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Abstract—Grid, place, and border cells in the mammalian
hippocampus and entorhinal cortex perform highly sophisticated
navigational tasks with an extremely low power budget. While
previous algorithms for simultaneous localization and mapping
(SLAM) in robotics have used these cells for inspiration, they have
sacrificed the robust, low-power gains achieved with bioplausible
models for ease of implementation. This paper presents steps to-
wards robotic navigation with biologically realistic hippocampal
models by implementing velocity-controlled oscillators, a basis
for any spatially-tuned neuron, on mixed-mode neuromorphic
spiking hardware.

I. INTRODUCTION

Robotic navigation requires learning new environments, or
changes to a known environment, concurrent with real-time
localization of the robot within said environment; this method-
ology, known as Simultaneous Localization And Mapping
(SLAM), typically requires mathematically complex computa-
tion and the fusion of input data across many sensory modali-
ties. Thus, prototypical SLAM implementations are often real-
ized as over-sensored, power hungry devices. This becomes an
unsuitable navigation paradigm for low-power mobile robotics
applications, where algorithms must be executed at low costs,
often in the presence of high noise. Animals, however, are able
to navigate new environments and learn salient features with
extremely low energy costs and limited sensory information.
Accordingly, neurally-inspired approaches to SLAM are quite
promising for providing robust, power-starved performance.

Previous neural SLAM implementations [1]-[4] take inspi-
ration from general models of spatial coding and navigation
in rat hippocampus and parahippocampal regions. These im-
plementations, while brain-inspired, do not explicitly model
navigational cells in the brain or include biologically-plausible
spiking neurons. The algorithmic organization reflects general
principles of rodent navigation, but lower-level representations,
transformations, and computations eschew neural implemen-
tations for traditional computational techniques. By failing to
seek bioplausibility, these models fail to take advantage of
the power saving nature of neuromorphic systems, on both a
software and hardware level [5]. In this paper, we present an
implementation of biologically faithful spatial coding cells in
neuromorphic hardware.
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A. Spatial Coding in the Hippocampus

Neurons in the hippocampus and parahippocampal regions
of mammalian brains demonstrate surprisingly complex and
stable spatial firing patterns, remarkable enough to merit two
Nobel prizes. These cells, which fire selectively at particular
spatial locations in both novel and familiar environments,
are organized into several categories by the particular spatial
pattern which they encode. Grid cells fire when the animal is at
one of multiple discrete locations that form a hexagonal lattice
within an environment; place cells fire when the animal is at
one (or a few) specific location(s); “border cells” fire when
the animal is near or at the border of an environment [6], [7].
The spatial responses of these neurons develop within weeks of
birth [8], respond differently in different environments [9], and
persist even without visual input [10]. Taken together, these
cells form complex, feature-rich, and stable cognitive maps of
physical space. Additionally, they track instantaneous animal
location in allocentric space by integrating velocity over time,
a process referred to as path integration. By performing local-
ization while building and maintaining environmental maps,
this suite of cells provide a low power, sensor-deprived, robust
SLAM implementation.

II. COMPUTATIONAL MODELS

A number of models exist to describe the neural dynamics
that underlie the stable spatial firing maps of hippocampal
neurons; one such class of model is the Oscillatory Interfer-
ence (OI) model. The OI model arises from the experimental
observation that spatial navigation cells are modulated by
a theta-thythm (4-12 Hz) oscillation in neural spiking dy-
namics. Fundamentally, OI models propose that stable spatial
firing maps emerge from interference patterns between neural
oscillators whose spiking frequency depends on animal ve-
locity. Integrating frequency over time produces phase, just
as integrating velocity over time produces location; thus,
OI models encode location through path integration in the
relative instantaneous phases of multiple oscillators. Many OI
models of hippocampal navigation cells use idealized, rate-
based methods for computation; however, spiking networks
are both more faithful to neuroanatomy and computationally
elegant [11], [12].



