An Optimal Semi-Partitioned Scheduler Assuming
Arbitrary Affinity Masks*

Sergey Voronov! and James H. Anderson?

1 Department of Computer Science, University of North Carolina at Chapel Hill
rdkl@cs.unc.edu

2 Department of Computer Science, University of North Carolina at Chapel Hill
anderson@cs.unc.edu

—— Abstract

Modern operating systems like Linux allow task migrations to be restricted by specifying per-
task processor affinity masks. Such a mask specifies the set of processor cores upon which a task
can be scheduled. In this paper, a semi-partitioned scheduler, AM-Red (affinity mask reduction),
is presented for scheduling implicit-deadline sporadic tasks with arbitrary affinity masks on an
identical multiprocessor. AM-Red is obtained by applying an affinity-mask-reduction method
that produces affinities in accordance with those specified, without compromising feasibility, but
with only a linear number of migrating tasks. It functions by employing a tunable frame F' of

size |F'|. For any choice of |F'|, AM-Red is soft-real-time optimal, with tardiness bounded by |F,
but the frequency of task migrations is proportional to |F|. If |F| divides all task periods, then
AM-Red is also hard-real-time-optimal (tardiness is zero). AM-Red is the first optimal scheduler
proposed for arbitrary affinity masks without future knowledge of all job releases. Experiments
are presented that assess its practical viability.

1998 ACM Subject Classification C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); C.3 [Special-Purpose and Application-Based Systems]—
real-time and embedded systems; D.4.1 [Operating Systems]: Process Management—scheduling;
D.4.7 [Operating Systems]: Organization and Design—real-time systems and embedded sys-
tems; J.7 [Computer Applications]: Computers in Other Systems—real time

Keywords and phrases optimal schedulers, processor affinity masks, semi-partitioned scheduling,
tardiness analysis

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2018.YY

1 Introduction

On multicore machines, particularly ones with relatively high core counts, it is often desirable
to limit task migrations to lessen cache- and I/O-related overheads [10] and to enable load
balancing [25], among other reasons [18]. Processor affinity masks are an operating-system
(OS) mechanism that enables allowed migrations to be flexibly determined. A given task’s
affinity mask specifies which cores it is allowed to execute upon. General-purpose OSs that
support affinity masks include Windows, Linux, and MacOS X. Real-time OSs (RTOSs) that
support them include FreeRTOS [15], QNX [1], VxWorks [2], and many others.
Unfortunately, in the real-time systems domain, no optimal scheduler has heretofore been
proposed that allows arbitrary affinity masks. Thus, while OSs provide flexible control over

* Work supported by NSF grants CNS 1409175, CPS 1446631, CNS 1563845, and CNS 1717589, ARO
grant W911NF-17-1-0294, and funding from General Motors.

© Sergey Voronov and James H. Anderson;

oY licensed under Creative Commons License CC-BY
30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. YY; pp. YY:1-YY:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.YY
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

YY:2

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

migrations through affinity masks in theory, such support must typically be restricted in
practice. For example, under Linux’s SCHED_DEADLINE scheduler [9], affinity masks are
essentially ignored: any task is assumed to be executable on any core [3]

In this paper, we show for the first time that the goals of allowing arbitrary affinity
masks and scheduling real-time tasks optimally do not fundamentally conflict. We do this by
presenting a new scheduler, AM-Red (affinity mask reduction), that optimally schedules
implicit-deadline sporadic task sets. Before delving into notable specifics concerning AM-Red,
we first review relevant prior work to provide context.

Related work. The existing literature pertaining to scheduling real-time tasks with affinity
masks is not very extensive. For hard real-time (HRT) implicit-deadline sporadic task systems,
Baruah et al. [6] proposed an exact feasibility test and corresponding scheduler. However,
their scheduler relies on clairvoyant knowledge of all job releases, gives rise to impractically
frequent task migrations, and has an offline phase with high time complexity. Muneeswari et
al. [17] presented a scheduler supporting affinities that they claimed is applicable to real-time
systems, but they provided no analysis to support this claim.

Hierarchical affinity masks are often used in practice to reflect multi-level cache hierarchies
(L1, L2, ete.) found in multicore machines. With hierarchical affinities, if the masks of two
tasks intersect, one must be contained within the other. For hierarchical affinities, Bonifaci
et al. [7] proposed a HRT scheduler that ensures a certain “greedy” property that avoids
wasted processing capacity. However, they provided no schedulability test.

Contributions. The main contribution of this paper is AM-Red, a new scheduling algorithm
for implicit-deadline sporadic task systems with arbitrary affinity masks. AM-Red is a semi-
partitioned scheduler; under such schedulers, only certain tasks are allowed to migrate and
these tasks are determined in an offline allocation phase [4].

AM-Red schedules tasks by iteratively considering a schedule computed offline for a
window of time called a frame and denoted F'. The frame size |F| is a configurable parameter.
For soft real-time (SRT) task systems that require bounded deadline tardiness, AM-Red
is optimal and ensures a tardiness bound of |F'|. The frame size |F'| also determines the
frequency of task migrations, so choosing |F'| yields a tradeoff: larger values reduce migration
costs while smaller values reduce tardiness. If |F'| divides all task periods, then AM-Red is
also optimal for scheduling HRT task systems. For n tasks executing on m processors, if
masks are hierarchical, then AM-Red requires O(m + n) time complexity for its offline phase
and O(1) time per scheduling decision; these time bounds are asymptotically optimal. To
the best of our knowledge, AM-Red is the first non-clairvoyant scheduler to be proposed that
is HRT /SRT-optimal for implicit-deadline sporadic tasks under arbitrary affinity masks.

In addition to presenting AM-Red, we also explore a number of issues concerning affinity-
mask reductions. In particular, we consider affinity graphs that aggregate the specified masks
of all tasks and present a method that can reduce the number of edges in such a graph
without compromising task-set feasibility. While feasibility can be assessed using the test
of Baruah and Brandenburg [6], we instead use a test proposed here that has lower time
complexity. Our reduction method yields affinity masks under which at most (m — 1) tasks
migrate. This property is actually instrumental in enabling a semi-partitioned approach.

In order to assess the efficacy of AM-Red, we experimentally compared it to the (non-
optimal) scheduler proposed in [7], which assumes hierarchical masks, on the basis of migration
frequency and task response times. In these experiments, AM-Red demonstrated performance
even better than our analysis predicts.

Organization. In the rest of this paper, we provide needed background (Sec. 2), present
our new feasibility test (Sec. 3), develop algorithm AM-Red by considering first “loop-free”

S. Voronov and J. H. Anderson

affinities (Sec. 4) and then arbitrary ones (Sec. 5), consider the special case of hierarchical
affinities (Sec. 6), present our experimental evaluation (Sec. 7), and conclude (Sec. 8).

2 Background

We consider the problem of scheduling n implicit-deadline sporadic tasks, 7,...,7,, on
m identical unit-speed cores, 71, ..., 7. We assume familiarity with the implicit-deadline
sporadic task model, consider only task sets in accordance with this model hereafter, and
assume that all time-related parameters are rational. We will use the following notation: C;
denotes the worst-case execution time of task 7;, T; denotes its period, D; = T; denotes its
relative deadline, and U; = C;/T; < 1 denotes its utilization; J; , denotes the Eth job released
by 7;, and C; , < C; denotes the execution time of J; x; U = >, U; denotes the total system
utilization. Job J; ;, has an absolute deadline D; time units after its release, and once it has
received a processor allocation equal to C; i, it is completed. Job J; ;1 cannot be scheduled
until the prior job of 7, J; x, has completed, even if J; ;, misses its (absolute) deadline.

If a job has a deadline at time t; and completes at time t., then its tardiness is defined
as max(0,t. — tg). The tardiness of task 7; is the supremum of the tardiness of any of its
jobs. If this value is finite, then we say that 7; has bounded tardiness.

A task set 7 is HRT-schedulable (resp., SRT-schedulable) under scheduling algorithm
S if each task in 7 has zero (resp., bounded) tardiness in any schedule for 7 generated by
S. A task set 7 is HRT-feasible (resp., SRT-feasible) if, for any job release sequence (as
allowed by the sporadic task model), a schedule exists in which each task has zero (resp.,
bounded) tardiness. Scheduling algorithm S is HRT-optimal (resp., SRT-optimal) if every
HRT-feasible (resp., SRT-feasible) task set 7 is HRT-schedulable (resp., SRT-schedulable)
under S. Although HRT- and SRT-feasibility are fundamentally different concepts in some
contexts, we show later that in the context of this paper, they are actually equivalent.

