
Tardiness Bounds for Fixed-Priority Global Scheduling without
Intra-Task Precedence Constraints

Sergey Voronov

Univ. of North Carolina at Chapel Hill

rdkl@cs.unc.edu

James H. Anderson

Univ. of North Carolina at Chapel Hill

anderson@cs.unc.edu

Kecheng Yang

Texas State University

yangk@txstate.edu

ABSTRACT
Fixed-priority multicore schedulers are often preferable to dynamic-

priority ones because they entail less overhead, are easier to im-

plement, and enable certain tasks to be favored over others. Under

global fixed-priority (G-FP) scheduling, as applied to the standard

sporadic task model, response times for low-priority tasks may be

unbounded, even if total task-system utilization is low. In this paper,

it is shown that this negative result can be circumvented if different

jobs of the same task are allowed to execute in parallel. In particu-

lar, a response-time bound is presented for task systems that allow

intra-task parallelism. This bound merely requires that total utiliza-

tion does not exceed the overall processing capacity—individual

task utilizations need not be further restricted. This result implies

that G-FP is optimal for scheduling soft real-time tasks that require

bounded tardiness, if intra-task parallelism is allowed.

CCS CONCEPTS
• Computer systems organization → Real-time systems;

KEYWORDS
global fixed-priority scheduling, intra-task parallelism, tardiness,

optimality, multiprocessors

ACM Reference Format:
Sergey Voronov, James H. Anderson, and Kecheng Yang. 2018. Tardiness

Bounds for Fixed-Priority Global Scheduling without Intra-Task Prece-

dence Constraints. In 26th International Conference on Real-Time Networks
and Systems (RTNS ’18), October 10–12, 2018, Chasseneuil-du-Poitou, France.
RTNS’18, Poitiers/Futuroscope, France, 11 pages. https://doi.org/10.1145/

3273905.3273913

ACKNOWLEDGMENTS
Work supported by NSF grants CNS 1409175, CPS 1446631, CNS

1563845, and CNS 1717589, ARO grant W911NF-17-1-0294, and

funding from General Motors.

1 INTRODUCTION
Since the multicore revolution, the focus of real-time scheduling

research has shifted from uniprocessors to multiprocessors. In work

on this topic, the global earliest-deadline-first (G-EDF) and global

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6463-8/18/10. . . $15.00

https://doi.org/10.1145/3273905.3273913

fixed-priority (G-FP) schedulers have both been widely studied

(e.g., [1, 3–6, 11]). Although neither is optimal for scheduling hard

real-time (HRT) systems where every deadline must be met, both

preemptive and non-preemptive G-EDF are optimal for scheduling

soft real-time (SRT) sporadic task systems that only require bounds

on deadline tardiness [8]. That is, under each of these schedulers,

deadlines can be missed by only a bounded amount of time for

any feasible task system. Feasible in this context means that the

underlying platform is not over-utilized, and no task over-utilizes

a single processor [7].

Unfortunately, this SRT-optimality result does not extend to

G-FP, as feasible task systems exist for which tardiness under it

can increase without bound; this was shown previously for pre-

emptive G-FP [7] and is shown herein for non-preemptive G-FP.

This non-optimality result is regrettable because, in comparison

to G-EDF, G-FP entails less overhead, is easer to implement, and

enables certain tasks to be favored over others. Given this negative

result, if certain tasks need to be prioritized over others, an obvious

alternative would be to use a partitioning scheme instead. However,

such schemes are also not optimal and can cause system capacity

loss due to bin-packing-related issues.

In this paper, we consider a different option: employing a relaxed

variant of the standard sporadic task model in which successive

jobs of the same task may execute in parallel. We are motivated to

consider this relaxed model because of the nature of the counterex-

amples used to show the non-optimality of G-FP. In devising such

counterexamples, the goal is to ensure that a certain low-priority

task is unable to make use of processors made available to it in

parallel, thereby causing its response times to grow without bound.

This relaxed task model has in fact been considered previously

in work directed at using G-EDF in HRT [2] and SRT systems [10,

12]. The latter work showed that allowing intra-task parallelism

enables much lower tardiness bounds to be derived. Following

[12], we call this relaxed model the npc-sporadic (“no precedence
constraints”) task model. Under the npc-sporadic task model, G-EDF

precludes response times from growing unboundedly, even if a

task’s execution time exceeds its period. All that is required is that

the entire platform is not over-utilized—this is the only condition

needed for SRT feasibility under this model.

This paper expands upon work directed at the npc-sporadic task

model by considering the behavior of G-FP under this model. We

show that, like G-EDF, G-FP ensures bounded response times for

any feasible npc-sporadic task system. We elaborate on this result

below, after first taking a closer look at the npc-sporadic model.

Applying the npc-sporadic task model. For the npc-sporadic task
model to be applicable, successive jobs of the same task must be

able to execute independently. Additionally, it must be acceptable

for such jobs to produce output out of order; this tends to be a lesser

https://doi.org/10.1145/3273905.3273913
https://doi.org/10.1145/3273905.3273913
https://doi.org/10.1145/3273905.3273913

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France Sergey Voronov, James H. Anderson, and Kecheng Yang

concern that can be dealt with via buffering (recall that our focus

here is applications that can tolerate some tardiness).

Prior papers directed at G-EDF under the npc-sporadic task

model mention several example applications that meet these re-

quirements [10, 12]. A particularly compelling use case is computer-

vision (or radar) object detection [12]. In contrast to object tracking,

object detection may be performed on each frame of video indepen-

dently. In recent work pertaining to real-time computer vision [14],

this use case was considered in detail. In that work, it was shown

that allowing intra-task parallelism enables dramatically improved

response-time bounds for object detection.

Contributions. We consider the scheduling of npc-sporadic task

systems on an identical multiprocessor platform under preemptive

G-FP. We derive a response-time bound that shows that preemptive

G-FP guarantees bounded response times (and hence tardiness) for

any feasible npc-sporadic task system; that is, preemptive G-FP is
SRT-optimal. We also show that our derived response-time bound

is asymptotically tight.

This bound tends to grow as the core count and the number of

higher-priority tasks increase. Thus, lower tardiness can be guaran-

teed by partitioning tasks among clusters of cores and scheduling

globally only within a cluster. Using a clustered approach lessens

tardiness at the expense of impinging on schedulability due to bin-

packing-related issues. To elucidate this tradeoff, we conducted an

experimental schedulability study in which different cluster sizes

were considered on a 16-core platform. We found that using clus-

ters of size four typically enabled relative tardiness bounds that

were 60% of those under global scheduling with hardly any impact

on schedulability. In our experiments, we also compared relative

tardiness bounds obtained from our analysis vs. observed average

relative tardiness. (A task relative tardiness is given by its tardiness

divided by its period.) We found that bounds for task sets with high

total utilization tended to be four to ten times larger than observed

relative tardiness.