A. Generalized Integrate-and-Fire Neuron Model

These spike-based networks require a computational model
for spiking neurons; in this paper, we utilize a generalized
integrate-and-fire neuron model [13]. This model provides
a computationally simple implementation of many types of
spiking neuron behavior, all within a small, biophysically
motivated parameter space. The model implemented for this
work is a simplified version of the original Mihalas-Niebur
model, retaining much of the functionality at reduced com-
putational cost and with successful neuromorphic hardware
implementations [14]-[16]. While the simplified model can
produce multiple neuronal behaviors, this work implements
simple Class I spiking leaky integrate-and-fire neuron dynam-
ics [17].

B. Oscillatory Interference Model

Many OI models exist that, with varying levels of complex-
ity and robustness, give rise to spatial navigation cells. In this
paper, we focus on a subset of OI models that create a Fourier-
like representation of space by modelling spatial cells as some
linear combination of a basis set of oscillators [18], [19].Like
OI models more generally, these oscillators can be oscillatory
spiking networks or ideal sinusoids.

The model implemented in this work consists of a basis
of ring oscillators with angular frequency modulated by ani-
mal/robot velocity (direction and speed) around a base theta
rhythm. The simple linear combination of some subset of
these velocity-controlled oscillators (VCOs) can encode any
arbitrary stable spatial activity map, including replicating the
activity patterns of experimentally-observed grid, place, and
border cells [20]. Each VCO activates maximally (i.e. has
greatest angular frequency) when animal velocity moves in
its preferred direction, and minimally in its anti-preferred
direction.

In this model, a VCO is constructed of two intercon-
nected neuron populations each of size M (as in Fig. 1).
One group consists of excitatory neurons which synapse
onto the other group, consisting of inhibitory cells. The
inhibitory cells synapse recurrently as well as onto the exci-
tatory group. All synaptic weights are assigned via Gaussian
functions; excitatory-to-inhibitory and inhibitory-to-inhibitory
weights are symmetric, while inhibitory-to-excitatory weights
are asymmetric, causing unidirectional oscillation of an activ-
ity bump around the ring. The oscillation frequency is then
controlled by the center frequency of a Poisson spike input
to the excitatory group; the rate of this Poisson spike train is
determined by modulating around a baseline of 3kHz with a
scaled dot product of animal/robot velocity and VCO preferred
direction.

III. MODEL IMPLEMENTATION

A. Integrate-and-Fire Array Transceiver

The Integrate and Fire Array Transceiver (IFAT) is a custom
mixed mode chip implementing an array of neurons as capaci-
tor pairs [21]-[23]. The chip, designed in 500nm CMOS tech-
nology, implements 2040 modified Mihalas-Niebur neurons, as
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Fig. 1: Velocity-controlled oscillators in simulation. (a) Two
equally-sized groups of neurons interact to form a single
VCO; excitatory neurons (blue) project to inhibitory neurons
(red), and vice versa. Inhibitory neurons also have recurrent
connections. All weights are symmetric Gaussian distributions,
except for the asymmetric inhibitory-to-excitatory projections.
(b) Average tuning curve of VCO for 5 seconds of oscillation
(error bars indicate standard deviation); synaptic connectivity
of VCO (c¢), where point size indicates relative weight of
synapse, and red dotted line indicates symmetry.

described above. To maximize the density of the neuron array
and minimize both power consumption and process variation-
induced mismatch, all neurons in the array share a single
synapse and soma. The synapse provides variable dynamic
input events to neurons via a switch-capacitor circuit [24];
the soma consists of a comparator that creates an output spike
when the membrane potential of a neuron exceeds its threshold
potential. While leakage (both parasitic and intentional) occurs
in parallel across all neurons in the array, input and output
events are processed serially, as the entire array shares a
single synapse and soma. The IFAT is currently operated at 48
MHz (USB communication clock), many orders of magnitude
faster than a typical neural circuit; this allows events that
are processed in close temporal proximity to be considered
simultaneous.

