or BRDF dictionaries [Gold-

man et al. 2010; Hui and Sankaranarayanan 2017]. Recent works

mitigate the challenge of shape recovery by using depth maps from

a Kinect sensor as input for BRDF estimation [Knecht et al. 2012; Wu

and Zhou 2015]. Other methods assume near-planar samples and

use physics-based optimization to acquire spatially-varying BRDFs

from sparse images captured under collocated illumination [Aittala

1While it is possible to also consider shadows, global illumination is mainly manifested
as interreflections in our inputs due to the collocated setup.
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et al. 2015; Hui et al. 2017; Riviere et al. 2016]. Yu et al. [1999] assume

known geometry to recover scene reflectance by modeling global

illumination. Barron and Malik [2015] recover shape and spatially-

varying diffuse reflectance from a single image under unknown

illumination by combining an inverse rendering formulation with

hand-crafted priors on shape, reflectance and lighting. In contrast

to these works, our deep learning approach recovers high-quality

shape and spatially-varying reflectance from a single RGB image by

combining a rendering layer with purely data-driven priors.

Deep learning for inverse rendering. Recently, deep learning-based

approaches have demonstrated promising results for several in-

verse rendering subproblems including estimating scene geome-

try [Bansal et al. 2016; Eigen and Fergus 2015], material classes [Bell

et al. 2015], illumination [Gardner et al. 2017; Georgoulis et al. 2017;

Hold-Geoffroy et al. 2017], and reflectance maps [Rematas et al.

2016]. In contrast, our work tackles the joint problem of estimating

shape and spatially-varying reflectance from just a single image.

In the context of reflectance capture, Aittala et al. [2016] propose

a neural style transfer approach to acquire stochastic SVBRDFs from

images of near-planar samples under flash illumination. Similarly,

Li et al. [2017a] acquire SVBRDFs from near-planar samples imaged

under environment lighting, using a self-augmentation method

to overcome the limitation of learning from a small dataset. Liu

et al. [2017] propose a CNN-based method, that incorporates an

in-network rendering layer, to reconstruct a homegenous BRDF

and shape (from one of four possible categories) from a single im-

age under unknown environment illumination. [Innamorati et al.

2017] use deep networks to decompose images into intrinsic compo-

nents like diffuse albedo, irradiance, specular and ambient occlusion,

which are recombined to specify a render loss. We use a similar

render loss, though our decomposition is physically-based. Meka

et al. [2018] recover homogeneous BRDF parameters of an arbi-

trary shape under environment lighting, and Li et al. [2018] and

Deschaintre et al. [2018] leverage in-network rendering layers to

reconstruct SVBRDFs from near-planar samples captured under

flash illumination. Our work can be considered a generalization of

all these methods — we handle a broader range of SVBRDFs and

arbitrary shapes. This not only places greater demands on our net-

work, but also necessitates the consideration of global illumination,

leading to two key aspects of our architecture. First, we progres-

sively refine shape and SVBRDF estimates through a novel cascade

design. Second, while previous in-network rendering layers [De-

schaintre et al. 2018; Li et al. 2018; Liu et al. 2017] only consider

direct illumination, our global rendering layer accounts for indirect

illumination too. This not only matches our inputs better, but is also

the more physically accurate choice for real scenes with complex

shapes. Further, the rendering error provided as input to our cas-

cade stages improves estimation results, which is also possible only

with a rendering layer that computes global illumination. Together,

these components leads to state-of-the-art results on a significantly

broader range of inputs.

Rendering layers in deep networks. Differentiable rendering layers

have been used to aid in the task of learning inverse rendering for

problems like face reconstruction [Sengupta et al. 2018; Shu et al.

2017; Tewari et al. 2018] and material capture [Deschaintre et al.

