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ABSTRACT

In prior work on multiprocessor real-time locking protocols, only
protocols within the RNLP family support unrestricted lock nest-
ing while guaranteeing asymptotically optimal priority-inversion
blocking bounds. However, these protocols support nesting at the
expense of increasing the cost of processing non-nested lock re-
quests, which tend to be the common case in practice. To remedy
this situation, a new fast-path mechanism is presented herein that ex-
tends prior RNLP variants by ensuring that non-nested requests are
processed efficiently. This mechanism yields overhead and blocking
costs for such requests that are nearly identical to those seen in the
most efficient single-resource locking protocols. In experiments,
the proposed fast-path mechanism enabled observed blocking times
for non-nested requests that were up to 17 times lower than under
an existing RNLP variant.
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1 INTRODUCTION

Multicore technologies have the potential to enable a wealth of
new computationally intensive embedded real-time applications,
provided efficient resource-allocation infrastructure is available.
Such infrastructure must necessarily include support for multi-
processor real-time locking protocols. Evidence suggests that the
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ability to nest lock requests to allow a task to access multiple re-
sources simultaneously is commonly required in practice, even
though non-nested requests predominate [1, 3]. However, only a
few protocols exist that support unrestricted nesting, and of those
that do, only those in the RNLP (real-time nested locking protocol)
family provide asymptotically optimal priority-inversion blocking
(pi-blocking) bounds.

The RNLP family includes the basic RNLP [13], which provides
mutex sharing, the RW-RNLP [12], which provides reader/writer
sharing, and the C-RNLP [9], which provides contention-sensitive
mutex sharing. A locking protocol is contention-sensitive if a task’s
pi-blocking time is O(C), where C is the number of tasks actu-
ally contending for the same resources [9]. The key to ensuring
contention-sensitivity is to avoid transitive blocking chains, which
are caused by nested requests and may create blocking relationships
between otherwise non-conflicting tasks.

To support nested requests, each RNLP variant employs logic
more complicated than that of single-resource protocols. This logic
is the most complex in the C-RNLP because it ensures contention-
sensitivity. The RNLP and the RW-RNLP employ simpler logic
but sacrifice contention-sensitive pi-blocking, even for non-nested
requests. Thus, these protocols support nesting (the less common
case) at the expense of increased processing costs and/or pi-blocking
bounds for non-nested requests (the more common case).

Contributions. Motivated by this observation, we propose a new
fast-path mechanism for the RNLP family that was designed with the
twin goals of ensuring non-nested lock requests are (i) contention-
sensitive and (ii) incur low lock/unlock overheads comparable to
those of single-resource protocols. We present this fast-path mech-
anism in the context of a new reader/writer RNLP variant, which
we call the fast RW-RNLP.! In reader/writer sharing, read requests
can execute concurrently but write requests require exclusive ac-
cess [6]. Since reader/writer sharing subsumes mutex sharing, the
fast RW-RNLP can be applied to support the latter.

We build directly on two prior protocols. The first is the phase-
fair ticket lock (PF-TL), which is used to provide reader/writer access
to a single resource [4]. The PF-TL is a non-preemptive spin-lock.
The protected resource has two FIFO request queues, one for reads
and one for writes. If both kinds of requests are queued concurrently,
the protocol alternates between read phases wherein read requests
are given preference, and corresponding write phases. The PF-TL has
asymptotically optimal pi-blocking bounds and very low runtime
overheads (and is trivially contention-sensitive).

The other protocol we build on is the RW-RNLP. At this point, it
suffices to know that the RW-RNLP uses two queues per resource,
one for readers and one for writers, like the PF-TL does for a single
resource. However, additional complications arise because tasks can
hold multiple resources at the same time. This affects the queueing
logic and the orchestration of phases. The latter becomes more
difficult because different resources may be in different phases.

IThe terminology “fast-in-the-common-case RW-RNLP,” which is obviously too verbose,
would be more technically precise.
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Figure 1: Impact of transitive blocking on non-nested requests.

In (b), Rim-1 requests £, and ¢}, together using a DGL, as allowed
by the RW-RNLP.

The more complicated queueing logic of the RW-RNLP causes
even non-nested requests to incur higher lock/unlock overheads.
Additionally, such requests do not have contention-sensitive pi-
blocking bounds because they may become part of transitive block-
ing chains caused by nested requests. A simple example is given
in Fig. 1, which depicts two resources ¢, and £}, on m processors,
accessed by m write requests, R1, . . ., Ry, issued in this order. Two
scenarios are shown that result in different pi-blocking times for
request Rp,. In inset (a), there are no nested requests, and each
resource is protected by a PF-TL. Here, R, is pi-blocked by only
one other request, which is clearly in accordance with the defini-
tion of contention-sensitivity. In inset (b), request R;,—1 accesses
both resources, and the RW-RNLP is used. Here, the nested request
Rm-1 forces R, to be pi-blocked by all other requests, which is
clearly not contention-sensitive.

In our fast RW-RNLP, non-nested requests are immune from
the effects for transitive blocking chains caused by nesting. This
is achieved by employing a modular design that mostly separates
concerns related to handling nested and non-nested requests. This
modular design also facilitates applying the protocol in different
contexts. For example, one of the components we introduce directly
supports constant-time access for all requests in systems of single-
writer, multiple-reader resources, a common use case in embedded
systems [8]. Also, by altering one of the components, contention-
sensitivity can also be ensured for nested requests (like with the
C-RNLP, but at the expense of greater overheads for such requests).
Waiting in the fast RNLP can be realized by either spinning or
suspension, though we consider only the former in detail due to
space constraints. When no nested requests occur, the fast RW-
RNLP functions nearly identically to a set of per-resource PF-TLs.

This similarity is borne out in experiments we conducted in
which lock/unlock overheads and observed pi-blocking times were
recorded for non-nested requests. We found that lock/unlock over-
heads for such requests were nearly identical under the fast RW-
RNLP and PF-TLs. We also found that observed pi-blocking times
for such requests were reduced compared to the RW-RNLP. This
is because such requests require less overhead and are immune to
transitive blocking effects under the fast RW-RNLP.

Organization. In the rest of the paper, we give needed back-
ground (Sec. 2), describe the fast RW-RNLP in detail (Sec. 3), discuss
our experiments (Sec. 4), and conclude (Sec. 5).

2 BACKGROUND

In this section, we present relevant background material.
Task model. We consider the classic sporadic real-time task
model (we assume familiarity with this model) and focus on a

system I' = {r1,...,7,} of n tasks scheduled on m processors
by a job-level fixed-priority scheduler (e.g. partitioned, global, or
clustered earliest-deadline-first). We denote an arbitrary job of task
T;j as ]i.