Early versions of the IFAT control scheme consisted of an
open loop system, sufficient for simple image processing tasks
but not more general neural computation. This work represents
the first example of general purpose neural processing on the
IFAT. To achieve the necessary generality and robustness, a
number of important features have been implemented, includ-
ing feedback between neurons and time-stamping of registered
spikes to allow for spike-time based computation.
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Fig. 2: Block diagram of the complete IFAT system, demon-
strating significant digital control architecture to enable low-
power, high-speed analog computation in the neuron array.
One FPGA can control multiple IFATSs in parallel and multiple
FPGA-IFAT systems can interact, allowing for much larger and
more complex networks than that of a single chip.

Feedback networking between neurons on chip is accom-
plished with a look-up table of connections, implemented as
RAM and addressed indirectly, using the address of a neuron
to compute the memory address at which a pointer to a list
of events are stored. In this way, a single neuron can have
many input and output connections with arbitrary excitatory
or inhibitory magnitudes. An arbitrary number of connections
can exist between an arbitrary number of neurons, limited only
by the depth of the memory implemented.

As the system is asynchronous, a sensor or computer
interface may attempt to write data to the event FIFO at the
same time as the feedback module. In order to avoid both lock-
up conditions and behavioral bias of a network, an arbiter was
developed to randomly select data from either source (using
the lowest bit of an appropriately sized LFSR) when there is
contention. Even in cases of collision, all events are preserved
and the system does not exhibit a bias for data from the
sensor/computer or feedback module.

A pair of cascaded counters was implemented in order to
provide a time-stamp for each spike that is recorded. The
availability of this information makes it possible to calculate
the inter-spike interval and spiking frequency of a neuron,
providing other mechanisms for the encoding of data which
can be used instead of, or in conjunction with, a rate-coding
model focused entirely on mean spiking frequency [25]. This
data is combined with the address of the spiking neuron to
form an address event representation (AER) of a spike, which
is then stored in memory for later retrieval and propagation.

B. Spiking Neuron Model Simulation

To allow for implementation of spiking VCO-based models
in both software and hardware, we have developed a simula-
tion of the IFAT neural hardware (see III-A) using the Brian
Neural Simulator [26], [27]. The simulation assumes that the

event-rate through the serial synaptic circuit is sufficiently
greater than typical neuron firing rates such that synapses
can be considered parallel, except in cases of multi-synapse
connections between two neurons (where a realistic time delay
is included). This assumption holds for VCO OI models, as
maximum neuron firing rate is on the order of kHz, while the
IFAT functions at MHz frequency. The simulator additionally
models the parasitic leakage currents inherent in the hardware
that are not described by the Mihalas-Niebur model dynamics.
The simulator allows for rapid, programmed exploration of
the parameter space for a spiking neural network to be
implemented on the IFAT.

C. IFAT Model Implementation

Event streams, loaded in to a 32-bit FIFO, are used to pro-
vide input to the network implemented. Each event contains a
magnitude and destination in AER, with connectivity patterns
stored in RAM as described above. When an event causes
a neuron to spike, the corresponding connections are loaded
into an auxiliary FIFO, to be processed later. Events are sent
in bursts, with a controllable burst frequency defined by a
counter. During the time between bursts, if an event caused a
neuron to spike and have connections loaded in to the auxiliary
FIFO, these events are processed until either the auxiliary
FIFO is empty or the next event burst is sent. Essentially
the feedback and input event streams are merged to enable
effectively parallel processing through a single synapse circuit.
As spikes occur, the associated locations and timestamps are
stored in an output FIFO. After all events in the input queue
have been processed, this output queue is read and the relevant
metrics of the resultant spike train (i.e. inter-spike interval,
mean firing rate per neuron) are computed.

IV. RESULTS

Spiking VCOs were initially demonstrated in the Brian
simulator. The VCO size was empirically selected to be
M = 64 (i.e. total size of 2M = 128) neurons; this was
the minimum size that retained robustness and oscillation.
Example functionality of a VCO driven with a 3kHz Poisson
spike input can be seen in Fig. 3. The angular frequency band
achieved by the VCOs was approximately 12-42 Hz, roughly
triple the theta band. Since oscillatory frequency relates to
spatial frequency in grid cells, this higher frequency would
lead to a finer grid pattern in a true navigational system
[28]. However, as a proof of concept, this higher frequency is
acceptable; in future designs, it could easily be accommodated
by changing scaling factors.

