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Recent hurricane events have exposed the susceptibility of petrochemical facilities to severe transportation
network disruptions due to flooding or storm surge. Network disruptions can result in cascading impacts or
amplify the consequences of damage to petrochemical infrastructure due to delayed emergency response and
limited access to the site. This study presents a scenario-based framework to assess the accessibility of petro-
chemical facilities by emergency responders and workers during storm surge events. First, the framework
couples storm surge modeling with aboveground storage tank fragility models to determine the locations where
natural hazard-triggered technological (NaTech) events could occur. Then, storm surge modeling is coupled with
bridge fragility models and geographic system analysis to evaluate the potential for network disruptions such as
bridge failures and road inundations. Finally, probabilistic network analyses are performed to evaluate the time-
evolving accessibility of NaTech sites to emergency responders and facility workers. As a proof of concept, the
framework is applied to a case study area. Results for the case study area demonstrate that the proposed fra-
mework is a powerful tool to quantify the accessibility of potential NaTech events, facilitate mitigation and
emergency activities, and improve the management of critical resources and personnel during and after a storm.

1. Introduction

Due to their location in coastal areas, petrochemical facilities are
often exposed to natural hazards such as flooding and storm surge. As a
consequence, petrochemical infrastructure, especially aboveground
storage tanks (ASTs), have suffered damage resulting in the release of
hazardous chemicals (i.e. NaTech events) during almost every major
storm event in the US since 1990 [1]. During Hurricanes Katrina and
Rita, damage to petrochemical infrastructure caused the release of more
than 30 million liters of hazardous chemicals [2]. More recently, during
Hurricane Harvey, at least 2 million liters of hazardous chemicals were
spilled as a result of damage to petrochemical infrastructure [3]. Such
spills can result in severe environmental impacts to wildlife and sen-
sitive ecosystems as well as economic impacts due to cleanup costs,
lawsuits, and disruption of port activities. Moreover, as petrochemical
facilities are often located in developed areas, spills can have profound
effects on the mental and physical wellbeing of nearby communities
[4].

While storm surge and flooding are often the direct cause of NaTech

* Corresponding author.

events [5,6], these hazards can also significantly hamper mitigation and
emergency activities that could prevent such NaTech events from
happening or limit their potentially disastrous consequences [7]. Flood
and storm surge events are generally widespread and can lead to severe
transportation network disruptions, thereby restricting the accessibility
of petrochemical facilities. In turn, such accessibility losses can result in
cascading impacts, potentially culminating in a NaTech event, due to
the inability to perform critical mitigation activities, and can also am-
plify the impacts of a NaTech event due to delayed emergency response
and limited access to the site [7-10]. For instance, during Hurricane
Harvey, severe flooding at a major oil terminal in the Houston region
hindered emergency personnel's access to two damaged ASTs for almost
five days, resulting in a spill of approximately 1.75 million liters of
gasoline [11]. After Harvey, several industry managers also reported
issues regarding the ability to bring in workers and contractors to
cleanup sites, repair and maintain critical infrastructure as well as to
restart operations [12].

An adequate assessment of the effects of transportation network
disruptions on mitigation and emergency activities first requires tools to
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evaluate the accessibility of petrochemical facilities during and after
storm events. In recent years, several studies have proposed frameworks
to evaluate and quantify road network accessibility during flood or
storm events. Coles et al. [13] presented a method that coupled flood
modeling with network analysis to assess the impacts of flooding on
emergency response times in the city of York in the United Kingdom
(UK). Using a similar approach, Green et al. [14] assessed the impacts
of flooding on emergency responder operations in the city of Leicester,
UK, while Yin et al. [15] evaluated the cascading impacts of storm surge
on emergency response times in the city of New York, US. Following
Hurricane Harvey, Gori et al. [16] also proposed a framework to assess
the evolution of road network accessibility and recovery during flood
events in Houston, US. While these studies provided useful methods to
evaluate the accessibility of urban areas during surge or flood events,
they are not directly applicable for petrochemical infrastructure be-
cause they cannot identify the potential sites that emergency re-
sponders might need to access. Given the potentially large number of
exposed petrochemical infrastructure during a storm event, it is es-
sential to determine the locations of vulnerable infrastructure and the
likelihood of a NaTech event at these locations to efficiently manage
emergency resources. Moreover, these studies considered road in-
undation as the only source of disruption, neglecting the potential
failures of critical transportation infrastructures, such as bridges, which
could further disrupt transportation networks even when floodwaters
have receded. Finally, these studies mainly used deterministic ap-
proaches, neglecting various sources of uncertainty, which can sig-
nificantly affect accessibility and emergency activities.

The objective of this paper is to develop a comprehensive frame-
work to first identify the potential locations of NaTech events and then
evaluate the accessibility of these NaTech events during and after a
storm surge event while explicitly considering the structural vulner-
ability of transportation infrastructure and the uncertainties associated
with network disruptions. This framework integrates storm surge
modeling, AST fragility modeling, coastal bridge fragility modeling, and
network analysis to determine the time-evolving accessibility of NaTech
sites to emergency responders as well as the ability of workers to access
the facilities after a storm. This framework also relies on Monte Carlo
simulation (MCS) to propagate the uncertainties associated with bridge
vulnerability, speed of emergency vehicles, and inundation threshold
for road closures in the accessibility analysis. As a proof of concept, the
proposed framework is applied to a case study area located along the
Houston Ship Channel, in Texas, US.

The next sections of this paper detail the development and appli-
cation of the proposed framework. Section 2 presents the integrated
framework and the major components of the framework. Specifically,
this section details the storm surge modeling, the vulnerability assess-
ment of ASTs and bridges subjected to storm surge in order to identify
the potential locations of NaTech events as well as the potential for
bridge failures, the network accessibility analysis methodology, and the
propagation of uncertainties in the analysis. The case study area and the
storm surge scenarios adopted to illustrate the application of the in-
tegrated framework are introduced in Section 3. Results of the acces-
sibility analysis for the case study area are then presented and discussed
in Section 4. Finally, Section 5 summarizes the major conclusions and
potential future work.

2. Methodology
2.1. Overview of the proposed integrated framework

In order to assess the accessibility of petrochemical facilities during
storm surge events, this study relies on a scenario-based framework
coupling storm surge modeling, AST vulnerability modeling, coastal
bridge vulnerability modeling, GIS analysis, and probabilistic network
analysis. An overview of the proposed integrated framework is shown
in Fig. 1 along with links between different components of the
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framework and tools used for each component. First, storm surge
modeling helps determine the time evolution of surge depth and extent
in the area of interest for a given storm scenario. While the framework
could also consider flood events, this study specifically focuses on storm
surge, which has historically caused more significant damage to pet-
rochemical and integrated transportation infrastructure than flooding
[1,17]. Results of the storm surge modeling are then coupled with
fragility models to determine the vulnerability of ASTs in the area of
interest. The probability of failure of each tank subjected to storm surge
is evaluated to determine the potential locations of NaTech events in
the network as well as the time period when NaTech events are most
likely to occur during the storm scenario. The petrochemical infra-
structure considered herein are limited to ASTs, which are the most
commonly damaged infrastructure during storm surge events and are
also responsible for the largest spills during such events [2,18].

