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ABSTRACT fixed-priority (G-FP) schedulers have both been widely studied

Fixed-priority multicore schedulers are often preferable to dynamic-
priority ones because they entail less overhead, are easier to im-
plement, and enable certain tasks to be favored over others. Under
global fixed-priority (G-FP) scheduling, as applied to the standard
sporadic task model, response times for low-priority tasks may be
unbounded, even if total task-system utilization is low. In this paper,
it is shown that this negative result can be circumvented if different
jobs of the same task are allowed to execute in parallel. In particu-
lar, a response-time bound is presented for task systems that allow
intra-task parallelism. This bound merely requires that total utiliza-
tion does not exceed the overall processing capacity—individual
task utilizations need not be further restricted. This result implies
that G-FP is optimal for scheduling soft real-time tasks that require
bounded tardiness, if intra-task parallelism is allowed.

CCS CONCEPTS

« Computer systems organization — Real-time systems;

KEYWORDS

global fixed-priority scheduling, intra-task parallelism, tardiness,
optimality, multiprocessors

ACM Reference Format:

Sergey Voronov, James H. Anderson, and Kecheng Yang. 2018. Tardiness
Bounds for Fixed-Priority Global Scheduling without Intra-Task Prece-
dence Constraints. In 26th International Conference on Real-Time Networks
and Systems (RTINS ’18), October 1012, 2018, Chasseneuil-du-Poitou, France.
RTNS’18, Poitiers/Futuroscope, France, 11 pages. https://doi.org/10.1145/
3273905.3273913

ACKNOWLEDGMENTS

Work supported by NSF grants CNS 1409175, CPS 1446631, CNS
1563845, and CNS 1717589, ARO grant W911NF-17-1-0294, and
funding from General Motors.

1 INTRODUCTION

Since the multicore revolution, the focus of real-time scheduling
research has shifted from uniprocessors to multiprocessors. In work
on this topic, the global earliest-deadline-first (G-EDF) and global
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(e.g., [1, 3-6, 11]). Although neither is optimal for scheduling hard
real-time (HRT) systems where every deadline must be met, both
preemptive and non-preemptive G-EDF are optimal for scheduling
soft real-time (SRT) sporadic task systems that only require bounds
on deadline tardiness [8]. That is, under each of these schedulers,
deadlines can be missed by only a bounded amount of time for
any feasible task system. Feasible in this context means that the
underlying platform is not over-utilized, and no task over-utilizes
a single processor [7].

Unfortunately, this SRT-optimality result does not extend to
G-FP, as feasible task systems exist for which tardiness under it
can increase without bound; this was shown previously for pre-
emptive G-FP [7] and is shown herein for non-preemptive G-FP.
This non-optimality result is regrettable because, in comparison
to G-EDF, G-FP entails less overhead, is easer to implement, and
enables certain tasks to be favored over others. Given this negative
result, if certain tasks need to be prioritized over others, an obvious
alternative would be to use a partitioning scheme instead. However,
such schemes are also not optimal and can cause system capacity
loss due to bin-packing-related issues.

In this paper, we consider a different option: employing a relaxed
variant of the standard sporadic task model in which successive
jobs of the same task may execute in parallel. We are motivated to
consider this relaxed model because of the nature of the counterex-
amples used to show the non-optimality of G-FP. In devising such
counterexamples, the goal is to ensure that a certain low-priority
task is unable to make use of processors made available to it in
parallel, thereby causing its response times to grow without bound.

This relaxed task model has in fact been considered previously
in work directed at using G-EDF in HRT [2] and SRT systems [10,
12]. The latter work showed that allowing intra-task parallelism
enables much lower tardiness bounds to be derived. Following
[12], we call this relaxed model the npc-sporadic (“no precedence
constraints”) task model. Under the npc-sporadic task model, G-EDF
precludes response times from growing unboundedly, even if a
task’s execution time exceeds its period. All that is required is that
the entire platform is not over-utilized—this is the only condition
needed for SRT feasibility under this model.

This paper expands upon work directed at the npc-sporadic task
model by considering the behavior of G-FP under this model. We
show that, like G-EDF, G-FP ensures bounded response times for
any feasible npc-sporadic task system. We elaborate on this result
below, after first taking a closer look at the npc-sporadic model.

Applying the npc-sporadic task model. For the npc-sporadic task
model to be applicable, successive jobs of the same task must be
able to execute independently. Additionally, it must be acceptable
for such jobs to produce output out of order; this tends to be a lesser
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concern that can be dealt with via buffering (recall that our focus
here is applications that can tolerate some tardiness).

Prior papers directed at G-EDF under the npc-sporadic task
model mention several example applications that meet these re-
quirements [10, 12]. A particularly compelling use case is computer-
vision (or radar) object detection [12]. In contrast to object tracking,
object detection may be performed on each frame of video indepen-
dently. In recent work pertaining to real-time computer vision [14],
this use case was considered in detail. In that work, it was shown
that allowing intra-task parallelism enables dramatically improved
response-time bounds for object detection.

Contributions. We consider the scheduling of npc-sporadic task
systems on an identical multiprocessor platform under preemptive
G-FP. We derive a response-time bound that shows that preemptive
G-FP guarantees bounded response times (and hence tardiness) for
any feasible npc-sporadic task system; that is, preemptive G-FP is
SRT-optimal. We also show that our derived response-time bound
is asymptotically tight.