Due to space constraints, wemostly limit attention to preemptive

G-FP in this paper. However, as discussed later, our response-time

bound proof can be adjusted to apply to non-preemptive G-FP

(and, in fact, to any work-conserving global scheduler). Thus, non-
preemptive G-FP is SRT-optimal as well.

The results of this paper establish a rare context under which

fixed-priority real-time scheduling is optimal in some sense. To our

knowledge, the only other context where such a result has been

shown is the uniprocessor scheduling of synchronous implicit-

deadline periodic tasks with harmonic periods.

Paper organization. In the rest of the paper, we provide needed

background (Sec. 2), prove some preliminary lemmas (Sec. 3), derive

the response-time bound that is our main contribution (Sec. 4),

establish its tightness (Sec. 5), present our experimental results

(Sec. 6), and conclude (Sec. 7).

2 SYSTEM MODEL
Task model. We consider the SRT scheduling of a system τ of n

implicit-deadline npc-sporadic tasks, τ1, . . . ,τn , on platform π with

m identical unit-speed cores, π1, . . . ,πm . The npc-sporadic task

model considered in this paper differs from the standard sporadic

task model by relaxing intra-task precedence constraints: any two

jobs, ready for execution, may be scheduled at the same time, even if

they are produced by the same task. We use the following notation

(we assume familiarity with terms commonly used in work on real-

time scheduling): Ci denotes the worst-case execution time of task

τi , Ti denoted its period, and ui = Ci/Ti denotes its utilization; Ji, j
denotes the jth job released by τi , where j ≥ 1, and Ci, j denotes
Ji, j ’s actual execution time, which may be less than Ci . If a job is
released at time tr , has a deadline a time td , and completes at time

tc , then its response time is tc − tr and its tardiness is max(0, tc − td).
We assume that tasks are indexed by priority, with higher-priority

tasks having lower indexes. We also assume that time is continuous.

We denote the overall system utilization by U =
∑n
i=1 ui and the

total utilization of tasks τ1, ...,τℓ byUℓ =
∑ℓ
i=1 ui .

Task constraints. Our objective is to derive a response-time bound

for a task τk by focusing on a job of interest Jk,d . Note that if τk ’s
response times are bounded, then its tardiness is bounded as well.

If U exceeds the platform capacity ofm, then at least one task will

clearly have unbounded response times if all tasks release jobs as

soon as possible and every job executes for its worst-case execution

time. Therefore, we assumeU ≤ m. However, unlike the traditional

sporadic task model, we do not require ui ≤ 1, which is necessary

for bounded response times under that model but not under the

npc-sporadic task model. Under the latter model, a scheduler that

can ensure bounded tardiness for any task system for whichU ≤ m
holds is SRT-optimal.

Scheduler. In this paper, we focus on establishing the SRT-optimal-

ity of the preemptive G-FP scheduler. Hereafter, all references to

G-FP without qualification should be taken to mean preemptive
G-FP. For simplicity, we assume unique task priorities. Moreover,

we assume that jobs of the same task are prioritized against each

other on a first-in-first-out (FIFO) basis. This assumption is implicit

in the conventional sporadic task model (which precludes a job

from starting until the previous job of the same task completes).

Although the potential for conventional sporadic tasks to have

unbounded response times under preemptive G-FP has been shown

previously [7], we provide examples illustrating this behavior below

for both preemptive and non-preemptive G-FP to highlight various

differences between the npc-sporadic and sporadic task models.

Example 2.1. G-FP with preemption. Consider a task system with

(m+1) periodic tasks, each with a worst-case execution time of 1+ε
and a period of 2 time units. Under the conventional sporadic model,

the response time of the lowest-priority task is unbounded because

an allocation of only (1−ε) time units is available every 2 time units,

while the task requires (1+ ε) time units, as illustrated in Fig. 1a for

m = 3. The total utilization of this system is (1+ ε)(m + 1)/2, which
approaches (m+ 1)/2 (roughly half-utilizing the platform) as ε → 0.

In contrast, under the npc-sporadic model, applying Theorem 4.6

in Sec. 4 to the task system in Fig. 1a yields a response-time bound

for the lowest-priority task of 3.5 for small ε (its exact response
time is 3 + 3ε). A schedule for this case is shown in Fig. 1b. □

Example 2.2. G-FP without preemption. Consider a task system

with three periodic tasks, to be scheduled on two processors, with

(C1,T1) = (2, 3), (C2,T2) = (2, 3), and (C3,T3) = (1, 2). Despite
the non-preemptivity of the scheduler, each job of τ3 (the lowest-
priority task) completes in one time unit, as illustrated in Fig. 1c,

and thus never non-preemptively blocks any jobs from τ1 and τ2.

Tardiness Bounds for G-FP Scheduling w/o Intra-Task Prec. Constraints RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

High-priority

tasks

Low-priority

task

Job release Job deadline Job completion

Allocation intervals

for the same job

0 1 2 3 4 5 6 7 8 9 10

π1

π2

π3

τ4

time

(a) Ex. 2.1, sporadic tasks, and preemptive G-FP.

0 1 2 3 4 5 6 7 8 9 10

π1

π2

π3

τ4

time

(b) Ex. 2.1, npc-sporadic tasks, and preemptive G-FP.

0 1 2 3 4 5 6 7 8 9 10

π1

π2

τ3

time

(c) Ex. 2.2, sporadic tasks, and non-preemptive G-FP.

0 1 2 3 4 5 6 7 8 9 10

π1

π2

τ3

time

×2 ×2

(d) Ex. 2.2, npc-sporadic tasks, and non-preemptive G-FP.

Figure 1: Schedules for the task systems in Exs. 2.1 and 2.2.

The time available to τ3 on each processor coincides, so under

the conventional sporadic model, its response time must increase

without bound, as illustrated. In contrast, under the npc-sporadic

model, where intra-task parallelism is allowed, its response time is

bounded, as implied by Fig. 1d. □

Proof setup. In reasoning about the job of interest Jk,d , we make

the following simplifying assumptions.

A1: Task τk has the lowest priority among all tasks.