2018; Li et al. 2018; Liu et al. 2017]. However, these methods make

simplifying assumptions — usually Lambertian materials under dis-

tant direct lighting or planar surface with collocated point lighting

— to make these layers tractable. We also use rendering to introduce

information from varied lighting conditions, but in contrast to the

above works, our rendering accounts for global illumination. Since

analytical rendering of global illumination is challenging, we rely

on network modules to predict bounces of global illumination. The

idea of using a network to predict global illumination has also been

adopted by [Nalbach et al. 2017], but no prior method has done this

for inverse problems. Further, we use a physically meaningful net-

work structure that divides global illumination into several bounces

instead of directly predicting indirect lighting, which may lead to

better and more interpretable results. A deep network is also used

by [Marco et al. 2017] to compensate for global illumination in time-

of-flight measurements, but they use a black box network for depth

prediction while we model global illumination explicitly. There is

machinery to compensate for bounces in optimization-based meth-

ods [Godard et al. 2015], but they do not render in real-time and

there is no obvious way to back-propagate gradients, making them

unsuitable for our framework. We train a global illumination CNN

to predict multiple bounces using data generated using a novel

simulation-based strategy that renders random shapes with a large-

scale SVBRDF dataset. The use of random shapes is important, since

we aim to recover arbitrary geometry, unlike previous methods that

might incorporate semantic category-level priors [Chang et al. 2015;

Georgoulis et al. 2017; Liu et al. 2017; Meka et al. 2018; Rematas et al.

2016]. Besides higher accuracy in SVBRDF estimation, a collateral

benefit of our novel rendering layer is that it can predict individual

bounces of global illumination, in the same forward pass. These can

be subsequently used for scene analysis tasks [Nayar et al. 2006;

O’Toole and Kutulakos 2010].

Cascade networks. For prediction tasks that demand sub-pixel

accuracy, prior works have considered cascade networks. For in-

stance, convolutional pose machines [Wei et al. 2016] are devised

to obtain large receptive fields for localizing human body joints,

while other architectures such as deep pose [Toshev and Szegedy

2014] and stacked hourglass networks [Newell et al. 2016] also use

cascades for multiscale refinement. Improved optical flow estimates

are obtained by FlowNet 2.0 [Ilg et al. 2017] using cascaded FlowNet

modules that accept stage-wise brightness error as input. Similar

to the above, we show that the cascade structure is effective for

SVBRDF estimation. Uniquely, we demonstrate that our cascade

is sufficient to recover high-quality shape and SVBRDF, while our

global illumination prediction that enables rendering error as input

to the cascade stages also yields advantages for SVBRDF estimation.

3 METHOD

The input to our method is a single image of an object (with a mask)

captured under (dominant) flash and environment illumination. Re-

constructing spatially-varying BRDF (SVBRDF) and shape, in such

uncontrolled settings, is an extremely ill-posed problem. Inspired

by the recent success of deep learning methods in computer vision

and computer graphics, we handle this problem by training a CNN

specifically designed with intuition from physics-based methods. In
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Fig. 2. Right: Overall structure of our framework. Different colors specify different functions of the network (blue for initial estimation, green for refinement

and purple for global illumination prediction). We use a cascade of encoder-decoder networks for global reasoning and iterative refinement. Different cascade

levels do not share parameters since the input statistics at each stage and the refinements needed are different. Each cascade stage receives error feedback

through the rendered output of the previous stage. Since we handle arbitrary shapes, our rendering layer models individual bounces of global illumination.

Left: Details of hyperparameters in our physically-motivated network design. Here R represents a residual block [He et al. 2016]. cX1−kX2−sX3−dX4

represents a conv/deconv layer of output channel X1, kernel size X2, stride X3 and dilation X4. Our encoder has receptive fields large enough to model global

light illumination, skip links are added since we aim to recover fine details and large kernels are used for global illumination prediction.

this section, we will describe each component of our network. The

overall framework is shown in Figure 2.

3.1 Basic Architecture

Our basic network architecture consists of a single encoder and four

decoders for different shape and SVBRDF parameters: diffuse albedo

(A), specular roughness (R), surface normal (N ), and depth (D).2 For
simplicity, we start by considering the input to be an image, Ip , of an
object illuminated by a dominant point light source collocated with

the camera (we consider additional environment illumination in

Section 3.3). We manually create a mask,M , that we stack with the

image to form a four channel input for the encoder. A light source

collocated with the camera has the advantages of removing cast

shadows, simplifying the lighting conditions and easing observation

of high frequency specularities, which are crucial for solving the

inverse rendering problem. In our experiments, such input data is

easily acquired using a mobile phone with the flash light enabled.