This bound tends to grow as the core count and the number of
higher-priority tasks increase. Thus, lower tardiness can be guaran-
teed by partitioning tasks among clusters of cores and scheduling
globally only within a cluster. Using a clustered approach lessens
tardiness at the expense of impinging on schedulability due to bin-
packing-related issues. To elucidate this tradeoff, we conducted an
experimental schedulability study in which different cluster sizes
were considered on a 16-core platform. We found that using clus-
ters of size four typically enabled relative tardiness bounds that
were 60% of those under global scheduling with hardly any impact
on schedulability. In our experiments, we also compared relative
tardiness bounds obtained from our analysis vs. observed average
relative tardiness. (A task relative tardiness is given by its tardiness
divided by its period.) We found that bounds for task sets with high
total utilization tended to be four to ten times larger than observed
relative tardiness.

Due to space constraints, we mostly limit attention to preemptive
G-FP in this paper. However, as discussed later, our response-time
bound proof can be adjusted to apply to non-preemptive G-FP
(and, in fact, to any work-conserving global scheduler). Thus, non-
preemptive G-FP is SRT-optimal as well.

The results of this paper establish a rare context under which
fixed-priority real-time scheduling is optimal in some sense. To our
knowledge, the only other context where such a result has been
shown is the uniprocessor scheduling of synchronous implicit-
deadline periodic tasks with harmonic periods.

Paper organization. In the rest of the paper, we provide needed
background (Sec. 2), prove some preliminary lemmas (Sec. 3), derive
the response-time bound that is our main contribution (Sec. 4),
establish its tightness (Sec. 5), present our experimental results
(Sec. 6), and conclude (Sec. 7).

2 SYSTEM MODEL

Task model. We consider the SRT scheduling of a system 7 of n
implicit-deadline npc-sporadic tasks, 71, . . ., 7, on platform 7 with
m identical unit-speed cores, 71, ..., 7m. The npc-sporadic task
model considered in this paper differs from the standard sporadic
task model by relaxing intra-task precedence constraints: any two
jobs, ready for execution, may be scheduled at the same time, even if
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they are produced by the same task. We use the following notation
(we assume familiarity with terms commonly used in work on real-
time scheduling): C; denotes the worst-case execution time of task
73, T denoted its period, and u; = C;/T; denotes its utilization; J; ;
denotes the jth job released by 7;, where j > 1, and C; j denotes
Ji,j’s actual execution time, which may be less than C;. If a job is
released at time ¢,, has a deadline a time t;, and completes at time
tc, then its response time is t. — t, and its tardiness is max(0, to — tg).
We assume that tasks are indexed by priority, with higher-priority
tasks having lower indexes. We also assume that time is continuous.
We denote the overall system utilization by U = 3.7 ; u; and the

total utilization of tasks 71, ..., 7o by Up = Zle uj.

Task constraints. Our objective is to derive a response-time bound
for a task 7 by focusing on a job of interest Ji 4. Note that if 7’s
response times are bounded, then its tardiness is bounded as well.
If U exceeds the platform capacity of m, then at least one task will
clearly have unbounded response times if all tasks release jobs as
soon as possible and every job executes for its worst-case execution
time. Therefore, we assume U < m. However, unlike the traditional
sporadic task model, we do not require u; < 1, which is necessary
for bounded response times under that model but not under the
npc-sporadic task model. Under the latter model, a scheduler that
can ensure bounded tardiness for any task system for which U < m
holds is SRT-optimal.

Scheduler. In this paper, we focus on establishing the SRT-optimal-
ity of the preemptive G-FP scheduler. Hereafter, all references to
G-FP without qualification should be taken to mean preemptive
G-FP. For simplicity, we assume unique task priorities. Moreover,
we assume that jobs of the same task are prioritized against each
other on a first-in-first-out (FIFO) basis. This assumption is implicit
in the conventional sporadic task model (which precludes a job
from starting until the previous job of the same task completes).

Although the potential for conventional sporadic tasks to have
unbounded response times under preemptive G-FP has been shown
previously [7], we provide examples illustrating this behavior below
for both preemptive and non-preemptive G-FP to highlight various
differences between the npc-sporadic and sporadic task models.

Example 2.1. G-FP with preemption. Consider a task system with
(m+1) periodic tasks, each with a worst-case execution time of 1+¢
and a period of 2 time units. Under the conventional sporadic model,
the response time of the lowest-priority task is unbounded because
an allocation of only (1—¢) time units is available every 2 time units,
while the task requires (1 + ¢) time units, as illustrated in Fig. 1a for
m = 3. The total utilization of this system is (1 + €)(m + 1) /2, which
approaches (m + 1)/2 (roughly half-utilizing the platform) as ¢ — 0.
In contrast, under the npc-sporadic model, applying Theorem 4.6
in Sec. 4 to the task system in Fig. 1a yields a response-time bound
for the lowest-priority task of 3.5 for small ¢ (its exact response
time is 3 + 3¢). A schedule for this case is shown in Fig. 1b. O

Example 2.2. G-FP without preemption. Consider a task system
with three periodic tasks, to be scheduled on two processors, with
(C1,T1) = (2,3), (C2,Tz) = (2,3), and (C3,T3) = (1,2). Despite
the non-preemptivity of the scheduler, each job of 73 (the lowest-
priority task) completes in one time unit, as illustrated in Fig. 1c,
and thus never non-preemptively blocks any jobs from 71 and 7.
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Allocation intervals  of tasks with higher priority under preemptive G-FP scheduling.
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Figure 1: Schedules for the task systems in Exs. 2.1 and 2.2.

The time available to 73 on each processor coincides, so under
the conventional sporadic model, its response time must increase
without bound, as illustrated. In contrast, under the npc-sporadic
model, where intra-task parallelism is allowed, its response time is
bounded, as implied by Fig. 1d. O

Proof setup. In reasoning about the job of interest Ji 4, we make
the following simplifying assumptions.

