PHYSICAL REVIEW X 9, 021054 (2019)

Topological Boundary Floppy Modes in Quasicrystals

Di Zhou, Leyou Zhang, and Xiaoming Mao
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

® (Received 25 September 2018; revised manuscript received 22 April 2019; published 18 June 2019)

Topological mechanics has been studied intensively in periodic lattices in the past a few years, leading to
the discovery of topologically protected boundary floppy modes in Maxwell lattices. In this paper, we
extend this concept to two-dimensional quasicrystalline parallelogram tilings, and we use the Penrose tiling
as our example to demonstrate that topological boundary floppy modes can arise from a small geometric
perturbation to the tiling. The same construction can also be applied to disordered parallelogram tilings to
generate topological boundary floppy modes. We find that a topological polarization can be defined for
quasicrystalline structures as a bulk topological invariant. Remarkably, due to the unusual orientational
symmetry of quasicrystals, the resulting topological polarization can exhibit orientational symmetries not
allowed in periodic lattices. We prove the existence of these topological boundary floppy modes using a
duality theorem which relates floppy modes and states of self-stress in parallelogram tilings and fiber
networks, which are Maxwell reciprocal diagrams to one another. Our result reveals new physics about the
interplay between topological states and quasicrystalline order and leads to novel designs of quasicrys-

talline topological mechanical metamaterials.
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I. INTRODUCTION

The notion of “topological protection” has far-reaching
influences in modern condensed matter physics, from
protected conducting states on the surface of topological
insulators, to stable pinning of a superconductor above a
magnet due to vortices which are topological defects in the
complex order-parameter field. Topology is concerned with
properties of a system that are invariant under continuous
deformations. If a physical property is determined by
topology, it is highly robust and protected against disorder,
as long as the disorder is not strong enough to destroy the
entire topological state.

It is thus interesting to explore topologically protected
phenomena in systems that are not periodic in space, which
not only demonstrate the power of topological protection
under strong disorder but may also offer new physics that is
not present in periodic lattices. A number of fascinating
examples have been studied recently, including photonic
quasicrystals [1-3], quasicrystalline topological insulators
[4,5], aperiodic patterns [6], mechanical chiral edge modes
in amorphous networks [7], jammed packings [8], active
fluids [9], etc.
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In this paper, we investigate topological boundary
floppy modes in two-dimensional (2D) quasicrystalline
structures. We find that the notion of topological polarization
[10], which is a bulk topological invariant governing zero-
frequency floppy modes, can be extended to quasicrystalline
structures. In particular, the topological polarization of a
quasicrystal exhibits rotational symmetry of the quasicrystal.
For example, the topological polarization of a Penrose tiling
has a tenfold rotational symmetry. Thus, topological mechan-
icsin quasicrystals is not limited by crystallographic rotational
symmetry and can exhibit richer patterns. This opens up
opportunities for wide applications such as designing
mechanical metamaterials with topological domain bounda-
ries of arbitrary shapes, for waveguiding, stress focusing, etc.

Topological mechanics is a very active new research
direction applying the ideas of topological states of matter
to classical mechanical networks [10-30]. We focus on a
peculiar branch of topological mechanics concerning
“Maxwell lattices” which are mechanical lattices with bal-
anced numbers of degrees of freedom (d.o.f.) and constraints
[(z) = 2d where (z) is the average coordination number, and
d is the spatial dimension] and are thus on the verge of
mechanical instability [10,12,25-35]. Studies of topological
mechanics in Maxwell lattices have led to topologically
protected surface modes at zero frequency, which dictate
local stiffness of the system. So far, most investigations of
topological mechanics are done in periodic lattices, with a
few exceptions on systems such as jammed packings [8] and
disordered fiber networks [34].
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Quasicrystals are fascinating materials characterized by
long-range orientational order and quasiperiodic transla-
tional order [36—41]. They fall between ordered periodic
lattices and disordered structures and offer us a great arena
where we can study topological protection in systems that
lack translational symmetry but allow analytic treatment.
Furthermore, quasicrystals exhibit intriguing physics that
was not available in crystals, such as orientational sym-
metries that are forbidden in periodic lattices, physics of
higher dimensions, and self-similarity. The interplay of
these unique features with topological states of matter can
offer a rich variety of interesting phenomena.

Our paper focuses on topological mechanics in quasi-
crystals, and we find that topological boundary floppy
modes can be generated in 2D quasicrystalline structures by

types of parallelograms, as our example to demonstrate
these topological boundary floppy modes. In fact, our
results apply to all parallelogram tilings in 2D, including
periodic, quasiperiodic, and disordered ones. As we show
below, all parallelogram tilings have a mean coordination
(z) = 2d and are thus Maxwell networks (note that we limit
ourselves to tilings where all edges are “complete,” i.e.,
nodes of a parallelogram merge with nodes of the neigh-
boring parallelogram when they are tiled together, instead
of sitting in the middle of the edge of other parallelograms).
Here we extend the notion of Maxwell lattices to “Maxwell
networks” to include aperiodic networks with (z) = 2d
[42-49]. Jammed packings of frictionless spheres [50] and
Mikado fiber networks [51,52] are both examples of
Maxwell networks. We show that original parallelogram

tilings have bulk floppy modes. Small changes in the
geometry can topologically polarize these parallelogram

small changes in the geometry. We use the Penrose tiling, a
well-known quasicrystalline structure composed of two
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FIG. 1. Topological mechanics of the Penrose tiling. (a) A topologically polarized Penrose tiling with I_Q'T pointing towards the upper
right tip of the pentagon (54° from the x axis). Zero-mode weight 7, (defined in Sec. III) on each site a is shown using both color (see
color bar on the right) and size of the disks. The bottom left boundary, the outward normal of which is opposite to Ry, is free of floppy
modes. (b) Geometric changes we apply on the Penrose tiling to induce the topological boundary floppy modes shown in (a). We choose
these z = 5, 6, 7 vertices (and ones related to these by rotation) in the Penrose tiling and displace them by a small amount 7y = ro2;sp
with ry = 0.15x length of edges in the Penrose tiling and &g, = (cosy, siny) with y = 45°. Red arrows show an example of such
displacements (r; magnified to be visible), which leads to (a). (c) Phase diagram of the resulting topological polarization of strips of
parallelograms in the five symmetry directions (short blue outward arrows for n; = 1 and short orange inward arrows for n; = —1, where
n; is a topological invariant defined in Sec. III for strip topological polarizations), and the topological polarization of the whole modified
Penrose tiling I_éT (long red arrows) as given by Eq. (3.9), as these vertices are displaced. When &g, is in each of the ten ranges of
directions defined by the dashed lines, the polarizations are shown by the arrows in that range. The purple dot shows the direction for the
displacements used in (a) which has y = 45°, leading to 137 pointing towards 54°. (d) Measured local stiffness kj,., (defined in Sec. IIT
and the Appendix H) on opposite boundaries of a topologically polarized Penrose tiling. The setup of the simulation is shown in
(e) where we cut a square piece of a polarized Penrose tiling and hold the left and right boundaries fixed (shaded regions). The tiling is
polarized by displacing the z = 5, 6, 7 vertices shown in (b) with y = 90° [purple arrows in (c) corresponding to r, > 0 and ry < 0],
leading to Ry pointing up for ry > 0 and down for r, < 0. The measured local stiffness (d) shows that the boundary that R; points
toward is dramatically softer than the opposite boundary.
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tilings and transform these bulk floppy modes into boun-
dary floppy modes, as shown in Figs. 1(a) and 1(b).

The way we prove the existence of these boundary
floppy modes is via a duality theorem relating floppy
modes and states of self-stress in a mechanical network and
its Maxwell reciprocal diagram [53,54]. We find that
parallelogram tilings and fiber networks are Maxwell
reciprocals of one another, and based on previous studies
of topological boundary floppy modes in fiber networks,
we construct methods to topologically polarize parallelo-
gram tilings.

In contrast to disordered fiber networks, quasicrystalline
parallelogram tilings are aperiodic but have long-range
order. This allows us to define a bulk topological polari-
zation Ry for the whole system. Interestingly, quasicrys-
talline structures can display orientational symmetries that
are not allowed in periodic structures. As a result, the
topological polarization I_éT of a given quasicrystalline
structure can be tuned to point to more directions than
in periodic lattices [Fig. 1(c)], as we discuss in detail below.
This feature can be viewed as a reflection of topological
states in higher dimensions and brings interesting new
physics to topological mechanics.