Resource model. We assume the existence of n, shared resources,
denoted L = {{1,...,¢n, }. When a job J; requires access to one
or more of these resources, it issues a request R; for its needed
resources by invoking a locking protocol. We say that R; is satisfied
as soon as J; holds its requested resources and that it has completed
once J; has released all of those resources. A request R; is considered
to be active during the time interval that begins with its issuance
and ends with its completion. Whenever job J; holds any resources,
it is said to be executing within a critical section. We let L; denote
the maximum duration of a critical section of J; and define Ly,qx =
maxi <i<n{Li}.

We allow requests to be nested. The essence of nesting is that jobs
are allowed to hold multiple resources simultaneously. Ordinarily,
nesting is realized by allowing jobs to request different resources
individually. Instead, we assume that such a job requests all of its
needed resources via one request. The resulting functionality is
equivalent to a mechanism called a dynamic group lock (DGL) [11],
which allows groups of resources to be coalesced under one lock
dynamically at runtime. (This is different from ordinary group locks,
which are used to coordinate access to groups of resources that are
statically determined offline.)

The usage of DGLs avoids deadlock. Another way to avoid dead-
lock is by requiring resources to be acquired according to some
prescribed ordering. When using DGLs instead of this approach,
jobs may sometimes have to request resources that are not actually
needed if conditional code exists. For example, if after acquiring
resource {4, job J; acquires one of resources ¢} and ¢, based on
some condition, it would have to acquire all three resources via
one request. While this functionality may seem to put DGLs at a
disadvantage, the usage of DGLs results in the same worst-case
pi-blocking bounds (see below) under all existing RNLP variants as
when resource orderings are enforced.

Given our focus on reader/writer sharing, we classify resource
accesses as either reads or writes: a resource may be accessed by
multiple jobs concurrently for reading but by only one job at a
time for writing. If a job requests multiple resources via one re-
quest, we assume that all such resources are requested for either
reading or writing. Mechanisms for handling mixed requests, com-
prised of both read and write accesses, have been presented in prior
work [11]; our focus is efficiently processing non-nested requests.

If a request R; is a read (resp., write) request, then we will often
use the notation R (resp., R}") to emphasize its type. If its type is
not relevant, then we will simply use R;. We let D; denote the set of
resources requested by R;. Additionally, we denote the maximum
critical-section length over all read (resp., write) requests by any
task as L7, ;. (resp., L) 4y)-

Pi-blocking. When designing a real-time locking protocol, the
primary goal is to enable pi-blocking to be bounded. In the mul-
tiprocessor case, the precise definition of pi-blocking is subtle as
it depends on how waiting is realized (spinning vs. suspension)
and on certain analysis assumptions [2]. Due to space constraints,
we limit our attention to protocols that use spinning to realize
blocking and that are invoked non-preemptively (i.e., a resource-
requesting job is non-preemptive for the entire time it is executing
code involving the acquisition, use, and release of resources), but



suspension-based variants of our fast RW-RNLP can be obtained
by slightly altering the spin-based version presented later. (We are
nearing the completion of a suspension-based implementation and
intend to release it soon.) Non-preemptive execution is an example
of a progress mechanism [2]: it ensures that lock-holding tasks are
not delayed by untimely preemptions and thus make progress. With
spin-based waiting, a job can be considered to be pi-blocked if it is
spinning.

Analysis assumptions. In our analysis of pi-blocking, we consider
critical-section lengths and the number of critical sections per job
to be constants, and m and n to be variables, as in prior work [2].
If ¢ is the time at which request R; is issued, then we define the
contention C; of R; to be the number of other active requests at time
t that require resources in common with R;. A reader/writer locking
protocol ensures contention-sensitivity for a request R; if the worst-
case pi-blocking for R; is O(1) if it is a read request, and O(C;) if
it is a write request. These pi-blocking bounds are asymptotically
optimal for non-preemptive, spin-based locking protocols [11].

Related work. In recent years, a number of locking protocols have
been presented that are asymptotically optimal with respect to pi-
blocking. These include RNLP variants [9, 12, 13] that provide fine-
grained lock nesting, meaning that each resource is protected by its
own lock. The only other protocols known to us that provide fine-
grained lock nesting are the multiprocessor bandwidth inheritance
protocol [7] and MrsP [5]; however, neither is optimal in any sense.
To our knowledge, the only existing protocols that distinguish
between read and write requests are single-resource phase-fair
locks and the RW-RNLP, both discussed next.

Phase-fair locks. Given our focus (non-preemptive spin locks),
phase-fair reader/writer locks are perhaps the best contention-sensi-
tive option in terms of lock/unlock costs (i.e., the time required to ac-
quire or release a lock) if all requests are single-resource requests [4].
As noted earlier, a phase-fair lock utilizes two FIFO queues, one for
read requests and one for write requests, and alternates between
read phases and write phases. Several possible implementations of
phase-fair locks were considered by Brandenburg and Anderson [4].
They found the phase-fair ticket-lock (PF-TL) to be comparable to or
better than other phase-fair implementations from the perspective
of lock/unlock costs.

The RW-RNLP. As mentioned earlier, the RW-RNLP uses two
per-resource FIFO queues, one for read requests and one for write re-
quests. Furthermore, it uses a mechanism called request entitlement
to orchestrate reader and writer phases; the entitlement rules de-
termine “who” (reader or writer) must concede to “whom”: entitled
requests do not concede. In Sec. 3, we consider in detail a new vari-
ant of the RW-RNLP, which we call the RW-RNLP*, that is useful for
our purposes. We carefully explain there the concept of entitlement.
The RW-RNLP is actually a family of protocols because waiting can
be realized by spinning or suspension and because different mecha-
nisms for dealing with priority inversions are required depending
on how tasks are scheduled. For the non-preemptive, spin-based
variant of the RW-RNLP (our focus), worst-case pi-blocking is O(1)
for read requests and O(m) for write requests. These bounds are
asymptotically optimal, assuming contention for write requests is
Q(m).

2 A job can be pi-blocked at release by lower-priority jobs executing non-preemptively.
By our analysis assumptions, this release blocking is asymptotically upper bounded by
the maximum spin blocking for any such jobs, so we focus on spin blocking.
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Figure 2: Example illustrating the rules of the RW-RNLP*.

3 THE FAST RW-RNLP

Our proposed fast RW-RNLP is constructed based on a new variant
of the RW-RNLP called the RW-RNLP* and existing locking proto-
cols. In this section, we describe the RW-RNLP* and its pi-blocking
analysis and then present the fast RW-RNLP.

3.1 The RW-RNLP*

The RW-RNLP” is obtained from the RW-RNLP by altering one
aspect of its design and changing the context in which it is applied.
For each resource ¢4, the RW-RNLP* maintains two queues Q7, and
Qy, for unsatisfied read and write requests, respectively.