Unlike [Li et al. 2017a], which has different encoders and decoders

for various BRDF parameters, our four decoders share features ex-

tracted from the same encoder. The intuition behind this choice is

that different shape and SVBRDF parameters are closely correlated,

thus, sharing features can greatly reduce the size of the network

and alleviate over-fitting. This architecture has been proven to be

successful in [Li et al. 2018] for material capture using near-planar

samples. Let InverseNet(·) be the basic network architecture consist-
ing of the encoder-decoder block (shown in blue in Figure 2). Then

the initial predicted shape and SVBRDF estimates (differentiated

from the true parameters by˜ ) are given by:

Ã, Ñ , R̃, D̃ = InverseNet(Ip ,M). (1)

2A specular albedo may be considered too, but we found it sufficient to consider just
roughness to mimic most real-world appearances.

3.2 Global Illumination Rendering Layer

Prior works on material capture or photometric stereo usually as-

sume that the influence of inter-reflections can be neglected, or

consider near-planar samples where its effects are not strong. How-

ever, that may not be the case for our setup, since we consider

complex shape with potentially glossy reflectance. Failing to model

global illumination for our problem can result in color bleeding and

flattened normal artifacts. We initially considered in-network global

illumination rendering during training, but found it time-consuming

and not feasible for a large dataset. Instead we propose using CNNs

to approximate global illumination. CNNs can capture the highly

non-linear operations that global illumination manifests. In addition,

they have the advantage of being differentiable and fast to evaluate.

In particular, we use a series of CNNs, each of which predict indi-

vidual bounces of the rendered image. Let GINetn be the n-bounce
CNN. This network is trained to takes the (n − 1)-bounce image

under point light illumination, I
p
n−1, and the shape and SVBRDF

parameters, and render the n-bounce image, Ĩ
p
n , as:

Ĩ
p
n = GINetn (Ipn−1,M,A,N ,R,D) (2)

We use an analytical rendering layer to compute the direct illu-

mination, i.e., first bounce image, Ĩ
p
1 , given the predicted shape

and SVBRDF parameters. Then we use two CNNs, GINet2(·) and
GINet3(·), to predict the second and third bounces, Ĩ

p
2 and Ĩ

p
3 re-

spectively. The output, Ĩ
p
д , of our full global illumination rendering

layer (shown in purple in Figure 2) sums all the bounce images as:

Ĩ
p
2 = GINet2(Ĩp1 ,M, Ã, Ñ , R̃, D̃),
Ĩ
p
3 = GINet3(Ĩp2 ,M, Ã, Ñ , R̃, D̃),
Ĩ
p
д = Ĩ

p
1 + Ĩ

p
2 + Ĩ

p
3 . (3)
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1st bounce 2nd bounce 3rd bounce others

Energy ratio 95.83% 3.08% 0.89% 0.20 %

Fig. 3. Global illumination prediction results. From left to the right are

input images, the predicted second bounce images, the ground truth second

bounce images, the predicted third bounce images and the ground truth

third bounce images. Even for complex shapes with glossy material, the

predictions of our network are close to the ground truth. On the bottom,

we show the ratio between the average energy of separate bounces and the

images illuminated by a point light source across the test dataset.

As illustrated in Figure 3, most of the image intensity is contained

within three bounces, and so we only predict these, ignoring sub-

sequent bounces. Also in Figure 3, we show second and the third

bounce images predicted by our network. We observe that even for

objects with very concave shape and highly glossy material, we can

still generate rendering outputs that closely match the ground truth.

Note that a CNN-based approach like ours only approximates

true global illumination. It operates in image space and does not

explicitly model interreflections from surface points that are not

visible to the camera. However, our training data does include inter-

reflections from invisible surfaces and our collocated setup causes

interreflections from visible regions to dominate. In practice, we

have found the network to be sufficiently accurate for inverse ren-

dering. Compared with the traditional radiosity method [Cohen and

Wallace 1993], our network-based global illumination prediction has

the advantage of being fast, differentiable and able to approximate

reflections from invisible surfaces. However, it is an approximation,

since we do not have precise geometry, form factors or material

(albedo) properties, as in conventional radiosity algorithms.