A2: Following Jk,d−1, every new job (including Jk,d) from task

τk has execution time equal to Ck .
A3: Following Jk,d , every new job from task τk is released ex-

actly Tk time units later than the previous job of τk (i.e., τk
“becomes periodic” after Jk,d).

Assumption A1 is tantamount to discarding all tasks with a

priority lower than τk ; these tasks do not affect the scheduling

of tasks with higher priority under preemptive G-FP scheduling.

Enforcing Assumptions A2 and A3 cannot reduce Jk,d ’s response
time (A3 affects only jobs of τk released after Jk,d , while A2 may

only increase the execution times of Jk,d , Jk,d+1, ...); thus, any
response-time bound derived with these assumptions in place is

still valid if they are weakened.

We now can formalize our problem: find a bound for Jk,d ’s re-
sponse time under A1-A3. In considering this problem, we make use

of some additional terms and notation, which we introduce next.

Definition 2.3. We let ri, j and Ri, j denote the release and re-

sponse times, respectively, of job Ji, j . For conciseness, we use r and
R in reference to the job of interest instead of rk,d and Rk,d .

Definition 2.4. At time t , job Ji, j is ready if t ≥ ri, j and it has

not completed yet. If t < ri, j , then Ji, j is unreleased.
As in [9], we use the concept of lag, which we define by consid-

ering an “ideal” platform π ′
consisting of k cores, π ′

1
, . . . ,π ′

k , with

speeds u1, . . . ,uk , respectively (by A1, we have only k tasks). A

core’s speed corresponds to the job execution rate on it. Note that

such a speed might differ from 1.0. In the ideal schedule, each task τi
only executes jobs on core π ′

i with speedui . Under the npc-sporadic
task model with implicit deadlines, every job executes in the ideal

schedule from its release until its completion without interference

from other jobs or tasks (different tasks run on different cores). Note

that if Ci, j < Ci holds, then Ji, j completes in the ideal schedule

before its deadline, whereas, if Ci, j = Ci holds, then it completes

exactly at its deadline. Thus, at most one job from every task is

scheduled at any time in the ideal schedule.

Definition 2.5. We denote as I the ideal schedule of the task set

{τ1, . . . ,τk } on π ′
as described above. Also, we denote as S the

schedule of {τ1, . . . ,τk } produced by our G-FP scheduler on the

actual platform π withm unit-speed cores.

Definition 2.6. For an arbitrary schedule H, we denote as

A(H, t1, t2, Ji, j) the overall processor capacity allocated to job Ji, j
in H within the interval [t1, t2). Note that if Ji, j is released at or

after t2, or t1 > t2, then by definition, A(H, t1, t2, Ji, j) = 0.

Definition 2.7. The lag for job Ji, j is defined as lag(Ji, j , t) =
A(I, 0, t , Ji, j) − A(S, 0, t , Ji, j).

Definition 2.8. The lag for task τi is defined as Lag(τi , t) =∑
j lag(Ji, j , t).
Definition 2.9. The total lag of the entire considered task system

is defined as LAG(t) = ∑
i Lag(τi , t) =

∑
i
∑
j lag(Ji, j , t).

3 LAG BOUNDS
In Sec. 3.1 below, we derive a number of lag-related properties, as

well as a lower bound on task Lag. In Sec. 3.2, we derive an upper

bound on total system LAG.

3.1 Task Lag Lower Bound
The general property of Lag for a single task we establish in this

subsection is formulated in Lemma 3.5. To prove this lemma, we

first prove several lemmas concerning job lag.

Lemma 3.1. For any time t before the release of job Ji, j or after its
completion in both schedules I and S, lag(Ji, j , t) = 0.

Proof. If Ji, j is unreleased, then by Def. 2.6, A(I, 0, t , Ji, j) and
A(S, 0, t , Ji, j) are both 0. If Ji, j has completed in both schedules I

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France Sergey Voronov, James H. Anderson, and Kecheng Yang

and S, then by Def. 2.6, A(I, 0, t , Ji, j) = A(S, 0, t , Ji, j) = Ci, j . In
both cases, by Def. 2.7, lag(Ji, j , t) = 0. □

Lemma 3.2. If t ≥ ri, j +Ti , then lag(Ji, j , t) ≥ 0.
Proof. If t ≥ ri, j +Ti , then A(I, 0, t , Ji, j) = Ci, j , because Ji, j

completes in I by the end of its period. Also, A(S, 0, t , Ji, j) ≤ Ci, j
for every time instant. By Def. 2.7, the lemma follows. □

The next lemma provides bounds on a single job’s lag.

Lemma 3.3. min(0, (ui − 1)Ci) ≤ lag(Ji, j , t) ≤ Ci .

Proof. According to Def. 2.7,

lag(Ji, j , t) = A(I, 0, t , Ji, j) − A(S, 0, t , Ji, j)
≤ A(I, 0, t , Ji, j)
≤ {by Def. 2.6}

Ci, j

≤ Ci ,

proving the stated upper bound. In the rest of the proof, we focus

on proving the stated lower bound. Let f = Ci, j/Ci . Note that

f · Ti = (Ci, jTi)/Ci = Ci, j/ui , which is the exact amount of time

that is needed for Ji, j ’s completion in the ideal schedule I. To
simplify the proof, we split the time line into three intervals: “before

Ji, j ’s release” : [0, ri, j); “Ji, j is scheduled in I” : [ri, j , ri, j + f ·Ti);
and “Ji, j has completed in I” : [ri, j + f ·Ti ,∞). We consider each

interval separately.

Case 1. t ∈ [0, ri, j). By Lemma 3.1, lag(Ji, j , t) = 0.

Case 2. t ∈ [ri, j , ri, j + f ·Ti). For any such t , we define t ′ = t − ri, j .
By definition, t ′ ∈ [0, f ·Ti). Since Ji, j is released at time ri, j and is
continuously scheduled in I (by Def. 2.5) during [ri, j , ri, j + f ·Ti)
on a core with speed ui , A(I, 0, t , Ji, j) = ui t ′.

In completing the reasoning for this case, we first dispense with

the possibility that ui ≥ 1 holds. Because job Ji, j is not scheduled
in S before ri, j ,

A(S, 0, t , Ji, j) = A(S, ri, j , t , Ji, j) ≤ t − ri, j = t ′.

Thus, if ui ≥ 1 holds, we have

A(I, 0, t , Ji, j) = ui t ′ ≥ t ′ ≥ A(S, 0, t , Ji, j),
which implies that lag(Ji, j) ≥ 0 holds. In the rest of the proof for

Case 2, we consider the remaining possibility: ui < 1.