Example 3.1. We will use Fig. 2 as a continuing example to illus-
trate important concepts in the design of the RW-RNLP*. Each inset
of this figure shows read and write queues for four resources: {1, €,
{3, and {y. At the time illustrated in Fig. 2(a), the write request R}"
is satisfied for its requested resources D; = {{1, {2}, as indicated by
being positioned within the circles denoting the resources ¢; and
2. Because R}” is satisfied, it is not in any of the queues. Similarly,
the read request R} for Dy = {¢3, {4} is satisfied.

Basic RW-RNLP* rules. We describe the RW-RNLP* via a set of
rules to which an implementation must conform. With the excep-
tion of Rule P3, all of the rules below are taken directly from [12]. As
we shall see in Sec. 3.2, Rule P3 enables tighter pi-blocking bounds
to be computed in our context.

The first three rules place constraints on how the protocol is
used; the first two essentially enforce non-preemptive scheduling
and the third introduces our specific restricted context.

P1 A resource-holding job is always scheduled.

P2 At most m jobs may have incomplete resource requests at any
time, at most one per processor.



P3 There is at most one incomplete non-nested write request and
one incomplete nested write request per resource at any time.

While Rule P3 may seem restrictive, it will be upheld by defi-
nition when the RW-RNLP* is applied in the context of the fast
RW-RNLP. It is also trivially upheld in systems with only single-
writer resources, which is common use case we consider later. The
following are general rules that define how requests are processed.

G1 When J; issues R; at time ¢, the timestamp of the request is
recorded: ts(R;) := t.

G2 When R; is satisfied, it is dequeued from either Q] (if it is a
read request) or QY (if it is a write request) for each ¢, € D;.

G3 When R; completes, it unlocks all resources in D;.

G4 Each request issuance or completion occurs atomically. There-
fore, there is a total order on timestamps, and a request cannot
be issued at the same time that a critical section completes.

Example 3.1 (cont’d). Moving from inset (a) to inset (b) in Fig. 2,
four additional requests have been issued. Timestamps are deter-
mined for these requests when they are issued (Rule G1). (In our
examples, jobs issue requests in increasing index order.) The is-
suance of each request occurs atomically (Rule G4), so it is not
possible for two requests to obtain the same timestamp.

The arrow from R} to R} indicates that R} is blocked by R}".
This blocking relationship is formally defined later and serves to
represent just one such relationship in the system.

Fig. 2(c) depicts the system after R]" has completed. By Rule G3,
it released resources {1 and ¢3. This enabled both ‘Rg and R; to
be satisfied for {; and dequeued from Q] (Rule G2). Similarly, R}”
became satisfied for 5.

In moving from inset (b) to inset (c), R}" and R{ have been
issued, and Ry was satisfied immediately. Notice that request R)”
for resources Dy = {{2, {3, {4} was atomically enqueued on Q;’ , Q%“’ ,
and QZ". Because such an action is atomic, no cycles among blocked
requests can exist. In an actual implementation, the issuance and
completion of a request would not really occur atomically. However,
an implementation must ensure that these actions have the “effect”
of being atomic. We consider such issues later.

Read and write entitlement. Like the RW-RNLP, the RW-RNLP*
functions by alternating read and write phases. The mechanism
for orchestrating these phases is entitlement, which is defined sepa-
rately for read and write requests below (these definitions are taken
directly from [12]). Intuitively, a request is entitled when it should
be satisfied in the next phase, thus only unsatisfied requests may
be entitled. Together with the reader and writer rules presented
later, the definition of entitlement ensures progress and allows us
to bound pi-blocking times. Below, we use E(Q}’) to denote the
earliest-timestamped unsatisfied write request for resource ;.

Example 3.1 (cont’d). In Fig. 2(b), E(Q}") = RY".

Definition 3.1. An unsatisfied read request R} becomes entitled
when there exists £, € D; that is write locked, and for each resource
Lq € Dy, E(QY) is not entitled (see Def. 3.2).% (Note that E(Q¥) = 0
could hold. In this case, we consider E(QY) = 0 to be a “null”
request that is not entitled.) R remains entitled until it is satisfied.

3Entitlement is a property of a request, and Def. 3.1 and Def. 3.2 give conditions
upon which a request becomes entitled in terms of the entitlement of other requests.
Therefore, while Def. 3.1 and Def. 3.2 reference each other parenthetically to aid the
reader, they are not in fact circularly defined.

Example 3.1 (cont’d). In Fig. 2(b), R} and R{ are both entitled
(Def. 3.1): £1 is write locked, and there exists no resource £, in D3 or
Ds for which E(QY’) is entitled (Def. 3.2, below). Entitled requests
are indicated in Fig. 2 by a light gray shading.

Definition 3.2. An unsatisfied write request R}" becomes entitled
when for each £, € D;, R} = E(Qy), no read request in Qy, is
entitled (see Def. 3.1),> and ¢, is not write locked. R} remains
entitled until it is satisfied.

Example 3.1 (cont’d). In Fig. 2(c), R}” is entitled: ¢1 is the only
resource in Dy, E(Q}”) = R}" holds, there is no entitled read in Q7
and ¢ is not write locked. In moving from inset (c) to inset (d),
R¢’ completed and released £3. In Fig. 2(d), R}’ is entitled: R}" was
at the head of each of its queues and there were no entitled read
requests in the corresponding read queues, so the only condition
that prevented R)” from being entitled earlier was R¢"’s lock on £5.

Rules for read and write requests. We complete our specification
of the RW-RNLP* by stating rules that govern how read and write
requests are processed. To state these rules, we introduce notation
to allow us identify the set of requests on which an entitled request
Ri (aread or a write) is blocked. Specifically, we let B(R;, t) denote
the set of requests on which such a request R; is blocked at time .

Example 3.1 (cont’d). In Fig. 2(b), there are two entitled requests,
R} and R7, both waiting on the satisfied write request R”. If inset
(b) reflects the system state at time ¢, then B(R],?) = {R}"} and
B(R,t) = {R}"}. Only one of these relationships is depicted with
an arrow in the diagram to avoid clutter. Similarly, if Fig. 2(c) reflects
the system state at time ¢/, then B(R}’,t') = {R], R[}. Note that
there are other blocking relationships throughout Fig. 2, but B(R;, t)
is only defined for R; at a time t when R; is entitled.

The rules for read requests are as follows.

R1 When Rf is issued, for each ¢, € D;, 73{ is enqueued in QF.
If R} does not conflict with any entitled or satisfied write
requests, then it is satisfied immediately.

R2 An entitled read request R} is satisfied at the first time instant
t such that B(R],t) = 0.

Example 3.1 (cont’d). When RJ and R were issued, by Rule R1,
each was enqueued in Q7, as shown in Fig. 2(b). When R}" later
completed at some time ¢, as shown in Fig. 2(c), B(R],t) = 0 and
B(R:,t) = 0 were both established and R} and R. were both
satisfied immediately, by Rule R2. Fig. 2(c) also shows R{ being
satisfied immediately after being issued. This occurred by Rule R1,
as no satisfied or entitled write requests for {3 existed at that time.

