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Abstract

The appearance of a transparent object is determined by
a combination of refraction and reflection, as governed by
a complex function of its shape as well as the surrounding
environment. Prior works on 3D reconstruction have largely
ignored transparent objects due to this challenge, yet they
occur frequently in real-world scenes. This paper presents
an approach to estimate depths and normals for transparent
objects using a single image acquired under a distant but
otherwise arbitrary environment map. In particular, we use
a deep convolutional neural network (CNN) for this task.
Unlike opaque objects, it is challenging to acquire ground
truth training data for refractive objects, thus, we propose to
use a large-scale synthetic dataset. To accurately capture the
image formation process, we use a physically-based renderer.
We demonstrate that a CNN trained on our dataset learns to
reconstruct shape and estimate segmentation boundaries for
transparent objects using a single image, while also achiev-
ing generalization to real images at test time. In experiments,
we extensively study the properties of our dataset and com-
pare to baselines demonstrating its utility.

1. Introduction
Light refracts and reflects at an interface between two

materials. For transparent objects composed of material

such as glass, ice or some plastics, scattering and absorption

are negligible, so that light passes through the material and

we observe the effect of surface refraction and reflections.

Thereby, the appearance of a refractive object is a distorted

image of its surroundings. This means that we cannot recon-

struct the shape of a refractive object using a local model,

which makes solid refractive objects particularly challenging

to handle in computer vision. We pick up this challenge

and consider shape analysis of refractive objects made of

homogeneous glass with a smooth surface, that is, glass with-

out air bubbles, significant absorption or surface scratches.

Such glass objects are common in human-made environ-

ments (windows, glasses, drinking cups, plastic containers

and so on), which makes it desirable to design a computer

vision system able to determine their geometric properties

based on a single image.

The physics of refraction and reflection observed for trans-

parent objects is well-understood. Refraction occurs when

light passes from one medium to another, the angle of re-

fraction depends on the propagation speed of the light wave

in the two media as described by Snell’s law, while the rel-

ative fractions of reflection and refraction are described by

Fresnel’s equations. The amount of reflection increases with

greater angle of incidence. When light is incident on an opti-

cally thinner medium at a grazing angle less than the critical

angle, total internal reflection occurs. Due to these different

types of interaction, the light path undergoes significant devi-

ation from a straight line when passing through a glass object

and its appearance becomes a complex combination of light

incident from the entire surrounding environment. Thus,

it is a challenging task for conventional shape estimation

methods to cope with glass objects.

Recent years have seen convolutional neural networks

(CNNs) perform well across a variety of computer vision

tasks. This includes shape estimation, where encouraging

results have been observed for point cloud, depth or nor-

mal estimation for opaque objects and diffuse scenes. A

few works consider the challenges of complex reflectance,

but also for opaque objects. Consequently, we consider

the question of whether similar CNN-based approaches are

applicable for transparent objects too. But despite the versa-

tility of CNNs in adapting to appearance variations in several

computer vision problems, our experiments demonstrate that

the gap between opaque and transparent image formation is

too vast. This is not surprising, since estimating transpar-

ent shape requires decoupling a highly complex interaction

between depth, normals and environment map.
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Figure 1: Illustration of our approach. We render a large-scale physically accurate dataset of transparent shapes observed

under arbitrary environment maps. Using this dataset to train a CNN yields accurate shape recovery results, as compared to

using a dataset of Lambertian images. We demonstrate both the need for our dataset, as well as the ability of our network to

solve this challenging inverse rendering problem.

Thus, a dataset is needed to specifically train CNNs for es-

timating the shape of transparent objects. But acquiring such

a dataset requires significant expense, as indicated in Section

2. On the other hand, shape estimation CNNs trained on syn-

thetic datasets have been demonstrated to generalize well to

real opaque scenes [5, 25]. Thus, in Section 3.1, we present

our first contribution, which is a large-scale dataset of glass

objects rendered for a variety of shapes under several dif-

ferent environment maps. Unlike several synthetic datasets,

the physical accuracy required for accurately representing

refractions is very high, thus, we use a GPU-accelerated

physically-based renderer. Given such a dataset, it is still an

open question whether an end-to-end trained CNN can dis-

entangle the complex factors of image formation to estimate

shape. In Section 3.2, we present our second contribution,

which is a CNN for estimating depth, normal maps, and

segmentation masks that achieves low prediction errors. But

more importantly, we demonstrate in Section 4 that this CNN

trained on our dataset also generalizes well to images of real

transparent objects.