A1: Task 7 has the lowest priority among all tasks.

A2: Following Ji 4-1, every new job (including Ji 4) from task
7k has execution time equal to Cg.

A3: Following Jj. 4, every new job from task 7y is released ex-
actly Ty time units later than the previous job of 7 (i.e., 7%
“becomes periodic” after Ji_g).

Assumption Al is tantamount to discarding all tasks with a
priority lower than 7; these tasks do not affect the scheduling

Enforcing Assumptions A2 and A3 cannot reduce J 4’s response
time (A3 affects only jobs of 7; released after Ji 4, while A2 may
only increase the execution times of Ji 4, Ji,d+1, --); thus, any
response-time bound derived with these assumptions in place is
still valid if they are weakened.

We now can formalize our problem: find a bound for Ji 4’s re-
sponse time under A1-A3. In considering this problem, we make use
of some additional terms and notation, which we introduce next.

Definition 2.3. We let r; j and R; j denote the release and re-
sponse times, respectively, of job J; ;. For conciseness, we use r and
R in reference to the job of interest instead of r_z and R g4.

Definition 2.4. At time t, job J; j is ready if t > r; j and it has
not completed yet. If t < r; j, then Jj j is unreleased.

As in [9], we use the concept of lag, which we define by consid-
ering an “ideal” platform 7z’ consisting of k cores, 77, . ., 7'[];, with
speeds uy, . .., uy, respectively (by Al, we have only k tasks). A
core’s speed corresponds to the job execution rate on it. Note that
such a speed might differ from 1.0. In the ideal schedule, each task z;
only executes jobs on core 7] with speed u;. Under the npc-sporadic
task model with implicit deadlines, every job executes in the ideal
schedule from its release until its completion without interference
from other jobs or tasks (different tasks run on different cores). Note
that if C; ; < C; holds, then J; j completes in the ideal schedule
before its deadline, whereas, if C; j = C; holds, then it completes
exactly at its deadline. Thus, at most one job from every task is
scheduled at any time in the ideal schedule.

Definition 2.5. We denote as 7 the ideal schedule of the task set
{r1,...,7%} on 7’ as described above. Also, we denote as S the
schedule of {71, ..., 7} produced by our G-FP scheduler on the
actual platform 7 with m unit-speed cores.

Definition 2.6. For an arbitrary schedule H, we denote as
A(H, t1, t2, i, j) the overall processor capacity allocated to job J; j
in H within the interval [t1, z). Note that if J; ; is released at or
after tp, or t; > tz, then by definition, A(H, t1, t2, Ji,j) = 0.

Definition 2.7. The lag for job J; j is defined as lag(J; j,t) =
AL, 0, t,]j’j) - A(S, 0, t,]j’j).

Definition 2.8. The lag for task 7; is defined as Lag(z;,t) =
2jlag(Ji,j. ).

Definition 2.9. The total lag of the entire considered task system
is defined as LAG(?) = X; Lag(7i, t) = X; Xj lag(Ji j. t)-

3 LAG BOUNDS

In Sec. 3.1 below, we derive a number of lag-related properties, as
well as a lower bound on task Lag. In Sec. 3.2, we derive an upper
bound on total system LAG.

3.1 Task Lag Lower Bound

The general property of Lag for a single task we establish in this
subsection is formulated in Lemma 3.5. To prove this lemma, we
first prove several lemmas concerning job lag.

LEMMA 3.1. For any time t before the release of job J; ; or after its
completion in both schedules I and S, lag(J;,j,t) = 0.

Proor. If J; j is unreleased, then by Def. 2.6, A(Z, 0,1, J; j) and
A(S,0,t, J;,7) are both 0. If J; j has completed in both schedules I
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and 8, then by Def. 2.6, A(Z, 0, t,]i,j) = A(S,0, t,],',j) =Cjj.-In
both cases, by Def. 2.7, lag(J; j,t) = 0. O

LEmMmA 3.2. Ift > ri,j +Tj, then Iag(]i,j, t) > 0.

Proor. If t > ri,j +Ti, then A(Z, 0, t,]i’j) =Cij, because Ji,j
completes in 7 by the end of its period. Also, A(S,0,t, J; ;) < Ci,j
for every time instant. By Def. 2.7, the lemma follows. O

The next lemma provides bounds on a single job’s lag.

LEmMA 3.3. min(0, (u; — 1)C;) < lag(J;,j,t) < Cj.

Proor. According to Def. 2.7,

lag(Ji,j, t) = A, 0,t, Ji,j) — AS,0,t, Ji,j)
<AL,0,t, Ji, )
< {by Def. 2.6}
Ci,j

<G,
proving the stated upper bound. In the rest of the proof, we focus
on proving the stated lower bound. Let f = C; j/C;. Note that
f-Ti = (CijT;)/Ci = Ci,j/ui, which is the exact amount of time
that is needed for J; j’s completion in the ideal schedule 7. To
simplify the proof, we split the time line into three intervals: “before
]i,j’s release” : [0, ri,j); “]j’j is scheduled in 7 : [r,',j, rij + f-T);
and “J; j has completed in 77 : [r; j + f - T;, c0). We consider each
interval separately.

Case 1.t € [0,r; j). By Lemma 3.1, lag(J; j, t) = 0.

Case 2.t € [r; j,ri,j + f - T;). For any such ¢, we define t’ =t —r; ;.
By definition, t” € [0, f - T;). Since J; j is released at time r; j and is
continuously scheduled in 7 (by Def. 2.5) during [r; j,ri j + f - Ti)
on a core with speed u;, A(Z,0,t, J; j) = u;t’.