The rules for write requests are as follows.

W1 When R} is issued, for each £, € D;, R}” is enqueued in
timestamp order in the write queue Q. If R} does not conflict
with any entitled or satisfied requests (read or write), then it
is satisfied immediately.

W2 An entitled write request R}” is satisfied at the first time instant
t such that B(R}", t) = 0.

Example 3.1 (cont’d). When R¢” was issued prior to the system
state depicted in Fig. 2(b), it was enqueued in QJ’, and because it
conflicted with the satisfied request R}, by Rule W1, it was not
satisfied immediately. Request R}" later completed at some time ¢,
as shown in Fig. 2(c), and at that time ¢, B(Rg", t) = 0 held, so ‘Rg"
became satisfied, by Rule W2.
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states with write expansion (used in the RW-RNLP) are labeled (ii).

Write expansion. Aside from Rule P3, the only other difference
between the RW-RNLP* and the RW-RNLP is with regard to a tech-
nique called write expansion, which is employed by the latter but
not the former. Since the RW-RNLP* does not employ write expan-
sion, we have chosen to avoid introducing the necessary formal
machinery to completely define this technique, opting instead for
conveying the general idea behind it with an example.

Example 3.2. The general idea behind write expansion is as fol-
lows. If a write request R} is issued, and if a read request RJ’. that
accesses resources in common with R} could possibly be active
concurrently, then the set of resources requested by ‘Rg", Dj;, must
be expanded to include all resources in D;. An example is given in
Fig. 3. In inset (a), a write request Rr’ is satisfied, holding the lock
for £3. Inset (b) shows two possible scenarios after the issuance of
R;’, R%V, and RZ, with Dy = {€2,€3}, D3 = {{1}, and D4 = {{1,{2}.
Inset (b)(i), on the left, shows the situation with no write expansion.
Ry’ requires only resource {1 and thus is immediately satisfied. R}
is then entitled. In inset (b)(ii), R}” and R;3" are expanded: because
there exists a read request (namely, R}) in the system that requires
{1 and £, ‘R;" must be issued for Dy = {{1, {2, {3} and R;“’ must be
issued for D3 = {{1, £2}. Therefore, in inset (b)(ii), R}" cannot be
satisfied until R}” completes, though they do not share resources.

Inset (c) shows the situation after R}" has completed. As seen in
inset (c)(i), in the scenario without write expansion, nothing new
happens to the other requests, as R}” cannot proceed ahead of the
entitled read R}. However, as seen in inset (c)(ii), in the scenario
with write expansion, the completion of R}” makes R} entitled.

One reason write expansion is used in the RW-RNLP is be-
cause it makes reasoning about the largest possible pi-blocking for
write requests easier. With write expansion, if R}” is the earliest-
timestamped write among all write requests, then it is either entitled
or satisfied, as illustrated in Ex. 3.2 and proven in [12]. Additionally,
write expansion eases certain implementation challenges.

In our setting, write expansion is problematic, as our ultimate
intent is to speed the processing of non-nested requests. With write
expansion, these could be converted into nested requests. However,
removing write expansion under the RW-RNLP* creates additional
complexity with respect to the pi-blocking scenarios that can occur,

and increases worst-case pi-blocking bounds for write requests by
a constant factor compared to the bounds under the RW-RNLP.

3.2 RW-RNLP* Pi-Blocking Bounds

In this section, we derive bounds on the worst-case acquisition delay
experienced by a request under the RW-RNLP?, i.e., the worst-case
time between the issuance and satisfaction of a request. Occasion-
ally, we will find it convenient to distinguish whether a read request
RY or a write request R} is nested or non-nested. For this purpose,
we will use the notation Rl.r’", Rir’"n, R;”’", and R;.W’"", where the
superscript “n” (resp., “nn”) means “nested” (resp., “non-nested”).
As in [12], we assume that all lock and unlock invocations take no
time.

The properties needed to derive acquisition-delay bounds are
stated below. Lemma 3.1 and Theorem 3.1 were proved in [12]
(appearing as “Lemma 1” and “Theorem 1” there), and those proofs
are not affected by the changes we made to the RW-RNLP to obtain
the RW-RNLP*. We illustrate each of these properties by referring
to our prior example. The remaining properties either require new
proofs or are entirely new.

LEMMA 3.1. A write request R}” experiences acquisition delay of
at most L7, ., time units after becoming entitled.

Example 3.1 (cont’d). In insets (c) and (d) of Fig. 2, R}" is simply
waiting for all requests in B(R)", te) to complete, where ¢ is the
time when R became entitled. It can be shown that no new re-
quests can be added to B(R}", t¢) until R}” is satisfied. Furthermore,
by Def. 3.2, all of the requests in this set are read requests. In this
scenario, R’ waits for two requests to complete before becoming
satisfied, as B(R}",te) = {R],Ri}. In the worst case, R}" must
wait for L7 .. time units. Note that having multiple reads in the set
B(R}", te) does not increase this worst-case acquisition delay.

THEOREM 3.1. The worst-case acquisition delay of a read request
RY is at most Ly, gy + Ly gy time units.

Example 3.1 (cont’d). Consider R] in Fig. 2(d). Resource ¢; is
currently in a read phase, as R} and R{ are in their critical sections,
and there is an entitled write request, RZ". Therefore, before 7{;
is satisfied, the read requests R} and RI could take up to L},
time units, and then the write request R}” could take up to L}; ;5

additional time units.

Lemma 3.2 below is very similar to Lemma 2 in [12] and much of
the proof given for it is taken verbatim from there. However, new
reasoning is required as we do not employ write expansion.

Lemma 3.2. If R} is the earliest-timestamped active write request
for each resource in D, then R} will be satisfied within L}, ;. + L7, o
time units.

PrOOF. An unsatisfied write request R} is either entitled or not.
If RQ.W is entitled, then by Lemma 3.1, it will become satisfied within
L7, 4 time units. Otherwise, by Def. 3.2, for some resource ¢, € D;,
either (i) R} # E(Qp), (ii) some request R}, € Qy, is entitled, or
(iii) £, is write locked by some other request. By Rule W1, Cases (i)
and (iii) are not possible because the write queues are timestamp
ordered, and R}” is the earliest-timestamped active write request
for each resource in D;. For Case (ii), assume that R, is entitled
and {4 € D; N Dy. Then, by Def. 3.1, RY is blocked by at least one
satisfied write request R}”. By Rule P1 (a resource-holding job is
continually scheduled), all such write requests will complete within



L}, time units. At the time ¢ when all such write requests have
completed, by Rule R2, each R%. in B(R;.W, t) will be satisfied, and by
Def. 3.2, R}’ will be entitled. By Lemma 3.1, R} will subsequently
experience at most L}, ;. additional time units of delay before being
satisfied. ]

In systems for which each resource is a single-writer resource,
each write request is the earliest-timestamped active write request
for all of its required resources upon release.