Results of the storm surge modeling are also used to evaluate po-
tential disruptions in the road network due to bridge failure and road
inundation. At a given time instant during a storm, the potential for
bridge failure is assessed through the use of fragility models for coastal
bridges. The failure or not of a specific bridge is modeled as a Bernoulli
trial given its probability of failure; if a bridge fails, it is removed from
the road network. As detailed later, Markov chains are also used to
account for the fact that bridge failure could have occurred during a
previous time instant of the storm. Even though other transportation
infrastructure, such as roads, could also suffer damage during storm
surge, this study only considers the structural vulnerability of bridges
due to the limited availability of road fragility models and because
bridges are often considered to be among the most vulnerable compo-
nents of transportation systems during storms [19,20]. Nonetheless, the
potential for road closures due to inundation is still considered in the
framework. At a given time, if the depth of water on a road is higher
than an inundation threshold (©), the road is assumed to be closed and
is removed from the road network. The depths of water on the roads are
obtained through a GIS analysis that intersects road locations and ele-
vations with surge elevations. Bridge inundation is also considered
because a bridge could be closed due to high water without necessarily
failing. Previous studies in the US have proposed a deterministic value
of 0.6 m for © [16,21] as most vehicles can be carried away by 0.6 m of
water [22]. However, there are major sources of uncertainty regarding
©. Emergency vehicles might be able to travel in higher waters.
Moreover, drivers may not be aware of the exact depth of water on a
road; some may perceive a road to be inaccessible even though there is
less than 0.6 m of water, while others could perceive the opposite. Thus,
this study considers © as a random variable; a truncated normal dis-
tribution ( + 2 standard deviation) with a mean of 0.6 m and a standard
deviation of 0.075m is assumed for ©.

With knowledge of the potential disruptions in the road network at
a time instant, the network accessibility analysis is performed next by
using network and graph theories as well as Monte Carlo simulations
(MCS) to consider the probabilistic nature of bridge failures and pro-
pagate uncertainties associated with the inundation threshold and ve-
hicle speed. The accessibility of the previously identified NaTech sites
to emergency responders is then assessed by computing four metrics,
detailed in Section 2.6.: (i) connectivity loss; (ii) probability of non-
connectivity; (iii) travel time; and (iv) travel distance. Finally, this
process is repeated for various time instants of the storm scenario to (a)
evaluate the time evolution of the accessibility of NaTech sites to
emergency responders, and (b) determine the accessibility of the fa-
cilities to workers to repair critical infrastructure and restart operations
after a storm. When performing the accessibility analysis, the effects of
traffic conditions, traffic directions, and traffic signals are neglected;
these assumptions are reasonable as no traffic is expected during a se-
vere storm, and emergency responders would be exempted from driving
regulations such as traffic signals and one-way roads. Additional details
regarding the components of the integrated framework are provided in
the subsequent sections.
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Fig. 1. Overview of the integrated framework.

2.2. Data requirements

Before applying the integrated framework to a case study area,
various sources of data must be gathered in order to obtain an adequate
representation of the road network, evaluate the vulnerability of ASTs
and bridges, and perform the accessibility analysis. First, the develop-
ment of the road network requires collection of, in GIS format, the lo-
cation and elevation of: (i) highways and roads in the area of interest;
(ii) bridges; (iii) emergency services, such as fire stations or any other
services that would respond to a NaTech event; (iv) ASTs; and (v) re-
sidential neighborhoods where facilities’ workers are residing. To ade-
quately assess their vulnerability, the geometry and design details of
each of the ASTs and bridges in the area of interest are also required.
Finally, to estimate travel times in the network, the speed of vehicles (S)
on the road segments is required. The speed of vehicles is considered as
a random variable to account for uncertainties. Again, a truncated
normal distribution ( = 2 standard deviation) is employed. The mean of
the truncated normal distribution is defined as the speed limit of the
road segment minus 10 mph (16 km/h) to account for adverse driving
conditions during a storm [16]; a standard deviation of 5 mph (8 km/h)
is assumed.

2.3. Storm surge modeling

The first step of the integrated framework involves determining
surge conditions in the area of interest. The framework specifically
relies on scenario-based hazard models to evaluate the vulnerability of
ASTs and determine disruptions in the network. Thus, the results of the
framework are only representative of the storm scenario under con-
sideration. In future work, such a framework could theoretically be
coupled with probabilistic hazard models, with the caveat that the in-
tegration as presented requires knowledge of the temporal evolution of
storm surge which is not typically retained in probabilistic models of
storm events. The storm scenarios are modeled here using the Advanced
Circulation (ADCIRC) and the Simulating Waves Nearshore (SWAN)
computer programs. For a given meteorological forcing (i.e. wind ve-
locity and atmospheric pressure), which can correspond to a historic or
synthetic event, ADCIRC+SWAN simultaneously solve surge eleva-
tions, currents, wave periods, and significant wave heights (H;) to
predict the time evolution of surge and wave conditions [23]. AD-
CIRC+SWAN are well validated against historical storms in the US
[24]. To perform the analyses presented in the next sections, time
histories of surge and wave conditions at each AST and bridge location
as well as time histories of water depth on each road segment in the
area of interest are extracted for a given storm scenario using ArcGIS
[25]. ADCIRC +SWAN results are typically output with a time step of
1h

157

2.4. Vulnerability assessment of ASTs during storm surge

Once the surge conditions are known for a given storm scenario, it is
possible to assess the structural vulnerability of ASTs in order to de-
termine (i) the potential locations of NaTech events in the area of in-
terest, as well as (ii) the time period when emergency responders might
need to respond to NaTech events. ASTs are a critical component of
petrochemical facilities for the storage of raw and refined products.
ASTs are generally constructed from welded thin steel plates forming a
vertical cylinder. While this design makes them lightweight and able to
withstand internal pressure, it also leaves them vulnerable to storm
surge. Two failure mechanisms are possible during storm surge events:
(i) flotation due to buoyancy forces [26]; and (ii) buckling of the tank
shell due to excessive water pressure [18]. To assess the structural
vulnerability of ASTs, the integrated framework relies on parametrized
fragility models. Parametrized fragility models provide the conditional
probability of failure as a function of the structure characteristics and
the loads acting on it. Such fragility models are useful tools to perform
vulnerability assessment as they can be readily applied for any AST
geometry, internal liquid properties, and surge conditions.

