
IDD: A Dataset for Exploring Problems of
Autonomous Navigation in Unconstrained Environments

Girish Varma1 Anbumani Subramanian2 Anoop Namboodiri1

Manmohan Chandraker3 C V Jawahar1
1IIIT Hyderabad 2Intel Bangalore 3University of California, San Diego

http://idd.insaan.iiit.ac.in/

Abstract

While several datasets for autonomous navigation have
become available in recent years, they tend to focus on struc-
tured driving environments. This usually corresponds to
well-delineated infrastructure such as lanes, a small num-
ber of well-defined categories for traffic participants, low
variation in object or background appearance and strict ad-
herence to traffic rules. We propose IDD, a novel dataset
for road scene understanding in unstructured environments
where the above assumptions are largely not satisfied. It
consists of 10,004 images, finely annotated with 34 classes
collected from 182 drive sequences on Indian roads. The
label set is expanded in comparison to popular benchmarks
such as Cityscapes, to account for new classes. It also re-
flects label distributions of road scenes significantly different
from existing datasets, with most classes displaying greater
within-class diversity. Consistent with real driving behaviors,
it also identifies new classes such as drivable areas besides
the road. We propose a new four-level label hierarchy, which
allows varying degrees of complexity and opens up possibili-
ties for new training methods. Our empirical study provides
an in-depth analysis of the label characteristics. State-of-the-
art methods for semantic segmentation achieve much lower
accuracies on our dataset, demonstrating its distinction com-
pared to Cityscapes. Finally, we propose that our dataset
is an ideal opportunity for new problems such as domain
adaptation, few-shot learning and behavior prediction in
road scenes.

1. Introduction

Autonomous navigation is rapidly maturing towards be-

coming a mainstream technology, with even consumer de-

ployment by major automobile manufacturers. A significant

contributor to this progress has been the availability of large-

scale datasets for sensing and scene understanding. Yet,

several challenges remain in enabling self-driving across

Figure 1. Some examples of the diverse and unstructured condi-

tions that is covered by the dataset.

diverse geographies. A key challenge is to achieve data scale

and diversity large enough to ensure safety and reliability in

extreme corner cases. Even more importantly, algorithms

are largely untested in their ability to generalize to road con-

ditions that are significantly more diverse and unstructured.

In this paper, we propose IDD, a dataset that takes the first

steps towards addressing the above concerns. Our dataset

shares several traits such as scale, annotation and tasks with

similar ones in structured environments, namely KITTI [15]

or Cityscapes [5]. But it also intends to significantly ex-

pand the scope of the autonomous navigation problem, along

each of those dimensions. Similar to Cityscapes [5], we pro-

vide large-scale raw data with multiple cameras and sensors

across cities and lighting conditions. But the scale of our

data is larger, consisting of 10, 004 labeled images with fine

instance-level boundaries. Next, while the annotation type

is similar for our dataset and Cityscapes [5], the number

of object classes and within-class diversity of appearance

are higher for IDD. Finally, while we also initially propose

instance segmentation as the task of interest, our label diver-

sity and novel hierarchy might allow novel machine learning

techniques and computer vision algorithms.

The singular defining aspect of our dataset is that it corre-

sponds to driving in less structured environments. We argue

that this is a better reflection of the needs for autonomous



Figure 2. Label distribution in our dataset. The following information is shown here: (i) pixel counts of individual labels on the y-axis (ii)

four-level label hierarchy used by the dataset at the bottom, (iv) the color legend for the predicted and ground truth masks shown in the paper

is used for the corresponding bars. We define metrics at 4 levels of the hierarchy with 30 (level 4), 26 (level 3), 16 (level 2) and 7 (level 1)

labels, respectively, giving different complexity levels for training models.

navigation in large portions of the world, including Asia,

South America and Africa. Accordingly, we collect our

data in India where road scenes differ markedly from those

in Europe or North America. The variety of traffic par-

ticipants in Indian roads is larger, including novel classes

such as autorickshaws or animals. The within-class diver-

sity is also higher, for example, since vehicles span a larger

range of manufacturing years and ply with larger variation

in wear. Even the distribution of classes that overlap with

Cityscapes is significantly different, for instance, the pro-

portion of motorcycles is far higher, as is that of multiple

riders on two-wheeled vehicles. Background classes also

display greater diversity, such as city scenes rich in novel

classes such as billboards. Besides variations in weather

and lighting, other ambient factors such as air quality and

dust also span greater ranges in our dataset. Such greater

complexity of road scenes necessitates a larger scale of data.