COROLLARY 3.1. If all resources are single-writer resources, then
the worst-case acquisition delay of a write request R} is at most

LY o + L7 4x time units.

LEMMA 3.3. If no nested write requests are active while the non-
nested requestRlW’ " is active, and ifRiW’ " is the earliest-timestamped
active write request for its lone requested resource £, in D;, then
R;.W’"" will be satisfied within L7, time units.

ProorF. The proof of this lemma differs from that given above
for Lemma 3.2 only in how Case (ii) in that proof is addressed. For
Case (ii) in the context of Lemma 3.3, if the non-nested request
RZ™ is entitled, then by Def. 3.1, it must blocked by a satisfied

. w,nn w,nn .
write request R i for resource {4. However, R; is the earliest-

timestamped request for £, so Case (ii) is actually impossible in the
context of Lemma 3.3. Therefore, Rl.w’"" must be either satisfied
or entitled, and in the latter case, it becomes satisfied within L, .

time units, by Lemma 3.1. O

The next two lemmas heavily exploit Rule P3.

LEMMA 3.4. After being issued, a nested write request 7{;"’" will
become the earliest-timestamped active write request for all of the
resources in D; within 2L}, + L7 . time units.

Proor. For any resource in D; for which R;”’ " is not the earliest-
timestamped write request, by Rule P3, the earliest-timestamped
write is a non-nested write request. By Lemma 3.2, each such request
is satisfied within Ly, .+ L7 . time units. By Rule P1, once satisfied,
all such non-nested write requests will complete within L}) ;. time
units. Summing these two bounds yields the worst-case bound of

2L} . + L7,4y time units stated in the lemma. ]

LEMMA 3.5. After being issued, a non-nested write request Riw’n"
will become the earliest-timestamped active write request for its lone
requested resource {4 in D;: (i) immediately, if no nested requests are
active while R}""" is active; (ii) within 4Ly, + 2L}, .. time units, if
nested requests may be active while R:.w’n" is active.

Proor. In Case (i), by Rule P3, there are no other write re-
quests accessing {4, so R;”"m immediately becomes the earliest-
timestamped request for that resource.

In Case (ii), if ‘R;"’ ™ is not immediately the earliest-timestamped
write request for {4, then there exists exactly one nested write
request R)*" that is the earliest-timestamped write request for
{,. By Lemma 3.4, R;"" will be the earliest-timestamped request
for all of its requested resources within 2L}y, + L7~ time units.
By Lemma 3.2, R}>" will be satisfied within an additional LY, .. +
L’ ., time units. Once it is satisfied, by Rule P1, it will complete
within L}y, time units. At that time, R;""" will be the earliest-
timestamped write request for its requested resource. Summing all
the bounds just stated, this occurs within 4L}) ... + 2L" . time units
in the worst case. ]

Theorem 3.2, given next, provides our desired delay-acquisition
bounds. Together with Theorem 3.1, this theorem implies that all
pi-blocking bounds under the RW-RNLP* are O(1).

THEOREM 3.2. The worst-case acquisition delay of a write request
R} is: (i) Lyyqy time units, if R;™"" is a non-nested request and no
. . w,nn . s fes
nested requests are active while R; is active; (ii) 5Ly, + 3L7,0x
time units, ifR;”’"n is a non-nested request and nested requests may
be active while R;""" is active; (iii) 3L}y + 2L},q, time units, if
ﬁiw’" is a nested request.

Proor. In Case (i), by Lemma 3.5(i), R?”"" will be the earliest-
timestamped active write request for its lone requested resource as
soon as it is issued. By Lemma 3.3, it will be satisfied within L7,
time units.

In Case (ii), by Lemma 3.5(ii), 7?;.“”"" will be the earliest-
timestamped active write request for its lone requested resource
within 4L} .. + 2L}, .. time units. By Lemma 3.2, it will then be
satisfied within L}) ., + L}, . time units, resulting in a worst-case
acquisition delay of 5L}, + 3L% ., time units.

In Case (iii), by Lemma 3.4, le’ " will be the earliest-time-
stamped active write request for all of its requested resources within
2L 4 + Loy time units. By Lemma 3.2, it is then satisfied within
LY 4 + L7 4« time units, resulting in a worst-case acquisition delay

of 3Ly, + 2L, ., time units. O

It can be shown that all of the blocking bounds in Theorem 3.2 are
tight, i.e., scenarios exist in which these exact bounds occur.? Notice
that, by Theorem 3.1 and Theorem 3.2(i), if non-nested requests are
not affected by nested requests, then read and write requests have
worst-case pi-blocking bounds of only L}, + L7, and L7, time

units, respectively.

3.3 Putting the Pieces Together

In this section, we describe our proposed fast RW-RNLP proto-
col. Our goals for this protocol are threefold: (i) non-nested re-
quests should have low lock/unlock overheads; (ii) such requests
should have contention-sensitive worst-case pi-blocking bounds;
(iii) nested requests should have worst-case pi-blocking bounds that
are asymptotically the same as under the RW-RNLP. In describing
the fast RW-RNLP below, we verify that Goals (ii) and (iii) are met.
We address Goal (i) later when we discuss an implementation of the
protocol and an experimental evaluation of that implementation.

The fast RW-RNLP is defined by using the lock and unlock rou-
tines of the RNLP, the RW-RNLP*, and ordinary (not phase-fair)
mutex ticket locks (TLs) [10] as subroutines, as shown in Fig, 4.5
Recall that the RNLP provides mutex sharing and supports nested
requests. Under it, the worst-case pi-blocking of any request is
O(m) [13]. A TL provides mutex sharing for a single resource and
ensures contention-sensitive pi-blocking.

Referring to the fast RW-RNLP structure in Fig. 4, notice that all
read requests (both nested and non-nested) directly invoke the RW-
RNLP*. Furthermore, any nested write request that requires access
to aresource £, must first “acquire” that resource within the context
of the RNLP and then invoke the RW-RNLP”. Also, any non-nested
write request for that resource must first “acquire” that resource
within the context of a TL associated with that resource and then

4See online appendix: http://www.cs.unc.edu/anderson/papers.html.

The lock and unlock routines for the RW-RNLP* routines have been denoted in a
slightly abbreviated way. For example, W*_Lock™ denotes the lock routine invoked
by non-nested write requests under the RW-RNLP*.
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Figure 4: Fast RW-RNLP structure.

invoke the RW-RNLP*. This overall protocol structure ensures that
Rule P3 is upheld from the perspective of the RW-RNLP*.
Because read requests directly invoke the RW-RNLP*, by The-
orem 3.1, the pi-blocking incurred by them is O(1) in the worst
case (we consider Ly qx to be constant). Thus, Goals (ii) and (iii)
above are met for read requests. The following theorem shows that
these goals are also met for write requests; the pi-blocking incurred
by a non-nested write request ng’"" is O(C;) in the worst case
(recall that C; is the contention experienced by request R;), and
the pi-blocking incurred by a nested write request is O(m) in the
worst case. (Referring to Goal (iii), we note that the worst-case
pi-blocking for write requests under the RW-RNLP is O(m) [12].)