3.3 Environment Map Prediction

Although we use a dominant flash light, our images are also illu-

minated by unknown environment illumination. This environment

illumination can significantly affect the appearance of globally illu-

minated complex shapes. This requires us to estimate the environ-

ment illumination and account for it in our rendering networks. To

do so, we approximate environment lighting with low-frequency

spherical harmonics (SH), and add another branch to our encoder-

decoder structure to predict the first nine SH coefficents for each

color channel. We observe that the background image provides

important context information for the network to determine en-

vironment lighting. So, unlike the point light source case, we add

the image with background as the third image to the input. Let

E be environment lighting, Ipe be the image of the object under

both point and environmental lighting andM � Ipe be its masked

version. With some abuse of notation, now our shape and SVBRDF

parameters are computed using

Ã, Ñ , R̃, D̃, Ẽ = InverseNet(Ipe ,M � Ipe ,M). (4)

Since now the input image is captured under environment illumi-

nation and the flash light source, we modify our rendering layer

to account for this. We follow the method of [Ramamoorthi and

Hanrahan 2001] to render an image of the object, Ĩe , using the es-
timated spherical harmonics illumination. This only considers the

Lambertian shading and ignores high-frequency specular effects.

In practice, this is sufficient because most high-frequency effects

are observed under flash illumination, and our experiments show

that this simple approximation suffices for achieving accurate BRDF

reconstruction. Now the output of the global illumination rendering

layer (in place of Equation 3) is given by:

Ĩ
pe
д = Ĩ

p
1 + Ĩ

p
2 + Ĩ

p
3 + Ĩ

e . (5)

3.4 Cascade Structure

While a single encoder-decoder leads to good results for SVBRDF

estimation with near-planar samples [Li et al. 2018], it does not

suffice when considering arbitrary shapes. This can be attributed to

the increased complexity of the problem and a need for more global

reasoning. We propose a cascade structure that achieves these aims

by using iterative refinement and feedback to allow the network

to reason about differences between the image rendered with the

predicted parameters and the input image.

Let CascadeNetn be stage n of the cascade network. Each stage

has the same single architecture as InverseNet. Let the shape, re-

flectance and lighting parameters of cascade stage n be Ãn , Ñn , R̃n ,
D̃n and Ẽn , and the result of rendering these parameters (using the

global illumination rendering network) be Ĩ
pe
д,n . Each cascade stage

refines the predictions of the previous stage as:

Errn−1 = M � Ipe − Ĩ
pe
д,n−1 (6)

Ãn , Ñn , R̃n , D̃n , Ẽn = CascadeNetn (Ipe ,M � Ipe ,M,

Ãn−1, Ñn−1, R̃n−1, D̃n−1,Errn−1) (7)

The inputs to each cascade stage are the input image, the shape,

SVBRDF, and lighting predictions from the previous stage, and the

rendering error associated with these previous predictions (with

respect to the input image). This allows each cascade stage to refine

the predictions by reasoning about the rendering error from the

previous stage. Note that this is possible only because of our network

design that models global illumination and environment lighting.

3.5 Training Details

Training Data: To the best of our knowledge, there is no exist-

ing dataset of objects with arbitrary shape rendered with complex

SVBDRF. Complex SVBRDF datasets used in previous work [De-

schaintre et al. 2018; Li et al. 2018] assume near-planar surfaces, and

rich shape datasets like ShapeNet [Chang et al. 2015] have simple

homogeneous BRDFs. Thus, we generate our own synthetic dataset

by procedurally adding shapes to build a complex scene. Similar

to [Xu et al. 2018], we first generate primitive shapes (cube, ellip-

soid, cylinder, box and L-shape) and then add a randomly generated
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height map to make them more complex and diverse. We build

scenes by randomly sampling 1 to 5 shapes and combining them.

We create 3600 scenes, using 3000 for training and 600 for testing.

We use SVBDRFs from the Adobe Stock material dataset3, which

contains 694 complex SVBRDFs spanning a large range of material

types. Each SVBRDF is comprised of 4K texture maps for diffuse

albedo, specular roughness, and surface normals. For data augmen-

tation, we randomly crop, rotate and scale the texture maps to create

different size patches and then resize all the patches to the same

size of 256 × 256. We create 270 patches for each material and use

these patches as the materials to render dataset. We use the physi-

cally motivated microfacet BRDF model in [Karis and Games 2013].