VCOs were also implemented on the IFAT neural hardware,
by mapping the spiking VCO model described above onto
physical neuron circuits in the IFAT array. In particular, the
connectivity matrices of the simulation were written into the
feedback LUTs described above, and Poisson spike train inputs
were applied to all excitatory neurons. Transferring from
simulation to mixed-mode physical hardware, due to additional
parasitic leakage currents, leads to slight and unpredictable
changes in VCO angular velocity. Even so, the average rate
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Fig. 3: Example of Brian simulation of working VCO. (a)
Spike patterns of the excitatory neuron group, where M = 64.
(b) Voltage trace for a single excitatory neuron; red points indi-
cate spike events. The Poisson input induces noise in network
firing patterns, but the connectivity imposes a predictable and
stable oscillation of activity around the ring.
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Fig. 4: Simulated VCO implementation. Dotted line indicates
transition from 2kHz to 4kHz Poisson input spike-train. Sim-
ulation in Brian simulator demonstrating increased oscillatory
frequency after change in input. (a) Excitatory neuron popula-
tion activity is sparser, while b) inhibitory neuron population
is denser, with multiple neurons firing in a single simulated
time step (vertically stacked points). This behavior is less often
seen in hardware implementation, where spikes are always and
necessarily processed serially.

of a Poisson input spike train to excitatory IFAT neurons
is qualitatively proportional to the angular velocity of the
inhibitory population of the VCO, as seen in Fig. 5.

In current IFAT architecture, only spike-based inputs to
neurons are permitted, rather than the current-based inputs
common to many computational models of neurons, including
the original Mihalas-Niebur model [13]. In physically realizing
the spiking VCO model on the IFAT, we see a potential
drawback of this architectural choice; spike density in the
excitatory population, which receives the velocity-dependent
Poisson input, must be extremely high to induce oscillatory
spiking in the inhibitory population. Parasitic currents are
much higher in hardware, so porting networks from simulation
to hardware requires lowering the threshold voltage of the
neuron membrane. As such, the excitatory population fires far
more frequently than in simulation (compare Figs. 4 and 5),
increasing the power demands of the system. This remains a
problem to be addressed in future architecture versions.

Grid cells may also be implemented by cross-coupling three
or more VCOs, as described in [20]. Current IFAT technology
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Fig. 5: VCO functionality on IFAT hardware. Poisson spike
train with variable mean rate and timestep of 10us was
generated in Python ahead of runtime. (a) Mean Poisson
stimulation rate of 1 kHz produces much slower inhibitory
oscillation than b) a mean rate of 4 kHz. Spike rate of the
excitatory population is quite stable, regardless of changes to
input rate (7322 spikes at 1 kHz input rate; 7874 at 4 kHz).

does not support large enough connectivity matrices or fast
enough input/output operations; however, these limitations are
largely imposed by FPGA hardware, so future versions of the
IFAT can implement more complex spatial navigation neurons.
Conversely, the implementation of VCOs might be better
suited to specialized hardware combining analog oscillators
with AER spike generators, leaving the general-purpose IFAT
to implement grid, place, and border cells. Such potential
multi-chip architectures would reduce the feedback event load
and FPGA-moderated inter-IFAT communication, circumvent-
ing the limitations described above.

V. DISCUSSION

In this paper, we present an implementation of an oscillatory
interference model of hippocampal spatial navigation cells on a
spiking neuromorphic chip. This work also represents the first
application of a complex spiking neural network on the IFAT
hardware, showing its capacity for general-purpose neural
computation beyond simple image processing. Implementing
such complex spatial networks on low-power neuromorphic
hardware is a necessary and important step towards low-power,
robust, and bioplausible neurally-inspired navigation in such
applications as mobile robotics.
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