Thus, we provide high-quality annotation at a scale signifi-

cantly larger than available for other contemporary datasets

such as KITTI or Cityscapes. 1

We provide a detailed analysis of the label distributions in

the IDD dataset, while highlighting some of the above differ-

ences. We also showcase those differences through quantita-

tive evaluation of state-of-the-art algorithms on our dataset.

We consistently observe that semantic segmentation perfor-

mances are far lower on IDD as compared to Cityscapes,

using identical models and with larger-scale training data for

IDD. Firstly, this highlights that conventional semantic seg-

mentation datasets such as Cityscapes are getting saturated

and the next set of challenges lie in more complex datasets

1Datasets such as Berkeley Deep Driving [26] and Apolloscape [10]

have recently been released with labels at a similar scale. However, they are

contemporaneous with our work, which precludes a detailed comparison.

In any case, we note that they are in structured environments, which makes

our dataset clearly different.

like IDD. Secondly, this highlights the need for ever-larger

training data as we expand the scope of the autonomous

navigation problem to newer geographies.

Besides segmentation, the nature of our dataset also en-

ables novel problems for vision and learning. This is already

reflected in some of our annotation choices. For instance,

while the notion of a drivable area in Europe is largely de-

fined by classes such as roads or lanes that have distinct

appearances, it is more ambiguous in our dataset and likely

also informed by semantic cues such as presence of dynamic

traffic participants. Thus, we include labels for safely driv-

able and non-drivable areas. Our label hierarchy is attuned

to the autonomous navigation problem and we postulate

that exploiting it might lead to semantic segmentation more

suited to subsequent applications such as collision avoidance

or path planning. We label classes that are rare but impor-

tant for navigation (such as animals), or classes that exhibit

large within-class variance (such as autorickshaw), which

motivates problems such as few-shot learning.

The contrast of our dataset with structured ones also sug-

gests interesting directions of future research. For instance,

domain adaptation between Cityscapes and IDD is clearly

a need given the large performance drops encountered in

cross-dataset settings. Classes that are unique to our dataset

also encourage consideration of domain adaptation with non-

overlapping label spaces. Even higher-level reasoning prob-

lems such as behavior prediction pose new challenges in

IDD, since traffic participants have lower adherence to traf-

fic rules, motions can be sudden, complex obstructions might

be present, drivable areas can be ambiguous and traffic lanes

need not correspond to lane markings on the road. While

not considered in this paper, we highlight that these novel

problems do arise in unstructured environments such as ours.



Figure 3. Cityscape models do not distinguish between the road

and possible unsafe drivable area on both sides of the road.

2. Challenges in Unstructured Environments
We collect data from Indian roads and analyze the short-

comings of models trained on existing datasets. As illus-

tration, we describe some of the qualitative issues observed

when using predicted outputs of a model that obtains 70%

mean IoU on the Cityscapes validation set.

Ambiguous Road Boundaries. Road boundaries in

Cityscapes are very well defined and usually flanked on

both sides by barriers or sidewalks. However, this is not

the case in our setting. Road sides can have muddy terrain,

while also being drivable to some extent. Roads themselves

can be covered by dirt or mud, making the boundaries very

ambiguous. On the other hand, Cityscapes models often

recognize flat areas beside the road which need not be safe

for driving as road, as seen in Figure 3.

