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Abstract

Recent work has shown that speech paired with images can be
used to learn semantically meaningful speech representations
even without any textual supervision. In real-world low-resource
settings, however, we often have access to some transcribed
speech. We study whether and how visual grounding is useful
in the presence of varying amounts of textual supervision. In
particular, we consider the task of semantic speech retrieval in a
low-resource setting. We use a previously studied data set and
task, where models are trained on images with spoken captions
and evaluated on human judgments of semantic relevance. We
propose a multitask learning approach to leverage both visual
and textual modalities, with visual supervision in the form of key-
word probabilities from an external tagger. We find that visual
grounding is helpful even in the presence of textual supervision,
and we analyze this effect over a range of sizes of transcribed
data sets. With ~5 hours of transcribed speech, we obtain 23%
higher average precision when also using visual supervision.
Index Terms: speech search, multi-modal modelling, visual
grounding, semantic retrieval, multitask learning

1. Introduction

In many languages and domains, there can be insufficient data to
train modern large-scale models for common speech processing
tasks. Recent work has begun exploring alternative sources of
weak supervision, such as visual grounding from images [1-6].
Such work has developed approaches for training models for
tasks such as cross-modal retrieval [2, 3]; unsupervised learning
of word-like and phone-like units [7-10]; and retrieval tasks
like keyword search, query-by-example search, and semantic
search [6, 11, 12]. Much of this recent work is in the context of
zero textual supervision, that is, using no transcribed speech, and
the results show that visual grounding alone provides a strong
supervisory signal. However, in many low-resource settings we
also have access to a small amount of textual supervision. This
is the setting that we address here. In particular, we consider the
task of semantic speech retrieval using models trained on a data
set of images paired with spoken and written captions.

In semantic speech retrieval, the input is a textual query, a
written word in our setting, and the task is to find utterances in a
speech corpus that are semantically relevant to the query [13,14].
The query word need not exactly occur in the retrieved utter-
ances; for example, the query beach should retrieve the exactly
matched utterance “a dog retrieves a branch from a beach” as
well as the semantically matched utterance “people at an ocean-
side resort.” One common approach is to cascade an automatic
speech recognition (ASR) system with a text-based information
retrieval method [15]. High-quality ASR, however, requires
significant amounts of transcribed speech audio and text for

language modelling. Kamper et al. [6,11] proposed learning a
semantic speech retrieval model solely from images of natural
scenes paired with unlabelled spoken captions. This approach
uses an external visual tagger to automatically obtain text labels
from the training images, and these are used as targets for train-
ing a speech-to-keyword network. No textual supervision is thus
used. For analysis, the approach was compared to a supervised
model trained only with text supervision. The visually super-
vised model was shown to have an edge over the textually trained
model in retrieving non-exact keyword matches. In retrieving
exact semantic matches, the text-based model proved superior.

Based on these observations, we hypothesize that visual-
and text-based supervision can be complementary for semantic
speech retrieval in low-resource settings where both are available.
Visual supervision could, e.g., provide a signal to distinguish
acoustically similar but semantically unrelated words. Here
we consider a regime where the amount of transcribed speech
audio is not enough to train a full ASR system, but is enough to
provide a useful additional supervision signal. Using a corpus of
images with spoken captions, we propose a multitask learning
(MTL) approach where visual supervision is obtained from an
external image tagger and text supervision is obtained from (a
limited amount of) transcribed spoken captions. Each type of
target is given as a bag of words. Additionally, we include a
representation learning loss to encourage similarity between the
visual and spoken representations.

We consider different amounts of transcribed speech audio
to investigate the effect of MTL in different low-resource settings
and to understand the trade-off between visual- and textual super-
vision. Experiments using human semantic relevance judgments
show that our new MTL approach incorporating both visual and
text information performs better than when using either one of
the supervision modalities in isolation. We achieve consistent
improvements over the entire range of transcribed data set sizes
considered, with the benefits of visual supervision being largest
when only small amounts of transcriptions are available. This
result demonstrates that the benefit of visual grounding remains
even when textual supervision is available.