Affinity masks. In practice, affinity masks are usually specified using bit-vectors, but we
opt for a more abstract specification. In particular, we define the affinity mask «; of task 7;
to be the set of cores upon which 7; is allowed to execute. We define the aggregate affinity
mask of a subset of tasks 7 C 7 as arr = J,c,
the set of all tasks 7 the system affinity mask. For a given task set 7, we define a bipartite
undirected graph called an affinity graph, denoted AG(7), as follows: AG(7) has n vertices
T1,...,Tn (representing tasks), and m vertices 7y, ..., 7, (representing cores), and contains
edge (1;,m;) if and only if 7; € o; (4.e., task 7; can execute on core ;).

, ;. We call the aggregate affinity mask a, of

» Example 1. Consider a task set 7 with five tasks, 7, ..., 75, to be scheduled on four cores,
71, ..., Mg, with affinity masks a3 = {1}, aa = {1,2,3}, as = {2}, as = {3,4}, and a5 = {4}.
AG(7) is shown in Fig. la. The aggregate affinity mask for the subset of tasks {7y, 74,75} is
{m, w3, 74}, while for {13} it is {my, m2, 73}

Important affinity-mask categories. For a given task set 7, we call a, and AG(r)
loop-free if and only if AG(7) is acyclic. For example, the affinity graph in Fig. la is loop-free.
Note that, if AG(r) is loop-free, then, for any ¢ and j, where i # j, |o; N ;| < 1 holds. (On
the other hand, this condition does not necessarily imply that AG(7) is loop-free.)

As mentioned in Sec. 1, hierarchical affinity masks have received prior attention [7, 8, 22].
For a given task set 7, we call a, and AG(1) hierarchical if and only if, for any ¢ and 7,
a;Naj =0 or a; C a; or a; 2O . Note that hierarchical masks may or may not be loop-free.
Note also that the core assignments of any global, clustered, or partitioned scheduler can be

YY:3

ECRTS 2018

YY:4

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

1 T2 73 T4 T5 W 73 / T4
T T2 3

1 2 3 T4

(a) Task set from Ex. 1. (b) Task set from Ex. 2 (hierarchical affinities).

Figure 1 Example affinity graphs.

Lemma 4

7 is HRT-feasible — > 7 is SRT-feasible > UB Test holds for 7

Lemma 7 and Theorem 8

APA-feas(7,) [6] holds for 7 <———— MF Test holds for 7

Figure 2 Feasibility proof overview.

specified using masks that are hierarchical. Under global and clustered scheduling, if at least
two tasks are allowed to share at least two cores, then such masks will not be loop-free.
If we place no restrictions on affinity masks, then a, and AG(r) are called arbitrary.

» Example 2. Consider a task set 7 with four tasks, 71, ..., 74, to be scheduled on three cores,
71, T2, T3, with affinity masks aq = {1}, as = {1,2}, as = {1,2}, ay = {3}. The affinity
graph AG(7) for this task set is shown in Fig. 1b. From the figure, it is easy to see that
these affinities are hierarchical but not loop-free.

3 Feasibility

In order to design a scheduling algorithm for task sets with arbitrary affinity masks and show
that it is optimal, we must have a means for determining which such task sets are feasible.
A test for HRT-feasibility has been given previously by Baruah et al. [6]. In this section, we
show that in the considered context, HRT-feasibility and SRT-feasibility are equivalent. We
also present a feasibility test that is more efficient than that of Baruah et al.

It is easy to see that HRT-feasibility implies SRT-feasibility because zero tardiness implies
bounded tardiness. To show the equivalence of the two, we must therefore show that every
SRT-feasible task set 7 is also HRT-feasible. We do this in three steps: we first establish a
special property of SRT-feasible task sets in Sec. 3.1; we then develop a new exact feasibility
test in Sec. 3.2 based on max flow; finally, we show the equivalence of the obtained test to
that of Baruah et al. [6]. A depiction of these steps is given in Fig. 2.

3.1 A Special Property of SRT-Feasible Task Sets

It follows from results in [16] that, under global scheduling, 7 is feasible (HRT or SRT) if
and only if U < m holds and U; < 1 holds for each task 7;. That is, avoiding over-utilization
is the key to ensuring feasibility. In Lemma 4 below, we show that the same is true for
SRT-feasibility with arbitrary affinity masks, but the “no over-utilization” condition is more
complicated. The next lemma, which is used in proving Lemma 4, refers to “uncompleted
work”: in a given schedule, the uncompleted work at time t is the total execution time of all
jobs released prior to ¢t minus the processing capacity already allocated to those jobs.

» Lemma 3. If the tardiness of every task in 7 is at most B in some schedule, then at any
time instant in that schedule, the amount of uncompleted work is at most BU + 2, C;.

S. Voronov and J. H. Anderson

Proof. If tardiness never exceeds B, then every job completes within B time units of its
deadline, which for a job of task 7;, is within B 4 T; time units of its release. Thus, at any
time ¢, all jobs of task 7; released prior to time ¢t — B —T; are completed. During [t — B —T;,t)

task 7; may release at most { ;: i—‘ jobs. Thus, the amount of uncompleted work due to
B+T; C; .

task 7; at time ¢ is at most C} { + —‘ < C; (2 + T§> =20, +B? = 2C; + BU;. Summing

over all tasks yields BU + 23, C;. <

For 7 C 7, let U,, denote Y U;. The “no over-utilization” condition we require is:

T, €T’
Utilization Balance: V7' C 7: Uy < ||
» Lemma 4. If 7 is SRT-feasible, then it satisfies Utilization Balance.

Proof. Assume, contrary to the statement of the lemma, that a SRT-feasible task set 7
exists that violates Utilization Balance. Then, for some 7" C 7,

lar| < Upr. (1)

Consider the following periodic release sequence for 7: each task 7; in 7 releases jobs
every T; time units, starting at time 0, and each such job executes for C; time units. Let S
be the schedule with bounded tardiness for this release sequence mentioned in Lemma 3.

By the definition of «.,-, all jobs of all tasks in 7’ are scheduled in S on cores from a,-.
Let H be the hyperperiod of 7. Then, for any integer k, the amount of work generated by 7’/
over [0,kH) is Y . Ci- %—H = kHU, > kH|a,|, where the last inequality follows from
(1). Observe that kH|a,| corresponds to the total available capacity over [0, kH) on cores
in a,s. Thus, the uncompleted work at time kH in S is at least kH (U, — |a|). This value

grows unboundedly with increasing k, contradicting Lemma 3. |

From results presented later, it will follow that Utilization Balance is a necessary and
sufficient condition for SRT-feasibility (and also HRT-feasibility), i.e., Lemma 4 can be
strengthened by specifying “if and only if” When we henceforth wish to emphasize this usage
of Utilization Balance, we will refer to it as the UB Test. Unfortunately, applying the UB
Test by considering different subsets of tasks can require (2") time. However, the structure
of this test is similar to the famous condition of Hall’s Marriage Theorem [12], the proof of
which involves examining maximal “edge matchings” in a graph. Such matchings can be
determined by considering the Ford-Fulkerson max-flow algorithm and its correctness proof
[11]. This connection to prior work (along with the existence of polynomial-time algorithms
for max flow) motivates us to determine whether max flow can be used to efficiently determine
SRT-feasibility.

3.2 Max-Flow Feasibility Test

To cast checking feasibility as a max-flow problem, we define for any task set 7 a flow network
FN(7) that is obtained from its affinity graph AG(7) via several steps. First, each edge
(15, 7;) in AG(7) is viewed as a directed edge from 7; to 7; and given a capacity Z, where
Z > m. Second, a source vertex s is added along with an edge (s, 7;) with capacity U; for
each vertex 7;. Finally, a sink vertex ¢ is added along with an edge (7;,t) with capacity 1
for each vertex m;. Following conventional notation, we let f denote a flow that is defined
with respect to FN(7), with f(u,v) denoting the flow from vertex u to vertex v, and let |f]
denote the value of the flow f (which equals the total flow coming from the source vertex s).
(To avoid notational clutter, we do not parameterize f by 7.)

YY:5

ECRTS 2018

YY:6

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

1 P
(a) Flow graph for the task set in Ex. 2. (b) A cut of the flow graph in inset (a).

Figure 3 Example flow graph and cut.