A consequence of these topological boundary floppy
modes is that opposite boundaries (the inner products of
whose outward normal vectors with Ry have opposite
signs) of a topologically polarized Penrose tilings show
contrasting local stiffness [Figs. 1(d) and 1(e)]. This
contrasting local stiffness can lead to interesting new
designs of mechanical metamaterials with quasicrystalline
structures and unusual orientational symmetries of topo-
logical polarizations for applications such as waveguiding.

II. QUASICRYSTALLINE STRUCTURES AND
MECHANICAL DUALITY BETWEEN
RECIPROCAL DIAGRAMS

In this section, we briefly review quasicrystalline struc-
tures, especially quasicrystalline parallelogram tilings, and
their floppy modes. We also review a mechanical duality
theorem which relates mechanical properties of reciprocal
diagrams and apply this duality theorem to quasicrystalline
parallelogram tilings and their reciprocal diagrams—fiber
networks. We use this duality relation to construct topo-
logical boundary floppy modes in quasicrystalline paral-
lelogram tilings in Sec. III.

A. Quasicrystalline parallelogram tilings
and their floppy modes

By definition, a quasicrystalline structure has long-range
order but is not periodic. Different methods have been
proposed to mathematically generate a quasicrystalline
structure, including the cut-and-project method (CPM),
which starts from a crystal in a higher spatial dimension,
cutting it with a plane that is incommensurate to the crystal

planes, and projecting the lattice sites, and the generalized
dual method (GDM), which starts from a network of
parallel lines or planes and generates the quasicrystalline
structure through a reciprocal relation. We review these
methods in detail in Appendix A and discuss their relation.

We are particularly interested in quasicrystalline paral-
lelogram tilings, which are a subclass of quasicrystalline
structures, characterized by a finite set of parallelograms
that the structure consists of. The well-known Penrose
tiling is an example of quasicrystalline parallelogram
tilings and is the major example for our discussion of
topological mechanics. In particular, the Penrose tiling can
be generated from five sets of equally spaced parallel lines
(a ““5-grid”) following the GDM (Fig. 2). The 5-grid and the
Penrose tiling are “dual” to one another following a
reciprocal relation where edge <> edge and site <> face,
and the corresponding edges in the 5-grid and the Penrose
tiling are perpendicular to one another. As we discuss
below, this reciprocal relation is essential for our con-
struction of topological boundary floppy modes.

All parallelogram tilings exhibit floppy modes that are
bulk modes, meaning that their amplitude does not decay as
they penetrate into the tiling. Floppy modes (FMs) are
defined as normal modes of deformation of a structure that
cost no elastic energy. In this paper, we are concerned with
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FIG. 2. Duality between a 5-grid (a) and the Penrose tiling it
generates (b) through the GDM. A few nodes in the 5-grid and
their corresponding parallelograms in the Penrose tiling are
marked by dots of the same color.
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FIG. 3. An example of a bulk FM (red arrows) of a random
parallelogram tiling. A strip of parallelograms (light blue) is
randomly chosen, and the FM displaces all nodes right to this
strip in a direction that is perpendicular to the parallel edges in
this strip.

elastic networks of pointlike particles (nodes as free hinges)
connected by central-force springs (edges), so FMs are
normal modes which do not change the length of any edge.
FMs are an important concept in mechanics, as they
represent low-energy excitations of a system, which often
dictate the system’s mechanical response.

In a tiling of parallelograms, one can always start from
an arbitrary parallelogram and uniquely define two “strips”
of parallelograms following the two directions of parallel
edges in this parallelogram. Figure 3 shows an example of
one such strip. Parallelograms in each strip share parallel
edges to one another. In the case of the Penrose tiling, such
a strip simply corresponds to a set of parallelograms that
come from all cross-linking points along the same line in
the GDM.

Each strip separates the whole tiling into two parts, and a
bulk FM immediately follows from a strip: One can hold
the part left to this strip fixed and pull the right side up by
deforming the parallelograms in the strip. The displacement
vectors, which are the same for all sites right to the strip, are
chosen to be perpendicular to the parallel edges in the strip,
so no edge lengths are changed. This is a bulk mode
because the magnitude of this mode does not decay from
the boundary to the bulk. This FM actually extends to
nonlinear order and leads to a finite mechanism of the
structure.

The number of such bulk FMs is subextensive to the area
of the tiling. This follows from a simple counting of d.o.f.
and constraints [49]. For an infinite tiling of parallelograms
(with complete edges), one has N = F where N, F are the
numbers of nodes and faces; one can also write down
Euler’s formula N + F — E = 2 (for the open boundary

where the exterior face is included) or N + F — E = 0 (for
periodic boundary conditions). Thus, (z) =2E/N =4,
which is exact for periodic boundary conditions and ignoring
an additive constant of O(1/N) for open boundary con-
ditions. This counting of coordination number tells us that
parallelogram tilings are Maxwell networks, meaning that
they have balancing d.o.f. and constraints in the bulk. For a
finite piece of parallelogram tiling with open boundaries, the
cut edges on the boundary give rise to FMs, the number of
which is proportional to the size of the boundary. More
precisely, the total number of FMs is equal to the number of
strips in a parallelogram tiling minus 1 (given a properly cut
boundary), as we discuss in more detail in Sec. IIL

In this sense, parallelogram tilings are very similar to
classical Mikado fiber networks, where all FMs are bulk
FMs as well. In fact, they are related by a reciprocal
relation, as we discuss below. In Ref. [34], we showed that
with a small change in the geometry, Mikado fiber net-
works can be topologically polarized, where bulk FMs
becomes topological boundary FMs. In what follows, we
show that a similar geometric change can be done in the
parallelogram tilings as well, leading to topological boun-
dary FMs.

B. Mechanical duality theorem

Maxwell introduced the concept of reciprocal diagrams
(called ““reciprocal figures” in his original papers) and used
them to solve equilibrium forces on mechanical frames
[55,56]. Two diagrams A and A*, which are both networks
of nodes connected by straight edges, are reciprocal to one
another if

(i) they contain equal numbers of edges;

(ii) the corresponding edges in the two diagrams are

perpendicular to one another;

(iii) the corresponding edges that converge to a point in

one diagram form a closed polygon in the other.
A mechanical frame has a reciprocal diagram if it has a state
of self-stress (SSS), an eigenstate of tension or compression
distribution on the edges of the frame with no net force on
any point. The mathematics of constructing a reciprocal
diagram from a SSS is reviewed in Appendix C. The
counting of FMs and SSSs in reciprocal diagrams is
discussed in Appendix D.

By this definition, it is straightforward to see that quasi-
crystalline parallelogram tilings, such as the Penrose tiling,
are reciprocal to the grids that generate these tilings.
Mechanically, these grids are fiber networks: networks
of lines cross-linked together (sections of lines between
cross-links as springs and cross-links as free hinges). More
generally, all parallelogram tilings have their reciprocal
fiber networks.

The mechanics of reciprocal diagrams are further related
by a duality theorem: “For any pair of reciprocal diagrams,
there is a one-to-one mapping between each state of self-
stress in one diagram (excluding the one that generates the
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reciprocal diagram under consideration) and each floppy
mode of the reciprocal diagram.”

This theorem has appeared in the literature in different
forms [53,54]. We give our version of the proof in
Appendix E, which we believe is easier to read for the
condensed matter community. For a more mathematically
rigorous statement and proof of this theorem (e.g., on
degenerate diagrams), please see Ref. [53].

This theorem indicates many interesting properties of
frames, especially Maxwell networks. For example, for two
Maxwell periodic lattices that are reciprocal diagrams
of one another, if one of them is topologically polarized,
the other one must exhibit a topological polarization in the
opposite direction. We prove this in Appendix E. The
topological mechanics of Penrose tiling discussion we have
below is a manifestation of this relation in quasicrystalline
structures.