Please refer to the supplementary material for details.

We remove the 6 transparent materials and use the remaining 688

materials. We classify the materials into 8 categories according to

their reflectance properties and proportionally sample 588 materials

for training and 100 for testing. For environment maps, we use the

Laval Indoor HDR dataset [Gardner et al. 2017] containing 2144

environmental maps of indoor scenes, of which we use 1500 to

render the training dataset and 644 for the test dataset.

We use Optix for GPU-accelerated rendering, based on path trac-

ing with multiple importance sampling. We render with 400 samples

per-pixel for point light source illumination and 625 samples per-

pixel when the environment map is also included. The average

rendering time is less than 2 seconds. For each scene, we sample

12 viewing directions, 5 groups of different SVBDRFs and one en-

vironment map. When rendered with both point and environment

lighting, we scale the environment map by 0.5, to keep the average

ratio between image intensities rendered with only environment

map and with point light to be 0.09285. This matches the statistics of

images captured using mobile phones in real indoor environments.

Network Design: Our design makes several choices to reflect

the physical structure of the problem. We use the U-net architec-

ture [Ronneberger et al. 2015] for InverseNet. To model the global

fall-off of the point light source, it is necessary to have large recep-

tive fields. Thus, each encoder has 6 convolutional layers with stride

2, so that each pixel of the output can be influenced by the whole

image. For the SVBDRF parameters, we use transposed convolu-

tions for decoding and add skip links to recover greater details. For

environment map estimation, we pass the highest level of feature

extracted from the encoder through two fully connected layers to

regress the 9 spherical harmonics coefficients. Each CascadeNet

stage uses 6 residual blocks — 3 blocks for the encoder and 3 sep-

arate blocks for each decoder. We use dilated convolutions with a

factor of 2 in the residual block to increase the receptive field. We

feed environment lighting predictions into the next cascade stage by

passing the nine SH coefficients through a fully connected layer and

concatenate them with the feature extracted from the encoder. We

also use the U-net structure with skip-links for GINet. To predict

global illumination, the network must capture long range depen-

dencies. Thus, we use a convolutional layer with large kernel of size

6, combined with dilation by a factor of 2. The network architecture

of each component is shown on the right side of Figure 2.

3https://stock.adobe.com/3d-assets

Loss function: Wehave the same loss function for both InverseNet

and each CascadeNet stage. For diffuse albedo, normal, roughness

and environment illumination SH coefficients, we use the L2 loss for

supervision. Since the range of depths is larger than that of other

BRDF parameters, we use an inverse transformation to project the

depth map into a fixed range. Let d̃i be the initial output of depth
prediction network of pixel i; the real depth di is given by

di =
1

σ · (d̃i + 1) + ϵ
. (8)

We set σ = 0.4 and ϵ = 0.25, and use L2 loss to supervise di . Finally,
we add a reconstruction loss based on the L2 distance between

the image rendered with predicted and ground truth parameters.

Let La , Ln , Lr , Ld , Lenv and Lr ec be the L2 losses for diffuse

albedo, normal, roughness, depth, environment map and image

reconstruction, respectively. The loss function of our network is:

L = λaLa + λnLn + λrLr + λdLd + λenvLenv + λr ecLr ec , (9)

where λa = λn = λr ec = 1, λr = λd = 0.5 and λenv = 0.1 are

parameters chosen empirically.

Training Strategies: Training multiple cascade structures is dif-

ficult since the enhanced network depth may lead to vanishing

gradients and covariate shift, preventing convergence to a good

local minimum. Further, batch sizes will need to be small when

training all stages together, which can cause instability. Thus, in-

stead of training the whole network end-to-end, we sequentially

train each stage of the cascade. This allow us to use a relatively large

batch size of 16. We use Adam optimizer, with a learning rate of

10−4 for the encoder and 4× 10−4 for the decoders. We decrease the

learning rate by half after every two epochs. The three stages are

trained for 15, 8 and 6 epochs, respectively. We use twoCascadeNet

stages and train InverseNet and CascadeNet1 with 2500 shapes

and add 500 shapes to train CascadeNet2.

GINet is trained prior to the BRDF prediction network, then

held fixed and only used for the rendering layer when training the

network for shape and SVBRDF estimation. We use Optix to render

images with separate bounces and use them for direct supervision.