Let ρ denote the allocation time for Ji, j in S during the subinter-

val [ri, j , t) = [ri, j , ri, j + t ′). Then ρ ≤ t ′ and ρ ≤ Ci (the maximum

execution time for any job of τi). Thus, we have

lag(Ji, j , t) = lag(Ji, j , ri, j + t ′)
= A(I, 0, ri, j + t ′, Ji, j) − A(S, 0, ri, j + t ′, Ji, j)
= ui t

′ − ρ

= (ui − 1)ρ + (t ′ − ρ)ui
≥ {t ′ ≥ ρ}

(ui − 1)ρ
≥ {ui − 1 < 0 and ρ ≤ Ci }
(ui − 1)Ci .

Case 3. t ∈ [ri + f ·Ti ,∞). By Def. 2.5 and the definition of f , Ji, j is
completed at time instant ri + f ·Ti in I, andA(I, 0, t , Ji, j) = Ci, j .

WithA(S, 0, t , Ji, j) ≤ Ci, j (the maximal allocation for Ji, j inS), we
have lag(Ji, j , t) = A(I, 0, t , Ji, j)−A(S, 0, t , Ji, j) ≥ Ci, j −Ci, j = 0.

By Cases 1-3, lag(Ji, j , t) ≥ min(0, (ui − 1)Ci). □

Corollary 3.4. lag(Ji, j , t) < 0 implies t ∈ [ri, j , ri, j +Ti).

Proof. In Cases 1 and 3 in the proof of Lemma 3.3 above, we

proved that lag(Ji, j , t) ≥ 0 holds. Thus, if lag(Ji, j , t) < 0 holds,

then t∈ [ri, j , ri, j + f ·Ti) (the interval considered in Case 2) with

f = Ci, j/Ci . Because f ≤ 1, [ri, j , ri, j + f ·Ti) ⊆ [ri, j , ri, j +Ti). □
Our lower bound on job lag can be extended to task Lag.

Lemma 3.5. min(0, (ui − 1)Ci) ≤ Lag(τi , t).
Proof. By Corollary 3.4, lag(Ji, j , t) < 0 may hold only if Ji, j is

scheduled for execution in I at time instant t ∈ [ri, j , ri, j +Ti). By
Def. 2.5, at most one job per task may be scheduled in I at any time

instant. Therefore, in

∑
j lag(Ji, j , t), at most one summand might be

less than 0, because the intervals [ri, j , ri, j +Ti) do not overlap for

different choices of j due to the definition of an npc-sporadic task.

That is, if lag(τi,h , t) < 0 holds, then for any j , h, lag(Ji, j , t) ≥ 0.

Thus, by Lemma 3.3

Lag(τi , t) =
∑
j
lag(Ji, j , t) ≥ lag(τi,h , t) ≥ min(0, (ui − 1)Ci). □

3.2 System LAG Upper Bound
In Sec. 3.1, we established results about job and task lags. We are

now ready to bound the overall system LAG. To do so, we need to

analyze precisely how cores schedule different tasks.

Lemma 3.6. lag(Ji, j , t), Lag(τi , t), and LAG(t) are continuous func-
tions of t .

Proof. Both A(I, 0, t , Ji, j) and A(S, 0, t , Ji, j) are continuous
by definition. Thus, by Def. 2.7, lag(Ji, j , t) is continuous because

lag(Ji, j , t) = A(I, 0, t , Ji, j) − A(S, 0, t , Ji, j).
Let h be the number of jobs, released by τi at or before t . Then

ri,h ≤ t < ri,h+1. By Lemma 3.1, lag(Ji, j , t) = 0 for all j > h. Thus,

Lag(τi , t) =
∑
j
lag(Ji, j , t) =

∑
j≤h

lag(Ji, j , t).

Lag(τi , t) is continuous because it is a sum of a finite number of

continuous functions. Similarly, LAG(t) is continuous because

LAG(t) =
∑
i≤k

Lag(τi , t). □

Lemma 3.7. For any time interval [t1, t2)∑
j
A(I, t1, t2, Ji, j) ≤ ui (t2 − t1), and∑

i, j
A(I, t1, t2, Ji, j) ≤ Uk (t2 − t1).

Proof. At every time instant in the ideal schedule I there is at

most one job from task τi scheduled (see Def. 2.5). The speed of

the core that schedules τi is ui , while the length of the considered

interval is (t2 − t1). Thus,∑
j
A(I, t1, t2, Ji, j) ≤ ui (t2 − t1), and (1)

Tardiness Bounds for G-FP Scheduling w/o Intra-Task Prec. Constraints RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

∑
i, j

A
(
I, t1, t2, Ji, j

)
=

∑
i

©­«
∑
j
A(I, t1, t2, Ji, j)

ª®¬
≤ {by (1)}∑

i
ui (t2 − t1)

= (t2 − t1)
∑
i
ui

= (t2 − t1)Uk . □

Definition 3.8. We call a core busy at time instant t if there exists
a job scheduled for execution on this core at time t . Otherwise, the
core is idle.

Our upper bound on system LAG is given by the following

lemma.

Lemma 3.9. LAG(t) ≤ (⌈Uk ⌉ − 1)Cmax , whereCmax = max

i≤k
{Ci }.

Proof. To prove this lemma, we split the timeline [0,+∞) into
a set of maximal continuous intervals such that the number of busy

cores in S during each interval does not change. More formally,

these intervals satisfy the following assumptions (for an interval I):

I1: The number of busy cores in S during I does not change.
I2: I cannot be extended without violating I1.

On an identical multiprocessor G-FP, may alter the set of sched-

uled jobs at time instant t only if some job completes or a new job

is released at t . Since in the npc-sporadic task system τ any finite

time interval I contains a finite number of such events, I contains a
finite number of the intervals from the set just defined.

We now prove the lemma by contradiction: let Ib be the first

time interval from the set defined above such that

∃t2 ∈ Ib : LAG(t2) > (⌈Uk ⌉ − 1)Cmax . (2)

Let t1 be the beginning of Ib . Then t1 ≤ t2. We next show that (3)

below holds.

LAG(t1) ≤ (⌈Uk ⌉ − 1)Cmax . (3)

If t1 = 0, then LAG(0) = 0, so (3) holds, since Uk ≥ uk > 0. On

the other hand, if t1 , 0, then there exists a preceding interval Ia
such that the end of Ia is t1, and, by the definition of Ib ,

∀t ∈ Ia : LAG(t) ≤ (⌈Uk ⌉ − 1)Cmax .