Diversity of Vehicles and Pedestrians. Indian roads have

a variety of unique vehicles like auto-rickshaws, which be-

have very differently than other vehicles like cars. Even for

standard categories like cars, the appearance variations are

higher due to greater wear and tear. Further, the frequency

and variety of trucks and buses are also high. Another dis-

tinction is the large number of motorbikes with multiple

persons riding it. Pedestrians often cross the road at arbitrary

locations, rather than crosswalks. Bikes and autorickshaws

are also less likely to follow traffic discipline, thus, there

are fewer correlation between traffic participants and road

signage such as lanes or traffic lights.

Extensive Use of Information Boards. Information dis-

plays such as billboards appear extensively in our dataset.

They can be significant for localization and mapping prob-

lems by indicating buildings or landmarks. Sometimes they

also indicate special vehicles, such as advertisements at-

tached to a driving school car, or a delivery vehicle.

Diversity of Ambient Conditions. Lighting variation in

our dataset is high since we acquire images at various times

of the day, including mid-day, dawn and dusk. Also, some of

Figure 4. (Top) A herd of buffaloes on the road at dusk. (Bottom)

Many motorbikes with multiple riders, not necessarily following

traffic rules such as road lanes.ttrtrtrtrttrtrttrafafaffffaffffaffffaffaffffifififififififificfififificcficfififificficficccfififificcccfificcc rururururururuuurruruurulllllllelelellleleeelleleleeess ss sss ss ssss ss ss sssuuccucuuuucccucuuucccucchhhhhhhh ahh ah aaaaahhh ahhhh aah ah ah ahh s rsss rrrss rs rs rrroooooaaoooooaaooooaoooao dddd ldd ldd ld ld ld lllanannnnaannaannaaaannaaanneeseseseeee ...

Figure 5. (Left) An array of billboards indicating the shops. (Right)

A vehicle with a billboard of a driving school.

the images have heavy shadows, which are common during

a long summer season. Our dataset also contains scenes with

heavily clouded skies. The greater variation in particulate

matter due to fog, dust or smog also leads to significant

appearance variations. Cityscapes pretrained models yield

lower accuracies in these settings, as seen in Figure 6.

3. Dataset

3.1. Acquisition

The data was collected from Bangalore and Hyderabad

cities in India and their outskirts. The locations have a mix



Dataset Calibration
Nearby

frames

/ Video

Distortion

/Night

#Images/

#Sequences
#Labels

Train/Total

Average

Resolution

Cityscapes [5] � � 5K / 50 19/34 2048x1024

IDD � � 10K / 180 30/34 1678x968

BDD100K [26] � � 10K / 10K 19/30 1280x720

MVD [16] 25K / - 65/66 >1920x1080

Table 1. Comparison of semantic segmentation datasets for autonomous navigation.

Figure 6. Heavy shadows in the image (top) or low light conditions

(bottom) can greatly degrade the quality of predictions using models

trained on Cityscapes.

of urban and rural areas, highway, single lane and double

lane roads with a variety of traffic. The driving conditions

in these localities are highly unstructured due to multiple

reasons: (i) these cities are rapidly growing and have a lot

of construction near the roads, (ii) road boundaries are not

well defined, (iii) pedestrians and jaywalkers are aplenty in

these road images, and (iv) high density of motorbikes and

trucks on the road. The variety of vehicle models are also

very large. A total of 182 drive sequences were used for the

preparation of the dataset.

3.2. Frame Selection

We chose images from one of the forward facing cameras

of a stereo pair, for fine annotation. Images were sampled

at varying rates from the video sequence, with denser sam-

pling around crowded and special interest places like traffic

junctions. These images were annotated very finely, by lay-

ered polygon masks similar to Cityscapes. Since the road

conditions are highly unstructured, we need a wider variety

of labels. We annotated a total of 10,004 frames.

3.3. Label Hierarchy & Annotation

We used a total of 34 labels in the fine annotations. The

labels were given definition by means of a textual description

as well as example images. However, we found that it is

difficult to completely avoid ambiguity between some labels.

For example labels like parking, caravan or trailer cannot

be precisely defined due to the diversity of the scenes and

vehicles in the data collected. For resolving this issue, we

designed a 4 level label hierarchy having 7 (level 1), 16 (level

2), 26 (level 3) and 30 (level 4) labels (see Figure 2). Each

level defines a category as the union of labels in the succeed-

ing level, which are chosen such that they are ambiguous.