We train for 15 epochs, with an initial learning rate of 2 × 10−4 and
reduce it by half every two epochs.

4 EXPERIMENTS

We first demonstrate the effectiveness of each design choice in our

network architecture through detailed comparisons on both syn-

thetic and real datasets. Next, we compare with previous methods

for shape and material estimation to highlight the highly accurate

shape and SVBRDF recovered by our framework. Please refer to sup-

plementary video for more visualizations of the results (including

under novel lighting and viewpoint).

Ablation study on synthetic data. We first justify the necessity

of rendering a novel large-scale dataset with global illumination

for shape and SVBRDF estimation. We train InverseNet on images

rendered with direct illumination and test on images with global

illumination. Column Impd−C0 (trained on images with direct point

illumination with no cascade) in Table 1 reports the obtained errors,

which are clearly larger than those in column Impg−C0 for the same
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Table 1. Quantitative comparison on images rendered only with point light.

Impd refers to input images rendered with direct lighting only, while Impg
means the input images are rendered with global illumination.

Impd−C0 Impg−C0
Albedo(10−2) 5.911 5.703

Normal(10−2) 4.814 4.475

Roughness(10−1) 1.974 1.966

Depth(10−1) 1.842 1.772

Albedo Normal Roughness Depth
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iIm
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Fig. 4. Comparison of SVBRDF and depth outputs of two networks, trained

on directly illuminated (top) and globally illuminated images (middle), when

evaluated on an input with global illumination. Not considering indirect

lighting during training leads to flatter normals and brighter albedo.

network trained on images with point lighting and global illumina-

tion. Thus, global illumination has a significant impact on depth and

SVBRDF estimation. The qualitative comparison in Figure 4 shows

that the network trained with direct lighting only predicts brighter

diffuse albedo and flattened normals, when evaluated on images

with indirect lighting. This also matches intuition on the behavior

of inter-reflections [Chandraker et al. 2005; Nayar et al. 1991].

Next we demonstrate that context information is important for

the network to reconstruct shape and BRDF under environment

lighting. We train two variants of our basic network, one with

masked image input, Impeg −C0, and the other with both masked and

original image as input, Impeg −bg−C0. Quantitative comparisons in

the first two columns of Table 2 show that predictions for all BRDF

parameters improve when background is included.

To test the effectiveness of cascade structure, we first add one

layer of cascade to our basic network. We try two variants of cascade

network. For the black-box cascade (C1), we stack the input image

and the predicted BRDF parameters and send them to the next stage

of the cascade. For the cascade network with error feedback (C1Er),
we also send an error map as input by comparing the output of our

global illumination rendering layer with the input. The quantitative

numbers (third and fourth column of Table 2) suggest that having

the error feedback improves BRDF reconstruction. We then add

Input image

GI prediction

A
lb

ed
o 

eBgIm-C  ENoG2 eBgIm-C  E2 Ground truth

Fig. 5. For an input image with strong indirect lighting (top left), a network

trained without global illumination for the rendering layer (second column)

retains more color bleeding artifacts in the estimated diffuse albedo, than

one trained with global illumination (third column). The bottom left figure

shows the net global illumination estimated by the final network.

another cascade stage with error feedback, which yields even more

accurate BRDF estimation (C2Er) that we deem the final output.

Figure 6 shows the visual quality of BRDF estimation from different

stages of the cascade network. We observe that for both synthetic

and real data, the cascade reduces noise and artifacts. The final

rendered result using the BRDF parameters predicted by the second

level of the cascade is very similar to the input image, as shown in

Figure 6 using both the environment map estimated by the network

and a novel environment map.

Next, we analyze the effect of the global illumination rendering

network. We train two new variants of our global illumination ren-

dering layer for the second cascade stage. For Impeg −bg−C2ErNoG,
the rendering layer does not consider global illumination so that the

error feedback is computed by subtracting the sum of Ĩ
p
1 and Ĩe from

the inputM�Ipe , i.e., Ĩpe = Ĩ
p
1 +Ĩ

e . Similarly, for Impeg −bg−C2ErNoE,
we remove the environmental map component of the global illumi-

nation rendering layer. The error feedback for the cascade network

is now computed using Ĩpe = Ĩ
p
1 + Ĩ

p
2 + Ĩ

p
3 . Table 2 shows that our

full version of rendering layer performs the best. The differences

are measurable but subtle, since the remaining impact of environ-

ment lighting and global illumination for the second stage is small.