By Lemma 3.6, LAG(t) is a continuous function, so
LAG(t1) = lim

t→t−
1

LAG(t) = lim

t ∈Ia,t→t−
1

LAG(t) ≤ (⌈Uk ⌉ − 1)Cmax ,

i.e., (3) holds.

Thus, we have

LAG(t1) ≤ (⌈Uk ⌉ − 1)Cmax < LAG(t2), (4)

and the number of busy cores during [t1, t2) does not change. Let bc
denote this number. The overall allocation given to τ in the actual

schedule S with exactly bc busy cores during the interval [t1, t2) is∑
i, j

A(S, t1, t2, Ji, j) = bc · (t2 − t1). (5)

Combining Lemma 3.7 and (5), we can bound the change of LAG
over [t1, t2):

LAG(t2) − LAG(t1)

=
∑
i, j

(A(I, t1, t2, Ji, j) − A(S, t1, t2, Ji, j))

{rearranging}

=
∑
i, j

A(I, t1, t2, Ji, j) −
∑
i, j

A(S, t1, t2, Ji, j)

≤ {by Lemma 3.7 and (5)}
Uk (t2 − t1) − bc · (t2 − t1)
= (Uk − bc)(t2 − t1).

Thus, by (4), (Uk − bc)(t2 − t1) > 0. By the definition of t1 and
t2, t1 ≤ t2, soUk − bc > 0. Thus,

bc ≤ ⌈Uk ⌉ − 1. (6)

SinceUk ≤ m, we have bc < m. Thus, there is at least one non-busy

core, and bc is the number of uncompleted jobs t−
2
. We can now

derive a bound for LAG(t−
2
):

LAG(t−
2
) =

∑
i
Lag(τi , t−2)

≤ {by Def. 2.9 and Lemma 3.1}∑
Ji, j is uncompleted

lag(Ji, j , t−2)

≤ {by Lemma 3.3}∑
Ji, j is uncompleted

Ci

≤ {bc is the number of uncompleted jobs and Cmax ≥ Ci }
bc ·Cmax

≤ {by (6)}
(⌈Uk ⌉ − 1) ·Cmax . (7)

By Lemma 3.6, LAG(t2) = LAG(t−
2
), so (7) contradicts (2). This

contradiction finishes the proof. □

4 RESPONSE-TIME BOUND
In this section, we focus our attention on the job of interest Jk,d
with release time r and response time R.

Lemma 4.1. None of the jobs from τk that are released after
Jk,(d+m−1) can be scheduled in S before the completion of Jk,d .

Proof. Recall that, by A1-A3 (stated in Sec. 2), τk becomes peri-

odic with a fixed execution time Ck and period Tk , starting from

r = rk,d . This is illustrated in Fig. 2.

Job Jk,d+m cannot be scheduled at any time t < r + mTk =
rk,d+m because it is not ready; the same is true of jobs from τk
released after Jk,d+m . Thus, if Jk,d completes earlier than r +mTk ,
then the lemma statement is true. Otherwise R > r +mTk and the

interval [r +mTk ,R) is non-empty. Let us consider any t from this

interval. Note the following:

• Jk,d is not completed (by Def. 2.3 of R) at t .
• Jobs Jk,d+1, . . . , Jk,d+m−1 are ready at t (their release times

are r +Tk , . . . , r + (m− 1)Tk) and not completed (by A2, they

have the same execution time as Jk,d , Ck , and they have

lower priority than Jk,d).

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France Sergey Voronov, James H. Anderson, and Kecheng Yang

r r + R

J
can be scheduled before (r + R) cannot be scheduled before (r + R)

Jk,d release Jk,d completion in S
Jk,d+m−1 release Jk,d+m release

τk becomes npc-periodic by A3
npc-sporadic part of τk

TkTk≥ Tk

Figure 2: Lemma 4.1 illustration withm = 4.

• All jobs from τk following Jk,d+m have lower priorities.

Thus, jobs Jk,d+m , Jk,d+m+1, . . . are not scheduled in S at t
(there are m cores and at least m jobs with higher priority are

ready). □
Lemma 4.1 allows us to discard from consideration all jobs fol-

lowing Jk,d+m−1 because their scheduling intervals do not intersect
with that of Jk,d .

Definition 4.2. Let us define J = {Jk,d , Jk,d+1, ..., Jk,d+m−1}. By
Lemma 4.1, J contains all jobs from τk following the job of interest

Jk,d that can be scheduled in parallel with Jk,d .

Definition 4.3. Let us denote asW the overall processor allocation

to jobs from J in S in the interval [r , r + R). More formally,

W =
d+m−1∑
j=d

A(S, r , r + R, Jk, j).

No job from J is ready during [0, r), so

W =
d+m−1∑
j=d

A(S, 0, r + R, Jk, j). (8)

Moreover, by Lemma 4.1, no job of τk beginning with Jk,d+m can

be scheduled in S during [r , r + R). Thus,W is the total allocation

of all jobs from task τk following the job of interest Jk,d from its

release until its completion in S.
Using Def. 4.3, we can compute a lower bound on Lag(τk , r+R) by

an alternative approach compared to that used to prove Lemma 3.5.

Lemma 4.4. Lag(τk , r + R) = ukR −W .

Proof. By Def. 2.8, Lag(τk , t) =
∑
j lag(Jk, j , t).We split all jobs

from τk into groups by their job index: Jk, j with j ∈ [1,d), j ∈
[d,d +m), and j ∈ [d +m,∞).

Case 1. Jk, j with j ∈ [1,d). All jobs from task τk are prioritized

against each other in FIFO order, and each has an execution time

not exceedingCk . Moreover, by A2 (from Sec. 2), the execution time

of Jk,d is exactly Ck . Thus, any such Jk, j would be completed in S
by time r +R. In addition, Jk, j would be also completed in I due to

the definition of I given in Sec. 2. Hence, lag(Jk, j , r + R) = 0, and

d−1∑
j=1

lag(Jk, j , r + R) = 0. (9)

Case 2. Jk, j with j ∈ [d,d +m). For that case, we have
d+m−1∑
j=d

lag(Jk, j , r + R)

= {by Def. 2.7}
d+m−1∑
j=d

A(I, 0, r + R, Jk, j) −
d+m−1∑
j=d

A(S, 0, r + R, Jk, j)

= {by (8)}
d+m−1∑
j=d

A(I, 0, r + R, Jk, j) −W . (10)