III. BOUNDARY FLOPPY MODES
AND TOPOLOGICAL MECHANICS
IN QUASICRYSTALLINE
PARALLELOGRAM TILINGS

A. Constructing boundary floppy
modes in parallelogram tilings

As we discuss above, parallelogram tilings and fiber
networks are Maxwell reciprocal diagrams of one another.
In particular, through the construction of the GDM, the
Penrose tiling is reciprocal to a special version of the fiber
networks: the 5-grid (Fig. 2).

FMs and SSSs of parallelogram tiling and fiber networks
are then related through the mechanical duality theorem
that we discuss above, as shown in Fig. 4. Details of this
relation can be found in Appendix F, and we also review
topological mechanics of fiber networks briefly in
Appendix G.

From this relation, we construct a “dual transfer matrix”
for FMs in parallelogram tilings. This dual transfer matrix
describes the evolution of the FM rotational component of
displacements along a strip of a modified parallelogram
(which are dual to edge tensions in the reciprocal fiber
network, as we discuss in Appendix E). For each quadri-
lateral in the tiling, the FM displacements must satisfy the
following relation because the deformed quadrilateral is
still a closed polygon [see Fig. 4(d)]

Al_}im—l + A[_jj,n—l = Al_]'i,m + Al_jj,n7 (31)

where i, j label the two strips that cross at the quadrilateral,
and m, n label the edges along strips i, j, respectively.
AU ;.m 18 the difference between the displacement vectors of
the two nodes connected by edge (i, m). Because FMs do
not extend edges, these vectors AU have only components
perpendicular to the edge,

AUL, =AU -2}, (3.2)

Lm’

+,, 18 the unit vector perpendicular to edge (i, m)

which is along direction 6, ,,. These perpendicular compo-

nents of Eq. (3.1) lead to two equations (because &' is
different for each edge around the quadrilateral, it is still a
vector equation with two components), which we use to
solve for (AU%,,. AUJ-{”) as a function of (AUF,_,,
AUjjn_l), yielding the dual transfer matrix for FMs in

modified parallelogram tilings,

AUim Iy AUl{‘m_1 33
AUj:n — Mimjn’ AUﬁn_l s ( . )

where the dual transfer matrix

where e

sin(@;,,+A0;,,) sin A6, ,
Sin©;, sin©; ,
Mi,m‘j.n = . " ’ (34)
k __Ssm Agim 51n(®i<m_A9j.n)
sin®; ,,, sin®; ,,,

where A@i’m = Hi,m - Hi,m—] and AHJ"” = Gj,n - ej’n_l are
the angles that describe how much the quadrilateral
deviates from a parallelogram (corresponding to “bending
angles” in the reciprocal fiber network), and 6, , — 6; ,, =
©;,, is the angle between the edge (i, m) and the neighbor-
ing edge (j, n) (corresponding to the “intersecting angle” in
the reciprocal fiber network).

In the special case where A9 = 0 for all quadrilaterals,
corresponding to all perfect parallelograms in the tiling,
AUY, and AU, which we call “FM edge rotations” in the

following discussion, simply transmit along the two strips i
and j with no mixing, giving rise to bulk modes as shown
in Fig. 3. This case of all quadrilaterals in the strip being
parallelograms is equivalent to a fiber network with all
straight fibers.

When the parallelogram edges are rotated and deviate
from this state, the FMs also change, similar to a fiber
network with bent fibers. To study the growth and decay of
the FM displacements and determine the geometry that
localizes FMs, we further make an approximation that the
angle changes A@ are small, meaning that the modified
parallelogram tiling is not too different from the original
one. In this limit, it is straightforward to see that the two
directions decouple, and we have the equation for the FM
edge rotations along strip i,

AUL, = [1 + A6, cot®;,, + O(AG?)| AU,

im—1>

(3.5)

and an equation of the same form applies to strip j. Note
that we assume that cot® does not diverge in this
expansion, which is satisfied in tilings where the paral-
lelogram angles are not too close to 0 (naturally satisfied in
Penrose tiling). From this, it is clear that if the edges are
rotated in a coherent way, such that A, cot®;,, >0
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AU,
AU#I+I

FIG. 4. The reciprocity relation between parallelogram tilings and fiber networks. (a) A strip in a parallelogram tiling carries a SSS
(sign of tension shown by red and green colors and magnitude shown as edge thickness). Linear combinations of these SSSs from
different strips lead to its reciprocal fiber network (blue lines with white cross-linking nodes). (b) A different linear combination of SSSs
of the parallelogram tiling leads to a different fiber network, which is parallel to other fiber networks that are reciprocal to the same
parallelogram tiling. (The definition of the parallel relation between diagrams is introduced in Appendix D.) Green and red arrows show
irrotational and FM displacements ¥ and i relating these fiber networks, respectively. (¢) Similarly, different linear combinations of
SSSs of a fiber network lead to different parallelogram tilings that are parallel to one another. (d) Illustration of the dual transfer matrix at
a quadrilateral (red solid lines). Gray dashed lines show the corresponding fibers of the strips i and j that cross at this quadrilateral. Black
dashed lines denote the corresponding parallelogram where A9, , = A0;,, = 0. (e) A strip i of parallelograms carries a bulk FM where
AU ﬁm (red arrows) is the same at every vertical edge. (f) After small rotations of every vertical edge in directions such that
A0, cot®,,, < 0 at each modified parallelogram (black dashed lines show the vertical direction, light blue solid lines show extended
direction of the rotated edges so the rotation is more visible, and orange arrows show the direction of rotation), the FM decays from left

to right, as determined in Eq. (3.5).

(£ 0) at most parallelograms along the strip, the FM edge
rotation AU* coherently grows (or decays) along the
strip. We show such an example of an isolated strip in
Figs. 4(e) and 4(f).

It is worth pointing out that the same dual transfer matrix
applies to SSSs on fiber networks because of the mechani-
cal dual theorem that we discuss in Appendix E.

In principle, one could use this dual transfer matrix to
calculate FMs for any modified parallelogram tilings. The
math is more involved than calculating FMs in modified
fiber networks, because here it is the FM edge rotations
AU" that enter the dual transfer matrix, and to obtain the
FM, one needs to solve for the node displacement vectors.
It is a well-defined problem given proper boundary con-
ditions (similar to the boundary conditions discussions
in Ref. [34]).

B. Topological winding number of a strip
in modified parallelogram tilings

A topological winding number can be defined for the
localized FM on a strip, following a similar discussion in

Ref. [34] of the topological winding number for boundary
FMs on bent fibers. To do this, we need to first define a
compatibility matrix, the null space of which describes the
FM on a strip. Because of the nature of the strip FM, as
described by the dual transfer matrix that we define above,
the compatibility matrix maps the edge rotations AU*
along strip i, instead of the node displacements, to edge
extensions

N;
8lipy =Y  ConAUL,.

m=1

(3.6)

where N; is the number of parallel edges in strip i. The
compatibility matrix is given by

Cpp = sin ®i,m [5b.m - (1 + Aei,m cot ®i,m)5b—],m}' (37)
Here the edge extension o/;;, denotes the extension of the
top edges of this strip [see Figs. 4(e) and 4(f)]. The setup is
that the bottom of the strip is fixed and nodes on the top can
move. The component of the site displacements that are
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perpendicular to the vertical edges give the edge rotations
AU*, and the compatibility matrix describes how they
extend the edges on the top. One can also obtain this setup
by fixing the top boundary and calculate bottom edge
extensions, and the result will be the same. In addition, it is
easy to see that if a set of edge rotations satisfies the dual
transfer matrix for FMs [Eq. (3.5)], one gets 6/; , = 0 for all
edges, as expected.

We can then define a topological winding number for
this strip using the momentum space form of this compat-
ibility matrix C(q;, g,) where the two momenta g, ¢,
corresponding to real-space label b for the (top row) edge
extensions and label i for the (vertical) edge rotations. Note
that this Fourier series is based on labeling the quadri-
laterals along the strip which have different sizes, and thus,
they are not homogeneous in space. The winding number of
strip i is then defined as

2n

11 d
N; %dk—lmlndetC(ql +k,qr + k),

0

which can take two values O corresponding to the FM
localized on the right and 1 corresponding to the FM
localized on the left. This winding number is well defined
only when the strip does not have a bulk FM, so the phonon
spectrum is gapped, and this corresponds to the case where
not all quadrilaterals are parallelograms.