Since we take unions of the most ambiguous labels while de-

signing the hierarchy, the lower levels have lesser ambiguity.

We have a set of new labels not available in Cityscapes [5]

like auto rickshaw, billboards, animal, curb. We also have

separate labels for road, drivable fall-back and non-drivable

fall-back indicating safe, unsafe and non-drivable flat sur-

faces. We have added fall-back labels whenever appropriate

so that highly ambiguous objects can be given labels.

For labeling the dataset, the annotation team was first

asked to re-annotate images from the Cityscapes [5] dataset.

The difference between the annotations were subsequently

shown to the annotators. This process was done until the

annotators were achieving greater than 95% accuracy with

respect to the Cityscapes ground truth labels.

3.4. Statistical Analysis and Dataset Splits

The pixel statistics among the labels can be seen in Figure

2. The labels in level 4 have high class imbalance. Labels

like parking, animal, caravan or traffic light have much fewer

pixels. The annotated dataset also has labels for trailer and

rail track, which were combined with vehicle fallback and

nondrivable fallback in level 4, since they have very few

pixels that mostly fell within a few drive sequences. The

lower levels are designed such that the imbalance is lesser.

Class imbalance at level 4, creates a problem while split-

ting the dataset in train, test and validation sets. Since the

splitting is done at the level of drive sequences (that is, all

images within a drive sequence are moved to the same split),

we need to be careful that the few drive sequences that con-

tains a label are rightly split. We roughly divide the dataset

in to 70% train, 10% validation and 20% test splits. The split

was done by randomly assigning the drive sequences with

the said distribution. We did the splitting multiple times to

come up with a split where all the 30 labels in level 4 have

approximately 70, 10 and 20 percentage of pixels in the train,

validation and test sets, respectively.



Figure 7. Comparison of the pixel count in our dataset with Cityscapes. The y axis is plotted in log-scale. Note that for most classes of

vehicles, the number of pixels are 5-10 times more than Cityscapes. Moreover our dataset has newer labels like autorickshaw, billboard,

drivable/nondrivable fallback which also have significant number of labeled pixels.

Figure 8. Comparison of traffic participants in our dataset with

Cityscapes.

3.5. Comparison with Other Datasets

Various datasets have been proposed for studying the

semantic and instance segmentation problems like Pascal

VOC [7], MS COCO [13], SUN [23, 22]. The datasets pro-

posed for semantic segmentation that focus on autonomous

navigation are Cityscapes [5], KITTI [15], Camvid [2, 1],

Leuven [12] and the Daimler Dataset [21]. ADE20K [29] is

a recent dataset which focuses on the general scene parsing

problem. More recently Mapillary Vistas dataset [16] (which

focuses on street view imagery) and the Berkeley Deep Drive

Dataset [26] (for autonomous navigation) was released. A

comparison of the metadata available in these datasets can

be seen in Table 1. As can be seen, our dataset is more

similar to Cityscape in the sense that we collect data from

calibrated cameras without any distortions. BDD100K uses

dashboard cameras kept inside the car and hence often has

internal reflections from the glass as well as rain distortions.

Moreover a good fraction of the dataset consists of night

images. Mapillary Vistas dataset consists of images taken

using a variety of cameras (including smart phones) having

varying perspectives of the road and the road side. They do

not have video data or images of near by frames.

We compare the label statistics of our dataset with

Cityscapes (since it is more similar to our dataset as de-

scribed above) in terms of pixel counts (Figure 7) and

the number of instances of traffic participants (Figure 8).

We have more pixels of truck, bus, motorcycle, guard rail,

bridge and rider (see Figure 7). The pixel counts for new

Method
% mIoU at Hierarchy Levels

1 2 3

GT subsampled by 2 99 97 97

GT subsampled by 4 98 96 95

GT subsampled by 8 96 92 90

GT subsampled by 16 92 87 84

GT subsampled by 32 86 78 74

GT subsampled by 64 77 66 61

GT subsampled by 128 65 53 48

Table 2. Control experiments to estimate upper bounds for se-

mantic segmentation results, assessed by Intersection-over-Union

(IoU, in %) scores for different levels of the hierarchy.

labels (auto rickshaw, billboard, curb, drivable-fallback,

nondrivable-fallback) are also high. In terms of instances of

traffic participants, we have almost double the counts, with a

distribution similar to Cityscapes (see Figure 8).