In completing the reasoning for this case, we first dispense with
the possibility that #; > 1 holds. Because job J; j is not scheduled
in S before r; j,

A(S, 0,8, Jij) = A(S,rij, b, Jij) <t —rij=t'.
Thus, if u; > 1 holds, we have
AL,0,t, Ji,j) = ut’ > t' > A(S,0,t, Ji ),

which implies that lag(J;, j) > 0 holds. In the rest of the proof for
Case 2, we consider the remaining possibility: u; < 1.

Let p denote the allocation time for J; j in S during the subinter-
val [ri j, 1) = [rij,ri,j +t'). Then p < t" and p < C; (the maximum
execution time for any job of 7;). Thus, we have

lag(Ji.j, t) = lag(Ji.j.ri.j + 1)
AL,0,r; 5 + t',]i,j) - A(S, 0,15 + t’,]i,j)

=ut' —p
=i —Dp+(t' —pu
>{t' > p}
(ui = p
>{uj—1<0andp < C;}
(ui = 1)Ci.

Case 3.t € [r; + f - T;, ). By Def. 2.5 and the definition of f, J; j is
completed at time instant r; + f - T; in 7, and A(Z, 0, ¢, J; j) = Cj j.
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With A(S, 0, ¢, J;,j) < Cj, j (the maximal allocation for J; j in S), we
have lag(J;,j,t) = AL, 0,t, J;,j) = A(S,0,t, Ji,j) = Ci j—Ci j = 0.

By Cases 1-3, lag(J;, j, t) = min(0, (u; — 1)C;). O
CoRrOLLARY 3.4. lag(Ji j,t) < 0 impliest € [ry j,ri j + T;).

Proor. In Cases 1 and 3 in the proof of Lemma 3.3 above, we
proved that lag(J,j,t) > 0 holds. Thus, if lag(J; j,t) < 0 holds,
then t€ [r; j,ri,j + f - T;) (the interval considered in Case 2) with
f= C,-,j/Clu Because f <1, [r,-,j,ri,j +f- T;) C [r,-,j,ri,j +T;). O

Our lower bound on job lag can be extended to task Lag.

LEmMA 3.5. min(0, (u; — 1)C;) < Lag(z;, t).

Proor. By Corollary 3.4, lag(J;,j,t) < 0 may hold only if J; ; is
scheduled for execution in I at time instant ¢ € [r; j,r; j + T;). By
Def. 2.5, at most one job per task may be scheduled in 7 at any time
instant. Therefore, in Zj lag(J,j, t), at most one summand might be
less than 0, because the intervals [r; j, r;,j + T;) do not overlap for
different choices of j due to the definition of an npc-sporadic task.
That is, if lag(z; ., t) < 0 holds, then for any j # h, lag(J;,;,t) > 0.
Thus, by Lemma 3.3

Lag(ri, t) = Z lag(J;, . t) > lag(r; . t) > min(0, (u; — 1)C;). O
J
3.2 System LAG Upper Bound

In Sec. 3.1, we established results about job and task lags. We are
now ready to bound the overall system LAG. To do so, we need to
analyze precisely how cores schedule different tasks.

LeEmMA 3.6. lag(J;, j, t), Lag(r, t), and LAG(t) are continuous func-
tions of t.
Proor. Both A(7,0,t, J; ;) and A(S,0,t, J; j) are continuous
by definition. Thus, by Def. 2.7, lag(J;, j, t) is continuous because
lag(J;,j, 1) = AL, 0,1, Ji,j) — AS,0,t, Ji ;).

Let h be the number of jobs, released by 7; at or before ¢. Then
rih St <T1jpe1- By Lemma 3.1, lag(J;,, ) = 0 for all j > h. Thus,

Lag(ri,t) = lag(Ji j,t) = ) lag(ij»1)-
J j<h
Lag(z;, t) is continuous because it is a sum of a finite number of
continuous functions. Similarly, LAG(#) is continuous because

LAG(t) = Z Lag(z;, t). O
i<k
LEmMmA 3.7. For any time interval [t1, t2)

Zﬂ(f, t1,t2, Ji,j) < ui(tz — t1), and
J

Zﬂ(fs ti,t2, Ji,j) < Ug(tz — t1).
i,j

PRrROOF. At every time instant in the ideal schedule I there is at
most one job from task 7; scheduled (see Def. 2.5). The speed of
the core that schedules 7; is u;, while the length of the considered
interval is (3 — t1). Thus,

Z AL, 1, tz,]i,j) < uj(ty — t1),and (1)
J



Tardiness Bounds for G-FP Scheduling w/o Intra-Task Prec. Constraints

Zﬂ (L1112, Jij) = Z Zﬂ(f, t,t2, Jij)
i T \T
< {by (1)}

Z uj(tz — t1)

i
=(t —tl)zui
i
= (tp — t1)Ug. O

Definition 3.8. We call a core busy at time instant ¢ if there exists
a job scheduled for execution on this core at time ¢. Otherwise, the
core is idle.

Our upper bound on system LAG is given by the following
lemma.

LEMMA 3.9. LAG(t) < ([Ux] — 1)Crmax, where Cpax = ma}f{Ci}.
i<

Proor. To prove this lemma, we split the timeline [0, +c0) into
a set of maximal continuous intervals such that the number of busy
cores in S during each interval does not change. More formally,
these intervals satisfy the following assumptions (for an interval I):
I1: The number of busy cores in S during I does not change.
I2: I cannot be extended without violating I1.