The form of this winding number is the same as the one
that appeared in Ref. [34] for disordered fiber networks.
A detailed discussion of how this winding number controls
the localization of a FM in a 1D disordered chain and why it
takes only values O and 1, can be found in Ref. [34]. This
winding number is an extension of the winding number
defined in Ref. [10] to nonperiodic systems.

C. Topological polarization of the Penrose tiling

In previous sections, we show that in an arbitrary tiling
of parallelograms, rotating edges by small angles can
localize FMs and SSSs on opposite ends of strips of
parallelograms, and we name these tilings after the geo-
metric changes the modified parallelogram tilings. The
exponential localization of these FMs and SSSs, when the
parallelogram shape changes are coherent along the strips,
is topological and described by a winding number as
defined in Eq. (3.8).

In this section, we discuss how a 2D “topological
polarization vector” Ry can be defined in quasicrystalline
parallelogram tilings as a bulk topological invariant, and we
use the Penrose tiling as an example.

First, there are five families of strips in a Penrose tiling
perpendicular to the five star vectors {d,} that are used in
generating the tiling in the GDM. We define these
perpendicular directions to be {@:} which are along
7/2,97/10,13z/10,17z/10, z/10.

Naively, one may try to pick one family of strips and
polarize them, leaving all other families of strips unpolar-
ized, to obtain a state with Ry pointing along these strips
(ai). However, the operation that polarizes a strip cannot
be isolated: It involves rotating edges perpendicular to the
strip. When edges in a strip are rotated, nodes are displaced
to arrive at the modified parallelogram tiling, in which the
edges in other strips are necessarily rotated as well.

Thus, we choose to pick a subset of nodes in the Penrose
tiling and give them small displacements, and study the
topological polarization of the resulting modified Penrose
tilings. When a node is displaced, all edges connecting to it
are rotated, which affects the FMs associated with the strips
that pass through these edges. Upon taking care of the
gauge choice of unit cells, an integer n; can be defined for
each family i of parallel strips based on the winding number
N;, such that n; = 1 if the FM is localized at the tips of
these strips where d;- points to, and n; = —1 if the FM is
localized at the opposite tips of these strips. The bulk
topological polarization of the whole modified Penrose
tiling (which we call “topologically polarized Penrose
tilings” from now on) is then

5

- L

Ry = E n;a;,
i—1

which exhibits the orientational symmetry of the star
vectors.

For example, we focus on the z = 5, 6, 7 vertices shown
in Fig. 1(b) and consider displacing the center nodes of
these vertices by a small amount 7. [Note that there are two
types of z =35 vertices in the Penrose tiling, and we
displace only the type shown in Fig. 1(b).] Using the
FM dual transfer-matrix equation (3.5), we find how 7,
polarizes all the strips. In Fig. 1(c), we show the polari-
zation of each strip when 7, points to different ranges of
angles. These z =5, 6, 7 vertices appear in the Penrose
tiling in different orientations, and the corresponding

(3.9)

polarization phase diagrams for n; and ﬁT appear to be
all the same for these vertices at different orientations. By
displacing all these vertices, we obtain the topologically
polarized Penrose tilings shown in Fig. 1.

One can also choose to perturb the geometry in other
ways to polarize the tiling. In Fig. 5, we show a complete
list of vertices and their corresponding topological polari-
zation phase diagrams.

If n; are allowed to take independent values at each strip,

there are 2 = 32 different values of I_éT. Our studies based
on displacing nodes realized all these 32 different choices,

as shown in Figs. 1(c) and 5. These ET directions, in stark
contrast to symmetry directions in periodic lattices, origi-
nate from the special symmetry of the quasicrystalline
Penrose tiling.

This R7 is a bulk topological invariant based on the long-
range order of the quasicrystalline tiling. It is analogous to
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FIG. 5. A complete list of vertices (top row) in the Penrose tiling and their corresponding phase diagrams (bottom row) of the
topological polarization as a result of their displacements. We use the same convention here as in Fig. 1. (a) z = 5, 6, 7 vertices which
give the same phase diagram. These are the vertices we use in Fig. 1 to polarize the Penrose tiling. (b) Another type of z = 5 vertices
which give a different phase diagram. (c)—(e) z = 3, 4 vertices. For these vertices, the FMs remain bulk modes on strips of
parallelograms along some directions because these strips do not pass through these z = 3, 4 vertices. We denote these directions using

gray dashed lines in the phase diagram.

the topological polarization in 2D and 3D crystals, but it
can exhibit noncrystallographic symmetry.

This topological polarization tells us the number of
localized FMs on the boundaries when we make a cut
on the tiling. To avoid trivial FMs generated by dangling
ends, we define a proper cut to be one such that all
parallelograms share an edge with at least two neighbors.
As a result, the corresponding fiber network has no
dangling ends, i.e., the fibers terminate only at cross-links.
It is worth noting that the corresponding finite parallelo-
gram tilings and finite fiber networks are only “quasireci-
procals” of one another because the nodes on the
boundaries of the parallelogram tilings do not map to faces
in the fiber networks, and thus, one cannot apply Eq. (D9)
to them to find the number of FMs. A pair of such
quasireciprocals is shown in Fig. 6.

Instead, the number of FMs is equal to the number of
fibers in the quasireciprocal fiber network minus 1. We can
see this from the following analysis. Suppose there are Ny
fibers in the quasireciprocal fiber network, and each fiber i
has N; nodes (cross-links) on it. The total number of nodes
in the fiber network is then

1
Nﬁber :EZN’
i=1

(note that each node lives on two fibers, so we have the
factor of 1/2), and the total number of edges (fiber
segments) is

(3.10)

N

Efiber = Z(Nt - 1)

i=1

(3.11)

Thus, the number of parallelograms in the quasireciprocal
parallelogram tiling is (not including the exterior face)

1 o
Fiiling :§;Nh (3.12)
and the number of edges is
Ny
Eiiting = Z(Ni +1). (3.13)

i=1

Note that each strip has two extra edges at the ends which
have no corresponding edges in the fiber network. Using
Euler’s theorem again (excluding the exterior face which is
not a parallelogram in the tiling), we have the number of
zero modes in the tiling
No = 2Niing — Eiiling = Nr + 2. (3.14)
The number of FMs in the parallelogram tiling follows by
removing the three trivial zero modes,
N, =Np-1. (3.15)

It is straightforward from Sec. IIA that one FM is
associated with one strip. Out of all linear combinations
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FIG. 6. The quasireciprocal relation between a finite parallelo-
gram tiling and a finite fiber network (Ny = 4). Corresponding
edges are shown in the same color (solid for the fiber network
and dashed for the parallelogram tiling). In this figure,
Vfiber = Ftiling = 6, Efiber = 8, Eliling = 16, so the number of
FMs in the parallelogram tiling is N,, =3 = Ny — 1.

of these strip bulk FMs, one is the global rotation. For a
large parallelogram tiling, we can ignore this one and
take N,, ~ Np.

Therefore, the number density of localized FMs on a cut
boundary s is

where p; is the number density of terminating fibers on this
boundary, 71, is the outward normal unit vector of the

boundary, and ﬁi is the dipole moment of the local count of
FMs, as defined in Ref. [10]. As a result, in Fig. 1(a) the

bottom left boundary perpendicular to I$T has no FMs and
is as rigid as the bulk, whereas the top boundaries have

more localized FMs than the number determined by 132 To
characterize this effect, we calculate the weight of the zero
modes on each node «a defined as

1 QS (9
Na=-—_ g . (3.17)
Ny <

where the sum is over all zero modes labeled by s, and z_i((f)

is the displacement vector of mode s on node a. The total
number of zero modes N, normalizes this weight. The sum
includes the trivial three zero modes. One could also choose
to exclude them, which merely results in an O(1/N)
change in the zero-mode weight 7, on each node.

Exponential localization of FMs induces very asym-
metric mechanical responses in opposite boundaries,
an effect explored in Refs. [26,34]. Here we perform
numerical simulations to measure the local stiffness on
opposite boundaries in a topologically polarized Penrose
tiling with topological boundary FMs. More details of
our simulation can be found in Appendix H. As shown in
Figs. 1(d) and 1(e), the boundaries toward which Ry
points show significantly lower local stiffness than the
opposite edge, due to the exponentially localized topo-
logical FMs.