The fragility models developed by Kameshwar and Padgett [27] for
unanchored and anchored ASTs are employed here. These fragility
models are parametrized on the AST diameter (D), height (H), internal
liquid height (L), internal liquid density (p;), steel design stress (Sq),
external surge height acting on the AST (h), and an additional set of
parameters X, if the AST is anchored to the ground. The surge height
(h) defines the load intensity from the storm surge. The fragility models
were derived for surge conditions representative of the US Gulf Coast
and by considering both flotation and buckling as potential failures
modes. Based on these models, the probability of failure of an AST
subjected to storm surge is given by a logistic regression equation as
shown in Eq. (1).

1
1+ exp(=I(D, H, L, p;, Sa, h, Xa))
@

P(FailurelD, H, L,o;, Sg, h, Xo) =

In this equation, I(-) = logit functions that express the odds of
failure for a combination of D, H, L, p;, S4, h, and X, values. The logit
functions employed in this study are the ones found in Kameshwar and
Padgett [27] for unanchored and anchored ASTs.

By knowing an AST geometry (D and H), its design (S; and X,), its
internal liquid (L and py), and the surge height (h) acting on the AST, it
is possible to estimate directly the probability of failure by evaluating
Eq. (1). However, prior to a storm, the precise internal liquid height and
the exact content stored in a tank are generally unknown, and these two
parameters should be considered as sources of uncertainty and treated
as random variables. The probability of failure is then obtained by
convolving Eq. (1) over the probability density functions (PDFs) of L



C. Bernier, et al.

1 T T T
—— Fragility model (Eq.2) for a case study AST
0.8}
_______ E - -
206} e &
= 1 1©
% 1 i el
3 LG =
o 04 [ [ 7
[ o
Co T e T LT
02} I T <
‘ Al .
! ' g I
0 = S
0 2 4 6 8
a) Surge height (m)

Reliability Engineering and System Safety 188 (2019) 155-167

1 T T T T T 10
—— Time-evolving prob. of failure
_____ — — Surge time history
0.8} ' K]
G i e o c
____/____\__ ~
06h / S 16 €
/ \‘6 =
/ e SRR EE T 9 0
/ \\ <
! ~ ()
04r > 14 ©
! ~ >
/ SS - n
,,,,,,,,,,,,,,,,,,,, T ,‘,\\,,,,,,0
0.2 N 12
| |
I Time period when a I
NaTech event is likely 0
0 1 1 1 1 1
0 5 10 15 20 25 30

Time (hours)

Fig. 2. Example of: (a) fragility curve; and (b) time-evolving probability of failure for a case study unanchored AST with D = 18.3m, H=11.5m, B = Om, and

Sq = 160 MPa.

and p; as shown in Eq. (2).
P(FailurelD, H,Sy, h, B, X,)
ji jF')L P (FailurelD, H, L,0;, Sg, h, Xo)f; (l)pr (p)d h>B

pLdL

0 h<B 2

In this equation, f;(1) and Jey (0;) = PDFs of L and p;, respectively; L is
considered as uniformly distributed with bounds of 0 and 0.9H [28],
while p;, is also uniformly distributed with bounds of 700 and 950 kg/
m?, which cover most products stored in a petrochemical facility.
Eq. (2) also consider the presence of a containment berm around an
AST, which can prevent damage as long as the berm height (B) is
greater than h. Eq. (2) can be solved via MCS or numerical integration.

For a given AST (i.e., fixed values for D, H, S4, B, and X,), Eq. (2) can
also be evaluated for an increasing value of h to obtain a fragility curve
as shown in Fig. 2a. Such a curve is then useful to compute the time-
evolving probability of failure of an AST during a storm scenario. Storm
events generally last for a few days, and the probability of failure will
vary in time as the surge increases and then recedes. Since the fragility
models are parametrized on the surge depth acting on an AST rather
than the storm intensity, it is possible to evaluate the probability of
failure at any time instant t of a storm scenario. As illustrated in Fig. 2b,
the surge height at time ¢ (h®) is first extracted from the storm surge
modeling, the corresponding probability of failure is then estimated,
and the process is repeated for all time steps of a storm scenario to
obtain the time-evolving probability of failure of an AST. Additional
details on the concept of time-evolving probability of failure can be
found in Masoomi et al. [29], while additional details on the fragility
models and their usage can be found in Kameshwar and Padgett [27].

By computing the time-evolving probability of failure of all ASTs in
the area of interest, the locations of ASTs likely to fail and trigger a
NaTech event during a storm scenario can then be identified; ASTs for
which the probability of failure reach above 0.5 are considered herein
as likely to fail. Also, it is possible to identify: (i) the time period during
a storm scenario when a failure is likely to happen and emergency re-
sponders might need access, which corresponds to the period when the
probability of failure remains above 0.5 as shown in Fig. 2b; and (ii) the
most likely point in time for failure, which corresponds to the time
when the probability of failure is maximum.

2.5. Vulnerability assessment of bridges during storm surge

With the storm surge modeling results, it is also possible to assess

the structural vulnerability of bridges in order to evaluate disruptions in
the road network due to bridge failures. Bridges are a vital component
of transportation networks; their failure can result in severe transpor-
tation disruptions, both because they are often the only network links to
cross waterways or other major obstacles and they require long periods
of time to repair [19]. Previous storm events have highlighted the
structural vulnerability of bridges subjected to storm surge, with bridge
deck unseating being the dominant failure mode [19,30]; deck un-
seating occurs due to the buoyant and pounding forces from the surge
and wave loads. As for ASTs, the vulnerability assessment of bridges is
performed using parametrized fragility models. Balomenos et al. [31]
recently developed fragility models to estimate the probability of deck
unseating for the four main types of bridge spans found in the US Gulf
Coast region (i.e. steel girder, concrete girder, slab, and box girder).
Based on a logistic regression model, the probability of unseating of a
bridge span is:

1

P (Unseating|Z., Hyqy, Sp, X) =
( 82 Hnews S0 X0 = o (C1Zer a5 X0)

3

where Z, = relative surge height, which corresponds to the deck ele-
vation minus the surge elevation at the bridge location;
H,o = maximum wave height, which is calculated from H; at the
bridge location as detailed below; s, = factor to consider the spatial
variability of the waves, which takes a value between 0 and 1 according
to the proportion of the span that is actually affected by surge and wave
loads; X = vector of parameters describing the structural character-
istics of the span such as the span length and width, and other para-
meters depending on the type of superstructure; and I(-) = logit func-
tions that can be found in Balomenos et al. [31] for the four bridge span
types.