THEOREM 3.3. Under the fast RW-RNLP, the worst-case acquisition
delay for a write request R}” is: (i) Ci{ L gxtLinax) + Lnax time units, if
R?’"" is a non-nested request and no nested requests are active while
R is active; (i) Ci-(6Lp gy + 3Lhyax) + SLomax + 3L nax time units,
ifR;”’"" is a non-nested request and nested requests may be active
while R}""™" is active; (iii) (m — 1)-(4L gy + 2L00) + 3L 1max + 2L gy
time units, ifR:.V’" is a nested request.

Proor. In Case (i), ‘Riw’"" must wait for up to C; contending
write requests ahead of it in the TL associated with its lone re-
quested resource. By Theorem 3.2(i), each of these write requests

may face an acquisition delay of up to L}, ,, time units within the

RW-RNLP* and then execute its critical section for up to L}, time
units. Thus, within C; - (L),4x + LTmay) time units after being is-
sued, R;.W’n" will not be blocked by any write requests in the TL
associated with its requested resource. At that time, R?}’"" will
invoke the RW-RNLP* and, again by Theorem 3.2(i), experience
an acquisition delay of up to L}, time units. In total, this yields
a worst-case acquisition delay of C; - (L)) 4 + Lhay) + Linax time
units for R;"’"".

Case (ii) is similar to Case (i) except that Theorem 3.2(ii) is applied
instead of Theorem 3.2(i). Thus, the worst-case acquisition delay is
Ci - (6Lmax + 3L 05) + 5L 0 + 3L7,4, time units.

In Case (iii), R?” " must wait within the RNLP for up to m—1 other
requests to complete before it can invoke the RW-RNLP*. Arguing
as in the cases above, but this time using Theorem 3.2(iii), a worst-
case acquisition delay of (m — 1) - (4L} . + 2L745) + 3L oy + 2L7 o
time units results. o

Note that, in a system with only single-writer resources, the RW-
RNLP* alone is sufficient and Cor. 3.1 can be applied to show that
all requests incur O(1) pi-blocking with very low constant factors.

To this point, we have fully specified the RW-RNLP* abstractly.
What remains is to devise an actual implementation of it with
reasonable overheads. We consider this issue next.

®More precisely, the bound presented is (m — 1)(LY,. + L
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Figure 5: Bits in the per-resource rin and rout variables. (A very sim-
ilar figure appears in [4].)

4 IMPLEMENTATION AND EVALUATION

Of the building blocks used to construct the fast RW-RNLP, the TL
and the RNLP have existing implementations [4, 12]. Therefore, it
remains for us to provide an implementation of the RW-RNLP* as
well as an experimental evaluation of the overall fast RW-RNLP.
Recall that we focus on the user-level, spin-based version.

4.1 Implementation

The main challenge in implementing the RW-RNLP™ lies in support-
ing the atomicity assumptions inherent in the rule-based specifica-
tion of it. Such assumptions could be supported by encapsulating
certain code regions within lock and unlock calls to an underly-
ing mutex. Indeed, this approach was taken in implementing the
rules of the RW-RNLP [12]. While such an approach introduces
additional pi-blocking, the protected critical sections are usually
very short, so we consider such blocking to be part of the lock
and unlock overhead of the protocol being implemented. Still, we
would like to avoid relying on the use of mutex protocols in this
way if possible, and we want to categorically preclude their use in
implementing the lock and unlock routines for non-nested requests,
as efficiently implementing such routines is the emphasis of this
paper.

With these concerns in mind, we now describe our implementa-
tion of the RW-RNLP*.

Shared variables of the RW-RNLP*. From the point of view of our
implementation, each shared resource ¢, is viewed as pointer to a
structure called res_state, which consists of four shared counters,
rin, rout, win, and wout, as shown in Listing 1. Almost identical
counters to these are used in the PF-TL [4]. Counters win and
wout track the number of write requests for resource ¢, that have
been issued and completed, respectively. Counters rin and rout
similarly count read requests, with the added complexity of storing
information about writes in the bottom byte, as shown in Fig. 5.
Listing 1 shows various constant bit vectors used in our code to
access and manipulate certain bits in rin and rout.

Listing 1 RW-RNLP* Definitions

type res_state: record

rin, rout: unsigned integer initially 0
win, wout: unsigned integer initially 0
constant

RINC 0x100 // reader increment value
WBITS oxff // writer bits in rin

PRES 0x80 // writer present bit

PHID ox7f // writer phase ID bits

Non-nested requests in the RW-RNLP”. The lock and unlock rou-
tines for non-nested requests in our implementation are shown
in Listing 2. These are nearly identical to those for the PF-TL [4],
which to our knowledge is the most efficient reader/writer lock for
single-resource requests proposed to date. A non-nested read ‘Rir’""
of a resource ¢, is performed by simply incrementing the number
of readers for £, (Line 3) and then spinning if necessary (Line 4). In



particular, if £, is currently being written, then R*"" waits for a
single write request to complete as indicated by either the PRES bit
being cleared or the PHID bits being changed, which indicates that
a new writer has set those bits, and thus a write has completed. To
unlock ¢4, 73:’"" simply increments rout by RINC (Line 6).

A non-nested write le’ ™ of a resource £, waits until it holds the
earliest ticket among all write requests for £, (Lines 9-10). It then
atomically sets the last byte of £;’s rin variable and determines the
number of read requests for £, upon which it must block (Lines 11—
12). Next, it waits until those reads (if any) are complete (Line 13).
When R;”’ "™ completes, it clears the writer byte of £,’s rin variable
(Line 15) and increments its wout counter (Line 16).

Listing 2 RW-RNLP” Routines for Non-Nested Regs.