2. Approach

As a starting point, we use the model of [6], which addresses the
semantic retrieval task using a training set of images and their
spoken captions with no textual supervision at all. In this ap-
proach, a vision model—an image tagger trained on an external
data set of tagged images—is used to produce a bag of semantic
keywords for each image, along with their posterior probabilities.
These posteriors serve as supervision for a speech model that
takes as input a spoken utterance and outputs a bag of keywords
describing the utterance. At test time, these predicted keywords
are used for semantic speech retrieval, by retrieving those utter-
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Figure 1: The multitask speech model with visual supervision (right) and textual supervision (left). Either of the textually supervised and

visually supervised branches can be used during inference.

ances for which the model predicts a probability higher than a
given detection threshold for an input query word.

We make two key changes to the model of [6], as illustrated
in Figure 1. First, we consider the case where we have both
the visual supervision (the vector of keyword probabilities) and
textual supervision, obtained from transcriptions of the training
utterances. Specifically, for the textual supervision, we convert
each transcription into a bag of ground-truth content words oc-
curring in the utterance. The textual and visual supervision are
used together in a multitask learning (MTL) approach, where our
model consists of two branches, one that produces the “visual
keywords” and one that produces “textual keywords”.

The second change we make is to add a representation loss
term. The purpose of this is to encourage intermediate repre-
sentations learned by the speech model to match those in the
external visual tagger. This loss is similar to ones used in recent
work on unsupervised joint learning of visual and speech rep-
resentations, e.g. for cross-modal retrieval [2]. In our case the
representation loss can be viewed as a regularizer or as a third
task in the MTL framework. This loss helps us take advantage
of the fact that the visual tagger is trained on much more data
than the speech model, so we expect its internal representations
themselves to be useful during training of the speech network.

As a final, minor change, we use a stronger pre-trained visual
network (ResNet-152) in the visual tagger relative to [6] (more
details about the vision model are given in Section 3).

2.1. Model Details

Each training utterance U = w1, u2, ..., ur is paired with an
image I. Each frame w; is an acoustic feature vector, MFCCs
in our case.! The vision model provides weak labels, yyis €
[0, 1}N vis_where Nyis is the number of keywords in the visual tag
set. This serves as the ground truth for the visually supervised
branch output, fyis(U) = @vis, of the speech model.

Each training utterance U is also optionally paired with
a multi-hot bag-of-words vector ypow € {0, 1}N bow - obtained
from the transcriptions of the spoken captions, where Nyoy is the
number of unique keywords in the text labels and each dimension
indicates the presence of absence of a particular word. This
vector serves as a ground truth for the output of the textually
supervised branch, foow(U) = Ybow, of the speech model.

!Earlier work on this data set compared MFCCs to filterbank features,
and found that MFCCs worked similarly or better [11].

These task-specific supervised losses are optimized jointly
with an unsupervised multi-view representation loss. In par-
ticular, we use a margin-based contrastive loss [16] between
the speech representation s and visual representation v at an
intermediate layer within each model.

The total loss is a weighted sum of these three losses: ¢ =
Qlyjs * evis + Qtbow * ébow + (1 — Olpow — Oévis) . erep where each
of the loss terms is a function of a training utterance U and
either (1) a corresponding image representation v, (2) a visual
target yyis, or (3) a textual target yyow (if available). Both of the
supervised task losses, £yis and £pow, are summed cross entropy
losses between the predicted and ground-truth vectors, as follows
(where supe{vis,bow})

[ Nsup|
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where 9syp is a function of the speech input and ysy, is function of
the image/transcription. The representation loss is a contrastive
loss, similar to ones used in prior work on multi-view represen-
tation learning [2, 16, 17], computed by sampling a fixed number
of negative examples within a mini-batch (size B) corresponding
to both images and utterances:

brep = {“1/ Z max[0, m + deos(V, 8) — deos(v', 8)]
v’ eV

+|%| Z maX[O, m + dcos(v7 S) - dCOS(”’ Sl)]} (2)

s'eS

where {v, s} are the representations of the correct vision-speech
pair; {v’, s} and {v, s’} are negative (non-matching) pairs;
deos (v, 8) is the cosine distance between the representations;
Nneg = |V| = |S] is the number of negative pairs; and m is a
margin indicating the minimum desired difference between the
positive-pair distances and negative-pair distances.