It is worth pointing out that the fiber networks dual to
these quasicrystalline tilings are also quasicrystalline. In
particular, the intersecting points along each fiber are 1D
quasicrystalline arrays. According to the mechanical dual-
ity theorem we discuss in this paper, when the quasicrys-
talline tiling exhibits bulk topological polarization Rz, its
dual fiber network exhibits the opposite bulk topological

polarization —ﬁT.

D. Waveguiding and stress focusing using
topological quasicrystalline designs

A unique advantage of quasicrystalline structures is that
they can exhibit arbitrary orientational symmetry [57]. This
gives us an opportunity to design interfaces of quasicrys-
talline domains of arbitrary shape, with topologically
protected FMs or SSSs localized at these interfaces.
Natural applications of this phenomenon include wave-
guiding and stress focusing. There has been a plethora of
recent work on waveguiding using topological edge or
interface modes in periodic lattices. The shape of the
waveguide is limited by the crystallographic symmetry
of the lattice in these designs. This constraint can be lifted
by using quasicrystalline structures.

Here we discuss a specific example of designing a
waveguide of an irregular shape, as shown in Fig. 7,
using quasicrystalline tilings. Given the irregular shape,
we first separate this waveguide into sections of straight
lines [Fig. 7(a)]. We then choose star vectors per-
pendicular to each of these line segments [Fig. 7(b)]
and generate a quasicrystalline tiling from these star
vectors. In particular, we choose the phases of the
parallel fibers such that there are strips of parallelo-
grams that lie exactly at these line segments. These strip
segments thus serve as the quasicrystalline interface for
the waveguide. We displace the nodes in the left and
right domains, such that all strips passing through the
domain wall have topological polarization pointing at
the interface [Fig. 7(c)]. As a result, we obtain an
interface of an arbitrary shape with exponentially local-
ized FMs, which can be used for waveguiding.

Similarly, if we choose topological polarizations of
the strips to point away from this interface, we obtain
topological SSSs exponentially localized at this interface
[Fig. 7(d)]. These focused SSSs may have important
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FIG.7. Topological waveguiding and stress focusing using quasicrystalline tilings. (a) Target waveguide with an irregular shape, with
different straight line segments marked by different colors. (b) Star vectors are chosen such that every star vector is perpendicular to a
line segment (marked by the same color). (c) Quasicrystalline parallelogram tiling generated using these star vectors. This tiling has
topological FMs localized at the interface for waveguiding. Zero-mode weights 7, on each node are shown using both the color and size
of the disks (same convention as in Fig. 1). The modes are calculated using open boundary conditions. The blue shaded strips illustrate
the geometry for waveguiding, where the boundary sites are fixed except at the input and output areas. (d) Choosing opposite topological
polarizations from (c) leads to topological SSSs at the interface. The SSS weights p, on each edge are shown by both color and
thickness. Fixed boundary conditions are used for this SSSs calculation, yielding information on stress distribution when the structure is

subject to external stress.

applications such as fracturing protection [35] and selective
buckling [27].

IV. CONCLUSION AND DISCUSSION

In this paper, we discuss topological mechanics in
parallelogram tilings, and we are particularly interested
in quasicrystalline tilings. We show that with small geo-
metric changes in node positions, FMs in parallelogram
tilings can change from bulk modes to topological boun-
dary modes. Our construction works for both ordered and
disordered tilings of parallelograms, and we discuss the
particularly interesting class of quasicrystalline tilings and
use the Penrose tiling to demonstrate our results.

We find that the bulk topological polarization Ry of the
Penrose tiling is tenfold symmetric, allowing rigid boun-
daries to show up in ten different directions (Fig. 1).

Similarly, in other quasicrystalline tilings, R also follows
their quasicrystalline symmetry. For example, if one gen-

erates tilings from 7-grids or 9-grids, the corresponding Ry
will have 14 fold or 18 fold symmetry. This noncrystallo-

graphic symmetry of Ry opens the door to designs of new
quasicrystalline mechanical metamaterials where the topo-
logical modes have special symmetry properties beyond the
crystallographic point group.

Our work extends topological boundary floppy modes to
quasicrystalline structures. The way we define the topo-
logical polarization in quasicrystals is based on the topo-
logical winding number on each strip of parallelograms.
This winding number works the same way for quasiperi-
odic and disordered parallelogram strips. Thus, the method
we use to change bulk FMs into boundary FMs also applies

completely to disordered parallelogram tilings, which are
reciprocal to disordered fiber networks. Our construction
shares similarities with various formulations to define
topological invariant in disordered systems [7,58—-61].
However, there is one major difference between topologi-
cal boundary modes in disordered networks and in quasi-
crystalline tilings: Quasicrystalline tilings have long-range
order, which_allows the definition of a bulk topological
polarization Ry. Our results for the Penrose tiling highlight
this uniqueness of topological mechanics in quasicrystals.
Periodic crystals such as topological kagome and square

lattices have well-defined topological polarization ﬁT for the

entire bulk, but the point symmetry of ET must obey the
crystallographic point group [10,12,25]. Disordered networks
such as the Mikado model and the random parallelogram
tilings have only well-defined topological polarization for
each 1D strip through averaging over disordered configura-
tions [34]. We show that quasicrystals such as Penrose tilings

have well-defined ﬁr for the entire bulk, while the point

symmetry of ﬁT is the same as that of the quasicrystal,
extending beyond the crystallographic point group.

Our results also show consistency with previous work on
topological boundary modes in jammed matter [8]. In
Ref. [8], the Penrose tiling was generalized (each node
randomly displaced) to model jammed packings (a scenario
proposed in Ref. [49]), and a large number of Weyl points
were observed. From the theoretical framework we develop,
generalizing the Penrose tiling will cause strips of parallel-
ograms to have random topological polarizations. As a
result, the unit cell which contains multiple strips shows
multiple modes decaying in various directions. This gives
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rise to Weyl points, which separate wave vectors associated
with opposite polarizations. It would be an interesting
question to ask under what conditions, e.g., certain external
strain, a jammed packing will show a bulk topological
polarization. This will be a topic for our future studies.

It will also be interesting future work to consider other
definitions of topological polarization in a quasicrystalline
tiling of parallelograms, taking advantage of their quasi-
periodic translational order: They can be written as a sum of
periodic structures relating to crystals at higher dimensions,
and they are not random. Some interesting explorations
of defining the topological index in quasicrystals in
photonic, phononic, and electronic systems can be found
in Refs. [1-3,62—-65]. Studying the analog of Weyl points in
quasicrystalline tiling is another interesting future
direction.

The mechanical duality theorem we review in this paper
is known to the mathematical and engineering commun-
ities, but it remains largely undiscussed in the condensed
matter community. It relates SSSs and FMs in reciprocal
structures, as well as the Airy stress function and 3D
polyhedral surfaces that projects orthogonally into the 2D
structure (“liftings”) [53,54]. In addition to helping us
understand the topological mechanics in quasicrystalline
parallelogram tilings, we believe that the full potential of
this duality theorem has yet to be explored in many soft
matter problems, such as jamming of granular particles,
gelation in dense suspensions, and motility of cell
sheets [66].
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APPENDIX A: METHODS OF GENERATING
QUASICRYSTALLINE STRUCTURES

In this Appendix, we review two well-known methods to
generate quasicrystalline structures—the CPM [67] and the
GDM [57]—both of which are very useful for our later
discussions of topological mechanics in quasicrystals.

In the CPM, a quasicrystalline structure is obtained by
cutting a periodic lattice in a higher-dimensional (D) space
with a lower-dimensional (d) surface that is incommensu-
rate with the lattice planes and project lattice sites that are
within a certain distance to the surface.

The Penrose tiling can be obtained by cutting a five-
dimensional (5D) hypercubic lattice with a 2D plane. The
2D plane is spanned by two vectors in the 5D space €; and
€,, with their components in the 5D space given by
e); =cos(i—1)8,, ey =sin(i—1)0,, for i =1,2,...,5,
and 6, = 2r/5 (p stands for Penrose tiling). Each site in
the 5D hypercubic lattice can be labeled by a set of five

integers m = (m;,m,, ...,ms), and we take the lattice
constant to be 1. Now, we pick out a thin layer of lattice
sites very close to the 2D plane spanned by ¢, and &,
according to the following equation,

: (A1)

1
m; = \\Sleli + S2e5; + v +_J >
where s;, s, € R, making the combination s;e;; + s,e5;
running through all points in the 2D plane. | x| is the integer
floor function which gives the integer part of x, y,’s are
offset constants, and the term 1/2 shifts the floor function
such that it gives the closest integer.