Case 3. Jk, j with j ∈ [d +m,∞). By Lemma 4.1, job Jk, j , where
j ≥ m + d , may not be scheduled in S until the completion of Jk,d
(which happens at time r + R), so A(S, 0, r + R, Jk, j) = 0. Using

this information, we have

∞∑
j=d+m

lag(Jk, j , r + R)

= {by Def. 2.7}
∞∑

j=d+m

A(I, 0, r + R, Jk, j) −
∞∑

j=d+m

A(S, 0, r + R, Jk, j)

= {because A(S, 0, r + R, Jk, j) = 0}
∞∑

j=d+m

A(I, 0, r + R, Jk, j). (11)

By A2 and A3, task τk becomes periodic with execution timeCk ,
starting with Jk,d . Thus, exactly one job from τk is scheduled for

execution in I at any time instant in [r , r + R). Thus,
∞∑
j=d

A(I, r , r + R, Jk, j) = ukR. (12)

From the three cases above,

Lag(τk , r + R) =
∞∑
j=1

lag(Jk, j , r + R)

=

d−1∑
j=1

lag(Jk, j , r + R) +
d+m−1∑
j=d

lag(Jk, j , r + R)

+

∞∑
j=d+m

lag(Jk, j , r + R)

= {by (9), (10), and (11)}
∞∑
j=d

A(I, 0, r + R, Jk, j) −W

= {by (12)}
ukR −W . □

Knowledge ofW also allows us to compute a more accurate

bound on system LAG. To prove the next lemma, we exploit the

following property of G-FP scheduling (which holds for any work-

conserving scheduler): if Jk,d is ready and not scheduled at time

Tardiness Bounds for G-FP Scheduling w/o Intra-Task Prec. Constraints RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

Allocation intervals

for jobs from J
Allocation intervals

for all other jobs

r r + R

π1

π2

π3

π4
time

Z M Z M Z M

Figure 3: Example partitioning of [r , r + R) into intervals.

t , then there exists some time instant t1 such that t1 ≤ t , and all

cores are busy from t1 until Jk,d is scheduled in S after t .

Lemma 4.5. LAG(r+R) ≤ (⌈Uk ⌉−1)Cmax +mCk+(Uk−m)R−W .

Proof. To prove this lemma, we split the interval [r , r + R) into
a set of maximal continuous intervals such that a number of jobs

from J scheduled in S during each interval does not change. More

formally, these intervals satisfy the following assumptions (for an

interval I):

I1: The number of scheduled jobs from J in S during I does
not change.

I2: I cannot be extended without violating I1.

Due to the nature of G-FP scheduling, we have a finite number

of such intervals (since they are defined by a finite number of

scheduling events within [r , r +R]). Let us define the set of interval
starting points as {t0 = r , t1, ..., th−1}, with an additional th = r +R.
Also, let Ie denote the interval [te , te+1) for 0 ≤ e ≤ h − 1.

Definition. Let Z be the set of all intervals for which no jobs

from J are scheduled in S. Let M be the set of all intervals for

which at least one job from J is scheduled in S. It is clear that any
two intervals fromZ andM do not overlap, while the union of all

intervals fromZ ∪M is [r , r + R). An example of such intervals is

given in Fig. 3.

During any [t1, t2) ∈ Z all cores are busy. Thus,∑
i, j

A(S, t1, t2, Ji, j) =m(t2 − t1). (13)

Definition.We let | |Z|| (resp., | |M||) denote the overall length
of all intervals from set Z (resp., M).

For any [t1, t2) ∈ M and any t ∈ [t1, t2), at least one job from

J is scheduled. Since jobs from the same task τk are prioritized

against each other on a FIFO basis, and Jk,d is the first one in J,

Jk,d should be scheduled at t (and, possibly, some other jobs from

J; note that earlier jobs of τk are not included in J, which is used

to define M). Thus,

| |M|| = Ck , and
| |Z|| = |[r , r + R)| − | |M|| = R −Ck . (14)

Moreover, if any job from J is scheduled at time instant t , then
t ∈ I for some I ∈ M. Thus, all processor allocations, accounted in

W , may happen only during intervals from M. Therefore,∑
Ie ∈M

∑
j
A(S, te , te+1, Jk, j) ≥W . (15)

We now can estimate the change in LAG over [t0, th):

LAG(th) − LAG(t0)

=

h−1∑
e=0

(LAG(te+1) − LAG(te))

= {by the definitions of Z and M}∑
Ie ∈Z

(LAG(te+1) − LAG(te))

+
∑
Ie ∈M

(LAG(te+1) − LAG(te))

= {by Def. 2.7}∑
i, j, Ie ∈Z

(
A(I, te , te+1, Ji, j) − A(S, te , te+1, Ji, j)

)
+

∑
i, j, Ie ∈M

(
A(I, te , te+1, Ji, j) − A(S, te , te+1, Ji, j)

)
= {by rearranging and (13)}∑

i, j, Ie ∈Z∪M
A(I, te , te+1, Ji, j)

−
∑

i, j, Ie ∈Z
m(te+1 − te) −

∑
i, j, Ie ∈M

A(S, te , te+1, Ji, j)

≤ {by (15) and the definitions of Z and M}∑
i, j, Ie ∈Z∪M

A(I, te , te+1, Ji, j) −m | |Z|| −W

≤ {by Lemma 3.7}
| |Z ∪M||Uk −m | |Z|| −W

= {by (14) and | |Z ∪M|| = | |[r , r + R)| |}
RUk −m(R −Ck) −W

=mCk + (Uk −m)R −W . (16)

By rearranging (16) with th = r + R, and t0 = r , we obtain a

bound for LAG(r + R):
LAG(r + R)

≤mCk + (Uk −m)R −W + LAG(r)
≤ {by Lemma 3.9}
(⌈Uk ⌉ − 1)Cmax +mCk + (Uk −m)R −W . □

We now are able to use Lemmas 4.4 and 4.5 to bound the response

time of Jk,d .

Theorem 4.6. For any job of the npc-sporadic task τk , its response
time is bounded by

R ≤ 1

m −Uk−1

(
(⌈Uk ⌉ − 1)Cmax +mCk +

k−1∑
i=1

max(0, (1 − ui)Ci)
)
.