Figure 1 illustrates our approach and contributions, which

are summarized as follows:

• A novel synthetic dataset for transparent objects generated

with a high-quality physically-based renderer.

• A demonstration that CNNs trained on our dataset succeed

at estimating depths, normals and segmentation.

• Empirical justification of the diversity and quality of our

rendered dataset through generalization to real transparent

objects at test time.

2. Related Work
Transparent shape acquisition Methods for acquiring

the shape of a glass object often require an elaborate in-

strumental setup, such as a CT scanner or a laser range

scanner [10]. Simpler setups have been presented in more

recent work [9, 34]. Nevertheless, such methods cannot be

used “in the wild”.

Transparent shape reconstruction The shape of a single

refractive surface, like a water surface or a glass object rest-

ing on a diffuse base, can be recovered through shape-from-

distortion techniques. Such techniques are usually based on

optical flow calculations, a known background, or a CNN

trained on a specific dataset [10, 32, 20, 26, 16]. We work

with the more challenging case of multiple refractions and

reflections in a solid transparent object. One way to deal

with this case is using texture mapping operations [37, 36]

or light path triangulation [12]. However, those techniques

only work for up to two refractions or reflections and ei-

ther require more than one view [37, 12] or user markup

of the input image [36]. Two ray-surface interactions are

too few to deal with cases of total internal reflection, for

example. Techniques based on optical flow also cannot deal

with partial reflection and refraction (Fresnel effects) and

total internal reflection [1]. Since the shape of glass objects

is notoriously difficult to acquire, state of the art in 3D re-

construction of scenes with glass objects is limited to planar

glass surfaces [33].

Shape estimation with CNNs As RGB-D cameras are

readily available, providing easy access to color images with

associated depth images, deep networks have been trained

to predict a depth image from a single RGB image [27, 7].

Using techniques for estimating surface normals from depth

and for semantic labeling based on depth and normals, this

deep learning technique has been extended to predicting

both depth, normals, and labels [6]. Different improvements



are available for the prediction of depth and normal maps

using CNNs [19, 31, 14, 13]. However, these techniques

are all based on databases built from images captured with

an RGB-D sensor. Existing RGB-D sensors do not pro-

vide reliable depth information for transparent objects [2].

As a consequence, the databases tend to avoid transparent

objects, which in turn means that existing techniques for

shape estimation with CNNs neglect the existence of trans-

parent objects. CNN-based techniques have recently been

presented for material estimation too [24, 8, 17]. While

such techniques might also be useful for labeling transpar-

ent objects, existing methods do not consider transparent

materials.

Synthetic datasets A large-scale dataset is necessary for

a data-driven method. However, manual labeling of data is

in many cases too expensive or even impossible. Thus, use

of high quality synthetic data to train a model is increasing

in popularity. Previous methods for object level single-shot

shape reconstruction have utilized large-scale shape repos-

itories such as ShapeNet [3]. However, this only contains

objects with opaque materials and therefore cannot be used

directly for transparent object shape reconstruction. In addi-

tion, the category-specific bias of the dataset may limit the

model’s generalization ability. For scene level reconstruc-

tion, Song et al. [29] proposed the SUNCG dataset which

contains 45,622 indoor scenes designed by artists. Li et

al. [15] propose another indoor scene dataset, with a custom

path tracer to model complex light transport effects such as

interreflections and shadows. We also write our own custom

GPU-based path tracer to create our dataset efficiently.

All the datasets mentioned above were initially designed

for 3D reconstruction. Meanwhile, Georgoulis et al. [8] use

synthetic datasets for material and lighting estimation, utiliz-

ing the 3D shapes from ShapeNet and rendering the images

by randomly sampling materials and lighting. Li et al. [17]

render images by applying materials from the Adobe Stock

dataset to a planar surface for spatially-varying reflectance

estimation. Xu et al. [35] create a synthetic dataset for image

based relighting by procedurally generating random shapes

to create complex scenes. A similar shape generation strat-

egy has been used in our method to create a diverse dataset

with images of glass objects.

3. Method

We aim to estimate the shape of transparent objects in

the wild. Inspired by the recent success of deep learning in

vision and graphics, we train a deep network on a large-scale

synthetic dataset generated by a photorealistic rendering

engine. In the next section, we will first discuss our synthetic

dataset and then compare different network design choices

for solving this challenging problem.