This equation maps each point on the plane into a thin
layer of sites in the 5D lattice. This is a noninjective
mapping from a continuous plane onto discrete sites. An
intuitive way to think about this mapping is to assign each
site in the 5D lattice a hypercube unit cell centered around
this site. The part of the cutting plane in a unit cell is
mapped into the site of this unit cell. A 2D to 1D mapping
of this type is shown in Fig. 8. Taking other values of y;’s
simply shifts the cutting plane.

Projecting these chosen sites (each labeled by an array of
five integers /m) onto the 2D plane yields a set of points

Fam={m-é,m-é}, (A2)
which are sites in the Penrose tiling. Edges in the Penrose
tiling are defined between pairs of projected sites that are
nearest neighbors in the 5D lattice.

The GDM is a more general method that can be used to
generate quasicrystals with arbitrary orientational sym-
metry. This method consists of the following five steps:

FIG. 8. Using the CPM to project a 2D square lattice to a 1D
quasicrystalline chain. The solid line cuts the square lattice in an
incommensurate direction. It is separated into small segments
which belong to the unit cells it passes through (represented by
red and blue colors). Each segment is mapped into the lattice site
(black disks) associated with the unit cell it belongs to [according
to the 1D version of Eq. (A1)]. These sites are then projected to
the line, yielding the quasicrystalline 1D chain (cyan disks).
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(1) D “star vectors” @; with i = 1, ..., D are chosen in a d-
dimensional space (d = 2 in the cases we consider). (2) An
infinite set of periodically or quasiperiodically spaced
parallel planes are introduced normal to each star vector,
forming a D grid. (3) Each plane normal to g; is labeled by
an integer m; representing its ordinal position in the a;
direction. (4) The d-dimensional space is cut by the planes
into nonoverlapping polyhedra which can be labeled by a
set of N integers (my, ..., mp) such that the polyhedra are
between planes m; — 1 and m; in each direction ;. (5) Each
polyhedra is then mapped into a site in the quasicrystal
through

Fa= ) mi;. (A3)
i=1

The special example of Penrose tiling is obtained by

taking D =35 and star vectors in the directions of

0,2r7/5,4r/5,6x/5,8x/5 in a plane (d =2), and the

parallel planes are simply parallel lines, which cut the

2D plane into polygons, as shown in Fig. 2.

The GDM reveals an intriguing dual relation between the
Penrose tiling and D grids which are networks of fibers.
Viewing these two structures as graphs, it is straightforward
to see that there is a dual relation between them where
edges <> edges and sites <> faces (Fig. 2). Moreover, an
edge in the Penrose tiling is perpendicular to the corre-
sponding edge in the D-grid fiber network that is used to
generate it because the edges generated in the GDM are
along the star vectors. As we discuss in later sections, this
dual relation makes the Penrose tiling and the D-grid fiber
network generating the Penrose tiling Maxwell reciprocal
diagrams of each other, and it is the basis for establishing
topological mechanics in the Penrose tiling, and more
generally, any parallelogram tiling, from the known results
of the topological mechanics of fiber networks.

Quasicrystals generated by the CPM can all be generated
by the GDM. Their equivalence can be realized by viewing
the parallel planes in the GDM as the projections of the D
families of the hypercubic lattice planes that separate the
unit cells in the high-dimensional crystal. The polygons in
the GDM correspond to the part of the cutting plane that
belongs to different unit cells of the lattice. Equation (A3) is
equivalent to Eq. (A2) because the @;’s are simply the
projections of the D-dimensional lattice primitive vectors
onto the d-dimensional space.

In practice, we generate our quasicrystalline parallelo-
gram tilings using the GDM, which can be conveniently
written into a set of simple equations to solve for 7. Details
of our numerical methods can be found in Appendix B.

APPENDIX B: GENERATING THE PENROSE
TILING USING THE GDM

In this Appendix, we discuss the numerical procedure
following the GDM that we use to generate the Penrose

tiling we use in this paper. As we discuss in the main text,
we start from a 5-grid and map each polygon face to each
node in the Penrose tiling. Each line in the 5-grid is labeled
by m; where i = 1, ..., 5 denotes the five directions. Every
node in the 5-grid is associated with the pair of lines that
cross at this node {m;, m;}. We find the space in the other
three directions {m;} where this node {m; m;} sits in
through the following equation

my(m;, mj) = LTEB

2
(m; +y;) + Tg,i;(mj +v;) =i+ 1],

(BI)

with 7)) = —{[sin(j — 1),]/[sin(i — j)6,]} and <) =
{[sin(i = 1)0,]/[sin(i = j)8,]}, 0, =2x/5, and the y,’s
are the shift of the lines relative to the origin. The first
two terms give the projection of this node in the star-vector
a, direction. With the shift of —y; + 1, the floor function
finds the space labeled by m; (which is between lines
m,;_; and m;). With this equation, we find four polygons
surrounding this node, {m;,m;,{m;}}, {m;+1,m;, {m}},
{m;,m; 4+ 1,{m;}}, and {m; +1,m; +1,{m;}}. These
give four neighboring nodes (which surround the paral-
lelogram corresponding to node {m;,m;} in the fiber
network) in the Penrose tiling through Eq. (A3).

We then scan through pairs from the Cg = 10 choices
from the set {m, m,, ms, my, ms} and take a large range of
m values in each direction. This finds all the polygons in the
range of the fiber network we generate, although each
polygon is scanned multiple times. The resulting Penrose
tiling is cut into finite domains for our calculations of
boundary FMs. In particular, we take y; = 0.6 for all i,
which satisfies the condition of Zle y; = integer condi-
tion for Penrose tiling with the matching rules, as discussed
in Ref. [67].

APPENDIX C: MAXWELL RECIPROCAL
DIAGRAMS AND EQUILIBRIUM STRESSES

Maxwell introduced the concept of reciprocal diagrams
(called reciprocal figures in his original papers) and used it
to solve equilibrium forces on mechanical frames [55,56].
Two diagrams A and A*, which are both networks of nodes
connected by straight edges, are reciprocal to one another if

(1) they contain equal numbers of edges;

(ii) the corresponding edges in the two diagrams are

perpendicular to one another;
(iii) the corresponding edges that converge to a point in
one diagram form a closed polygon in the other.
Per Maxwell [55,56], “reciprocal figures are such that the
properties of the first relative to the second are the same as
those of the second relative to the first.” Here the two
reciprocal diagrams have a dual relation between them
where edges <> edges and sites <> faces, similar to the
relation between dual graphs, but with the extra require-
ment that the corresponding edges are perpendicular.
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FIG.9. Maxwell reciprocal diagrams and the mechanical duality theorem. (a) A pair of reciprocal diagrams AL A*. Edges (marked by
squares) corresponding to one another are labeled by the same number in A and A*. Nodes in A (circles) correspond to faces in A*
(including the exterior face) with the same number. Faces in A (triangles) correspond to nodes in A* with the same number. Equilibrium
stresses that generate the reciprocal are marked by the thickness of the edges, and the red and green colors correspond to two signs of
tension. (b) Two SSSs of frame A lead to its two reciprocal diagrams A*, A7. This shows an example of the mechanical duality theorem
discussed in Appendix E: FMs of A* and SSSs of A (except for the one that generates A*) have a one-to-one mapping—they both
correspond to Aj. The irrotational and FM displacements ¥ and # are shown by green and red arrows, respectively (defined in
Appendix E). (c) Reciprocal relations between periodic lattices. Any Maxwell lattice A must have at least two SSSs at ¢ = 0 [as we
discuss at Eq. (D6)], leading to two reciprocal diagrams A* and A3, which are both Maxwell lattices as well with the same periodicity.
Each of A* and A} must also have at least two SSSs leading to A and A,. As we discuss in Appendix E, because A||A, and A*||A3, they
are related by irrotational displacements ¥ (green arrows) and the corresponding FM i (red arrows) which belong to a group of FMs in
Maxwell lattices called the Guest-Hutchinson FMs (see Ref. [30]).