» Example 5. Fig. 3a shows the flow network corresponding to the affinity graph in Fig. 1b.
» Lemma 6. If Utilization Balance holds for T and f is a mazimum flow, then |f| =U.

Proof. Assuming f is a maximum flow, by the Max-Flow/Min-Cut Theorem [11], | f| equals
the capacity of a minimal cut. A cut is a partitioning of vertices that places the source and
sink in different partitions. The capacity of a cut is simply the sum of the capacities of all
edges that traverse the cut. Such an edge is called crossing edge. For example, Fig. 3b shows
one of the many cuts that can be defined with respect to the flow network in Fig. 3a (the
vertex sets Vi, Viy, and Vx are discussed later). The capacity of this cut is Uy + 2.

Let C be a cut with minimal capacity. If any edge of the form (7;,7;) is a crossing
edge, then because its capacity exceeds m and the capacity of any edge is non-negative, the
capacity of C exceeds m. This cannot be the case if C is minimal because the cut that places
t and all other vertices in different partitions has capacity m. Thus, every crossing edge is of
the form (s, 7;) or (m;,t). The cut show in Fig. 3b has this property, so the reader may wish
to consult it for illustrative purposes hereafter.

Let Viy = {7 | (s,7;) is a crossing edge}, Vi = {7; | (s,7;) is not a crossing edge}, and
Vx = {m; | (m;,t) is a crossing edge}. Then, the capacity of the cut Cis > _ . U;+|Vx|. As
long as there are no crossing edges of the form (7;, 7;), all edges from tasks from Vi, are to V.
Thus, [Vx| > |avs, |. Assuming Utilization Balance holds for 7, [Vx| > |av, | > > oy Ui
Therefore, the capacity of C is at least > _ . Ui+ [Vx| > > v Ui+ o, Ui =
Z‘ri e Ui=U

To summarize, any minimal cut has capacity at least U. However, the cut that places s
and all other vertices in different partitions has capacity U, so the capacity of any minimal
cut actually equals U. Thus, by the Max-Flow/Min-Cut Theorem, |f| = U. <

It will follow from results presented next that showing that U is a maximum flow is an
alternative way to test SRT-feasibility. We therefore refer to this alternative as the MF Test.

In fact, we are going to show that the UB Test and MF Test are each valid tests for both
HRT- and SRT-feasibility. We do this by providing reasoning for the remaining links in the
proof overview given earlier in Fig. 2. One of these links involves considering a HRT-feasibility
test, denoted APA-Feas(T,), presented by Baruah et al. [6]:

APA-Feas(7,m) Test: Declare 7 to be HRT-feasible if and only if values exist for
the variables z;; satisfying:

Vi : injzl, Vj:injUigl, and Vi,j x4 > 0.
JE; 4

Max-flow linear program. The APA-Feas(r, 7) Test can be cast as a linear program (LP).

Thus, to make a connection between it and our earlier results, we consider an LP-based

implementation of the MF Test, which we refer to as the LP-MF Test:

S. Voronov and J. H. Anderson

Maximize Z fls,m)

3

Subject to:
Edge Constraints:
Cl: Vi: 0< f(s,m) <U; {(s, ;) edges}
C2: Vi,j:0< f(m,mj) < Z {(7;,m;) edges}
C3: Vj: 0L f(mj,t) <1 {(m},t) edges}

Vertex Constraints:
C4: Yi: f(s,1i) = Z f(Ti,m5) {7; vertices}
JE;
Ch: Vj: Z fm,m5) = f(m;,t) {m; vertices}
i:(j€ay)
The edge constraints ensure that edge capacities are respected and the vertex constrains
ensure that the flow into each non-source/sink vertex matches the flow out of that vertex.
We now show that if | f| = U holds, then the constraints in the LP above can be simplified,
yielding constraints quite similar to those in the APA-Feas(7, 7) Test. In particular, if f is a
maximum flow, then it still lies in the feasibility region of the simplified LP.

» Lemma 7. If f is a mazimum flow and |f| = U, then the following conditions hold.

Vi : Zf(Ti,ﬂ'j):Ui (2)

JE;

i) f(mm) <1 (3)
Vi,j,v;fhere jéa;: f(r,m) =0, (4)

assuming we assign f(1;,m;) to be 0 for j ¢ a; (note that, if j & o, then the edge (7;,7;) is
not present in the flow network).

Proof. Let f be a maximum flow such that |f| = U. Because f is a maximum flow, it
satisfies the constraints of the LP of the LP-MF Test. By Constraint C1, |f| =", f(s, ;) <
>, Ui = U. Because |f| = U, by the construction of the flow network, f(s,7;) = U; holds
for each i. Thus, by Condition C4, (2) holds. Furthermore, by Conditions C3 and C5,
Yiean f(Ti:m;) = f(m;,t) < 1, 50 (3) holds, assuming we assign f(r;, ;) to be 0 for j ¢ o
as stated in the lemma. Note that such an assignment trivially satisfies (4). |

3.3 HRT- and SRT-Feasibility Equivalence

The following theorem summarizes the results above.

» Theorem 8. A task set T is SRT-feasible if and only if it is HRT-feasible. Moreover, the
UB Test and the MF Test (and its LP counterpart, the LP-MF Test) are each both exact
SRT- and HRT-feasibility tests.

Proof. By Lemma 4, if 7 is SRT-feasible, then it satisfies Utilization Balance, which by
Lemma 6 implies that |f| = U holds, where f is a maximum flow. Thus, by Lemma 7, f

satisfies Conditions (2)-(4). Now, defining, z;; by z;; = w, Conditions (2)—(4) imply
that all of the conditions of the APA-Feas(r,) Test are satislﬁed, so 7 is HRT-feasibile. As
noted earlier, HRT-feasibility trivially implies SRT-feasibility. Thus, all links in the chain of
reasoning depicted in Fig. 2 have been validated. <

YY:7

ECRTS 2018

YY:8

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Remarks. Given Theorem 8, we will generally use the term “feasible” hereafter without
qualifying whether we mean SRT- or HRT-feasibility.

Using a max flow algorithm from [14] with O(E+/(V)) time complexity,! where V is
the number of vertices and F is the number of edges in the flow network, the MF Test can
be performed in O(mn+/m + n) time, since our flow network satisfies V = m + n + 2 and
E < mn. In contrast, the APA-Feas(7, m) Test requires solving an LP with mn variables and
n+m constraints, which requires O(mn(m 4 n)“*%5) total time in the worst case [14], where
2 < w < 2.4 is the matrix multiplication constant [23]. Thus, the MF Test is considerably
more efficient than the APA-Feas(r, w) Test.

4 Loop-Free Affinities

As a stepping stone towards defining algorithm AM-Red, we provide in this section an SRT-
optimal scheduler under the restriction that « is loop-free. For any feasible task set 7 that
this scheduler must correctly schedule, we fix f to be a maximum flow satisfying Conditions
(2)-(4) of Lemma 7. Using this fixed f, the algorithm designed here seeks to ensure that
each task 7; receives a long-term processor share on core 7; equal to f(7;,7;).

Share graph. Note that f(7;,7;) = 0 may hold even when 7; € ;. In this case, even
though task 7; is allowed to execute on core 7;, the share allocation defined above will
preclude this from happening. Thus, while the affinity graph AG(7) includes the edge (74, 7;),
this edge really is not needed. To reflect this, we define a share graph SG(7) that is a
subgraph of AG(7). The two are the same except that, in SG(7), any edge (7, 7;) in AG(7)
for which f(7;,7;) = 0 holds in the corresponding flow network FN(7) is removed. Note
that SG(7) is loop-free if AG(7) is.

» Example 9. Consider a task set 7 consisting of three tasks, 71, 72, and 73, scheduled on
four cores, w1, mo, w3, and m4. If the max-flow values computed for 7 are as specified in
Fig. 5a, then its share graph is as depicted in Fig. 5b. (Fig. 5 has several other insets that
are considered later.)

4.1 Frames

To realize the long-term processor shares that we want, we define allocations offline for a
time interval called a frame. We denote the allocation function by F' and the frame length
by |F|. At runtime, we use F to perform allocations within each successive time window of
length |F|. Formally, F' is a mapping F : [0, |F|) X {71, ..., mm} — {0, 71, ..., 7, }. Informally,
at each time instant within a widow of length |F|, F' indicates which task is scheduled on
each core (if core 7; is idle at time instant ¢, then F(¢,7;) = 0).

Let Ir(7;,m;) be the union of all maximal continuous intervals on core 7; allocated to
task 7; by F. (Note that we use half-open intervals of the form [¢t,¢').) Then, F is termed
valid if the following conditions hold.