4. Benchmarks

4.1. Control Experiments

In Table 2, we provide the results of some control experi-

ments which provide upper bounds for IoU scores for models

giving predictions at a given factor of the input resolution.

We first downsample the ground truth by a given factor and

then upsample it to the original image size for evaluation

of average IoU at original scale. We provide the mean IoU

scores of different levels of the hierarchy, confirming that

low-resolution processing contributes significantly to overall

degradation of segmentation results.

4.2. Domain Discrepancy

Domain discrepancy studies the quantitative shift in data

distributions between datasets. To understand it, we train

a DRN-D-38 (Dilated Residual Networks [25]) model in

Cityscapes [5], Mapillary [16], BDD100K [26] and our

dataset. We compare the IoU scores in a set of 16 com-
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CS DS 72 22 30 47 10 58 30 19 17 13 19 8 23 32 76 68 34

DS CS 81 26 74 34 55 85 16 17 21 24 25 21 47 77 90 88 49

BD ID 83 0 38 44 2 52 21 13 0 0 0 0 36 42 83 94 32

ID BD 84 16 57 34 44 77 14 24 10 33 18 13 41 68 82 87 44

CS CS 98 84 81 60 76 94 56 78 49 58 77 67 62 92 92 94 76

MV MV 85 58 73 55 61 90 61 65 45 58 72 67 50 86 90 98 70

ID ID 92 68 73 80 42 89 79 78 64 45 60 38 58 75 90 97 70

BD BD 95 62 61 32 22 90 52 57 25 45 52 58 49 85 87 97 60

Table 3. The domain discrepancy between Cityscapes (CS) [5], Mapillary Vistas (MV) [16], Berkeley Deepdrive (BD) [26] Dataset and

IDD (ID) using the DRN-D-38 Model [25]. Performance for only the common labels between the four datasets are used. First two rows

compares the accuracy of a model trained on one of IDD or Cityscapes and tested on the other dataset. As can be seen, IDD trained model

can predict CS and BD labels, better than predictions of trained models of the corresponding datasets on IDD. The bottom four rows gives

the performance of models in each of the datasets. IDD dataset is harder than CS dataset and similar in hardness to MV on these 16 labels.

BD is harder because i.) it has night scenes ii.) the images are take from a dash board cam, hence has reflections from inside the car as well

as distortions like rain drops on the mirror.

mon labels between the four datasets in Table 3. As seen

from the last four rows, our dataset is harder than Cityscapes

while having a similar level of hardness compared to the

Mapillary Vistas Dataset. We also report IoU scores of pre-

dictions given by models trained on one dataset and tested

on the other. A pretrained model trained on our dataset per-

forms better when tested on Cityscapes and BDD100K, as

compared to the converse experiment.

4.3. Semantic Segmentation Benchmark

The semantic segmentation benchmark on our dataset

quantifies the mean Intersection over Union (mIoU) scores

at the four levels of the hierarchy. There are some labels

in level 4 like traffic light, parking or animal for which the

number of labeled pixels are very few. Hence, this serves

as an excellent benchmark for transfer learning or domain

adaptation problems. We also have level 1 and level 2 mIoU

scores, which are a useful benchmark for real-time models,

since they might not be able give good results on the fine

grained classification task at level 3 and 4. The level 1

benchmark still has classes for most of the essential labels

for autonomous navigation.

We benchmarked our dataset using the DRN-D-38 ([25])

and the ERFNet (real-time model [19]) model. We also

conducted a challenge and evaluated submissions which use

some of the state-of-the-art models. The results are shown

in Table 4.