3. Experimental setup
3.1. Data

We use three training sets and one evaluation data set, identical
to those used in prior work [6], allowing for direct comparison.

(A) Image-text pairs: The union of MSCOCO [18] and
Flickr30k [19], with ~149k images (~107k training, ~42k dev)
paired with 5 written captions each. This is an external data



set used to train the image tagger before our MTL approach is
applied. We are taking advantage of the fact that, in contrast to
speech, labelled resources for images are more plentiful (in fact,
we are implicitly also using the even larger training set of the
pre-trained ResNet). The availability of such large visual data
sets allows us to train a strong external image tagger.

(B) Image-speech pairs: The Flickr8k Audio Captions Cor-
pus [20], consisting of ~8k images paired with 5 spoken captions
each, amounting to a total of ~46 hours of speech data (~34
hours training, ~6 hours dev, and ~6 hours test speech data).
The images in this set are disjoint from those in set A.

(C) Speech-text pairs: The spoken captions in the Flickr8k
Audio Captions Corpus have written transcripts as well. We use
subsets of these transcripts with varying sizes: from just ~21
minutes to the complete ~34 hours of labelled speech.

(D) Human semantic relevance judgments: For semantic
speech retrieval evaluation, we use the human relevance judg-
ments from [6]. 1000 utterances from the Flickr8k Audio Cap-
tions Corpus were manually annotated via Amazon Mechanical
Turk with their semantic relevance for each of 67 query words.
Each (utterance, keyword) pair was labeled by 5 annotators. We
use both the majority vote of the annotators (as “hard labels”)
and the actual number of votes (“soft labels”) for evaluation.

3.2. Implementation details

The vision model (Figure 1, left) is an ImageNet pre-trained
ResNet-152 [21] (which is kept fixed), with a set of four 2048-
unit fully connected layers added at the top, followed by a final
softmax layer that produces posteriors for the N,is tags. This
image tagger is used to provide the visual supervision yvis. The
fully connected layers in the vision model are trained once on
set A and kept fixed throughout the experiments.

The speech model (Figure 1, middle) consists of two
branches, one with textual supervision and the other with visual
supervision as targets. Except for the output layer, the architec-
ture for these two networks is identical and exactly the same as
the model in [6]. Each network consists of three convolutional
layers, with the output max-pooled over time to get a 1024-
dimensional embedding, followed by feedforward layers, with a
final sigmoid layer producing either Nyis or Npow scores in [0, 1].
The parameters for convolutional layers in these two branches
are shared while the upper layer parameters are task-specific.
Hereafter, the visually supervised branch and the textually super-
vised branch of this model are referred to as MTL-visSup and
MTL-textSup respectively. The input speech is represented as
MFCCs, zero-padded (or truncated®) to 8 seconds (800 frames).

For representation learning we need the dimensions for the
learned speech and vision feature vectors to match. A two-layer
ReLU feedforward network is used to transform the intermediate
2048-dimensional vision feature vectors to 1024 dimensions.
The output of the shared branch of the speech model is used as
the speech representation. Parameters of the additional layers
are learned jointly with the speech model.

For MTL, each mini-batch is sampled from either set B or
set C with probability proportional to the number of data points
in each set, as in [22]. The size of set C varies, as described in 3.1.
Nyis is kept fixed at 1000 and Nyow is one of 1k, 2k, 5k and 10k
(each time keeping the most common content words in set A) and
optimized along with other hyperparameters. Hyperparameters
include auis, Qtbow, 1M, Mneg, Nbow, batch size, and learning rate.
Different settings are found to be optimal as the set C is varied.