In some versions, reciprocal diagrams are also defined
with parallel edges, but they simply relate to reciprocal
diagrams with perpendicular edges by a homogeneous
rotation of /2.

As pointed out by Maxwell [55,56], starting from a
frame A, a reciprocal diagram A* can be built from an
equilibrium tension distribution on edges (struts) in A.
Here, “equilibrium” refers to the condition that the net force
on any node (hinge) is zero. The length of each edge i* in
the reciprocal diagram A* is proportional to the tension ¢;
on the corresponding edge i in the original frame A. The
condition that the total force is zero on each node in A can
be written as

(C1)

where the sum is over all edges i that connect to node @, and
b; is the unit vector along the edge i. Note that the tension 7;
can have positive or negative signs, and the edge length will
be just determined by the magnitude |;]. A convention can
be taken such that one first assigns a direction l;l- to every
edge and if the force on node a is positive if it is along b;,
and negative if it is against l3,». As a result, the corres-
ponding set of edges i* [of length |¢;| and direction
sgn(t;)bi Lb;] form a closed polygon a* in the reciprocal
diagram A*, yielding a face that is dual to node a in A. Each

edge i in A connects two nodes a, #, which correspond to
two faces o, f* that share edge i* in A*. In addition, one
can also view A* as a mechanical frame and A as the
reciprocal diagram due to their reciprocity. From this
geometric relation, it is obvious to see that the converse
of this statement is also true: If a frame has a reciprocal
diagram, it must be able to carry an equilibrium distribution
of stress. In Fig. 9(a), we show an example of a pair of
reciprocal diagrams. In the following discussion, we denote
such a reciprocal relation as ALA*.

After the concept of “state of self-stress” was introduced
[68,69], a one-to-one correspondence between reciprocal
diagrams and states of self-stress has been established
rigorously [53,54]. Therefore, the existence of reciprocal
diagrams for a given frame is equivalent to the existence of
states of self-stress.

APPENDIX D: STATES OF SELF-STRESS,
FLOPPY MODES, AND THE EXISTENCE OF
RECIPROCAL DIAGRAMS

Linear mechanical properties of frames can be described by
the equilibrium matrix Q which controls the statics and the
compatibility matrix C which controls the kinetics [68,69],

Q.
C-.

~1
I
DL Sw

(D1)

S
I
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where 7, f, ii é are vectors denoting tension on struts, total
force on sites, site displacements, and strut extensions,
respectively. For a frame containing N hinges and E struts,

vectors 7 and ¢ are E dimensional, and vectors f‘ and i are Nd
dimensional where d is the dimension of space, and we take
d = 2 for all of our discussions.

Vectors in the null space of Q represent equilibrium
distributions of tensions on struts that result in no net force
on hinges, called SSSs. Vectors in the null space of C
represent hinge displacements that do not change the length
of any strut, called zero modes. A subset of these zero
modes, excluding trivial ones for rigid translations and
rotations of the whole frame, are called FMs or mecha-
nisms, which denote relative displacements of hinges
(deformations).

It is straightforward that the two matrices Q and C are
transpose of one another; in fact, both of them are simply
determined by the directions of the struts. Therefore, they
must have the same rank. Applying the rank-nullity theorem
to these matrices leads to the Maxwell-Calladine index
theorem

v=Ng—N;,=2N —E, (D2)
where v is the Maxwell-Calladine index, and N and N, are
the numbers of zero modes and SSSs in the frame. An
intuitive way to understand this equation is that, when an
additional strut is introduced to the frame (E increases by 1),
it is either a new constraint and eliminates one zero mode, or
it is a redundant constraint and introduces a new SSS.

For a frame to be able to support certain external stress
(e.g., shear or compression), the stress must overlap with at
least one SSS because SSSs describe the complete linear
space of possible distribution of stresses in the frame
leaving all nodes in force balance. For this reason, the
relation between SSSs and reciprocal diagrams has been
exploited in the literature to study interesting problems
such as jamming of granular particles [70—73] or cell sheets
with active tensions [66].

The number of FMs in a finite frame with open boundary
conditions (no external forces on hinges) is then given by

N, =2N—-E+ N; -3, (D3)
where we subtract the three trivial zero modes of rigid
translations and rotation.

This formulation [except Eq. (D3)] applies equally to
periodic structures, where the relation between the number
of zero modes ny(g) and SSSs n,(g) at each momentum
point g is given by

- - -

u(q) = no(q) —ny(q) =2n—e, (D4)

where v(g) is the Maxwell-Calladine index at momentum
g, and n, e are the number of hinges and struts in each unit

cell. Under periodic boundary conditions, there is no trivial
rotational zero mode, and there are two trivial translational
zero modes live only at g = 0.

With this formulation, we can now consider the existence
of reciprocal diagrams. A finite frame has a reciprocal
diagram only when it has a SSS,

N, > 0. (D5)
If Ny > 1, the frame has multiple reciprocal diagrams, and
they form a linear space as we discuss more below.

For periodic lattices, SSSs at different ¢ can be used to
generate reciprocal diagrams at different unit-cell sizes. In
particular, Maxwell lattices (i.e., (z) = 4 so 2n = ¢) have

n(G=0)22 (D6)
from the two trivial translational zero modes at ¢ = 0, so a
Maxwell lattice must have at least two reciprocal diagrams
with the periodicity the same as its own. An example
illustrating this is shown in Fig. 9(c).

Further interesting results can be derived concerning the
number of reciprocal diagrams. For a finite frame, the
number of hinges (N), struts (E), and faces (F) are related
by Euler’s formula

N+F—-E=2. (D7)
The reciprocal diagram has
N*=F, F*=N, E* =E, (D8)

and these numbers are also related by the Euler’s formula.
One then has a relation between the numbers of FMs and
SSSs of finite reciprocal diagrams [54]
(N = Ng) + (N = Nj) = =2. (D9)
Perhaps the simplest case of a pair of reciprocal diagrams is
then Ny=N; =1 and N,, = N,, =0. The reciprocal
diagrams pair shown in Fig. 9(a) is such an example.
Another interesting case is when a diagram A has N, = 2
and N,, = 0. The two SSSs can be used to generate two
different reciprocal diagrams A* 1A and AZLA. Because
both A* and A} are reciprocal to A, there is a simple
mapping between A* and A; such that face < face,
node <> node, and edge <> edge, and the corresponding
edges in A* and A} are parallel to one another. We denote
this relation as A*||A}. According to Eq. (D9), we have
Ny, — N; =0 for both A* and Aj. Naively, one might
expect A* and A} to be “isostatic” (i.e., N;, = Ny = 0), but
this cannot be true because each of them has at least one
SSS that leads to A. We show such an example in Fig. 9(b)
where N}, = N = 1for A* and A3. There is actually a deep
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relation between these diagrams with multiple SSSs
present, and we further discuss this in Appendix E.

It is worth noting that counting the number of faces in a
diagram is not always trivial. If the diagram is a planar
graph (which is the case for most soft matter problems), the
count is obvious, and one just needs to add the exterior face
for finite diagrams, which is already included in Euler’s
formula. This also works for nonplanar diagrams that are
projections of a spherical polyhedron [such as A in
Fig. 9(b)], and the face counting is according to the
polyhedron. A mathematically rigorous discussion of this
reciprocal relation can be found in Refs. [53,74].

For periodic lattices, a similar derivation leads to

[n0(q) — n;(§)] + [n5(q) — n5(q)] =0 (D10)
for every ¢. One can also write this relation as
v(q) = -v(q). (D11)

Note that the original lattice and its reciprocal may have
different primitive vectors, and the momentum ¢ here is
measured in units of the lattice’s own reciprocal vectors. In
other words, when using this equation, one has to bear in
mind that § denotes wave numbers rather than actual
lengths in momentum space. In addition, it is the number
of zero modes ng(q) that enters this formula rather than the
number of FMs, which is the case for the finite frames
in Eq. (D9).

Thus, reciprocal periodic lattices have opposite
Maxwell-Calladine indices at every momentum, and thus,
the reciprocal diagram of a Maxwell lattice must also be a
Maxwell lattice.