4.4. Class IoUs and Confusion Matrix

The IoUs for every class can be found in Figure 9. We

observe that the IoUs are lower than 25% for bicycle, traffic

light, vehicle fall-back and fence labels. The low scores for

Method
% mIoU at Levels

L1 L2 L3

ERFNet - - 55.4

DRN-D-38 85.9 72.6 66.6

*DeeplabV3+ [4] 89.8 78.0 74.0

*PSPNet [27] 89.9 78.0 74.1

*Wider Resnet-38, DeeplabV3 De-

coder, Inplace ABN [20], Ensem-

ble of 4

89.7 77.9 74.3

Table 4. The mIoU scores of models at 3 level of the hierarchy.

The performance numbers of * models are obtained from the sub-

missions of a AutoNUE challenge [11] conducted based on the

dataset.

bicycle and traffic light can be explained by the low pixel

counts. We also plot the confusion matrix between labels in

Figure 10. Note that there is significant confusion between:

• motorcycle and bicycle.

• billboard and traffic sign.

• obs-str-bar-fallback, vegetation and traffic light.

• building and billboard.

• vegetation and wall, pole, fence.

• drivable, non-drivable, vegetation.

We analyze some examples of predictions in Figure 11.

As can be seen, model trained on our dataset gives prediction

of much better quality in unstructured setting. It identifies

the muddy areas which can be driven. New labels like au-



Figure 9. The IoUs for every class for the DRN D 38 model trained on IDDwith mIoU of 66.5%.

Figure 10. The confusion matrix of the trained model.

Method AP AP@50

*MaskRCNN [8] with ResNet101 0.268 0.499

*PANet [14] 0.376 0.661

Table 5. The AP scores of models for instance labels. The perfor-

mance numbers of * models are obtained from the submissions of

the AutoNUE challenge [11] conducted based on the dataset.

torickshaw, curb, billboard etc are getting identified.

4.5. Instance Segmentation Benchmark

Similar to other datasets, we also specified an instance

segmentation benchmark, where individual instances of the

same label need to be segmented separately. The algorithms

are required to predict a set of detections of traffic partici-

pants in the frame, with a confidence score and a per-instance

binary segmentation mask. To assess the performance, the

average precision on the region level for each class and aver-

age it across a range of overlap thresholds ranging from 0.5
to 0.95 in steps of 0.05, similar to [13].

The results of some best performing submissions from

the challenge are given in Table 5.

5. Conclusion

We present a novel dataset for studying problems of au-

tonomous navigations in unstructured driving conditions.

We identify several drawbacks of existing datasets, such as

distinguishing safe or unsafe drivable areas beside the road,

additional labels required for vehicles and a label hierarchy

that reduces ambiguity. We analyze the label statistics and

the class imbalance present in the dataset. We also examine

the domain discrepancy properties with respect to other se-

mantic segmentation datasets. In contrast to existing datasets

on semantic segmentation, ours is acquired in India, which

leads to greater diversity due to variations in appearance of

traffic participants as well as background categories. Not

only does this pose interesting challenges for the state-of-

the-art in semantic segmentation, it is also the first effort in

our knowledge to focus on problems related to autonomous

driving in geographies outside North America or Europe

with relatively less developed road infrastructure.

In the future, we plan to extend the benchmark to com-

puter vision problems beyond semantic segmentation. In

particular, the unconstrained nature of the dataset provides a

uniquely novel setting for higher-level reasoning problems

such as scene understanding [9, 17, 28] and path planning

[6]. Motions in the dataset are less constrained due to greater

freedom in traffic participant behavior and less adherence

to traffic rules. The possible absence of visual cues such

as lanes that constrain traffic participant behavior poses fur-

ther challenges. Besides the presence of rare categories

[24], even common categories have diverse attributes or ap-

pearance variations. Besides, the ambient conditions differ

greatly across weather, time of day and air quality. This also

motivates interesting new problems for few shot learning

[3] and domain adaptation [18], which our future work will

study in greater detail.
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Figure 11. We give many qualitative example with: input image from validation set, predictions from Cityscape pretrained model, prediction

from model trained on our training dataset and the ground truth in our dataset in the order of columns.
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