299.5% of the utterances are 8 s or shorter.

Adam optimization [23] is used for both branches with early
stopping. For early stopping, we use F'-score on the Flickr8k
Audio Captions validation set with a detection threshold of 0.3.
Since no development set is available for semantic retrieval, the
F'-score is evaluated for the task of exact retrieval (i.e., keyword
spotting) using the 67 keywords from set D.

3.3. Baselines

We compare our proposed models to two baselines. The visual
baseline has access to visual supervision alone. This baseline
replicates the vision-speech model from [6], but is improved here
by using a pre-trained ResNet-152 (rather than VGG-16) for fair
comparison with our models. The visual baseline is equivalent
to MTL-visSup, when no textual supervision is used. The fex-
tual baseline has access to just the textual supervision, and is
equivalent to MTL-textSup when using no visual supervision.
Different baseline scores are obtained as the set C changes.

3.4. Evaluation Metrics

At test time we have access to just the spoken utterances. For
evaluation we use the output probability vectors of both, MTL-
visSup and MTL-textSup. We evaluate semantic retrieval perfor-
mance on set D (67 query words, 1000 spoken utterance search
set). We measure performance using the following evaluation
metrics, commonly used for retrieval tasks [24,25]. Precision at
10 (P@10) and precision at N (PQN ) measure the precision
of the top 10 and top [V retrievals, respectively, where N is the
number of ground-truth matches. Average precision is the area
under the precision-recall curve as the detection threshold is
varied. Spearman’s rank correlation coefficient (Spearman’s p)
measures the correlation between the utterance ranking induced
by the predicted probability vectors and the ground-truth “proba-
bility” vectors. The latter is approximated using the number of
votes each query word gets for a given utterance. All of these
metrics except for Spearman’s p are used for the hyperparameter
tuning on exact keyword retrieval performance.

4. Results and Discussion

Figure 2 presents the semantic retrieval performance of the MTL
model as the amount of text supervision is varied. For our MTL
models, we can use either output (MTL-visSup or MTL-textSup)
to perform the semantic retrieval task, and we explore the per-
formance of both. We compare the MTL model results to those
of the textual and visual baselines. Note that the visual baseline
results are horizontal lines in each plot, as this baseline does not
use any textual supervision. We present the results for Spear-
man’s p, which evaluates with respect to the “soft” human labels,
and average precision, which uses the hard majority decisions.
The trends for other hard label-based metrics (P@10, P@N)
follow the same trend as average precision.

The first clear conclusion from these results is that visual
grounding is still helpful even when some speech transcripts are
available. This is, to our knowledge, the first time that this has
been demonstrated for visually grounded models of speech se-
mantics. In terms of average precision, the multitask model with
both visual and textual supervision is only slightly better than
the baseline text-supervised model when using larger amounts
of transcribed speech (around 15 hours or more); when less text
supervision is available, visual grounding becomes much more
useful. At all levels of supervision, the best perfromance is ob-
tained with one of the MTL models; depending on how much
supervised data is available, either MTL-textSup or MTL-visSup
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Figure 2: Semantic retrieval performance, in terms of aver-
age precision and Spearman’s p. Shading around the curves
indicates standard deviation over multiple runs with different
random initializations.

is preferred.

In terms of Spearman’s p, the trends are somewhat different
from average precision. Here, the MTL-visSup outperforms
MTL-textSup at all levels of supervision, and the visual baseline
alone is almost as good as the MTL-visSup. This finding is
in line with earlier work [6], which found that the visual base-
line does particularly well in terms of Spearman’s p, which is
more permissive of non-exact semantic matches. In some sense,
Spearman’s p uses a more “complete” measure of the ground
truth, since it considers the full range of human judgments rather
than just the majority opinion. This is an interesting finding, but
requires further study. For example, it could be the case that this
domain is particularly well-suited to visual grounding because
all of the speech is describing visual scenes. It will be interesting
to study how these results change if we apply similar models to
a wider range of speech domains.