3.1. Dataset

Training a deep network to recover the shape of transpar-

ent objects in real-world environments necessitates a large,

representative dataset. However, building such a dataset

with real objects is not tractable. Firstly, it is difficult to

collect a large number of transparent objects with diverse

enough shapes. Secondly, there are no existing methods to

acquire shapes of transparent objects accurately, efficiently

and cheaply. Thus, we generate our synthetic dataset by

rendering transparent shapes under real environment maps.

Figure 2 shows a few examples from our dataset.

Previous methods for single image shape reconstruc-

tion have utilized category-specific 3D repositories such

as ShapeNet [3] for training. However, while incorporating

category-level semantic may yield information to hallucinate

shapes, it may decrease the generalizability of the learned

model. Therefore, in addition to the 3D shapes in ShapeNet,

we enrich our dataset by procedurally generating random

shapes (cube, ellipse and cylinder) and then apply a randomly

generated depth map onto it. Xu et al. [35] and Li et al. [18]

use a similar strategy to create a large dataset for training a

deep network to do relighting and joint shape and reflectance

estimation. Our dataset contains 600 shapes in total, 300
shapes from the ShapeNet repository and 300 procedurally

generated shapes. A total of 80,000 images are rendered of

the 600 shapes from randomly chosen viewpoints. We ren-

der the depths, normals and segmentation masks as ground

truth. One may argue that using both normal map and depth

for supervision will cause redundancy, but they have been

shown to be complementary and capture different aspects of

information for shape recovery [21].

Photorealistic rendering of transparent materials is chal-

lenging since visually significant paths can be very long

when we account for both refraction and reflection. Based

on observations in the seemingly first study with quantita-

tively verified photorealistic rendering of glass objects [30],

we use full path tracing with deep paths. In path tracing,

refraction or reflection is chosen probabilistically based on

Fresnel reflectance, which depends on the angle of incidence

of the light [23]. We neglect absorption in our renderings,

therefore, we cannot stop our paths probabilistically in rare

cases (when light is trapped by total internal reflections in-

side a glass object). Thus, we set a maximum trace depth

(number of bounces) of 100 in our path tracer. To efficiently

render a large-scale dataset, we implemented our path trac-

ing of transparent objects in a GPU ray tracer based on

NVIDIA OptiX [22]. It takes from 5 to 20 seconds to render

a 480× 640 RGB image in our dataset on a GeForce GTX

Titan X GPU, depending on the complexity of the scene.

3.2. Network Architecture

We now describe our CNN architecture for shape recov-

ery of a transparent object using a single image. The overall
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Figure 2: Rendered images of glass objects, label images, relative depth images and normal maps in our dataset. The left set

uses procedurally generated shapes and the right set uses objects from ShapeNet.
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Figure 3: The encoder-decoder architecture of our network. The encoder is on the left side of the dotted line while the decoder

is on the right side. Here cX1 − kX2 − sX3 − dX4 represents a convolutional layer (encoder) or a transposed convolutional

layer (decoder) with channel X1, kernel size X2, stride X3 and dilation X4. The number of channels of the last transposed

convolutional layer is 3 for normal prediction and 1 for depth and segmentation mask prediction.

structure of our network is shown in Figure 3 and follows the

basic encoder-decoder network architecture for image trans-

lation. The input to our network is an image of a transparent

object under environment illumination. We use the VGG16

network [28] pretrained on ImageNet [4] as the backbone of

our network, which consists of a series of convolutional and

max-pooling layers, followed by 3 fully connected layers

for image classification. We replace the 3 fully connected

layers with 5 transposed convolutional layers with stride two

as our decoder to get an output image of the same size as

the input. Skip links are added to preserve details of the

reconstruction results. The output of our network is a seg-

mentation mask, which separates the transparent object from

the background, a normal map, and a depth map. We train a

separate encoder-decoder for each task.

Loss functions We use different loss functions associated

with each shape recovery task. We use L2 loss for the seg-

mentation mask. Let P be the set of pixels in the image,

Mp and M̂p be the predicted and ground-truth segmentation

mask of pixel p. Here, Mp = 1 represents the foreground

while Mp = 0 stands for the background. The loss function

for the segmentation mask is defined as

1

|P|
∑

p∈P
(Mp − M̂p)

2 . (1)



Next, for depth estimation, global scale shift is a well known

ambiguity [7]. Unlike indoor scene depth estimation [6],

since we estimate the shape of a single object, there is no

context information for the network to resolve the scale

ambiguity. Therefore, we use a scale invariant L2 loss for

depth estimation. We normalize both the ground-truth and

the predicted depth map to be in the range from 0 to 1. Let

Dp and D̂p be the predicted and ground-truth depth after

normalization. Since we only wish to recover the depths of

the foreground pixels Pf , the loss function can be written

as:
1

|Pf |
∑

p∈Pf

(Dp − D̂p)
2 . (2)