On an identical multiprocessor G-FP, may alter the set of sched-
uled jobs at time instant ¢ only if some job completes or a new job
is released at ¢. Since in the npc-sporadic task system 7 any finite
time interval I contains a finite number of such events, I contains a
finite number of the intervals from the set just defined.

We now prove the lemma by contradiction: let Ij, be the first
time interval from the set defined above such that

3ty € I : LAG(t2) > ([Ux1 — DCrax- (2
Let t; be the beginning of I;,. Then #; < t2. We next show that (3)
below holds.
LAG(tl) < (|—Uk-| - 1)Cmax- (3)
If t; = 0, then LAG(0) = 0, so (3) holds, since Uy > u; > 0. On
the other hand, if t; # 0, then there exists a preceding interval I,
such that the end of I, is #1, and, by the definition of I,
Vt € Iz : LAG(t) < (U1 - 1)Crmax-

By Lemma 3.6, LAG(?) is a continuous function, so

LAG(t;) = lim LAG(t) = lim LAG(t) < ([Ux] = DCrmaxs
1>t teIa,thl’

i.e., (3) holds.
Thus, we have
LAG(t1) < ([Ux1 = 1)Cmax < LAG(t2), 4

and the number of busy cores during [#1, f2) does not change. Let bc
denote this number. The overall allocation given to 7 in the actual
schedule S with exactly bc busy cores during the interval [#1, £2) is

Zﬂ(& t1,t2, Ji,j) = be - (t2 — t1). (5
ij
Combining Lemma 3.7 and (5), we can bound the change of LAG
over [t1, t2):
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LAG(t2) — LAG(t1)
= Z(ﬂ(f, t1, t2, Ji,j) — A(S, t1, t2, I, j))

Lj
{rearranging}
= Z A, 1,12, i j) — Z A(S, t1, 12, i, j)
ij LJ

< {by Lemma 3.7 and (5)}
Uk(tz = t1) = be - (tz — t1)
= Uy = bo)(tz — 1).

Thus, by (4), (U — bc)(tz — t1) > 0. By the definition of #; and
12, 11 < t, 80 Up — bc > 0. Thus,

bc < [U,]-1. (6)
Since Up < m, we have bc < m. Thus, there is at least one non-busy

core, and bc is the number of uncompleted jobs ;. We can now
derive a bound for LAG(t;):

LAG(t;) = ) Lag(7i, 1)
i
< {by Def. 2.9 and Lemma 3.1}
> lagUigty)

Ji,j is uncompleted

< {by Lemma 3.3}
Ci
Ji,j is uncompleted
< {bc is the number of uncompleted jobs and Cpyqx = C;}
bc - Crmax
< {by (6)}
(TUH - 1) Crmax- (7)

By Lemma 3.6, LAG(t2) = LAG(t;), so (7) contradicts (2). This
contradiction finishes the proof. O

4 RESPONSE-TIME BOUND

In this section, we focus our attention on the job of interest Ji 4
with release time r and response time R.

LEMMA 4.1. None of the jobs from 1} that are released after
Jk,(d+m-1) can be scheduled in S before the completion of Ji. g

Proor. Recall that, by A1-A3 (stated in Sec. 2), ;. becomes peri-
odic with a fixed execution time Cj. and period Ty, starting from
r = 1y, q- This is illustrated in Fig. 2.

Job Jk.d4+m cannot be scheduled at any time ¢t < r + mT =
Tk, d+m because it is not ready; the same is true of jobs from 7;
released after Ji g.p,. Thus, if Ji 4 completes earlier than r + mTy,
then the lemma statement is true. Otherwise R > r + mT}. and the
interval [r + mTy, R) is non-empty. Let us consider any ¢ from this
interval. Note the following:

® Jk,q is not completed (by Def. 2.3 of R) at ¢.

® Jobs Ji d+1s- - -»Jk,d+m—1 are ready at t (their release times
arer+Ty,...,r+(m—1)T}) and not completed (by A2, they
have the same execution time as Ji 4, Ck, and they have
lower priority than Ji_g).
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npe-sp Ori@ part of 7 7} becomes npc-periodic by A3

can be scheduled before (r + R) cannot be scheduled before (r + R)

J
lenofnd T Lo T T T]T T

r+R
Jk, a release Jk,a completion in S

Jk.d+m—1 release  Ji gypm release

Figure 2: Lemma 4.1 illustration with m = 4.

e All jobs from 7; following Ji 4., have lower priorities.

Thus, jobs Ji. g+m>Jk,d+m+1,- - - are not scheduled in S at ¢
(there are m cores and at least m jobs with higher priority are
ready). O

Lemma 4.1 allows us to discard from consideration all jobs fol-
lowing Ji 4+m-1 because their scheduling intervals do not intersect
with that of Ji_g.

Definition 4.2. Let us define J = {Jk 4. Jk,d+1> ---» Jk,d+m—1}- BY
Lemma 4.1, J contains all jobs from 7. following the job of interest
Jk,q that can be scheduled in parallel with J 4.

Definition 4.3. Let us denote as W the overall processor allocation
to jobs from J in S in the interval [r, r + R). More formally,

d+m-1
W= Zﬂ(s, ror+ R g )
j=d

No job from J is ready during [0, r), so

d+m-1
W= A(S, O,r+R,]k’j). 8)
j=d

Moreover, by Lemma 4.1, no job of 7. beginning with Ji. 4., can
be scheduled in S during [r, r + R). Thus, W is the total allocation
of all jobs from task 7 following the job of interest Ji 4 from its
release until its completion in S.