Because Eq. (3) provides the probability of failure of a single span, it
does not reflect the structural vulnerability of a bridge. Bridges can be
composed of multiple spans with different structural characteristics,
and the loads acting on each span are different as waves are spatially
variable. The probability of failure of a bridge can be modeled using a
series system assumption as shown in Eq. (4). This equation indicates
that the failure of a bridge occurs if at least one span is unseated.

Np
P(FailurelZ., H,qx) = P( (U (Unseating;|Z,, Hyax, Sp,i» Xi)
i=1 ()]
In the above equation, Ny = number of spans;
Unseating; = unseating of the ith span, modeled as a Bernoulli trial

with probability of unseating obtained from Eq. (3) and the adequate
logit function according to the span type; s,; = proportion of the ith
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span subjected to surge and wave loads; and X; structural char-
acteristic of the ith span. Eq. (4) is evaluated here by using the MCS-
based methodology detailed in Balomenos et al. [31].

Once the values of Z, and H,,,, at a given time step t of a storm
scenario are known, it is possible to use Eq. (4) to estimate the prob-
ability of failure of a bridge at time t. However, in order to evaluate
network disruption due to a bridge failure, consideration must be given
to the fact that (i) failure could have occurred at a previous time step,
and (ii) once a bridge fails, it will remain in a failed state until it is
repaired. By assuming a discrete Markov process, the probability that a
bridge is in a failed state at time t, while it was initially, at time 0, in a
safe state, and that failure could have occurred at any time step be-
tween 0 and t, can be expressed as:

p{” = P(Failed state at ¢ | Safe state at 0)

t

=1- H a- P(FailurelZc@, Hé’;;x))

J=1 6
where Z9) = relative surge height at jth time step, HY),, = maximum
wave height at jth time step, and P (Failure| Z¥, HY ) is evaluated
from Eq. (4). According to Markov chain theory [32], Eq. (5) is the n-
step (n = t here) transition probability of going from a safe state to a
failed state, while Eq. (4) evaluated at time step t is simply the transi-
tion probability of going from a safe state to a failed state between time
steps t-1 and t. This assumes that Eq. (4) provides a probability of
failure over a period of one hour, which corresponds to the time step of
the storm surge modeling results. The values of Hy,, used in Eq. (4) are
selected to be representative of the maximum wave height that could be
observed during a one hour period according to the H, values obtained
from the storm surge modeling and the distribution of wave height
proposed by Elfrink et al. [33]. Moreover, Eq. (5) assumes that it is not
possible to go from a failed state to a safe state. This assumption is
adequate given the time scale of this studys; it is unlikely that a bridge
will be repaired or restored within a day of a storm. However, this
assumption would need to be reconsidered if a larger time scale was
examined. Fig. 3 shows an example of the time-evolving probability of
failure (Eq. (4)) and probability of being in a failed state (Eq. (5)) for a
single span concrete girder bridge.

2.6. Road network accessibility analysis

With knowledge of the potential NaTech events and bridge failures,
the last component of the integrated framework consists of the quan-
tification and assessment of emergency response accessibility through a

1 > T T T T
f —— Prob. of failure at time t (Eq. 4)
_ _ Prob. of being in a failed state
08l at time ¢ (Eq. 5) _
2 06 1
=
©
o
S
o 04rf R
0.2f J
0 1 1 1
0 5 10 15 20 25 30

Time (hours)

Fig. 3. Example time evolution of the probability of failure of a bridge.
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network analysis. First, the sources of data listed in Section 2.2. are
mapped in ArcGIS to construct the road network, which is composed of
links and nodes. The network links correspond to road segments, while
the network nodes correspond to road segment intersections, bridge
locations, emergency service stations, and NaTech event locations.
Then, to perform the network analysis, a mathematical representation
of the road network is obtained. This mathematical representation is
depicted using network theory concepts [34], and in particular by re-
presenting the topology of a network as a graph G = (V,E), where
V={vy,..,v,}and E = {ey, ..., e,} are sets of n nodes and m links,
respectively. Any graph G with n nodes can then be represented by its
n X n adjacency matrix (A), where A; = 1 if there is a link directly
connecting v; to v; (i = j) and A; = 0 otherwise [34,35]. The A; values
can be obtained by extracting the edge list of the road network in
ArcGIS. The edge list corresponds to a list of all of the network's links as
well as the nodes that are connected. As all links are two-way roads, the
adjacency matrix is symmetric (i.e., Aj = Aj). The concepts of an edge
list and adjacency matrix are illustrated in Fig. 4a through a simple
graph as an example representing a network that has not sustained any
disruptions yet. Fig. 4b also presents the effects of network disruptions
on the edge list and adjacency matrix and is further discussed in the
next paragraphs.

The previous mathematical representation of a network is binary
(i.e. the links form simple on/off connections between the nodes).
However, in some cases it is useful to represent links as having a weight
to them. Such weighted networks can be represented by giving the
elements of the adjacency matrix values equal to the weights of the
corresponding connections [34]. In road transportation networks, it is
common to use the road link length and road link travel time as weights
such that quantities like shortest (i.e., minimum distance covered) and
quickest (i.e., minimum travel time required) paths between two nodes
of interest can be evaluated. Here, these two choices are adopted as link
weights wy, with the link length I; calculated in ArcGIS and the travel
time t; estimated as t; = l;/sy, where s; denotes the estimated vehicle
speed for each network link ij connecting nodes v; and v;. For each link,
si is sampled from the vehicle speed (S) probability distribution pre-
sented in Section 2.2.

After the undisrupted network is mathematically represented by A
and wy, the accessibility between an origin node (O) and a destination
node (D) as well as the effects of network disruptions on accessibility
are quantified by using the methodology summarized in Fig. 5. This
figure presents an overview of the Monte Carlo-based network acces-
sibility analysis at a given time step t during a storm scenario. In the
integrated framework, the origin nodes correspond to the location of
emergency responders or workers, while the destination nodes corre-
spond to the location of NaTech events identified in the AST vulner-
ability assessment part of the framework.

For a given MCS sample, the water depth (h®) on each road link as
well as the relative surge height (Z’) and maximum wave height
(HY),) at each bridge location at time t are extracted in ArcGIS as
previously detailed in Section 2.3. The potential for closed roads and
failed bridges is then evaluated using the indicator functions shown in
Egs. (6) and (7).

if h®
I[Closed road/bridge] = {* T7" 28
0 ifh® <6 ©
1 if p}l) >u
I[Failed bridge] =
0 if pi” <u ”

In these equations, 6 = threshold sampled from the inundation
threshold (©) probability distribution presented in Section 2.1,
u = random number sampled from a uniform distribution with lower
and upper bounds of 0 and 1, and pf@ is evaluated from Eq. (5). Eq. (7)
indicates that the likelihood of a bridge being in a failed state is
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Fig. 4. (a) Example graph with edge list and adjacency matrix (A) representation [34]; and (b) effects of surge-induced disruptions on the adjacency matrix.

modeled as a Bernoulli trial. For bridges, Eq. (6) is also verified with
h® = —Z® to determine if the bridge could be closed due to inundation
even though it did not fail from deck unseating. If a road is closed, its
corresponding link is removed from the edge list; if a bridge is closed or
failed, all the links connected to the bridge node are removed from the
edge list. The A; elements of the adjacency matrix are then modified
accordingly as illustrated in Fig. 4b for a simple network.