: procedure R*_Lock™"(¢: ptr to res_state)
var w: unsigned int
w := fetch&add({—rin, RINC) & WBITS
await (w = 0) or (w # (£—rin & WBITS))

1

2

3 > In read queue
4

5: procedure R*_UNLOCK™({: ptr to res_state)

6

7

8

> Satisfied

atomic_add(£— rout, RINC)
: procedure W*_Lock™({: ptr to res_state)
: var rticket, wticket, w: unsigned int
9: wticket := fetch&add(£—win, 1)
10: await (wticket = €—wout)
11: w := PRES | (wticket & PHID)
12: rticket := fetch&add(¢—rin, w)

> In write queue
> Head of write queue

> Marked entitled now for all reads to see
13: await (rticket = €—rout) > Satisfied
14: procedure W*_UNLOCK™"({: ptr to res_state)
15: fetch&and({—rin, OxFFFFFF0Q)

16: €—wout ;= £—wout + 1

> Clear WBITS

Nested requests in the RW-RNLP”. The lock and unlock routines
for nested requests are shown in Listing 3. These routines are very
similar to those in Listing 2, with two notable exceptions. First, an
extra phase has been added to the lock routine for read requests
(Lines 19-21). Introducing this extra phase eliminates unnecessary
writer blocking in one particular corner case.* Second, because
requests are now for sets of resources, we need to ensure that such
sets can be enqueued atomically to prevent potential deadlock. (This
is why, as discussed in Sec. 2, resources must be acquired according
to a predetermined order in the variant of the RNLP that does not
use DGLs.) However, it turns out that the only potential deadlock
situation that can occur involves a race condition between nested
readers and nested writers. Furthermore, we discovered that this
race condition can be eliminated by requiring each nested read
request to hold a global PF-TL for writing when updating multiple
read queues (Lines 22-25) and by requiring each nested write re-
quest to hold this PF-TL for reading when it updates multiple write
queues (Lines 36-40). (The calls to the phase-fair lock and unlock
routines in Lines 22, 25, 36, and 40 do not specify input parameters
because we have no need to distinguish different shared resources
protected by these routines.) While using a PF-TL introduces block-
ing overhead, this overhead is only O(1) for write requests, which
require only read access. This is preferable to the blocking overhead
that would result from using a mutex lock.

Clearly, the routines in our implementation are not actually
atomic: each executes over durations of time, not instantaneously.
However, it can be formally shown that each routine is linearizable.*
That is, for each routine, an instantaneous linearization point can
be defined at which the routine “appears” to take effect atomically.
When viewing these routines in this way, they can be shown to
support the rule-based specification of the RW-RNLP* given earlier.

Listing 3 RW-RNLP* Routines for Nested Regs.

17: procedure R*_Lock™(D: set of ptr to res_state)

18: var w: unsigned int for each £ in D

19: for each ¢ in D:

20: we = {—rin & WBITS

21: await (wg = 0) or (wg # (£—rin & WBITS))

22:  PFTL W_Lock()

23: for each £ in D:

24: wy := fetch&add({—rin, RINC) & WBITS
25: PFTL_W_Untock()

26: for each £ in D:

27: await (wy =0)or(wy # ({—rin & WBITS))
28: procedure R*_UNLock”(D: set of ptr to res_state)
29: for each £ in D:

> Write-lock global PFTL

> Unlock global PFTL
> Satisfied

30: atomic_add({—rout, RINC)

31: procedure W*_Lock"(D: set of ptr to res_state)

32: var rtickety, wtickety, we:unsigned int for each £ in D

33: for each ¢ in D:

34: wticket, := fetch&add(£— win, 1) > In write queue
35: await (wticket; = €—wout)

> Head of all requested write queues now
36: PFTL_R_Lock() > Read-lock global PFTL
37: for each £ in D:
38: wp = PRES | (wtickety & PHID)
39: rtickety := fetch&add(£—rin, wy)

> Marked entitled now for all reads to see
40: PFTL_R_Unrock() > Unlock global PFTL
41: for each £ in D:
42: await (rtickety = {—rout)
43: procedure W*_UNLock”(D: set of ptr to res_state)
44: for each £ in D:
45: fetch&and({—rin, OxFFFFFF0Q)
46: C—wout := {—wout + 1

> Satisfied

> Clear WBITS

4.2 Evaluation

We conducted a user-space experimental evaluation of the fast RW-
RNLP in which lock/unlock overheads and observed blocking times
were recorded under a variety of scenarios. Given the focus of this
paper, we were particularly interested in overheads and blocking
times for non-nested requests. We conducted our experiments on a
dual-socket, 18-cores-per-socket Intel Xeon E5-2699 platform.

In our experiments, we varied a number of experimental param-
eters including the numbers of tasks and resources, nesting depths
and critical-section lengths of requests, and ratios of non-nested
to nested requests and of read to write requests. Each task was
pinned to a single core, and for task counts of up to 18, all tasks
were assigned to the same socket. Each task was configured to issue
lock and unlock calls 1,000 times to simulate behavior that would
generate the worst-case lock overhead and blocking times. In all of
our graphs, we plot these worst-case values, which were obtained
by computing the ggth percentile of all recorded results in order
to filter out any spurious measurements (our measurements were
taken at user level, so we have no other means for filtering results
impacted by interrupts).

Overheads and blocking. We compared the considered protocols
on the basis of overhead and blocking: the overhead incurred by a
resource request is the total time spent by it executing lock logic
within lock and unlock routines (including any time spent waiting
to access underlying locks used to enforce atomicity properties
required by that logic); the blocking incurred by the request is the
total time spent by it waiting to access its requested resources. We
measured both overhead and blocking for a number of different
scenarios. Each such scenario was defined by specifying particular
values or ranges for the experimental parameters mentioned above.

In designing the fast RW-RNLP, we have sought to ensure that (i)
non-nested requests have low overhead and experience contention-
sensitive pi-blocking and (ii) nested requests experience pi-blocking
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Figure 6: (a) Lock overheads and (b) blocking for non-nested read
and write requests when using PF-TLs versus the fast RW-RNLP. For
each request R;, L] = 40pus, L)Y = 40us, n, = 64, |[D;| = 1. Requests
were randomly chosen to be a read (or a write) with probability 0.5.
that is no worse (and hopefully better) than that under the RW-
RNLP. Accordingly, as standards for comparison, we considered
the use of per-resource PF-TLs (which exhibit very low overhead
and are contention-sensitive) in assessing (i) and the RW-RNLP
(of course) in assessing (ii). In the course of our experiments, we
produced hundreds of graphs. The full set of graphs can be found
online.* A few graphs that are exemplars of trends seen generally
are discussed in the following observations.

OBs. 1. For non-nested read and write requests, the fast RW-RNLP
and PF-TLs exhibited comparable overheads.

This observation is supported by Fig. 6(a), which plots lock over-
heads for both reads and writes under both the fast RW-RNLP and
PF-TLs as a function of the task count, n. The data in this figure
corresponds to a scenario in which all requests were non-nested,
evenly distributed between reads and writes, and the total number
of resources, n,, was set to 64. The critical section of each request
was configured to have a duration of 40us. For comparison, lock
overheads for both protocols hold steady in the range of around
1.0us to 2.5us for up to 18 tasks, with the fast RW-RNLP having a
slightly higher write-lock overhead than PF-TLs. Beyond 18 tasks,
lock overheads increase under both protocols. This is because, be-
yond a task count of 18, tasks are executing on both sockets of the
considered platform. Notice that, beyond a task count of 18, the
write-lock overheads of both protocols converge, and the read-lock
overhead of the fast RW-RNLP becomes slightly better. We suspect
that the better read-lock overhead of the fast RW-RNLP is due to
reduced cache invalidations of shared lock state caused by contend-
ing write requests, which must first acquire a ticket lock under the
fast RW-RNLP. We omit graphs showing unlock overheads due to
space constraints, but they showed similar trends.
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Figure 7: (a) Overhead and (b) blocking for nested and non-nested
write requests under the RW-RNLP and the fast RW-RNLP. Here,
L} =40us, LY = 40us, n, = 64, |D;| = 1, for non-nested requests, and
|D;| = 4, for nested requests. Requests were chosen to be a read (or
write) with probability 0.5. Data is plotted for the cases of 20% and
80% of requests being nested. Due to write expansion (recall Fig. 3),
D; was inflated to include all 64 resources for writes under the RW-
RNLP.