Using Def. 4.3, we can compute a lower bound on Lag(zx, r+R) by
an alternative approach compared to that used to prove Lemma 3.5.

LEmMA 4.4. Lag(tg,r +R) =upR—-W.

Proor. By Def. 2.8, Lag(ry, t) = 3 lag(Jk, j,t). We split all jobs
from 73 into groups by their job index: Ji ; with j € [1,d), j €
[d,d + m), and j € [d + m, o).

Case 1. Ji ;j with j € [1,d). All jobs from task 73 are prioritized
against each other in FIFO order, and each has an execution time
not exceeding Cy.. Moreover, by A2 (from Sec. 2), the execution time
of Ji, g is exactly Cy. Thus, any such Ji ; would be completed in S
by time r + R. In addition, Ji ; would be also completed in I due to
the definition of 7 given in Sec. 2. Hence, Iag(]k,j, r+R)=0,and

d-1
lag(Jg, j»r + R) = 0. )
=1

~
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Case 2. Ji ; with j € [d, d + m). For that case, we have

d+m-1

Z Iag(]k,j, r+R)
j=d

= {by Def. 2.7}
d+m-1 d+m-1
AL,0,r + R Jij) = > AS,0,r + R Ji. ;)

j=d j=d

= {by (8)}

d+m-1
Zﬂ(I,O,r+R,]k’j)— w. (10)
j=d

Case 3. Ji,j with j € [d + m, c0). By Lemma 4.1, job Ji ;, where
Jj = m+d, may not be scheduled in S until the completion of Ji 4
(which happens at time r + R), so A(S, 0,7 + R, J ;) = 0. Using
this information, we have

Z lag(J,j» + R)

Jj=d+m

= {by Def. 2.7}

D AT +R i) = Y AS,0.r + R )
j=d+m j=d+m

= {because A(S, 0,7 + R, Ji ;) = 0}

(e8]
DAL, 0,1+ R i p)- (11)
j=d+m
By A2 and A3, task 73 becomes periodic with execution time Cy,
starting with Ji_g. Thus, exactly one job from 7;. is scheduled for
execution in J at any time instant in [r, 7 + R). Thus,

DA v+ R Ji ) = ugR. (12)
j=d

From the three cases above,

(o)
Lag(rg,r +R) = Z lag(Jk,j»7 + R)

Jj=1
d-1 d+m—1

= Z lag(Jg,j, 7 + R) + Z lag(Jk,js7 + R)
Jj=1 j=d

+ Z lag(Jg, j»r + R)

j=d+m

= {by (9), (10), and (11)}

DAL+ R ) - W

i=d
= {by (12)}
upR—-w. o

Knowledge of W also allows us to compute a more accurate
bound on system LAG. To prove the next lemma, we exploit the
following property of G-FP scheduling (which holds for any work-
conserving scheduler): if Ji 4 is ready and not scheduled at time
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Allocation intervals 71 Allocation intervals

for jobs from J A for all other jobs
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: : : : : : tirge

r r+R

Figure 3: Example partitioning of [r,r + R) into intervals.

t, then there exists some time instant t; such that t; < ¢, and all
cores are busy from #; until Ji g is scheduled in S after t.

LEmMA 4.5. LAG(r+R) < ([Ur]1-1)Cmax +mCr+ (U —m)R-W.

Proor. To prove this lemma, we split the interval [r, r + R) into
a set of maximal continuous intervals such that a number of jobs
from J scheduled in S during each interval does not change. More
formally, these intervals satisfy the following assumptions (for an
interval I):

I1: The number of scheduled jobs from J in S during I does
not change.
I2: I cannot be extended without violating I1.

Due to the nature of G-FP scheduling, we have a finite number
of such intervals (since they are defined by a finite number of
scheduling events within [r, r + R]). Let us define the set of interval
starting points as {ty = r, t1, ..., t_1 }, with an additional t;, = r +R.
Also, let I, denote the interval [t¢, te+1) for0 < e < h—1.

Definition. Let Z be the set of all intervals for which no jobs
from J are scheduled in S. Let M be the set of all intervals for
which at least one job from 7 is scheduled in S. It is clear that any
two intervals from Z and M do not overlap, while the union of all
intervals from Z U M is [r,r + R). An example of such intervals is
given in Fig. 3.

During any [t1, t2) € Z all cores are busy. Thus,

Z A(S, t1, t2, Ji,j) = m(tz — t1). (13)
L

Definition. We let || Z|| (resp., || M]|) denote the overall length
of all intervals from set Z (resp., M).

For any [t1,12) € M and any t € [t1, t2), at least one job from
J is scheduled. Since jobs from the same task 73 are prioritized
against each other on a FIFO basis, and Ji 4 is the first one in 7,
Jk,d should be scheduled at ¢ (and, possibly, some other jobs from

J; note that earlier jobs of 73 are not included in 7, which is used
to define M). Thus,

[IM]| = C,and
ZIl = I[r,r +R)| = [IM]| =R - Ck. (14)

Moreover, if any job from 7 is scheduled at time instant ¢, then
t € I for some I € M. Thus, all processor allocations, accounted in
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W, may happen only during intervals from M. Therefore,
D) D AS testert S ) = W. (15)
IeeM j

We now can estimate the change in LAG over [to, t3,):
LAG(ty,) — LAG(tp)

h—-1
= > (LAG(te+1) - LAG(te)
e=0
= {by the definitions of Z and M}
D (LAG(te+1) = LAG(te)
I.eZ
+ > (LAG(te+1) - LAG(te)
T.eM
= {by Def. 2.7}
Z (AT, tes ter1, Ji,j) — A(S, tes ter1, Ji j))
i,j,le€Z
+ D AT tes test, Jij) = AS, tes tesn, Ji )
i,j,IlceM
= {by rearranging and (13)}