The network analysis is then performed with the modified ad-
jacency matrix of the MCS sample by solving the shortest-path problem
[36] using the Dijkstra's algorithm [37] with weights w;; equal to [; and
t;j to determine the shortest and quickest paths, respectively, between
nodes O and D. For the MCS sample, the accessibility between nodes O
and D at time t is then quantified by computing the four following
metrics:

(i) Connectivity loss (CLgl p): This metric corresponds to a measure

of the efficiency reduction when traveling from nodes O to D on the
disrupted framework and is expressed as:
CLE.p =1~ LY/ 0<CLE.p <1 (8)
where and LY, , = lengths of the shortest OD path for the undisrupted
network at time 0 and disrupted network at time t. The metric CLY, , is
continuous between 0 and 1, with CL{’,,, = 0 corresponding to the case
where the disruptions do not affect the path between O and D, and
cLY,;, = 1 corresponding to the case where no path exists between O
and D.

(ii) Probability of non-connectivity (P}f)(pD): This metric indicates
the probability of existence of a path between nodes O and D and is
expressed as the following indicator function:

1 if OD path exists

P, =1[OD path] =
f,0-D [ path] 0 if no OD path exists ©)

Although CL{?,;, and Pf('t,sz may look like similar metrics, they
provide very different information regarding accessibility performance
as detailed in the next section.

(iii) Travel time (Tng): This metric corresponds to the minimum
travel time between nodes O and D on the disrupted road network. The
minimum travel time is calculated by summing the weights wy; = t; of
the road links comprising the quickest path between O and D. The t;
values are obtained by sampling the s; values from the vehicle speed (S)
probability distribution, as described previously.

(iv) Travel distance (L(()’l p): This metric corresponds to the minimum
travel distance between nodes O and D on the disrupted road network. The
minimum travel distance is calculated by summing the weights w;; = I;; of
the road links comprising the shortest path between O and D.

In addition to the four previous accessibility metrics, another me-
tric, the operational path ratio (r), is also computed to evaluate the
overall effects of surge-induced disruptions on the performance of the
entire road network (i.e. not only between the selected O and D nodes).
The operational path ratio at time step t is evaluated as:

rO =

N, zgz{s)rupted/ Nundisrupted (10)

where nggmpwd = number of all possible operable paths between any
pair of nodes in the disrupted network at time ¢t and
Nundisruptea = number of all possible operable paths between any pair of
nodes in the undisrupted network (i.e., before the storm).

In order to consider the probabilistic nature of ©, S, and p}‘) in the
network analysis, the above procedure is repeated for a total of Ny
samples; a total of 10,000 samples is used here. The above metrics are
first computed independently for each MCS sample and then statistics
of the metrics, such as the mean values (i.e., ﬁng, Ff(-’})_, 0 TO 1,
LY., and 7©) and the confidence bounds, are computed. The con-
fidence bounds are obtained by extracting the adequate percentile va-
lues from the MCS samples (e.g., the 90% confidence bounds
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Fig. 5. Overview of the network accessibility analysis at a given time step t.

correspond to the 5% and 95% percentile values). Finally, the metho-
dology presented in Fig. 5 is repeated for any relevant pairs of OD nodes
and for each time step of the storm scenario to obtain the time evolution
of the accessibility of NaTech events and petrochemical facilities, as
illustrated in the next sections for a case study area.

a) Case study area
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3. Case study area and storm surge scenarios

As a proof of concept, the integrated framework proposed in the
previous sections is demonstrated for a case study area located along
the Houston Ship Channel (HSC), in Texas, US; an aerial view of the
case study area is shown in Fig. 6a. As observed in this figure, the case
study area comprises a major refinery with 421 ASTs, surrounded by a
city with a population of approximately 76,000 people. This area was
specifically chosen because both the urban area and refinery could be
subjected to extensive storm surge during severe hurricanes, and be-
cause the road network is sufficiently developed to adequately illustrate
the integrated framework.

3.1. Data collection and road network development

In order to develop the road network for the case study area, road
centerlines were obtained from the 2016 Southeast Texas Addressing and
Referencing Map (STAR*Map) database [39]. The locations of bridges in the
transportation network were obtained from the National Bridge Inventory
database [40], while the geometry and design details of each bridge were
obtained from personal communications with the Texas Department of
Transportation (TxDOT). The locations of fire stations, which are assumed
to be the emergency responders in case of a NaTech event, were identified
from the Houston-Galveston Area Council (HGAC) GIS datasets [41]. The
major neighborhoods where refinery workers could reside were identified
from aerial imagery and the census block groups dataset developed by the
US Census Bureau [42]. The locations, geometry, and design of ASTs in the
case study area were obtained from Bernier et al. [28]. Lastly, the elevations
of each road, bridge, and AST were obtained from the HGAC LiDAR Ima-
gery [38].

An overview of the resulting road network for the case study area is
shown in Fig. 6b; in its undisrupted form, the network is composed of
167 links and 111 nodes, of which 31 are bridges and 3 are fire stations.
To limit the computational cost of the network analysis and demon-
strate the concept, the road network is only composed of the highways
and major roads in the urban area as well as the main access roads of
the refinery. Once the potential NaTech sites are identified, additional
links and nodes will also be introduced to connect these sites to the road
network as detailed in Section 4.1. Based on the STAR*Map database
[39] and accounting for adverse driving conditions in a storm, a mean
vehicle speed of 50 mph (80 km/h) is used for highways, while a value
of 20 mph (32 km/h) is assumed for all other roads. As discussed pre-
viously, the vehicle speed is modeled as a truncated normal with a
standard deviation of 5 mph (8 km/h).