OBs. 2. In general, overheads increased when using two sockets
instead of one.

This trend is seen in Fig. 6(a), discussed earlier, and also in
Fig. 7(a), considered in detail below. When tasks execute on two
sockets instead of one, overheads due to maintaining cache co-
herency increase. Observe that, in Fig. 6(a), lock overheads under
the fast RW-RNLP are never more than around 0.6ps. This value is
quite small compared to the 40us critical-section length. Note that
any blocking is mostly a function of critical-section lengths.

OBs. 3. In scenarios with only non-nested requests, the fast RW-
RNLP and PF-TLs exhibited nearly identical blocking.

This observation is clearly supported by Fig. 6(b). Together with
Obs. 1, this observation suggests the viability of providing the fast
RW-RNLP as a general synchronization solution. It can even be
used in systems in which nested requests do not occur with no
detrimental impacts of note.

OBs. 4. In scenarios with both nested and non-nested requests,
overheads for write requests tended to be much lower under the fast
RW-RNLP than under the RW-RNLP.

This observation is supported by Fig. 7(a), which depicts data
from two different scenarios as detailed in the figure’s caption. The
higher overheads under the RW-RNLP are partially due to the use of
write expansion (recall Fig. 3), which increases resource contention.
This increased contention impacts the overhead of write requests, as
they write-lock an underlying PF-TL to update all relevant resource



queues atomically. Note that, under the RW-RNLP, write expansion
forces non-nested write requests to be processed like nested ones.

Notice that Fig. 7 pertains to write requests. The corresponding
read request results at m = 36 show overheads of around 0.3us for
non-nested requests under the fast RW-RNLP compared to around
0.8us under the RW-RNLP. Under the fast RW-RNLP, non-nested
requests had higher blocking by about one critical-section length,
and nested read requests had higher overhead (of around 3ps) and
higher blocking by a few critical-section lengths.

OBs. 5. In scenarios with both nested and non-nested requests,
blocking for write requests tended to be much lower under the fast
RW-RNLP than under the RW-RNLP.

This observation is supported by Fig. 7(b), which plots recorded
worst-case blocking times associated with the scenarios in Fig. 7(a).
For m = 36, blocking was 17 times lower under the fast RW-RNLP
than under the RW-RNLP; write expansion increases resource con-
tention, which increases blocking times of the RW-RNLP.

OBs. 6. Non-nested requests exhibited contention-sensitive block-
ing under the fast RW-RNLP but not the RW-RNLP.

This observation is also supported by Fig. 7(b). Notice that, as the
task count increases, the potential for additional blocking increases
due to transitive blocking, which negatively impacts any protocol
that provides no mechanisms for eliminating transitive blocking.
Blocking for non-nested requests under the fast RW-RNLP increases
slowly as the task count increases; with more tasks, more contention
is possible. In contrast, non-nested write requests are converted
to nested ones under the RW-RNLP due to write expansion. As a
result, their blocking under that protocol is not O(C).

Of relevance to the analysis presented in Sec. 3, Fig. 8 demon-
strates the results of varying the critical-section length while hold-
ing the number of tasks n constant (in our experiments, m and n are
equal). In contrast, in Fig. 7(b) the number of tasks was varied, and
the critical-section length was held constant; the points in Fig. 7(b)
at m = 36 are the same as those in Fig. 8 for L; = 40us. Note that
varying m effectively modifies the term C; for each request R;.

OBs. 7. Blocking time scaled linearly with critical-section length
for both the fast RW-RNLP and the RW-RNLP.

Fig. 8 illustrates this observation, which reflects expected be-
havior based on the blocking analysis; for each type of request,
the worst-case blocking bound contains both L}, and L7 .. terms
with different coefficients depending on the request type.

Although our approach results in higher coefficients for the
nested write requests than the bounds proven for the RW-RNLP,
lower blocking times were generally seen under the fast RW-RNLP.
We suspect this difference is because, under the RW-RNLP, write
expansion guarantees that all write requests conflict.

We also noted differences between nested and non-nested write
requests under the fast RW-RNLP, highlighting the improvement
of O(C) over O(m) blocking. Under the fast RW-RNLP, the O(C)
blocking of non-nested write requests was almost identical to the
O(1) blocking of nested read requests. Thus, there is a significant
benefit that can be gained when contention is guaranteed to be low.

5 CONCLUSION

We have presented a new RNLP variant, the fast RW-RNLP, which
employs a fast-path mechanism to provide contention-sensitive
pi-blocking and low processing costs for non-nested lock requests,
while preserving the RW-RNLP’s asymptotic pi-blocking bounds for
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Figure 8: Blocking for nested and non-nested write requests under
the RW-RNLP and the fast RW-RNLP. The critical-section length
varies, m = 36, n, = 64, |D;| = 1, for non-nested requests, and |D; | =
4, for nested requests. (|D; | is inflated to 64 under the RW-RNLP as
above.) A request was chosen to be a write with probability 0.5.

nested requests. While the goal of ensuring contention sensitivity
efficiently in the general case (nested requests) has so far proven to
be elusive, we have shown that it is at least possible to do so for the
common case of non-nested requests even when nested requests
exist. To ensure contention-sensitivity for non-nested requests, we
had to eliminate the write-expansion rule of the RW-RNLP. In our
experiments, this had a positive impact on blocking for all requests.

The fast RW-RNLP has a modular structure that enables different
variants to be applied in different contexts. For example, the RW-
RNLP* gives constant-time access to all resource requests in systems
comprised of single-writer, multiple-reader resources. Additionally,
the RNLP component in Fig. 4 could be replaced by the C-RNLP to
obtain contention-sensitive pi-blocking for nested requests (at the
expense of higher overheads for such requests). Further variants
realize task waiting by suspending tasks rather than by requiring
them to block by spinning; the implementation of one such variant
is in progress. In a future expanded version of this paper, we will
discuss these variants in full. We plan to compare the fast RW-RNLP
to other alternatives by conducting a large-scale overhead-aware
schedulability study. Such a study will allow us to assess the extent
to which the more efficient processing of non-nested requests affects
the ability to ensure timing correctness in a holistic sense.
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