Zﬂ(I, te,te+1, Ji,j)

i,j,le€ZUM
- Z m(tey1 — te) - Z ﬂ(s’ te, te+l,]i,j)
i,j,lceZ i,j,leeM

< {by (15) and the definitions of Z and M}
DAL testers Ji) — mlIZI - W
i,j,le€eZUM
< {by Lemma 3.7}
I1Z U M|[Uk = ml||Z|| - W
= {by (14) and [|Z U M|| = ||[r,r + R)I[}
RUL-m(R-Cr)-W
=mCi + (U —mR-W. (16)
By rearranging (16) with t;, = r + R, and tp = r, we obtain a
bound for LAG(r + R):
LAG(r + R)
<mCy + (Up — m)R—W + LAG(r)
< {by Lemma 3.9}
([Uk1 = D)Crax + mCy + (U —m)R—W. O
We now are able to use Lemmas 4.4 and 4.5 to bound the response
time of Ji 4.

THEOREM 4.6. For any job of the npc-sporadic task ty., its response
time is bounded by
k-1
1
R< —— [([UL] = )Cmax + mCy + Z max(0, (1 - u;)Cy) | .
m = Uk-1 i=1
Proor. Recall that all tasks are indexed by priority and, by A1
(see Sec. 2), task 7j has the lowest priority (and, thus, the highest
task index). Consider the following:
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urR — W = {by Lemma 4.4}
Lag(tg,r + R)
k-1
=LAG(r +R) — Z Lag(zi,r + R)
i=1
< {by Lemma 3.5}
k-1
LAG(r + R) + Z max(0, (1 — u;)C;)
i=1
< {by Lemma 4.5}
([Ux1 = 1)Cmax + mCy + (Ux —m)R—=W

k-1
+ Z max(0, (1 — u;)C;). (17)
i=1
Canceling W from the both sides of (17), we get
k-1
R(up +m—-Ug) < ([Ug1 = 1)Crnax + mCy + Z max(0, (1 —u;)Cj).
i=1

Rearranging the last expression and rewriting ug — Uy as —Uy_;
completes the proof. O

COROLLARY 4.7. For the npc-sporadic task ty, its tardiness is
bounded by
k-1
([Ux1 = DCmax + mCy + '21 max(0, (1 - u;)Ci)
i=

max =T, 0f.
m — Uk

Proor. If Ji ; has the response time Ry ;, then its tardiness is
max(0, Ry ; — Ty). Notice that the response-time bound from Theo-
rem 4.6 does not depend on j, i.e., it applies to any job of 7. O

Discussion. Although the npc-sporadic task model was assumed
in verifying the various properties given in Sec. 3, these properties
were only applied to task 7j. Thus, the obtained response-time
bound for 7 actually only requires that 73 has no precedence
constraints. Tasks of higher (or lower) priority could be ordinary
sporadic tasks. Therefore, if some tasks from the overall task system
are npc-sporadic, then such tasks have bounded response times
(and hence tardiness), even if other tasks are sporadic (and hence
may have unbounded response times).

Our response-time-bound proof can be adapted to apply to any
work-conserving global scheduler (e.g., non-preemptive G-FP, G-
EDF, etc.), as long as ready jobs of the same task are prioritized
against each other on a FIFO basis. In particular, by viewing the
task of interest 73 to have the lowest priority among all n tasks, we
can compute a conservative response-time bound for it that would
upper bound actual response times under any work-conserving
global scheduler. Such a response-time bound would even be ap-
plicable if non-preemptive execution is allowed: a lower-priority
task that could cause non-preemptive blocking can induce no less
interference on 73 when 73 is demoted to have the lowest priority.
Of course, such a proof strategy is oblivious to scheduler-specific in-
formation that could be important for establishing reasonably tight

Sergey Voronov, James H. Anderson, and Kecheng Yang

Allocation Allocation intervals
intervals for 7,41 2222z for tasks 11, ..., Tm

TTII I I 7777777 7777777777777
77"1 Ay Iy

o |//’//r; 7 />;| I o 1

T 1777277277777 Perr i)
m Z

time
\c

I I s
mT mT +F - ™ demT  (4e + 1)mT

2e
Figure 4: Schedule of the first two jobs for each task.

response-time bounds. Still, this approach allows us to conclude
that any (preemptive or non-preemptive) work-conserving global
scheduler is SRT-optimal under the npc-sporadic task model.

5 ASYMPTOTIC TIGHTNESS

In this section we show that bound from Theorem 4.6 is asymptoti-
cally tight.

THEOREM 5.1. For every m > 2 there exists an npc-sporadic task
system such that the response time of the first job of the lowest-priority
task is arbitrarily close to the bound from Theorem 4.6.

Proor. For fixed T and m, consider the npc-sporadic task system
consisting of m high-priority tasks with execution time mT and
period 4emT, plus one low-priority task with execution time (1 —
m/2e)T and period T, where e > m is an arbitrary number. Let k =
m + 1, assume all jobs from every task 7; have the same execution
time C;, and assume that all tasks release jobs periodically starting
at time 0.

The response time for J;;,41,1 (the first job of the lowest priority
task) is mT + T — mT/2e, because for any t € [0, mT) all cores are
occupied by higher-priority tasks. Subsequent jobs of 7,541 have
the same response time because the schedule repeats every 4emT
time units. This is illustrated for the first two jobs per task in Fig. 4.