- AST

% EMS/Fire station
= Bridge

— Road network

1 3

; = = Refinery perimeter
N, 1 FEMA33 extent
! \‘h s W FEMA36 extent

Census block group|

»

Water depth (m)
o

FEMA36
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b) Network representation

10 20 3
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Fig. 6. (a) Aerial imagery of the case study area (source: [38]); and (b) network representation of the case study area and maximum extent of the two surge scenarios.
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3.2. Storm surge scenarios

To showcase the application of the framework, two storm scenarios
of increasing intensity are considered. The two storms are synthetic
storms developed by the Federal Emergency Management Agency
(FEMA) for its Flood Insurance Study (FIS) of the Texas Coast [43] and
are commonly referred to as FEMA033 and FEMA36 storms. According
to the statistical analysis presented in Ebersole et al. [44], storms
FEMA33 and FEMA36 produce surge levels with a return period of 100-
and 500-year in the case study area. Both synthetic storms were mod-
eled and simulated with ADCIRC + SWAN by the SSPEED Center at Rice
University [45]. Surge and wave conditions were output at every 1-h
time step for each storm scenario to determine the time-evolving loads
acting on ASTs and bridges and water depth on road segments of the
network. The maximum surge extent for both storms is shown in
Fig. 6b, along with an example of the time evolution of surge levels in
the area. The surge levels in the case study area vary between 0 and 4 m
for the 100-year storm surge scenario, while they vary between 0 and
6 m for the 500-year scenario; for both scenarios, storm surge lasts for
approximately a day.

4. Results and discussions
4.1. Vulnerability assessment of ASTs and bridges in the case study area

For both storm scenarios, vulnerability assessments of ASTs and
bridges in the case study area are performed using the methodologies
outlined in Sections 2.4. and 2.5. to determine the locations of NaTech
events and evaluate network disruptions due to bridge failures. Results
of the vulnerability assessments are summarized in Fig. 7. This figure
shows the probability of failure of each AST and bridge when peak
storm surge occurs in the case study area (i.e., t = 7 h for FEMA33 and
t = 6 h for FEMA33). From Fig. 7, it is possible to identify a cluster of
vulnerable ASTs where NaTech events could occur during both storm
scenarios. An additional link in the road network, shown in red in
Fig. 7, was introduced to allow emergency responders to access this
area. Based on the time-evolving probabilities of failure, Table 1 also
indicates the time periods when emergency responders might need to
respond to a NaTech event at this location; as most ASTs have a fairly
similar geometry and are subjected to similar surge levels, it was pos-
sible to identify a single time period per storm scenario for this group of
vulnerable ASTs. As further detailed in the next section, most vulner-
able bridges are located along a major waterway crossing the area.
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Table 1
Time period when NaTech events are likely to occur in the case study area.

Storm scenario Time since beginning of storm scenario (hours)

Start End Most likely point in time
FEMA33 (100-yr) 4 12 7
FEMA36 (500-yr) 3 16 6

4.2. Accessibility analysis of the case study area

With the above vulnerability assessments of ASTs and bridges in the
case study area, it is now possible to: (i) assess the accessibility of the
NaTech site identified in Section 4.1. to emergency responders; and (ii)
determine the post-storm accessibility of the refinery to workers re-
quired to repair critical infrastructure and restart operations. First, to
illustrate how both storm scenarios disrupt the entire road network,
Fig. 8 shows the time evolution of the mean operational path ratio with
90% confidence bounds. As expected, the 500-year storm scenario in-
duces more severe disruptions in the road network; at peak surge, only
15% of the network is operable, compared to 62% for the 100-year
scenario. Fig. 8 also illustrates the importance of considering the
structural vulnerability of bridges when performing the network ac-
cessibility analysis. While the effect of bridge failures is minimal before
peak surge, it can significantly affect accessibility when storm surge
recedes. When no bridge failures are considered, the operational path
ratios go back to almost 100% at the end of the storms; the operational
path ratios do not return exactly to 100% as some low-lying areas re-
main flooded even when storm surge has receded. However, when
bridges fail, it is not possible to return to such high ratios; bridges re-
main in a failed state, and the network is disrupted until they are re-
paired. Moreover, the effects of uncertainties (i.e., inundation threshold
(©) and bridge failure), while limited for the 100-year scenario, are
significant for the 500-year scenario; wide confidence bounds can be
observed in Fig. 8b. Such wide confidence bounds are due to the larger
impacted area and disruptions caused by the 500-year scenario, and the
probabilistic nature of bridge and road closures; given the sparsity of
the case study network, the removal (or not) of a single link in the
network can significantly affect the total number of operable paths
[46]. The effect of uncertainties is also more important after peak surge
because the surge recedes slowly, while it rises quickly. Lastly, con-
fidence bounds are wider when bridge failures, which are an additional
source of randomness, are considered.

« 0-25%
25-50%

< 50-75%
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Fig. 7. Vulnerability of ASTs and bridges in the case study area for storms: (a) FEMA33; and (b) FEMA36. The probabilities correspond to the time when peak storm

surge occurs.
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4.2.1. Emergency service accessibility in case of a NaTech event

Results presented in Fig. 8 also indicate that the most severe dis-
ruptions in the road network happen during the same time periods,
previously identified in Table 1, in which AST failures and NaTech
events are likely to occur in the case study area. However, Fig. 8 pro-
vides limited information regarding the actual accessibility of the Na-
Tech events to emergency responders. Thus, the four metrics presented
in Section 2.6. — connectivity loss, probability of non-connectivity,
travel time, and travel distance — are plotted in Figs. 9-11 to quantify
the accessibility between the fire stations identified in Section 3.1. and
the NaTech site identified in Section 4.1. during both storm scenarios.
All figures present the mean metrics and 90% confidence bounds. Re-
sults are only presented for fire stations #2 and #3 (see Fig. 2b); fire
station #1 is not considered because it is subjected to more than 1 and
2m of inundation during the 100-year and 500-year scenarios respec-
tively and would likely not be operational during the storms.

Fig. 9 shows the time evolution of connectivity loss between fire
stations and the NaTech site. For the 100-year storm scenario, there is
no connectivity loss for fire station #3, while connectivity loss increases
to 35% for fire station #2 and remains relatively constant for the rest of

1.0 T T T T T

the storm. From Eq. (8), this indicates that the distance to reach the
NaTech site from fire station #2 increased by approximately 50%. As
observed in Fig. 7a and detailed below, bridge failures between the
refinery and fire station #2 are the main source of network disruption;
road inundations mainly occur in the vicinity of the failed bridges. In
addition, the probability of non-connectivity for both fire stations is
null for the entire duration of the storm. Thus, the location of NaTech
events remains accessible to emergency responders at all times during
the 100-year scenario.