Vi,j,j/,j#j/:IF(Ti,Wj)mIF(Ti77Tj/):® (5)
Vi, j i [Ip(mi,m5)| = f(7i,75) - | F (6)

1O ignores logarithmic factors: O(g(n)) = O(g(n) log® g(n)) for some natural number k.

S. Voronov and J. H. Anderson

|F| ||
7 [[M n[] ‘
mm | [w] 2 [(m [m]
3 | 4 \ 3 [|
R itin}e time
01 234567389 01 23 456 7 8 9 1011 12
(a) A valid frame for 7 in Ex. 10. (b) A valid extended frame for 7 in Ex. 10.

Figure 4 Example of a valid frame and a valid extended frame.

Informally, (5) implies that 7; cannot be allocated time on different cores simultaneously,

while (6) implies that task 7; receives a total per-frame allocation of f(7;,7;) - |F| on core ;.

» Example 10. Consider the task set 7 from Ex. 2, with flow values f(r,m) = 1/4,
f(rs,m) =1/4, f(r2,m2) = 1/4, f(13,m2) = 3/8, and f(74,73) = 5/8. A valid frame for 7 is
depicted in Fig. 4a. Observe that |F| = 8 and (for example) 73’s total allocation on core 7o
is f(r3,m) - |F| = % -8 =3.

Extended frames. To simplify the problem of defining a valid frame F' for 7, we introduce
the concept of an extended frame E. E is a mapping similar to F' but its length is not a
priori bounded: E : [0,00) X {71, ..., } — {0, 71, ..., 7 }. We will show that a valid frame
F' can be obtained by first constructing £ and then “wrapping” the allocations given by E
to obtain F'. First, we need to give validity conditions for E.

Let Ig(7;, ;) be the union of all maximal continuous intervals on core 7; allocated to
task 7; by E. At the risk of a slight notational overload, let Lg(r;) = U, Ig(7i, m;) and
Lg(nj) =, Ig(1i, 7). The conditions for E to be valid are as follows.

Vi, j : Ig(m;, ;) is a single continuous interval (7)
Vi : Lg(T;) is a single continuous interval (8)
Vj : Lg(m;) is a single continuous interval 9)
Vi, j : [Ip(7i, m5)| = f(7i,m5) - |F| (10)
Vi, g1, g2 Ip(mi, 7)) N Ig(mi,75,) =0 (11)

» Example 11. Fig. 4b shows a valid extended frame for the task set in Ex. 10. Notice how
each task is scheduled over a continuous interval of time. A task can migrate from one core
to another during such an interval, but once it completes executing on a given core, it cannot
execute on that core again. Also, once a core transitions from executing some task to being
idle, it must stay idle.

Note that (10) ensures that the total allocation to 7; in E matches that in F'. However, no
constraints are placed on the length of E, so it may potentially contain many idle intervals.

Converting from extended frames to frames. The following lemma reduces the problem
of defining a valid frame to that of defining a valid extended frame.

» Lemma 12. Assume that the extended frame E is valid. Furthermore, if E(t,7j) # 0 for
some t, then define F(t mod |F|,m;) = E(t,m;). Then, F is valid.

Proof. First, note that F' is well-defined: by (9) and (10), allocations on 7; obtained from E
occur within an interval of length >, f(7;,7;) - |F| < |F|, where the latter inequality follows

YY:9

ECRTS 2018

YY:10

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Algorithm 1 Extended-Frame Builder

Require: cores order (<), tasks order for each for =; (L)
Ensure: extended frame
1: for m; € cores order do
for 7; € tasks order for 7; do
if 7; is the first task allocated on m; then
start < end of the last allocation interval for 7; if one exists, else 0
else
start <— end of the last allocation interval on core 7;

define the allocation interval for 7; on 7; to be [start, start + f(7:,7;))

from (3). Thus, if 7; is allocated (not idle) at distinct time instants ¢ and ¢’ by E, then
t mod |F| # t' mod |F|.

To show that F is valid, we must show that (5) and (6) hold. By (7), (8), and (10), Lg(7;)
has length (3_;c,,. f(7i,m;)) - [F| = U; - |[F| < [F|, where the first equality follows from (2).
Thus, a similar argument as given in the first paragraph of the proof can be applied to show
that (5) holds. As for (6), it follows directly from (10). <

Constructing a valid extended frame. Given Lemma 12, we can focus our attention
now on constructing a valid extended frame. To motivate some of the issues that arise in
doing so, we first consider an example.

» Example 13. We can compute a valid extended frame E for the task set in Ex. 9 as follows.
Consider the cores in order, and for each core 7;, consider the tasks connected by an edge
to m; in turn. This ordering is illustrated in Fig. 5¢c as an “outer” ordering of cores and an
“inner” ordering of tasks. Given this ordering, we can apply the simple scheme in Alg.1 to
obtain E. First, consider core m and tasks 71 and 75 in turn. Allocate them shares of 1/3
and 2/3, respectively, on 1, starting from time 0. Now, move on to core 79 and consider the
tasks 71 and 73 in turn. Allocate them shares of 1/3 and 2/3, respectively, on s, but this
time starting from the end of 7;’s allocation on 7 (so that (11) is not violated). Continue
to consider cores and tasks in this manner until all tasks have received their needed share
allocations. The resulting extended frame E that is constructed in shown in Fig. 5d.

Ordering cores and tasks. The determination of F worked out easily in Ex. 13 because
we conveniently ordered cores and tasks in way to make this happen. Other orderings could
be problematic. For example, with the core ordering my, w4, 72, 73, the obtained extended
frame E would not be valid because (8) would be violated for 73, as illustrated in Fig. 5e.
Properly ordering cores is not enough. For example, had we kept the original core ordering
but changed the ordering of tasks on core 7w to 73,71, then the obtained extended frame
would again violate (8), this time for 7, as illustrated in Fig. 5f. These examples show that
properly ordering cores and tasks is crucial for Alg.1 to be correct.

Proper orderings. To correctly apply Alg.1 in a general way, we define a total order < on
cores, and for each core 7, a total order s on a certain subset of tasks 7. We say that a
task 7; is a non-first task on core ; if and only if there exists 7;;, where ¢’ # ¢, such that

Ty BN 7;. These orders are called proper if the following conditions hold.
Vi,j: 7 € 7™ if and only if f(7;,m;) >0 (12)
Vi : task 7; can be non-first task on at most one core (13)

Vi @ if task 7; is non-first on core 7;, then for every 7 < 7;, 7, ¢ 77’ (14)

S. Voronov and J. H. Anderson

YY:11

tasks order
it thad 3

T 711)7'2
A
& ~ & g s =T
o 1/3 2/3 - g 2 3
™ 13 - 2/3 g
= T3 T1
3 1/3 - - 8
A
T4 - - 1/3 O

(a) Max-flow values for 7.

(b) Share graph for .

(c) Ordering of cores and tasks.

m || ™ | m |71 ™ | m (1| ™ |

m |m| 7 | Ty |73 m | 73 |7

3 | 71 o |m| 73| 3 | 71

4 |73 3 | 7] 4 [
} ‘ tin}le } ‘ tirr}e } ‘ tin}le
0 1 2 0 1 2 0 1 2

(d) Valid extended frame.

(e) Invalid extended frame
(improper core ordering).

(f) Invalid extended frame
(improper task ordering).

Figure 5 Illustrations pertaining to task set 7 from Exs. 9 and 13.

» Example 14. It is straightforward to verify that (12)—(14) hold for the orders in Fig. 5c.

Thus, these orders are proper.

» Lemma 15. If Alg. 1 is provided proper orders, then a valid extended frame is returned.

Proof. Alg. 1 places at most one allocation interval for each task on any core, so (7) holds.

The algorithm also ensures that if multiple allocation intervals are placed on some core, each
successive interval begins when the immediately prior one ends, so (9) holds. By (12), the

algorithm places an interval of size f(7;,7;) on m; whenever f(7;,m;) > 0 holds, so (10) holds.

(13) and (14) ensure that, if task 7; has allocation intervals placed on different cores, it can
be a non-first task only on the first (by <) of these cores. Thus, Alg. 1 ensures that these
allocation intervals are contiguous, so (8) and (11) hold. <

Generating proper orders. The final issue that remains is actually generating proper
cores/tasks orders. For this, we provide Alg. 2. (Note that, if SG(7) is not connected, then
we assume that the BFS routine searches every connected component.)