The overall utilization of this task set is

m
U =0, =m-—+1-—=1-—<1
ml =M 2e de
By construction, we have
[Un+1] = 1, (18)
1
m—Um:m(l——), (19)
4e
Cmax = mT, (20)
- 1
Z max(0, (1 —u;)C;) = (1 - 4—) m?T. (21)
e
i=1

With all these computed values, the bound from Theorem 4.6 is:
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m

([Um+11 = 1)Cmax + mCy1 + »  max(0, (1 - u;)Ci)
i=1

m-—Up

{by (18), (19), (20), and (21)}

:ﬁ(0+m(l—£)T+(l—é)m2T)

_de(m+1)-3m
B 4e -1
:(4e—1)(m+1)—2m+1T
4e -1
1-2m
4e -1

=(m+ 1T + T.

Then difference between this bound and the real response time
for 7,41 is

1-2
mT+ ET — 0 as e — oo, with fixed mand T.
4e — 1 2e

Thus, the bound from Theorem 4.6 is asymptotically tight. O

6 EXPERIMENTS

Notice that the numerator in the response-time bound given in
Theorem 4.6 depends on the core count m and also on k, which
determines the number of higher-priority tasks that exist. A reduced
bound can therefore be ensured if these values can be lowered. One
way to do this is by partitioning the hardware platform into clusters
of cores, assigning each task to one cluster, and applying global
scheduling only within clusters. To evaluate the efficacy of such a
strategy, we conducted experiments in which clusters of size two,
four, eight, and 16 were considered on a 16-core platform (a cluster
size of 16 is simply pure global scheduling). For these cluster sizes,
we randomly generated npc-sporadic task systems and assessed
both schedulability (i.e., the fraction of generated systems deemed
schedulable) and tardiness bounds for the generated systems as a
function of total system utilization. To assign tasks to clusters, we
tried four well-known bin-packing heuristics, worst-fit decreasing,
best-fit decreasing, next-fit decreasing, and first-fit decreasing, and
declared a task system to be schedulable if any of these heuristics
could produce a valid assignment of tasks to clusters.

To generate task systems, we selected task periods from the
range [10ms, 100ms]. We also considered various task utilization
ranges. Due to space limitations, we consider only two utilization
categories here: light tasks with u; € (0.0,0.3), and medium tasks
with u; € [0.3,0.7). We assigned higher priorities to lower-indexed
tasks (i.e., those generated earlier).

In order to account for variations in task periods, we used av-
erage relative tardiness as our primary evaluation metric; a task’s
relative tardiness is given by its tardiness divided by its period. We
computed both bounds on relative tardiness, using Corollary 4.7,
and observed relative tardiness, by examining schedules in which
jobs were released periodically. The results we obtained for light
tasks are plotted in Fig. 5, and those for medium tasks in Fig. 6. Each
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plot in both figures pertains to one cluster size and shows schedu-
lability, the average observed relative tardiness, and the average
relative tardiness bound (each as a function of total utilization) for
that cluster size.

As these plots show, clustering had virtually no impact on schedu-
lability for light task systems. For medium task systems, there was
some non-negligible impact for clusters of size two and four, as
seen by the decline in schedulability as total utilization nears 16.0.

For both light and medium task systems, using clusters of size
eight decreased the average relative tardiness bound compared
to global scheduling (i.e., using one cluster of size 16) by about
30% with almost no impact on schedulability. Using clusters of size
four decreased the bound by around 40%, and using clusters of size
two reduced it by around 55%, though for these cluster sizes some
schedulability impacts existed for medium task systems, as already
noted.

Across all of our experiments, average relative tardiness bounds
for task systems with the high total utilization were four to ten
times larger than average observed relative tardiness. The difference
in the observed results for light and medium tasks follows from two
main reasons. First, the provided bound depends on Cpyqx, which
tends to be larger for medium tasks. Second, in general, observed
tardiness tended to be smaller for medium tasks.

7 CONCLUSION

In this paper, we considered the scheduling of npc-sporadic task
systems under G-FP on a multicore platform. We showed that G-
FP (preemptive or non-preemptive) may generate unbounded task
response times under the standard sporadic task model, even when
the underlying platform is significantly under-utilized. In contrast,
under the npc-sporadic task model, we showed that preemptive
G-FP ensures bounded task response times (and hence tardiness) for
any task system whose utilization does not exceed the platform’s
capacity—that is, G-FP is SRT-optimal under the npc-sporadic task
model. We further showed that our derived response-time bound is
asymptotically tight and that it can be reduced in practice through
the use of clustered scheduling.

Our proof strategy can be applied to show that any (preemp-
tive or non-preemptive) work-conserving scheduler is SRT-optimal.
However, this approach may yield conservative bounds for certain
schedulers because it does not take into account scheduler-specific
information that may be important for obtaining reduced bounds.
In the future, we hope to refine this proof strategy so that it can be
applied to obtain an asymptotically tight response-time bound for
any such scheduler.

This paper was motivated by an industry problem (pertaining to
the processing done within 5G cellular base stations) in which tasks
exist as nodes within a directed acyclic graph (DAG), the edges
of which denote precedence constraints between different tasks,
and intra-task parallelism is allowed. In prior work, response-time
bounds for such DAG-based systems were presented assuming a
dynamic-priority scheduled is used [13]. In this industry problem, a
static-priority scheduler would be desirable to use because it would
entail lower runtime overheads than a dynamic-priority one. In the
future work, we intend to consider in detail the applicability of G-FP
scheduling under the npc-sporadic task model in this DAG-based
setting.
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Figure 5: Experimental results for light tasks.
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