Effect of representation loss. The results in Figure 2 use the su-
pervised losses as well as the representation loss. Removing the
latter reduces average precision by roughly 2-4% for most points
on the curve, while for Spearman’s p it makes little difference.
However, when tuning for exact retrieval on the development set,
we find much larger gains from the representation loss, roughly
7-15% in average precision. This difference could be an artifact
of tuning and testing on different tasks.

Effect of varying Nyow. We observe that a higher Npow of 10k
words is preferred at lower supervision, while at higher supervi-
sion having just 1k words in the output is best. Our interpretation
is that having more words in the output than we will be evaluating
on is equivalent to training the model on additional tasks which
we do not care about at test time. This additional MTL-like set-
ting has a regularization effect which is helpful in lower-resource
settings, but as we have access to more and more labelled data,
we no longer benefit from regularization.

Other modeling alternatives. In preliminary experiments, we
also considered several other ways to combine the multiple
sources of supervision: (1) by splitting the two branches at
an earlier layer (2) by pre-training on one task and fine-tuning
on another (target) task, or (3) by using a hierarchical multitask
approach, inspired by prior related work [26-28], where the
(more semantic) visual supervision is at a higher level and the

(exact) textual supervision is at a lower level. Our MTL model
as presented in Figure 1 outperforms these other approaches.
Qualitative analysis. We visualize embeddings from the penul-
timate layer of the model by passing a set of isolated word
segments through the model. Figure 3 shows 2-dimensional
t-SNE [29] visualizations of these embeddings from both the
textual baseline model and MTL-textSup near the low end of su-
pervision. Qualitatively, the representation learned by the MTL
model results in more distinct clusters than from the supervised
baseline. We have also examined the retrieved utterances for
these models and found that, at lower supervision, MTL-textSup
outputs higher false positives than MTL-visSup due to acous-
tically similar words. For instance, for the query “tree”, MTL-
textSup retrieves utterances containing the acoustically similar
word “street”. This effect reduces as we train MTL-textSup on
higher amount of text data.

® air ball ® bike @ football ® jumps @ rides riding @ road soccer @ street

Figure 3: T-SNE visualization of the representations learned with
~ 1.7 hours of transcribed speech, using the textual baseline
(left) and MTL-textSup (right).

5. Conclusion

Visual grounding has become a commonly used source of weak
supervision for speech in the absence of textual supervision. Our
motivation here was to, first, examine the contribution of visual
grounding when some transcribed speech is also available and,
second, explore how best to combine both visual and textual
supervision for a semantic speech retrieval task. We proposed a
multitask speech-to-keyword model that has both visually super-
vised and textually supervised branches, as well as an additional
explicit speech-vision representation loss as a regularizer. We
explored the performance of this model in a low-resource setting
with various amounts of textual supervision, from none at all
to almost 35 hours of transcribed speech. Our main finding is
that visual grounding is indeed helpful even in the presence of
some textual supervision. Experiments over a range of levels of
supervision show that with different amounts of textual supervi-
sion, either the visual branch or textual branch of our model may
perform better, but in all cases, joint training with both visual
and textual supervision results in improved retrieval.

A limitation of the current work is that the set of queries and
human judgments is small. A natural next step is to collect more
human evaluation data and to consider a wider variety of queries,
including multi-word queries. Another next step is to widen the
types of speech domains that we consider, for example to explore
whether visually grounded training can learn retrieval models
that are applicable also to speech that is not describing a visual
scene. On a technical level, there is room for more exploration
of different types of multi-view representation losses (such as
ones based on canonical correlation analysis [30,31]), as well
as more structured speech models that can localize the relevant
words/phrases for a given query.
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