» Theorem 16. If SG(7) is loop-free, then Alg. 2 produces orders that are proper.

Proof. Line 4 of Alg. 2 ensures that (12) holds. In the rest of the proof, we verify the
remaining properies, (13) and (14). We assume that all vertices and edges referenced in
verifying these properties are part of the same connected component of SG(7).

Assume, to the contrary of (13), that 7; is a non-first task on two distinct cores, 7; and
wj. Then, SG(7) has edges (7, 7;) and (7, 7;7). Furthermore, 7; and m;, were discovered
before 7;. Without loss of generality, assume that 7; was discovered first. Then, there exists

ECRTS 2018

YY:12

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Algorithm 2 Proper-Orders Generator

Require: loop-free share graph SG(7)
Ensure: proper core/task orders
1: run BFS(SG(7)) > breadth-first search of SG(7)
> Every connected component of SG(7) is searched starting with an arbitrary vertex
2: define cores order, <, by ordering cores according to their BF'S discovery times
3: for m; € cores order do
4 7Y Ami | f(mi, ;) # 0}
5 define the task order for ;, SER
6: if 7; is discovered in BSF by traversing the edge (75, 7;) then place 7; first
7 order other tasks in 7™ arbitrarily after 7; (if it exists)

Algorithm 3 Loop-Free Scheduler
Require: 7, frame_len
1: function FEASIBILITY CHECK(T) > described in Sec. 3.2

2 construct flow network FN ()

3 compute max flow f with respect to FN (1)

4: if |f| = U then > MF Test
5: return f

6 else > 7 is infeasible
7 return L

8: function GENERATEFRAME(T, frame_len, f) > described in Sec. 4.1
9 run Alg. 2 to get proper core/task orders
10: run Alg. 1 to build a valid extended frame E
11: apply the transformation of Lemma 12 to obtain a valid frame F with |F| = frame__len
12: return F'
13: function SCHEDULER(T, frame_len)
14: f < FEASIBILITY CHECK(T)
15: if f# | then
16: F <+ GENERATEFRAME(T, frame_len, f)
17: repeat the allocations in F every |F| time units, letting the jobs of each task 7

execute within the allocation intervals for 7 in release-time order

a path m; ~» ;s that does not include ;. Thus, we have cycle, m; ~ 75 — 7; — 7;, which
is a contradiction.

Finally, assume to the contrary of (14), that 7; is non-first on core m;, but core 7, exists
such that 7y < m; and 7, € 77'. Because 7 < 7; holds, 7m;; was discovered before ;.
Because 7; € 7™, the edge (7;,m;/) exists. Cores are not connected by edges in SG(7), so
these facts imply that 7; was discovered before 7;. Because 7; was selected as a non-first
task on core m;, the edge (7;,7;) exists. It follows that 7; would have been discovered by
traversing that edge, making 7; the first-ordered task on core 7;, which is a contraction. <«

4.2 Scheduler

We summarize our results so far by presenting Alg. 3, our algorithm for scheduling task sets
with loop-free affinity masks. We present analysis pertaining to this scheduler below, after
first providing an example that illustrates how it works.

» Example 17. Consider the task set from Ex. 2 with f(7;,7;) values from Ex. 10 and the
(valid) frame F' shown in Fig. 4a. Fig. 6 shows how several jobs of the sporadic migrating task
73 are scheduled under Alg. 3 assuming 73 = 1.25|F|. The core label within each allocation
interval indicates the core upon which 73 is scheduled.

S. Voronov and J. H. Anderson

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

W el T G E
T3 - - Ts
T Job release i Job deadline T Job completion

\: Allocation intervals for 3

Figure 6 Example schedule under Alg. 3.

Frame-based schedulers were first studied years ago [19]. More recently, several frame-
based semi-partitioned schedulers have been proposed, [5, 13, 21, 24], but none support
affinities. Our frame-based scheduler draws inspiration from one of these [24], but that
scheduler is directed at heterogeneous multiprocessors.

4.3 Analysis and Optimality

In this section, we analyze Alg. 3 from the perspectives of task migrations (both the number
of migrating tasks and migration frequency), time complexity, and optimality.

Migrations. We call a task migrating if it has allocations on multiple cores and fized
otherwise. Let M denote the number of migrating tasks in Alg. 3. The following theorem
shows that Alg. 3 limits M in accordance with the idea of semi-partitioned scheduling, where
the goal usually is to have M = O(m).

» Theorem 18. M <m — 1.

Proof. By assumption, SG(7;) is loop-free, which implies that it has at most n+m — 1 edges.
M migrating tasks have at least 2M incident edges. Thus, the number of edges incident upon
fixed tasks is at most n +m — 1 — 2M. Each fixed task has at least one incident edge (if the
task set is feasible). It follows that at most n+m — 1 — 2M tasks are fixed. Because n is the
total number of tasks, we therefore have n < M +n+m—1—-2M, implying M <m—-1. <«

We now prove several migration-related bounds, all of which are tight, i.e., task sets can
be defined for which exactly these bounds hold. In proving these bounds, we let F' be the
(valid) frame used by Alg. 3, and let deg(7;) denote the degree of 7; in SG(7). When we
refer below to an allocation interval for a task 7;, we mean a maximal continuous interval
during which 7; is allocated capacity on one core.

» Lemma 19. Task 7; has at most deg(r;) + 1 allocation intervals in F'.

Proof. It is straightforward to show that, in the valid extended frame E that is used to
obtain F, 7; has at most deg(;) allocation intervals. Using (7)—(11), it is easy to show that
these intervals occupy a continues time window of length at most |F'|. Thus, when this

YY:13

' oy time

Allocation intervals for all other tasks

ECRTS 2018

YY:14

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

interval is “wrapped” (see Lemma 12) to produce F, at most one of these intervals is split
into two subintervals. The stated bound follows. <

» Theorem 20. The overall number of migrations within F is at most 2m — 2.

Proof. Let 7 denote the set of migrating tasks. To compute the overall number of
migrations, we consider only these tasks. By Lemma 19, each such task has at most deg(;)+1
allocation intervals in F. This yields a bound of deg(7;) for the number of migration by 7;
in F because a task’s first allocation interval does not entail a migration. Recall (from the
proof of Theorem 18) that SG(7) has at most n +m — 1 edges. Thus, the total number of
migrations within F is at most »__ . deg(7;) = no. of edges in SG(7) = >__ o, deg(r;) <
n+m—1—(n—M)=m—14 M, which by Theorem 18, is at most 2m — 2. <

» Theorem 21. Within any continuous time interval of length L, task 7; has at most
[L/|F|]-deg(7;) migrations, and the overall number of migrations is at most [L/|F|]|-(2m—2).

Proof. As discussed in the proof of Lemma 19, when “wrapping” the extended frame E to
get F', a task 7; has at most one allocation interval that is split. If it has zero, then its first
and last allocations per frame are for different cores, while if it has one, they are for the same
core. Thus, with zero split allocations, inter-frame migrations can occur, while with one, they
cannot. Hence, reasoning as in the proofs of Lemma 19 and Theorem 20, when accounting for
both intra- and inter-frame migrations, we have at most deg(7;) migrations for 7; per frame
and at most 2m — 2 per frame overall. Thus, within L, 7; experiences at most [L/|F|]-deg(r;)
migrations, and the overall number of migrations is at most [L/|F|](2m — 2). <

Time complexity. It is straightforward to show that Algs. 1 and 2 each can be implemented
in O(m + n) time. In contrast, the most efficient known max-flow algorithms require super-
linear time. Thus, the time complexity required by Alg. 3 to find a valid frame is dominated
by that of the max-flow algorithm that is used. Lee et al. [14] have presented a max-flow
algorithm that has time complexity O(mn+/m + n) for an arbitrary AG(7) and O((m+n)>/?)
in our setting (the number of edges in a loop-free AG(7) is limited by (m +n — 1)), giving
us the following.

» Theorem 22. For any feasible task set T, Alg. 8 can produce a valid frame F in
O(mnv/m +n); if a, is loop-free, it requires O((m +n)3/?) time.

Bonifaci et al. [8] claim that semi-partitioned and hierarchical scheduling with affinity
masks is NP-hard to approximate. Their work does not contradict Theorem 22 because it is
directed at a completely different context, namely, one-shot jobs and makespan minimization.

Optimality. The next lemma shows that each task receives a long-term processor share
equal to its utilization. We use this lemma in showing that Alg. 3 is optimal below.