We use the same loss function as Eigen et al. [6] for normal

prediction, that is, the dot product of the ground-truth normal

vector N̂p and the predicted normal vector Np:

− 1

|Pf |
∑

p∈Pf

Np · N̂p . (3)

Training and testing details We first compute the mean

and variance of pixel values across the whole dataset and

normalize the input images so that the distribution of pixel

values has zero mean and unit variance. The same mean

and variance are used to normalize the test images too. The

input images are scaled to half of their original height and

width and cropped to a size of 224× 320 before sending to

the network. We use Adam optimizer to train our network

[11]. We set the learning rate to be 10−3 at the beginning

and decrease the learning rate by half after every epoch. We

train the networks for 7 epochs, which is observed to suffice

for convergence.

4. Experiments and Results
In this section, we demonstrate the effectiveness of our

CNN for single image reconstruction of transparent shapes.

Experiments on both real and synthetic data show that by

training a deep network on our large-scale dataset specifi-

cally designed for this problem, our model can generalize

across different transparent shapes and even produce promis-

ing results for real transparent objects.

4.1. Experiments on Synthetic Data
Training on Lambertian objects We first verify the ne-

cessity of building a large-scale dataset with transparent

materials for shape recovery. For this, we consider our shape

repository but render the images with Lambertian material.

We train a CNN with the same architecture and test on im-

ages rendered with Lambertian and transparent materials.

The diffuse colors of Lambertian materials are chosen ran-

domly. The test errors are reported in the first two rows of

Table 1. We observe that errors for transparent test objects

Input Lamb. Trans. Trans. Trans. GT
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M
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Figure 4: Comparison of mask and depth predictions by the

Lambertian network trained with Lambertian objects versus

the refractive network trained with transparent objects. The

input images contain transparent objects. The Lambertian

network makes large errors in mask and depth predictions,

while the refractive network produces accurate outputs. The

depths are only shown for the valid pixels in the image.

are significantly higher than for Lambertian ones, showing

that simply training the network with opaque materials may

not generalize to shape reconstruction of transparent objects.

In the third row of Table 1, we report test errors of the

network trained and tested on rendered images of transparent

objects. We observe significant improvements and the per-

formance is comparable to the network trained and tested on

opaque objects. Thus, we conclude that single image shape

reconstruction of a transparent object in an uncontrolled envi-

ronment is a feasible problem for our deep network and that a

large-scale, representative dataset rendered with transparent

material is significantly useful.

Qualititave comparison in Figure 4 indicates that the net-

work trained with Lambertian material has significant errors

when predicting the segmentation mask of a transparent ob-

ject, and the estimated depth is often incorrect. This matches

the intuition that the network may confuse background and

foreground when predicting the shape of transparent objects.

Surprisingly, such ambiguity can be successfully solved after

training our network on our dataset with transparent objects.

Shape reconstruction on synthetic dataset In Figures 5,

6, and 7, we illustrate the details of segmentation mask,

depth, and normal estimates obtained by our network. We

observe high quality reconstruction results for segmentation

mask, depth map, and normal map. Figure 8 shows several

examples of shape reconstruction results on an unseen test

set. In all the examples showed, the segmentation mask

successfully covers the whole transparent object, separat-

ing it from the background. Our depth map captures the



Train Test Mask Depth Normal

VGG16 Lamb. Lamb. 0.0012 0.0455 -

VGG16 Lamb. Trans. 0.0807 0.0744 -

VGG16 Trans. Trans. 0.0017 0.0349 −0.9181

Table 1: Comparison of networks trained on Lambertian and

transparent materials. The errors are calculated according to

the loss functions. Higher errors are observed for a Lamber-

tian network tested on transparent objects, as compared with

the refractive network, which shows the need for our dataset.

Errors for the refractive network tested on transparent ob-

jects are similar to those for the Lambertian network tested

on Lambertian images, which indicates that our network is

able to handle the single image reconstruction problem for

transparent objects.

(a) Image (b) GT (c) Pred. (d) Pred.> .9

Figure 5: Prediction of segmentation masks: (a) input image,

(b) ground truth mask used for comparison, (c) predicted

mask with decimal values, (d) binary mask using values with

certainty above 0.9.