Proof. Recall that all tasks are indexed by priority and, by A1

(see Sec. 2), task τk has the lowest priority (and, thus, the highest

task index). Consider the following:

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France Sergey Voronov, James H. Anderson, and Kecheng Yang

ukR −W = {by Lemma 4.4}
Lag(τk , r + R)

= LAG(r + R) −
k−1∑
i=1

Lag(τi , r + R)

≤ {by Lemma 3.5}

LAG(r + R) +
k−1∑
i=1

max(0, (1 − ui)Ci)

≤ {by Lemma 4.5}
(⌈Uk ⌉ − 1)Cmax +mCk + (Uk −m)R −W

+

k−1∑
i=1

max(0, (1 − ui)Ci). (17)

CancelingW from the both sides of (17), we get

R(uk +m −Uk) ≤ (⌈Uk ⌉ − 1)Cmax +mCk +
k−1∑
i=1

max(0, (1−ui)Ci).

Rearranging the last expression and rewriting uk −Uk as −Uk−1
completes the proof. □

Corollary 4.7. For the npc-sporadic task τk , its tardiness is
bounded by

max

©­­­­«
(⌈Uk ⌉ − 1)Cmax +mCk +

k−1∑
i=1

max(0, (1 − ui)Ci)

m −Uk−1
−Tk , 0

ª®®®®¬
.

Proof. If Jk, j has the response time Rk, j , then its tardiness is

max(0,Rk, j −Tk). Notice that the response-time bound from Theo-

rem 4.6 does not depend on j, i.e., it applies to any job of τk . □

Discussion. Although the npc-sporadic task model was assumed

in verifying the various properties given in Sec. 3, these properties

were only applied to task τk . Thus, the obtained response-time

bound for τk actually only requires that τk has no precedence

constraints. Tasks of higher (or lower) priority could be ordinary

sporadic tasks. Therefore, if some tasks from the overall task system

are npc-sporadic, then such tasks have bounded response times

(and hence tardiness), even if other tasks are sporadic (and hence

may have unbounded response times).

Our response-time-bound proof can be adapted to apply to any

work-conserving global scheduler (e.g., non-preemptive G-FP, G-

EDF, etc.), as long as ready jobs of the same task are prioritized

against each other on a FIFO basis. In particular, by viewing the

task of interest τk to have the lowest priority among all n tasks, we

can compute a conservative response-time bound for it that would

upper bound actual response times under any work-conserving

global scheduler. Such a response-time bound would even be ap-

plicable if non-preemptive execution is allowed: a lower-priority

task that could cause non-preemptive blocking can induce no less

interference on τk when τk is demoted to have the lowest priority.

Of course, such a proof strategy is oblivious to scheduler-specific in-

formation that could be important for establishing reasonably tight

Allocation

intervals for τm+1
Allocation intervals

for tasks τ1, ...,τm

0 mT 4emT (4e + 1)mT

π1

π2
...

πm (
mT +T − mT

2e

) time

Figure 4: Schedule of the first two jobs for each task.

response-time bounds. Still, this approach allows us to conclude

that any (preemptive or non-preemptive) work-conserving global

scheduler is SRT-optimal under the npc-sporadic task model.

5 ASYMPTOTIC TIGHTNESS
In this section we show that bound from Theorem 4.6 is asymptoti-

cally tight.

Theorem 5.1. For everym ≥ 2 there exists an npc-sporadic task
system such that the response time of the first job of the lowest-priority
task is arbitrarily close to the bound from Theorem 4.6.

Proof. For fixedT andm, consider the npc-sporadic task system

consisting of m high-priority tasks with execution time mT and

period 4emT , plus one low-priority task with execution time (1 −
m/2e)T and period T , where e > m is an arbitrary number. Let k =
m + 1, assume all jobs from every task τi have the same execution

time Ci , and assume that all tasks release jobs periodically starting

at time 0.

The response time for Jm+1,1 (the first job of the lowest priority
task) ismT +T −mT /2e , because for any t ∈ [0,mT) all cores are
occupied by higher-priority tasks. Subsequent jobs of τm+1 have
the same response time because the schedule repeats every 4emT
time units. This is illustrated for the first two jobs per task in Fig. 4.

The overall utilization of this task set is

U = Um+1 =m · 1

4e
+ 1 − m

2e
= 1 − m

4e
< 1.

By construction, we have

⌈Um+1⌉ = 1, (18)

m −Um =m

(
1 − 1

4e

)
, (19)

Cmax =mT , (20)

m∑
i=1

max(0, (1 − ui)Ci) =
(
1 − 1

4e

)
m2T . (21)

With all these computed values, the bound from Theorem 4.6 is:

Tardiness Bounds for G-FP Scheduling w/o Intra-Task Prec. Constraints RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

1

m −Um

©­«(⌈Um+1⌉ − 1)Cmax +mCm+1 +
m∑
i=1

max(0, (1 − ui)Ci)
ª®¬

{by (18), (19), (20), and (21)}

=
1

m

(
1 − 1

4e

) (
0 +m

(
1 − m

2e

)
T +

(
1 − 1

4e

)
m2T

)

=
T(

1 − 1

4e

) (
1 − m

2e
+m − m

4e

)
=

4e(m + 1) − 3m

4e − 1

T

=
(4e − 1)(m + 1) − 2m + 1

4e − 1

T

= (m + 1)T + 1 − 2m

4e − 1

T .

Then difference between this bound and the real response time

for τm+1 is(
1 − 2m

4e − 1

T +
m

2e
T

)
→ 0 as e → ∞, with fixedm and T .

Thus, the bound from Theorem 4.6 is asymptotically tight. □

6 EXPERIMENTS
Notice that the numerator in the response-time bound given in

Theorem 4.6 depends on the core count m and also on k , which
determines the number of higher-priority tasks that exist. A reduced

bound can therefore be ensured if these values can be lowered. One

way to do this is by partitioning the hardware platform into clusters

of cores, assigning each task to one cluster, and applying global

scheduling only within clusters. To evaluate the efficacy of such a

strategy, we conducted experiments in which clusters of size two,

four, eight, and 16 were considered on a 16-core platform (a cluster

size of 16 is simply pure global scheduling). For these cluster sizes,

we randomly generated npc-sporadic task systems and assessed

both schedulability (i.e., the fraction of generated systems deemed

schedulable) and tardiness bounds for the generated systems as a

function of total system utilization. To assign tasks to clusters, we

tried four well-known bin-packing heuristics, worst-fit decreasing,

best-fit decreasing, next-fit decreasing, and first-fit decreasing, and

declared a task system to be schedulable if any of these heuristics

could produce a valid assignment of tasks to clusters.

To generate task systems, we selected task periods from the

range [10ms, 100ms]. We also considered various task utilization

ranges. Due to space limitations, we consider only two utilization

categories here: light tasks with ui ∈ (0.0, 0.3), and medium tasks
with ui ∈ [0.3, 0.7). We assigned higher priorities to lower-indexed

tasks (i.e., those generated earlier).