» Lemma 23. Task 7; receives a total allocation of at least U; - |F|- |L/|F|] during any
interval of length L.

Proof. During an interval of length |F|, 7; receives an allocation of U; - |F|. (Note that, if
such an interval begins within a frame, then the missing part of that frame is compensated
for by the beginning of the next frame—recall that all frames are identical). During an
interval of length L, at least | L/|F|] complete intervals of length |F'| occur. <

» Theorem 24. Alg. 3 is SRT-optimal and ensures a tardiness bound of |F|. Moreover, if
|F| divides all periods, then it is HRT-optimal.

S. Voronov and J. H. Anderson

n 22 Ar 4K N2 T 4K
1 SO 7 2 0.3,7 3 1 ~So 2 0.2,7 3
\/<\ " \\\ ./

0.3 4 ~_ 0.4 0.4 ~_ 0.5
/0/1 0.2 PN 0.3 2 >~
+ 0. So 7 So

m o T3 US| 2 3

(a) Share graph before loop removal. (b) Share graph after loop removal.

Figure 7 Ex. 25. (For clarity, task-to-core edges are solid and core-to-task edges are dashed.)

Proof. Consider a job J; s that is released at time ¢, and has a deadline at time ¢4. Let ¢ be
the last time instant at or before ¢, such that no job of 7; released prior ¢ is unfinished at ¢.
Let & be number of jobs of 7; released in [t,t4). Then, because 7; has a deadline at t4, we
have t; —t > kT;. Thus, by Lemma 23, the total processor allocation received by 7; during
[t,ta + |F]) is at least

ta+|F|—t kT kT
| F - >U. . |F|- 1l >U. . |F|-

k- T
>Ui-|F|-< i):k-cy-.

This implies that J; ; completes by time ¢4 + |F|, i.e., Alg. 3 is SRT-optimal and ensures a
tardiness bound of |F|.

If |F| divides all task periods, then similar reasoning can be applied, but this time with
respect to the interval [t,t4). Because |F| divides T;, by Lemma 23, the total processor
allocation received by 7; during this interval is at least

tg—t k-T; k-T;
R 22— > U U . |F|. —*
Uz||{IFIJ_U’{IFIJ U"'IFI

This implies that J; ; completes with zero tardiness and that Alg. 3 is HRT-optimal. |

5 Arbitrary Affinity Masks

In this section, we show that arbitrary affinities can be dealt with by eliminating any loops
that may exist in SG(7). Because SG(7) is bipartite, any such loop is of the form 7;, —
Tjy = Tig — TWjy —> oo = Wi — Tiy. Let fr, = min(f(7i,,75,), f(Tin, iy)s ooy £ Ty, Ti) Gee,
fm is the minimal f value of any task-to-core edge in this loop. Then, we can eliminate the
loop by decreasing the f value of each core-to-task edge by f,, and by increasing the f value
of each task-to-core edge by f,,. This eliminates all loop edges with f values of f,,.

» Example 25. Applying this loop-removal procedure to the share graph in Fig. 7a, we have
fm = 0.1, and the share graph in Fig. 7b results.

Now that we have a procedure for eliminating loops, we need a means for finding them. A
breadth-first-search routine can do this, as seen in Alg. 4. It is easy to see that this algorithm
produces a loop-free share graph: it does not add any new edges, so it cannot create any
new loops; also, any loop initially in SG(7) will be found by BFS and removed.

YY:15

ECRTS 2018

YY:16

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Algorithm 4 Affinity-reduction algorithm
Require: f

1: construct SG(r)

2: for 7; € T do

3: while true do

4 Run BFS(7;)

5 if BFS found a loop in SG(r) then

6: remove edge from the loop using the procedure illustrated in Ex. 25

7 else break while > no more loops in this connected component of SG(7)
8: return obtained f

Algorithm 5 AM-Red Scheduler

Require: 7, frame_len

: function FEASIBILITY CHECK(T) > described in Sec. 3.2

construct flow network FN (1)

compute max flow f with respect to FN(7)

if |f| = U then return f > MF Test

else return L > 7 is infeasible

: function GENERATEFRAME(T, frame_len, f) > described in Sec. 4.1

run Alg. 2 to get proper core/task orders

run Alg. 1 to build a valid extended frame F

apply the transformation of Lemma 12 to obtain a valid frame F with |F| = frame__len

return F

: function GETFLOW(T)

f < FEASIBILITYCHECK(T)

13: run Alg. 4 to obtain loop-free f values

14: return f

15: function SCHEDULER(T, frame_len)

16: f < GETFLOW(T)

17: if f# 1 then

18: F < GENERATEFRAME(T, frame_len, f)

19: repeat the allocations in F every |F| time units, letting the jobs of each task 7
execute within the allocation intervals for 7 in release-time order

—
L

To determine the time complexity of Alg. 4, note that each invocation of the BFS routine
requires O(FE) time, where E is the number of edges in the initial graph SG(7). In our
context, E is upper bounded by the number of edges in AG(7), which is O(mn). O(E + n)
BFS-routine invocations occur, because each invocation removes at least one edge or moves
to a new task. The edge-removal procedure itself (illustrated in Ex. 25) requires O(m) time.
From this discussion, we have the following.

» Theorem 26. Alg. 4 transforms SG(7) into a loop-free graph. Its time complexity is
O(m?n?) generally, and O(n?) if the number of edges in AG(7) is linear.

Algorithm AM-Red. We are finally in a position to present the main contribution of this
paper, algorithm AM-Red. As seen in Alg. 5, it is obtained by applying the various algorithms
presented in this paper as building blocks in the expected way. The following theorem follows
from the properties of the algorithms employed (particularly, properties stated as theorems).

» Theorem 27. For any feasible task set T, AM-Red produces a valid frame F in O(m?n?)
time; it ensures at most m—1 tasks migrate and at most 2m — 2 migrations occur per frame; it
is SRT-optimal with a tardiness bound of |F|; if F divides all periods, it is also HRT-optimal.

S. Voronov and J. H. Anderson

6 Hierarchical Masks

In this section, we show that the relatively high time complexity of the MF Test and affinity
reduction (Alg. 4), which dominate the time complexity of AM-Red (Alg. 5), can be avoided
if ., is hierarchical. To facilitate showing this, we assume that tasks are indexed such that
i <j=|ay] <|ay|. We call this ordering canonical order. For now, we assume this ordering
is initially provided. Later, we consider the cost of establishing it if not initially provided.

We now establish a simpler feasibility test when . is hierarchical. To facilitate our
description of this test, we introduce some new terminology. We say that task 7; is nested
within task 7; if and only if ¢ < j and «; C «;. It is easy to see that the “nested within”
relation is transitive. We denote the set of tasks nested within 7; as N; (note that 7; € N;).
Observe that, if 7; is nested within 7;, then N; C N; by transitivity. For any task 7,
we define its wutilization closure as U} = ereNi U;. We call a task 7; mazimal if it is
not nested within any other task 7; with the same affinity mask, where j > 4. For any
task 7;, we let A; denote the set of tasks with the same affinity mask (note that 7; € A4;);
we say that these tasks agree with 7,. Note that the last task in A; (in canonical order)
TiET! Ai’
and we let X (7/) denote those tasks in X(7) at the “top” of the nesting hierarchy, i.e.,
X(r') = {7 : 7 € X(7) A7 is not nested within any task in X(7)}. Note that distinct tasks
in X(7) have disjoint masks.

is maximal. For 7/ C 7, we let X(7’) denote the set of all maximal tasks in |J

» Example 28. Consider task set 7 from Ex. 2. Its affinity graph is shown in Fig. 1b. Consider
the canonical order 71,74, 72,73. (When reasoning abstractly, we assume this ordering is
consistent with task indices, as noted above.) Then, Ny = {r}, No = {7r1,72}, N3 =
{Tl,TQ,Tg}, and N4 = {7‘4}. AlSO, A1 = {7’1}, A2 = A3 = {7’2,7’3}, and A(T4) = {7‘4}. Tasks
71, T3, and 74 are maximal, but task 75 is not since it is nested within 73. For 7/ = {7y, 72, 74},
X(r') = {r1, 73,74} and X(7') = {73, 74}. Note that 73 and 74 have disjoint masks.

» Lemma 29. For any 7; € 7/, 7; is nested within some task in X (') and also X (1').

Proof. Any task in X (7) is nested within some task in X(T’), so we can limit attention to
X (7). If ; € 7" and 7; itself is not maximal, then it is nested within another task 7; with
the same mask that is maximal. Because 7; € 7/, 7; € X (7). <

The simplified feasibility condition we require is as follows.