To better understand the behavior, we show a qualitative example

with global illumination in Figure 5. We observe that the global

illumination rendering layer alleviates color bleeding artifacts.

Generalization to real data. We demonstrate our method on sev-

eral real objects in Figures 7 and 8. All images are captured in indoor

scenes using an iPhone 10 with the flash enabled. We use the Adobe

Lightroom app to capture linear images and manually create the seg-

mentation mask. For all the examples, our rendered results closely

match the input. Figures 7 and 8 also show our predicted BRDF

parameters can be used to render realistic images under new en-

vironment lighting and camera pose. This demonstrates that our

estimates of the surface normal and spatially varying roughness are

of high enough quality to render realistic specular effects of real

objects under novel illumination and viewing directions. Please see

the supplementary material and videos for further examples.
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Table 2. Quantitative comparisons L2 errors illustrating the influence of various network choices. Impeg means the input images are illuminated by both point

light source and environmental lighting (superscript pe) and rendered with global illumination (subscript g).−bg means the images without masking the

background are added as an input. Cn shows the level of cascade refinement, where C0 means we use our basic InverseNet without any refinement. Er behind

Cn means we also send the error maps by comparing the images rendered with the estimated BRDFs and the inputs to the cascade refinement networks. The

subscript NoE and NoG in the last two columns means that when computing the error maps, we do not consider the influence of environmental lighting and

global illumination respectively. Here, Impeg −bg−C2Er is the error obtained with our final two-cascade architecture with global illumination and error feedback.

Impeg−C0 Impeg−bg−C0 Impeg−bg−C1 Impeg−bg−C1Er Impeg−bg−C2Er Impeg−bg−C2ErNoE Impeg−bg−C2ErNoG
Albedo(10−2) 6.089 5.670 5.150 5.132 4.868 4.900 4.880

Normal(10−2) 4.727 4.580 3.929 3.907 3.822 3.830 3.822

Roughness(10−1) 2.207 2.064 2.004 2.011 1.943 1.948 1.947

Depth(10−2) 1.945 1.871 1.631 1.624 1.505 1.512 1.511

Bounce 1(10−3) 3.526 3.291 2.190 2.046 1.637 1.643 1.643

Bounce 2(10−4) 2.88 2.76 2.47 2.47 2.45 2.45 2.46

Bounce 3(10−5) 6.6 6.4 5.9 5.9 . 5.8 5.8 5.8

Initial Cascade 1 Cascade 2 Ground truth Initial Cascade 1 Cascade 2

A
lb

ed
o

N
or

m
al

Ro
ug

hn
es

s
D

ep
th

Re
nd

er
ed

 Im
ag

e
Re

nd
er

ed
 Im

ag
e

In
pu

t

0                 0.5

Fig. 6. Effect of our cascaded design, illustrated for synthetic (left) and real data (right). It is observed that predictions from the initial network are somewhat

inaccurate, but progressively improved by the cascade stages. Images rendered after two cascade stages have less artifacts and display specular highlights

closer to the ground truth, both when relit with the estimated environment map and rendered under a new environment map. We visualize the absolute error

for the BRDF parameters in the third column except the depth error. The depth error is normalized so that the range of ground-truth depth is 1.
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Input Rendered result Diffuse albedo Normal Depth Roughness Rendered Image

Fig. 7. Results on real objects. For each example, we show the input image, the rendered output using the estimated shape and BRDF parameters, as well as

visualization under a novel illumination condition. In each case, we observe high quality recovery of shape and spatially-varying BRDF.

Input Diffuse albedo Normal Depth Roughness Novel view 1 Novel view 2

Fig. 8. Results rendered from novel views. We show the input image, the estimated shape and BRDF parameters and the rendered output under an environment

map from two novel views. We observe high fidelity rendered images, as well as high quality recovery of shape and spatially-varying BRDF.

ACM Trans. Graph., Vol. 37, No. 6, Article 269. Publication date: November 2018.