(a) Image (b) GT (c) Pred.* (d) Pred.**

Figure 6: Prediction of depth maps: (a) input image, (b)

ground truth depth map used for comparison (c,d) depth

maps predicted by the network masked with the ground truth

mask of Figure 5b denoted * and the predicted mask of

Figure 5d denoted **.

(a) Image (b) GT (c) Pred.* (d) Pred.**

Figure 7: Prediction of normal maps: (a) input image, (b)

ground truth normals used for comparison, (c,d) normals

predicted by the network masked with the ground truth mask

of Figure 5b denoted * and the predicted mask of Figure 5d

denoted **.

coarse shape of the objects accurately, the majority of errors

are observed around the occlusion boundaries. The normal

estimation is quite accurate. We observe that the network

has the tendency to over-flatten the normals, which might

be caused by the inherent ambiguity of transparent object

reconstruction.

Generalization to a different refractive index The trans-

parent objects in our dataset are rendered with fixed index

of refraction (IOR) of 1.5. However, different transparent

materials may have different IORs, thus, it is important to

verify whether the network trained on materials with fixed

IOR can generalize to other transparent materials. We test

our trained model on shapes rendered with a range of IORs

and reported the errors in Figure 9. We picked 100 shapes

and rendered sets of 20 images with different IOR values

evenly distributed in the range ]1, 2]. From Figure 9, we

see that even though our network performs the best on the

test set rendered with the same IOR as the training set, the

test results on images rendered with other IORs still achieve

reasonably low errors. As we demonstrate next, this robust-

ness suffices to recover shapes for real objects with unknown

refractive indices.

4.2. Experiments on Real Data

To verify the generalization ability of our network on real

transparent objects imaged in uncontrolled environments, we

show results on real images of transparent glass objects. No-

tice that our network is trained completely on synthetic data

and we do not fine tune our network for specific devices or

environments. We show several shape reconstruction exam-

ples in Figure 10. In two of these examples, the transparent

objects are placed in front of a checkerboard background so

that the distortion caused by refraction can be more clearly

observed. In the other three examples, the capturing environ-

ment is completely uncontrolled. While ground truth shapes

are not available, we observe that the network produces rea-

sonable shape reconstruction results, for images captured in

front of checkerboard background as well as in uncontrolled

settings. However, our network does perform better when

the distortion can be easily observed, as noted by comparing

the spheres in Figure 10 images with the checkerboard or

in-the-wild. An interesting phenomena is that our network

successfully reconstructs the shape of the pitcher in the fifth

row. In this example, most rays are refracted four times be-

fore reaching the camera while in the majority of examples

in our training set, rays most often refract only twice.

5. Discussion and Future Work
Utilizing the vast progress in deep learning, we make a

first attempt to tackle the problem of single image shape

reconstruction of transparent objects in an uncontrolled en-

vironment. Such a problem is often avoided in computer

vision research, but should have a major impact on real world

applications since transparent objects such as windows and

cups are very common in daily life. Previous datasets for
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Figure 8: A selection of results from the test set. The first column has the input images, the second column has the predicted

masks. Columns 3-5 have the depth estimation results, and columns 6-8 have the normal estimation results. The predicted

depths and normals are masked with the ground truth masks to only show the valid regions. The error plots show pixel-wise

loss in the valid region, according to the loss functions stated in Section 3.2, but scaled from 0 to 1.



Figure 9: The mean prediction error when varying the refrac-

tive index. We observe that our network achieves low test

errors across a wide range of refractive indices.

Input Mask Depth Normal

Figure 10: Predictions on photographs of real glass objects.

The depth and normal predictions are based on a predicted

mask with a 0.9 threshold.

shape reconstruction are only rendered with opaque materi-

als, therefore, we present an extensive dataset that consists

of photorealistic rendering of transparent objects. Our exper-

iments verify that such a dataset is necessary to solve this

challenging problem. We show that by training on our large-

scale dataset, our model generalizes well to transparent mate-

rials with different IORs, while handling arbitrary, complex

shapes of even real transparent objects captured in uncon-

trolled environments. We still observe errors for real-world

transparent object reconstruction, which suggests that we

should either use more aggressive data augmentation when

creating the dataset or design a physically-inspired network

architecture which has better generalization power. In par-

ticular, we will consider enriching the dataset by rendering

transparent objects with different IORs and reconstructing

the shapes of the objects that are not directly visible to the

camera. Since the shape of the invisible part influences the

appearance of the image of a transparent object, we expect

to achieve better reconstruction signals for reconstructing

the back of transparent objects using a single image, as com-

pared to the opaque problem where such information must

be recovered purely based on data-driven priors.
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