Nested Balance: For any maximal task 7; : U} < |ay].

» Lemma 30. In «, is hierarchical, then Utilization Balance (UB) and Nested Balance (NB)
are equivalent.

Proof. It is straightforward to show UB = NB: if UB holds, then by considering 7/ = N; in
that condition, NB easily follows. In the rest of the proof, we focus on showing NB = UB.

Consider any 7 C 7 and any task 7; € 7. By Lemma 29, 7; is nested within some
task in X(r). Thus, 7 C U, () Ny, which implies Uy < 3¢ (., Uj. By NB,

J

ZTjeX(r/) U:r < Erjef((f’) laj|. As observed earlier, all tasks from X (') have disjoint masks.
Moreover, the cores included in these masks are exactly the same as those included in ;.

Hence, ZTJEX(T/) |aej| = |ar/|. Putting these facts together, we have U, < ZTJGX(T') Uy <
|Oé7—/ | <4

YY:17

ECRTS 2018

YY:18 An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Algorithm 6 Nested Balance Test

Require: 7 (in canonical order)

1: caplj] =0 > capacity used on each core, bounded by one
2: for 7; € 7 do

3: r <« U; > r is remaining unallocated utilization of 7;
4: while 7; from a; with cap[j] < 1 exists and r > 0 do

5: f(1i,m5) <= min(1 — cap[j],r)

6: r+r— f(r,75) > we used all available utilization of 7; (if » = 0),
7 caplj] + caplj] + f(7i,75) > or we filled core m; fully (if cap[j] = 1)
8: if » > 0 then return L > Nested Balance is violated
9: else any non-defined f(7;,7;) value is considered to be 0

Having established a simpler feasibility condition, it remains to show it can be efficiently
computed. Alg. 6 does this while also returning all needed non-zero f(7;, ;) values.

Analysis. We now show that Alg. 6 is correct and analyze its time complexity.
» Theorem 31. Alg. 6 returns f(r;, ;) values satisfying (2)-(4) iff T satisfies Nested Balance.

Proof. Establishing the algorithm’s correctness when it does not return L for 7 is straight-
forward, so we focus on the other possibility, i.e., it returns | when considering some task
7; in 7. Because tasks are processed in canonical order, by the time 7; is considered, all
tasks from N;/{7;} have already been dealt with and no task with a larger mask has yet
been considered. Thus, the cores in a; could only have been allocated to tasks in IV;. If we
cannot allocate 7;, then U} = Zﬁ en, Uj > |ag|. If 7; is maximal, then Nested Balance is
violated (and hence by Theorem 8 and Lemma 30, 7 is infeasible). Otherwise, there exists a
maximal task 7, with the same mask as 7; but ordered after 7;. In this case, N; C N, so
Uy > U > |a;| = |ag|. Therefore, Nested Balance is violated in this case as well. <

» Theorem 32. Alg. 6 completes in O(m +n) time. Thus, if c, is hierarchical, tasks are
indezed in canonical order, and Alg. 6 is used in place of GETFLOW function in AM-Red,
then AM-Red produces a valid frame in O(m + n) time.

Proof. During each while-loop iteration, either some core 7; becomes fully allocated (caplj]
becomes one), or the current task becomes fully allocated (r becomes zero), or L is returned.
Each of these possibilities may happen only once. This implies that the total number of
iterations of Alg. 6 is at most m + n. <

If o, is hierarchical, then only O(m) unique affinity masks may exist [20, Theorem 3.5].
Thus, only O(m + n) space is required to provide canonically ordered tasks as input, as each
task merely requires a pointer to one of the O(m) masks that may exist. If canonical order
cannot be pre-assumed, then tasks must be sorted so they are so ordered. This can be done
in O(mlogm + n) time: the masks themselves can be sorted in O(mlogm) time, and all
per-task mask pointers can be updated in O(n) time. If one takes the core count m to be
a constant (which is a very reasonable assumption), then the masks can be sorted in O(1)
time and the total time complexity required to put tasks into canonical order is only O(n).

Example task sets can easily be constructed that have Q(m) distinct hierarchical masks.
Because any feasibility test must consider these masks and all tasks, it follows that O(m +n)
time complexity for testing feasibility is asymptotically optimal.

S. Voronov and J. H. Anderson

16000

14000

12000

10000

8000

6000

4000

2000

Q

0.0

-+ [1] AM-Red-min

[4]

[1]

0.2 0.4 0.6 0.8

Migrations over specified interval

[2] AM-Red-avg

————-

[3] AM-Red-max

16000

14000

12000

10000

8000

6000

4000

2000

[4]

21 13)
/ \

—— [4] HPA-EDF

16000

14000

12000

10000

i 8000

; 6000
S

4000

Migrations over specified interval

2000

0.0 0.2 0.4

m__

Migrations over specified interval

0.8 1.0 0.0

0.2 0.4 0.6 0.8

U/m

(a) Light tasks. (b) Medium tasks. (c) Heavy tasks.

Figure 8 Exp. 1 (hierarchical masks): total number of migrations under AM-Red and HPA-EDF
(assuming periodic releases), averaged over the generated task sets, as a function of relative system
utilization.

7 Experimental Evaluation

Given the limited range of prior related work, we compared AM-Red to HPA-EDF, a scheduler
proposed in [7]. In this comparison, we were forced to limit attention to hierarchical masks,
as HPA-EDF requires this. It is worth noting that AM-Red has linear offline time complexity
and requires O(1) time per scheduling decision, while HPA-EDF requires O(m) time per job
release and O(logn + m?) time per job completion. Thus, HPA-EDF has higher runtime
overhead and this could negatively impact tardiness in practice. However, our comparison is
based on computed schedules, and not actual scheduler implementations, so such runtime
effects are not captured. As such, our comparison actually affords HPA-EDF an advantage.

Because | F| is tunable parameter, we considered three different ways of choosing it, which
resulted in three variants of AM-Red: AM-Red-min, for which |F| = min{7;}; AM-Red-avg,
for which |F| = average{T;}; and AM-Red-max, for which |F| = max{T;}.

Input data generation. Our experiments involved randomly generating task sets for a
16-core platform (so m = 16) in three categories: light, medium, and heavy. Task utilizations
ranged over (0.0,0.3) for light task sets, [0.3,0.7) for medium, and [0.7,1] for heavy. We
generated masks independently of tasks. For hierarchical masks, we used a generation process
that produced masks for which the number of nesting levels ranged from approximately
log m to approximately m. We discarded any non-feasible task sets that were generated.

Experiments. In our first experiment, we recorded, for each considered scheduler, the
number of task migrations over an interval of length 10,000 time units as a function of
relative system utilization, assuming periodic job releases. The relative system utilization
of a task set is its total utilization divided by the number of cores. Task migrations are
interesting to consider because semi-partitioned schedulers seek to limit them. Results can
be found in Fig. 8. Compared to HPA-EDF, the curves shown here for the AM-Red variants
are largely unaffected by the range of task utilizations (compare insets (a), (b), and (c) of
Fig. 8). In contrast, HPA-EDF exhibits many more migrations for light task sets, which tend
to have more tasks. Also, the curves for AM-Red-avg and AM-Red-max are significantly lower
than those for HPA-EDF. Those for AM-Red-min start out lower, but in insets (b) and (c),
eventually cross and become higher as relative system utilization nears one.

In our second experiment, we considered schedules similarly as above, but this time

YY:19

ECRTS 2018

YY:20

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

e [1] AM-Red-min [2] AM-Red-avg --«-- [3] AM-Red-max —=— [4] HPA-EDF
100 IR 100 2] 100
e R
801 801 L 801 -
) [3] . (3] .)
] g P 8 7
5 60 4 5 60 l 5 o
é 40 ’,f é w0 | E 40
2 / 2 2
; [4] / [4]
201 ‘,r" m 201 / m 201 |
0 - 0Lt ols
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
U/m U/m U/m
(a) Light tasks. (b) Medium tasks. (c) Heavy tasks.

Figure 9 Exp. 2 (hierarchical masks): maximum tardiness, averaged over the generated task sets,
as a function of relative system utilization.

computed maximum observed tardiness. Results can be found in Fig. 9. The curves shown
here for the AM-Red variants are largely unaffected by the range of task utilizations (compare
insets (a), (b), and (c) of Fig. 9). Also, each of these curves plateaus and remains steady
beyond a certain relative system utilization value. In contrast, the curve for HPA-EDF is
higher for larger task utilizations. Also, each HPA-EDF curve sharply increases as relative
system utilization nears one. These curves indicate that tardiness tends to be predictably
low only under AM-Red-min. However, from Fig. 8, this feature comes at the expense of
more migrations in the case of medium and heavy task sets with high utilizations, which is
not surprising.