269:10 • Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker

Barron and Malik 2015 Ours Ground truth

A
lb

ed
o

N
or

m
al

A
lb

ed
o

N
or

m
al

Input Barron and Malik 2015 OursInput

Fig. 9. Comparison with SIRFS [Barron and Malik 2015]. Our method accurately estimates the shape and diffuse color, even in regions with specularity. In

contrast, because of the complex shape and materials of these objects, SIRFS, which assumes Lambertian reflectance, produces very inaccurate estimates.

Comparisons with previous methods. Since we are not aware of

prior works that can use a single image for spatially varying BRDF

and shape estimation, our comparisons are to more restricted meth-

ods for shape and material estimation, or to intrinsic image decom-

position methods. We first compare with SIRFS [Barron and Malik

2015] which jointly reconstructs shape and diffuse color. Figure 9

compares the diffuse albedo and normal estimated using SIRFS with

those obtained by our framework, on both real and synthetic data. In

both cases, our estimates are significantly better. Notice that SIRFS

tends to over-smooth both the diffuse color and the normal due to

a handcrafted regularization. In contrast, our method successfully

recovers high-frequency details for both diffuse albedo and surface

normals, even in specular and shadowed regions.

Input Shi et al. 2017 Ours Ground truth

Fig. 10. Comparison with [Shi et al. 2017]. While Shi et al. train to handle

non-Lambertian reflectance, the accuracy and visual quality of our diffuse

albedo is significantly higher on both synthetic (top) and real data (bottom).

We also compare with the recent intrinsic image decomposition

method of [Shi et al. 2017], which is trained to separate diffuse

and specular components from a single image of a ShapeNet object

[Chang et al. 2015], rendered under the assumption of a parametric

homogeneous BRDF. We compare to their diffuse albedo prediction

in Figure 10. Our method can better preserve occlusion boundaries

and recover accurate diffuse color even in specular regions. Our

method also yields qualitatively superior results on real data.

Limitations. A few challenges remain unaddressed. Our network

does not explicitly handle improperly exposed images. For example,

saturations from the flash may cause the specular highlight to be

baked into the diffuse color (such as the orange in the third row of

Figure 7). This problem might be solved by adding more training

data and usingmore aggressive data augmentation. As discussed pre-

viously, long-range interactions might not be sufficiently modeled in

our image-space CNN, which may limit its ability to correctly han-

dle interreflections. We find spatially varying roughness prediction

to be a challenging problem. The presence of specular highlights is

important for it and the network may rely on connectivity priors

to predict roughness. However, this prior may fail, which results in

the same material having different roughness values (such as the

owl in the second row of Figure 8). Such a prior might be explicitly

enhanced to improve performance by using a densely connected

CRF [Ristovski et al. 2013] or bilateral filter [Barron and Poole 2016].

Another possibility would be to take shape-material correlations

into account. From Figure 6, we can see that the error of depth

prediction is significantly larger than the normal prediction, which

suggests that we may use normal predictions to refine depth pre-

dictions [Nehab et al. 2005]. Despite these limitations, we note that

our network achieves significantly better results than prior works

on this challenging, ill-posed problem.

5 CONCLUSION

We demonstrate the first approach for simultaneous estimation of

arbitrary shape and spatially-varying BRDF, using a single mobile

phone image. We make several physically-motivated and effective

choices across image acquisition, dataset creation and network ar-

chitecture. We use a mobile phone flash to acquire images, which

allows observing high frequency details. Our large-scale dataset

of procedurally created shapes, rendered with spatially-varying

BRDF under various lighting conditions, prevents entanglement of

category-level shape information with material properties. Our cas-

caded network allows global reasoning through error feedback and

multiscale iterative refinement, to obtain highly accurate outputs for

both shape and material. We propose a novel rendering layer to in-

corporate information from various lighting conditions, which must

account for global illumination to handle arbitrary shape. Inspired
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by the physical process of rendering bounces of global illumination,

we devise a cascaded CNN module that retains speed and simplicity.

Extensive experiments validate our network design through high-

quality estimation of shape and SVBRDF that outperforms previous

methods. In future work, we will demonstrate applications of our

framework to material editing and augmented reality, as well as

consider extensions to large-scale scenes such as room interiors.
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