In order to account for variations in task periods, we used av-
erage relative tardiness as our primary evaluation metric; a task’s

relative tardiness is given by its tardiness divided by its period. We

computed both bounds on relative tardiness, using Corollary 4.7,

and observed relative tardiness, by examining schedules in which

jobs were released periodically. The results we obtained for light

tasks are plotted in Fig. 5, and those for medium tasks in Fig. 6. Each

plot in both figures pertains to one cluster size and shows schedu-

lability, the average observed relative tardiness, and the average

relative tardiness bound (each as a function of total utilization) for

that cluster size.

As these plots show, clustering had virtually no impact on schedu-

lability for light task systems. For medium task systems, there was

some non-negligible impact for clusters of size two and four, as

seen by the decline in schedulability as total utilization nears 16.0.

For both light and medium task systems, using clusters of size

eight decreased the average relative tardiness bound compared

to global scheduling (i.e., using one cluster of size 16) by about

30% with almost no impact on schedulability. Using clusters of size

four decreased the bound by around 40%, and using clusters of size

two reduced it by around 55%, though for these cluster sizes some

schedulability impacts existed for medium task systems, as already

noted.

Across all of our experiments, average relative tardiness bounds

for task systems with the high total utilization were four to ten

times larger than average observed relative tardiness. The difference

in the observed results for light and medium tasks follows from two

main reasons. First, the provided bound depends on Cmax , which

tends to be larger for medium tasks. Second, in general, observed

tardiness tended to be smaller for medium tasks.

7 CONCLUSION
In this paper, we considered the scheduling of npc-sporadic task

systems under G-FP on a multicore platform. We showed that G-

FP (preemptive or non-preemptive) may generate unbounded task

response times under the standard sporadic task model, even when

the underlying platform is significantly under-utilized. In contrast,

under the npc-sporadic task model, we showed that preemptive

G-FP ensures bounded task response times (and hence tardiness) for

any task system whose utilization does not exceed the platform’s

capacity—that is, G-FP is SRT-optimal under the npc-sporadic task

model. We further showed that our derived response-time bound is

asymptotically tight and that it can be reduced in practice through

the use of clustered scheduling.

Our proof strategy can be applied to show that any (preemp-

tive or non-preemptive) work-conserving scheduler is SRT-optimal.

However, this approach may yield conservative bounds for certain

schedulers because it does not take into account scheduler-specific

information that may be important for obtaining reduced bounds.

In the future, we hope to refine this proof strategy so that it can be

applied to obtain an asymptotically tight response-time bound for

any such scheduler.

This paper was motivated by an industry problem (pertaining to

the processing done within 5G cellular base stations) in which tasks

exist as nodes within a directed acyclic graph (DAG), the edges

of which denote precedence constraints between different tasks,

and intra-task parallelism is allowed. In prior work, response-time

bounds for such DAG-based systems were presented assuming a

dynamic-priority scheduled is used [13]. In this industry problem, a

static-priority scheduler would be desirable to use because it would

entail lower runtime overheads than a dynamic-priority one. In the

future work, we intend to consider in detail the applicability of G-FP

scheduling under the npc-sporadic task model in this DAG-based

setting.

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France Sergey Voronov, James H. Anderson, and Kecheng Yang

Figure 5: Experimental results for light tasks. Figure 6: Experimental results for medium tasks.

Tardiness Bounds for G-FP Scheduling w/o Intra-Task Prec. Constraints RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

REFERENCES
[1] T. Baker. Comparison of empirical success rates of global vs. partitioned fixed-

priority and EDF scheduling for hard real time. Technical Report TR-050601,

Department of Computer Science, Florida State University, 2005.

[2] T. Baker and S. Baruah. An analysis of global EDF schedulability for arbitrary-

deadline sporadic task systems. Real-Time Systems, 43(1):3–24, 2009.
[3] S. Baruah and T. Baker. Schedulability analysis of global EDF. Real-Time Systems,

38(3):223–235, 2008.

[4] S. Baruah and N. Fisher. Global fixed-priority scheduling of arbitrary-deadline

sporadic task systems. In Proceedings of the 9th International Conference on
Distributed Computing and Networking, pages 215–226, 2008.

[5] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of EDF

on multiprocessor platforms. In Proceedings of the 17th Euromicro Conference on
Real-Time Systems, pages 209–218, 2005.

[6] R. Davis and A. Burns. Priority assignment for global fixed-priority preemptive

scheduling in multiprocessor real-time systems. In Proceedings of the 30th IEEE
Real-Time Systems Symposium, pages 398–409, 2009.

[7] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis, University of

North Carolina at Chapel Hill, 2006.

[8] U. Devi and J. Anderson. Tardiness bounds for global EDF scheduling on a

multiprocessor. In Proceedings of the 26th IEEE Real-Time Systems Symposium,

pages 330–341, 2005.

[9] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a

multiprocessor. Real-Time Systems, 38(2):133–189, 2008.
[10] J. Erickson and J. Anderson. Response time bounds for G-EDF without intra-task

precedence constraints. In Proceedings of the 15th International Conference On
Principles Of Distributed Systems, pages 128–142, 2011.

[11] H. Leontyev and J. Anderson. Tardiness bounds for EDF scheduling on multi-

speed multicore platforms. In Proceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pages 103–110,
2007.

[12] K. Yang and J. Anderson. Optimal GEDF-based schedulers that allow intra-task

parallelism on heterogeneous multiprocessors. In Proceedings of the 12th IEEE
Symposium on Embedded Systems for Real-Time Multimedia, pages 30–39, 2014.

[13] K. Yang, M. Yang, and J. Anderson. Reducing response-time bounds for DAG-

based task systems on heterogeneous multicore platforms. In Proceedings of the
24th International Conference on Real-Time Networks and Systems, pages 349–358,
2016.

[14] M. Yang, T. Amert, K. Yang, N. Otterness, J. Anderson, F. D. Smith, and S. Wang.

Making OpenVX really ‘real time’. In Proceedings of the 39th IEEE Real-Time
Systems Symposium, to appear, 2018.

	Abstract
	Acknowledgments
	1 Introduction
	2 System Model
	3 Lag Bounds
	3.1 Task Lag Lower Bound
	3.2 System LAG Upper Bound

	4 Response-Time Bound
	5 Asymptotic Tightness
	6 Experiments
	7 Conclusion
	References