For the 500-year scenario, the connectivity loss is more severe, as
shown in Fig. 9b. Connectivity loss quickly reaches 100% at t = 5 h for
both fire stations, and the NaTech site remains completely inaccessible
until t = 12 h; during that period, all access roads to the refinery are
flooded by more than 0.75m of water. A similar trend is observed in
Fig. 10, which shows the time evolution of probability of non-con-
nectivity between fire stations and the NaTech site for the 500-year
storm scenario. The probability of non-connectivity has a value of 1.0
between t =5 and 12 h, and only reaches values close to zero after
t = 23 h. Even though the probability of non-connectivity is null at the
end of the storm, the mean connectivity loss of fire station #2 is still
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Fig. 9. Evolution of connectivity loss (CLo-.p) between fire stations and NaTech site for storm scenarios:

event).
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relatively high with a value of 65%, as shown in Fig. 9b. As detailed
below, a large number of failed bridges significantly affect the con-
nectivity between this station and the NaTech site. The mean con-
nectivity loss of fire station #3, which is less affected by bridge failures,
is 25% at the end of the storm. Results from Figs. 9b and 10 indicate
that the NaTech site would be inaccessible or hardly accessible, with
mean probability of non-connectivity above 0.8, during most of the
time period when an AST failure and NaTech event could occur. Even
after that time period, the site could be hardly accessible until t = 22 h,
when both the mean connectivity loss and the mean probability of non-
connectivity significantly decrease. Thus, the NaTech site could be in-
accessible or hardly accessible for a period of 17 h, which would sig-
nificantly hinder mitigation and emergency activities in case of an AST
failure and NaTech event during the 500-year scenario.

Fig. 11 shows the time evolution of travel time and travel distance
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between fire stations and the NaTech site for both storm scenarios. To
better understand Fig. 11, Fig. 12 illustrates the quickest routes be-
tween fire stations and the NaTech site before and after each storm and
also shows bridges with a high probability of being in a failed state at
the end of the storm scenarios (i.e. pf(‘=29) > 0.75). The quickest route
after a storm shown in Fig. 12 corresponds to the mode route (i.e., the
most frequent route from the MCS samples). As expected, for the 100-
year scenario, the route between fire station #3 and the NaTech site is
not affected by storm surge. However, after peak surge, increases in
travel time and distance are observed for fire station #2 as emergency
responders from this station need to detour around the failed bridges, as
shown in Fig. 12. For the 500-year scenario, Fig. 11b shows a gap
corresponding to the time period when the probability of non-con-
nectivity is equal to 1.0. Additionally, the mean travel time and dis-
tance are computed only for the MCS samples for which there exists a
path between the fire stations and the NaTech site. This explains the
tight confidence bounds right after the gap in Fig. 11b, because there
are very few samples for which such a path exists between t = 13 and
16 h. At the end of the 500-year scenario, mean travel time and distance
increase by a factor of 3.0 and 1.5 for fire station #2 and #3 respec-
tively. These factors can reach values up to 4.7 and 2.5 respectively
during the storm, further highlighting the fact that the site could be
difficult to access in case of a NaTech event. Furthermore, after peak
surge, it is possible to observe that on average fire station #3 has the
shortest travel time and distance to the NaTech site, even though it had
the longest travel time and distance prior to the storm. As shown in
Fig. 12, emergency responders from station #2 would first need to
reach station #3 before reaching the NaTech site due to bridge failures.
In the absence of accessibility analysis, responders from station #2 are
likely to be the ones dispatched to the NaTech site given their geo-
graphical proximity. Thus, the results of the network accessibility
analysis are valuable to efficiently manage and dispatch emergency
resources, which may be limited during a storm, in case of a NaTech
event. It is worth mentioning that the results presented in Fig. 11 are
best-case estimates since the shortest-path approach in the network
analysis assumes that emergency responders are perfectly aware of
disruptions when travelling on the network. During a real-time storm
event, it is unlikely that emergency responders would be fully informed
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Fig. 12. Quickest routes between fire stations and NaTech site before (t = 0 h) and after (t = 29 h) for storm scenarios: (a) FEMA33 (100-year event); and (b)
FEMA36 (500-year event). The quickest route shown after a storm is the mode route.

and prepared for network disruptions, potentially yielding greater
travel times and distances. The consideration of such uncertainties in
the network analysis offer interesting opportunities for future research.

In Figs. 9-11, wide confidence bounds are observed for the 500-year
scenario. As all access roads to the refinery are severely inundated in
this scenario, the opening or closure of an access road can significantly
affect the shortest path (or the existence of such path), resulting in wide
confidence bounds. For the 100-year scenario, confidence bounds are
tighter as multiple access roads to the refinery remain open at all times.
Furthermore, Figs. 9-11 also present a comparison between the prob-
abilistic network analysis and a deterministic analysis where the in-
undation threshold (©) and vehicle velocity (S) are kept constant at
their mean values; the comparison is shown for fire station #2 only. For
the 100-year scenario, both probabilistic and deterministic analyses
provide similar results, highlighting the relative insignificance of con-
sidering sources of uncertainty for this scenario. However, for the 500-
year scenario, the deterministic analysis almost corresponds to the
upper confidence bounds of the probabilistic analysis, and a larger time
period of complete loss of accessibility to the NaTech site is predicted.
In the deterministic analysis, a road only becomes operational again
when the water depth is strictly less than 0.6; however, in the prob-
abilistic analysis, the road could become operational earlier depending
on the distribution of O, resulting in lower mean connectivity metric
values. This is of significance for the 500-year scenario as several access
roads to the refinery have water depths slightly above 0.6 m between
t =12 and 23 h. Thus, for this specific scenario, neglecting the un-
certainties associated with © and S yields conservative results for the
accessibility analysis compared to the mean values of the probabilistic
analysis. Finally, the wide confidence bounds observed for the 500-year
scenario also highlight the future need to adequately quantify these
sources of uncertainty; the distributions used in this paper are adopted
as an illustrative example given the current lack of information.

Overall, the above results for the case study area demonstrate that
the integrated framework is an efficient tool to evaluate the accessi-
bility of potential NaTech events to emergency responders during and
after storm events. The integrated framework can provide useful in-
formation such as the level of network disruption when a NaTech event
could occur, the likelihood and ability to reach such NaTech events, the
routes that should be used to access these events, the confidence levels
regarding the accessibility of these events, and the emergency resources
that should be prioritized. In turn, this information can provide for
better emergency and mitigation planning to potentially reduce the
impacts of a NaTech event during severe storm surge events.

4.2.2. Worker accessibility after a storm surge event

The proposed integrated framework is also employed to evaluate
the accessibility of the refinery to workers in order to repair critical
infrastructure and restart operations after a storm. As mentioned ear-
lier, this issue was reported by industry managers following recent
storms in the Gulf Coast [12]. Since the exact locations of workers in the
case study area are unknown, the accessibility analysis is performed at
the neighborhood level. The different residential neighborhoods where
refinery workers may live were delineated using the US Census block
groups (BGs); BGs are a geographical unit with a population ranging
between 600 and 3000 people and are commonly used as proxies for
neighborhoods [16]. Using aerial imagery, the road network nodes
closest to the main residential areas in each of the BGs were then
identified. A node central to the refinery was also employed to assess
connectivity, as shown in Fig. 13. The network accessibility analysis
was then performed to assess the connectivity between each node re-
presenting a residential neighborhood and the refinery at the end of the
storm scenarios. Severely flooded neighborhoods during a storm (i.e.,
neighborhoods with more than 1.0 m of inundation) were excluded
from the analysis, given potential of evacuated residents or personal
hardships that may preclude these residents from immediately re-
turning to work [47,48].