We conclude this section by reminding the reader that HPA-EDF works only for hierarchical
masks and has no schedulability test.

8 Conclusion

We have presented AM-Red, the first (non-clairvoyant) optimal scheduler for implicit-deadline
sporadic task sets assuming arbitrary processor affinity masks. We showed that AM-Red is
SRT-optimal, with a tardiness bound of |F|, and that it is HRT-optimal if |F'| divides the
smallest task period. In addition, we presented analysis concerning task-migration frequency
and time complexity. In the special case of hierarchical masks, we showed that AM-Red can
be refined to find a valid frame in O(m + n) time, which is asymptotically optimal.

In other work that is omitted here due to space constraints, we have shown that the
time complexity for frame construction can be reduced in other special cases. For example,
for loop-free graphs, it can be reduced to O(m + n), which again is asymptotically optimal,
using techniques similar to those discussed in Sec. 6. If masks are restricted in length, then
it can also be reduced due to the internal structure of the affinity graph.

In future work, we intend to adapt AM-Red for heterogeneous multiprocessors, which
are becoming more common in practice. Also, although the number of migrating tasks
under AM-Red is generally optimal (i.e., task sets exist for which m — 1 migrating tasks
are fundamental, matching the bound in Theorem 18), we wish to find a way to reduce
the number of migrating tasks to within a constant factor of that optimally required for
each specific task set under consideration. Finally, while our focus in this paper has been
semi-partitioned scheduling, global scheduling warrants consideration.

S. Voronov and J. H. Anderson

—— References

1

10

11

12

13

14

15

16

17

18

QNX documentation. URL: http://www.qnx.com/developers/docs/qnxcar2/index.
jsp?topic=Y,2Fcom.qnx.doc.multicore.user_guide%2Ftopic%2Fhow_to_Thread_
affinity.html.

VxWorks 6.6 SMP. URL: http://archive.eettaiwan.com/www.eettaiwan.com/STATIC/
PDF/200809/EETOL_2008IIC_WindRiver_AN_64.pdf?%20S0URCES=DOWNLOAD.

L. Abeni. SCHED DEADLINE: A real-time CPU scheduler for Linux. TuToR of Real-
Time Systems Symposium (RTSS 2017), 2017. URL: https://tutor2017.inria.fr/
sched_deadline/.

J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling algorithm for multiprocessor
soft real-time systems. In Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS 2005), pages 199-208. IEEE, 2005.

J. Anderson, J. Erickson, U. Devi, and B. Casses. Optimal semi-partitioned scheduling in
soft real-time systems. Journal of Signal Processing Systems, 84(1):3-23, 2016.

S. Baruah and B. Brandenburg. Multiprocessor feasibility analysis of recurrent task systems
with specified processor affinities. In Proceedings of Real-Time Systems Symposium (RTSS
2013), pages 160-169. IEEE, 2013.

V. Bonifaci, B. Brandenburg, G. D’Angelo, and A. Marchetti-Spaccamela. Multiprocessor
real-time scheduling with hierarchical processor affinities. In Proceedings of Euromicro
Conference on Real-Time Systems (ECRTS 2016), pages 237-247. IEEE, 2016.

V. Bonifaci, G. D’Angelo, and A. Marchetti-Spaccamela. Algorithms for hierarchical and
semi-partitioned parallel scheduling. In Proceedings of Parallel and Distributed Processing
Symposium (IPDPS 2017), pages 738-747. IEEE, 2017.

D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino. An EDF scheduling class for
the linux kernel. In Proceedings of the Real-Time Linuxz Workshop (RTLWS 2009). IEEE,
2009.

A. Foong, J. Fung, and D. Newell. An in-depth analysis of the impact of processor affinity
on network performance. In Proceedings of International Conference on Networks (ICN
2004), volume 1, pages 244-250. IEEE, 2004.

L. Ford and D. Fulkerson. Maximal flow through a network. Canadian Journal of Mathe-
matics, 8(3):399-404, 1956.

P. Hall. On representatives of subsets. Journal of the London Mathematical Society, 1(1):26—
30, 1935.

S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of sporadic task
systems on multiprocessors. In Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS 2009), pages 249-258. IEEE, 2009.

Y. Lee and A. Sidford. Path finding methods for linear programming: Solving linear
programs in O(vrank) iterations and faster algorithms for maximum flow. In Proceedings
of Foundations of Computer Science (FOCS 2014), pages 424-433. IEEE, 2014.

J. Mistry, M. Naylor, and J. Woodcock. Adapting FreeRTOS for multicores: An experience
report. Software: Practice and Experience, 44(9):1129-1154, 2014.

A. Mok. Fundamental Design Problems of Distributed Systems for Hard Real-Time Envi-
ronments. PhD thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1983.

G. Muneeswari and K. Shunmuganathan. A novel hard-soft processor affinity scheduling
for multicore architecture using multi-agents. FEuropean Journal of Scientific Research,
55(3):419-429, 2011.

A. Ortiz, J. Ortega, A. Diaz, and A. Prieto. Affinity-based network interfaces for efficient
communication on multicore architectures. Journal of Computer Science and Technology,
28(3):508-524, 2013.

YY:21

ECRTS 2018

http://www.qnx.com/developers/docs/qnxcar2/index.jsp?topic=%2Fcom.qnx.doc.multicore.user_guide%2Ftopic%2Fhow_to_Thread_affinity.html
http://www.qnx.com/developers/docs/qnxcar2/index.jsp?topic=%2Fcom.qnx.doc.multicore.user_guide%2Ftopic%2Fhow_to_Thread_affinity.html
http://www.qnx.com/developers/docs/qnxcar2/index.jsp?topic=%2Fcom.qnx.doc.multicore.user_guide%2Ftopic%2Fhow_to_Thread_affinity.html
http://archive.eettaiwan.com/www.eettaiwan.com/STATIC/PDF/200809/EETOL_2008IIC_WindRiver_AN_64.pdf?%20SOURCES=DOWNLOAD
http://archive.eettaiwan.com/www.eettaiwan.com/STATIC/PDF/200809/EETOL_2008IIC_WindRiver_AN_64.pdf?%20SOURCES=DOWNLOAD
https://tutor2017.inria.fr/sched_deadline/
https://tutor2017.inria.fr/sched_deadline/

YY:22

An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

19

20

21

22

23

24

25

K. Ramamritham and A. Stankovic. Scheduling algorithms and operating systems support
for real-time systems. In Proceedings of the IEEE, volume 82, pages 55-67. IEEE, 1994.
A. Schrijver. Combinatorial optimization: Polyhedra and efficiency. Springer Science &
Business Media, 2003.

M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller. Semi-partitioned hard-real-time
scheduling under locked cache migration in multicore systems. In Proceedings of Euromicro
Conference on Real-Time Systems (ECRTS 2012), pages 331-340. IEEE, 2012.

J. Stefaniak and P. Wilson. System and method for assigning processes to specific CPU’s
to increase scalability and performance of operating systems, December 2 2003. US Patent
6,658,448.

V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of
Symposium on Theory of Computing (STOC 2012). ACM, 2012.

K. Yang and J. Anderson. An optimal semi-partitioned scheduler for uniform heterogeneous
multiprocessors. In Proceedings of Real-Time Systems (ECRTS 2015), pages 199-210. IEEE,
2015.

P. Zijlstra. An update on Real-Time scheduling on Linux. Keynote talk at Euromicro
Conference on Real-Time Systems (ECRTS 2017), 2017. URL: https://www.ecrts.org/
fileadmin/files_ecrtsl7/ecrtsl7-peterz.pdf.

https://www.ecrts.org/fileadmin/files_ecrts17/ecrts17-peterz.pdf
https://www.ecrts.org/fileadmin/files_ecrts17/ecrts17-peterz.pdf

	Introduction
	Background
	Feasibility
	A Special Property of SRT-Feasible Task Sets
	Max-Flow Feasibility Test
	HRT- and SRT-Feasibility Equivalence

	Loop-Free Affinities
	Frames
	Scheduler
	Analysis and Optimality

	Arbitrary Affinity Masks
	Hierarchical Masks
	Experimental Evaluation
	Conclusion