Equations (D9) and (D11) tell us that the numbers of
zero modes and SSSs between reciprocal diagrams relate in
an opposite way. We show below that, in fact, their relation
is beyond this: There is a geometric mapping between each
SSS in a frame and each FM in its reciprocal diagram and
vice versa.

APPENDIX E: MECHANICAL DUALITY
BETWEEN RECIPROCAL DIAGRAMS

Theorem 1: For any pair of reciprocal diagrams, there is
a one-to-one mapping between each state of self-stress in
one diagram (excluding the one that generates the recip-
rocal diagram under consideration) and each floppy mode
of the reciprocal diagram.

To prove this theorem, we start by considering a diagram
A which has two linearly independent SSSs [see, e.g.,
Fig. 9(b)]. As we discuss in Appendix D, they lead to two
different diagrams A*||A5 which are both reciprocal to A.
Because the corresponding edges in A* and A3 are parallel
to one another, the node displacements 7, that lead from
A* to A5 must satisfy

~

(Vo = V) X by =0, (E1)
where b, is the unit vector pointing along edge i* which
connects nodes a*, f* in diagram A*. In other words, these
displacements must be irrotational.

Next, we show that having A*||Aj is equivalent to the fact
that diagram A* has a FM. We define a new set of node
displacements i, which are 7, rotated by z/2 at each
node . We then have

(i — iy ) - by =0, (E2)
so i, does not change the length of any edge, and it is a
FM of A*. The converse is also true that from any FM of a
diagram, one can build a parallel diagram. Figure 9(c)
shows an example of applying this theorem to periodic
Maxwell lattices.

Therefore, the mechanical duality theorem is proven
because from any additional SSS of a diagram A one can
construct an additional reciprocal diagram A5 which is
parallel to the first reciprocal diagram A* and yields a FM
of A*. On the other hand, if a diagram has a FM, it has a
parallel diagram, which is also reciprocal to its reciprocal
diagram, yielding an additional SSS of the reciprocal.

This theorem indicates many interesting properties of
frames, especially Maxwell networks. For example, for two
Maxwell periodic lattices that are reciprocal diagrams of
one another, if one of them is topologically polarized, the
other one must exhibit a topological polarization in the
opposite direction. The reason is that starting from a
boundary FM of lattice A, one can construct A}||A [the
prime denotes that it is not a homogeneous lattice as A, in
Fig. 9(c)] and thus a boundary SSS of the reciprocal lattice
A* (from the difference between A and A%). Thus, the FMs
of A* must be exponentially localized at the opposite
boundary because the solutions to detQ(g) =0 and
det C(g) = 0 have opposite imaginary parts of momentum.
Therefore, A and A* have opposite topological polariza-
tions. An example of such a pair of lattices is shown
Fig. 9(c).

APPENDIX F: MECHANICAL DUALITY
BETWEEN PARALLELOGRAM TILINGS AND
FIBER NETWORKS

It is straightforward to construct the Maxwell reciprocal
diagram for an arbitrary parallelogram tiling. All faces in a
parallelogram tiling have four edges corresponding to z =
4 nodes in the reciprocal. In addition, following a strip of
parallelograms with parallel edges (the same as the strip for
the bulk FM discussion in Fig. 3), we have a straight line
perpendicular to these edges in the reciprocal. Therefore, it
is clear that the reciprocal of any parallelogram tiling leads
to a fiber network with straight fibers and two fibers
crossing at each node, as shown in Fig. 4(a). Note that
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this reciprocal relation is based on an infinitely large
parallelogram tiling where the corresponding fibers do
not terminate. For a finite tiling or a finite fiber network,
proper boundary forces have to be added for the reciprocal
relation to hold, or one can define the quasireciprocal
relations as we discuss in Sec. III.

The existence of this reciprocal relation already carries
interesting information: All parallelogram tilings must have
SSSs in order to have their fiber-network reciprocals, and
all fiber networks must have SSSs in order to have their
tiling reciprocals in the infinite size case. In fact, each strip
in a parallelogram tilings carries a SSS [Fig. 4(a)], and each
fiber in the fiber network carries a SSS where every
segment carries the same tension. Because the numbers
of SSSs in each parallelogram tiling and each fiber network
are subextensive (equal to the number of strips and fibers,
respectively), one can make linear combinations of these
SSSs to generate multiple reciprocals, and these reciprocals
are related to one another by (bulk) FMs, as shown in
Figs. 4(b) and 4(c). This follows directly from the
mechanical duality theorem that we discuss in
Appendix E, and their numbers are related by

v+uv'=(Nyg—N,)+ (Nj—N;) =0, (F1)

where we consider infinite tilings and fiber networks on
tori. Note that N is the number of zero modes instead of
the FMs in this equation. In fact,

No=N; =Ny = Ng = Np, (F2)

where Ny is the number of fibers in the fiber network
(which wraps around the torus), because each fiber and
each strip carries a SSS and a zero mode, as we show in
Figs. 4(a)—4(c).

APPENDIX G: Boundary floppy modes in fiber
networks

From the mechanical duality between parallelogram
tilings and fiber networks that we discuss above, it is
not difficult to realize that if we perturb the geometry of the
fiber network a little bit, for example, following the
construction in Ref. [34], to polarize its FMs and SSSs,
the corresponding SSSs and FMs in the reciprocal paral-
lelogram tiling (after corresponding geometric perturba-
tions) will also polarize and become boundary modes,
albeit on opposite boundaries as in the fiber network.

Here, we first briefly review the construction in Ref. [34]
to polarize fiber networks and introduce boundary FMs.
Using a transfer-matrix method which exactly calculates
the FM displacements along nodes on a fiber, we find that
the longitudinal projections of the FM displacements obey
the following equation

U, = [l —A8,cot®, +0(A2)IU,_;, (Gl)

where m labels the nodes along the fiber under consid-
eration (the direction of which we define to be left to right
as m increases, without losing generality), U, is the FM
displacement on node m projected along the fiber segment
right to node m, A@,, is the bending angle of the fiber at
node m, and ©®,, is the angle between the fiber under
consideration and the fiber that crosses this one at node m.
It is easy to see that if A@,, = 0 corresponding to the fiber
being straight at node m, the FM projection keeps the same
projection from node m — 1 to m. If the fiber is straight
everywhere, it carries a bulk FM without decay, as we show
in Fig. 4(b).

When the fiber bends at the nodes, the FM displacement
projection is no longer a constant along the fiber, instead
they evolve according to Eq. (G1), which is a leading-order
equation at small bending angles A#,,. If the bending of the
fiber is such that (U,,/U,_;) < 1 (where (- -) represents
disorder average), the FM decays from left to right on the
fiber, and the SSS grows from left to right. The transfer
matrix for the SSS on the fiber was not directly discussed in
Ref. [34]. In Egs. (3.3) and (3.4), we introduce a dual
transfer matrix for FMs in parallelogram tilings, which also
describes the localization of a SSS along a fiber according
to the mechanical duality theorem.

APPENDIX H: NUMERICAL MEASUREMENT OF
LOCAL STIFFNESS IN MODIFIED PENROSE
TILING WITH TOPOLOGICAL BOUNDARY FMS

In the simulation, a finite-size Penrose tiling within a
square box of L = 40x length of edges is prepared. We fix
the left and right boundaries of the box and leave the top
and bottom free [Figs. 1(d) and 1(e)]. We apply in the
direction 71, perpendicular to a boundary a small force f7i;
on a site i on the top or bottom boundaries: i1, = e, for the
top and 71, = —e, for the bottom edge. The elastic energy is
minimized by applying molecular dynamics with damping.
We measure the displacement i; of site i due to f. The
local stiffness at site i is then calculated through
kiocar; = f/(u; - ftg). We calculate the boundary local stiff-
ness k. by averaging ki, ; over every site on the
boundary under consideration. The magnitude of f is
chosen to be small enough that the measurement is in
the linear elasticity regime. We measure k.., as a function
of the vertex displacement 7, = ryé, which defines the
topologically polarized Penrose tiling, where the definition
of 7 is shown in Fig. 1(b). When ry > 0 (ry < 0), ﬁT is in
the e, (—e,) direction, and the FMs are exponentially
localized at the top (bottom) boundary.
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