Results of the accessibility analysis between residential neighbor-
hoods and the refinery are shown in Fig. 13; results are only shown for
the 500-year storm scenario as limited insight was obtained from the
100-year scenario. Fig. 13a presents the mean connectivity loss
(ﬁgﬁf)) between each neighborhood and the refinery after the storm,
while Fig. 13b shows the mean travel time increase ratio (TIp_p) after
the storm. The travel time increase ratio is defined as
Tlo—p = TY=2/TY=Y. While the probability of non-connectivity to the
refinery is null for all neighborhoods after the storm, certain neigh-
borhoods suffered significant connectivity loss as observed in Fig. 13a.
Before the storm, workers in the neighborhoods located east of the
refinery were the closest ones to the refinery. However, after the storm,
the travel distance to reach the refinery increased significantly for these
workers due to bridge failures; connectivity loss reaches values up to
0.8 for the neighborhoods located east of the refinery. This also resulted
in travel time increases by a factor up to 3.8 for these neighborhoods, as
shown in Fig. 13b. On average, after the storm, travel times for workers
located north of the refinery are 5-15 min shorter than for workers
located east. Before the storm, workers located east of the refinery
could reach the refinery up to 5 min before workers located to the
north. Moreover, this comparison assumes that workers know exactly
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which route to take to reach the refinery. While route changes are
minor for workers located north of the refinery, they are significant for
workers located to the east; it is unlikely that these workers would be
fully aware of these changes, potentially resulting in further accessi-
bility issues. As some facilities request essential or emergency desig-
nated workers to live within a certain radius of the facility, the above
results suggest that such workers may not necessarily be in the best
position to access the facility after a storm compared to workers living
further away. The overall network topology, water crossing features,
infrastructure vulnerability and hazard potential play an important role
in determining ideal proximity. Thus, the integrated framework offers
valuable information to better manage personnel and critical activities
following a severe storm.

5. Summary and conclusions

This study developed an integrated framework to efficiently eval-
uate the accessibility of potentially vulnerable petrochemical facilities,
where NaTech events could occur, to emergency responders and facility
workers during and after a storm surge event. First, storm surge mod-
eling was coupled with AST fragility models to determine the potential
location of NaTech events and the time period when NaTech events are
likely to occur during a storm scenario. Then, coastal bridge fragility
models and GIS analysis were employed to determine road network
disruptions such as bridge failures and road inundations. Finally, a
probabilistic network analysis was performed to propagate un-
certainties associated with the network disruptions and to quantify the
time evolution of select accessibility metrics. As a proof of concept, the
proposed framework was applied to a case study area and petrochem-
ical facility in Texas, and for two synthetic storm scenarios of increasing
intensity. The integrated framework was first employed to determine
the time-evolving accessibility of NaTech events to emergency re-
sponders and then to evaluate the accessibility of the case study pet-
rochemical facility to workers in order to repair critical infrastructure
and restart operations after a storm.

Results of the accessibility analysis highlighted the importance of
considering the structural vulnerability of critical transportation infra-
structure during flood or storm surge events. Results showed that
considering the potential for bridge failures is critical to obtaining a
realistic time evolution of road network accessibility and recovery.
Only accounting for road inundations, as previous studies have done,
can significantly underestimate network disruptions when storm surge
recedes. In turn, this can lead to inaccurate network accessibility and
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); and (b) mean travel time increase ratio ( TIop) between worker neighborhoods and the refinery at the end (t = 29 h)

recovery assessments. Moreover, the results presented here revealed the
importance of considering and propagating the sources of uncertainty
associated with network disruptions in the analysis. Performing a de-
terministic network analysis was shown to provide overly conservative
accessibility results for the scenarios considered, and furthermore, the
lack of insight on confidence levels can undermine the value of such
results for practical decision-making purposes. The effects of un-
certainties were also found to be primarily significant for severe storm
surge scenarios for which major disruptions in the road network are
expected including bridge failures, while they were negligible for
smaller storm surge events with a smaller geographic footprint and
more limited network disruptions.

With respect to findings for case study area, the framework provided
useful insights, such as the level of network disruption during the time
period when NaTech events are likely to occur; the likelihood, travel
time, and travel distance to reach the NaTech events; and the con-
fidence levels regarding the accessibility results. Results indicated that
the accessibility of the case study facility is highly restricted during
severe storm surge events. During a 500-year scenario, the location of
NaTech events at the facility could be inaccessible or hardly accessible
for almost 20 h, thereby significantly affecting mitigation and emer-
gency activities to limit the potential impacts of such NaTech events.
However, results also demonstrated that during less severe storm
events, such as a 100-year scenario, emergency responders would have
continuous and almost unaffected access to the location of potential
NaTech events. Furthermore, results of the accessibility analysis in-
dicated that the fire stations located closest to the petrochemical facility
were not necessarily the best suited to access the NaTech site. Due to
network disruptions, especially bridge failures, fire stations located
further away might have better connectivity and shorter travel times
than the closest stations. Similar findings were also obtained for the
post-storm accessibility of the facility to workers, highlighting the
benefits of the proposed framework to better manage personnel and
emergency resources, which are both often limited during and after a
severe storm.

Overall, the results and findings presented here demonstrate that
the proposed integrated framework offers a powerful tool to identify
the locations of potential NaTech events, determine the potential for
road network disruptions, and evaluate the accessibility of potential
NaTech events to emergency responders and workers during and after
storm events. The integrated framework can provide useful insights to
industry managers and decision makers in order to improve risk as-
sessment and emergency planning before a storm, facilitate mitigation
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and emergency activities during a storm, manage resources and per-
sonnel more efficiently, and ultimately reduce the potential impacts of
NaTech events during and after a storm. A limitation of this study is the
use of deterministic and synthetic storm surge scenarios in the illus-
trative cases. Future work will improve the proposed methodology by
considering the uncertainties associated with storm surge modeling and
prediction, and by coupling the integrated framework with real-time
surge prediction tools (i.e. [49]) to provide accessibility data to in-
dustry managers before and during actual storm surge events. Finally,
future work will also include the effects of sources of uncertainties re-
garding behavioral factors and disruption awareness, as well as addi-
tional sources of disruptions such as the structural vulnerability of
roadways and the effects of debris.
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