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—— Abstract

Prior work has shown that the global earliest-deadline-first (GEDF) scheduler is soft real-time
(SRT)-optimal for sporadic task systems in a variety of contexts, meaning that bounded deadline
tardiness can be guaranteed under it for any task system that does not cause platform overutilization.
However, one particularly compelling context has remained elusive: multiprocessor platforms in
which tasks have affinity masks that determine the processors where they may execute. Actual
GEDF implementations, such as the SCHED_DEADLINE class in Linux, have dealt with this unresolved
question by foregoing SRT guarantees once affinity masks are set. This unresolved question, as it
pertains to SCHED_DEADLINE, was included by Peter Zijlstra in a list of important open problems
affecting Linux in his keynote talk at ECRTS 2017. In this paper, this question is resolved along
with another open problem that at first blush seems unrelated but actually is. Specifically, both
problems are closed by establishing two results. First, a proof strategy used previously to establish
GEDF tardiness bounds that are exponential in size on heterogeneous uniform multiprocessors
is generalized to show that polynomial bounds exist on a wider class of platforms. Second, both
uniform multiprocessors and identical multiprocessors with affinities are shown to be within this
class. These results yield the first polynomial GEDF tardiness bounds for the uniform case and the
first such bounds of any kind for the identical-with-affinities case.
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1 Introduction

The global earliest-deadline-first (GEDF') scheduler has received considerable prior attention.
One attractive property of GEDF is that its use ensures guaranteed bounded deadline
tardiness on certain multiprocessor platform types for any sporadic task system that does
not cause platform overutilization [5, 9]. In this sense, GEDF is considered an optimal soft
real-time (SRT) scheduler. This SRT-optimality is significant enough to warrant mention in
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the documentation of SCHED_DEADLINE [2], Linux’s implementation of GEDF. A practical
use by SCHED_DEADLINE of this optimality is the ability to perform online admission control.

A major caveat of GEDF’s SRT-optimality is that it was originally proven only for
processors with identical speeds [5]. Processor models that break this assumption, called
heterogeneous multiprocessors, tend to fundamentally break the proof techniques applied to
the identical model. Only one prior work [9] has succeeded in extending the SRT-optimality
of GEDF to a multiprocessor model with heterogeneity, namely the uniform model, which
allows speed differences among processors. This work required years of thought and several
new proof techniques but only yielded tardiness bounds that are exponential in size.

Affinity masks. Heterogeneity is also introduced by the usage of affinity masks. A task’s
affinity mask (typically a bit vector) indicates the processors upon which it may execute.
Affinity masks are useful for preventing excessive task migrations and can be used to take
better advantage of cache hierarchies. Also, global, clustered, and partitioned scheduling can
all be expressed using affinity masks.

Affinity masks introduce heterogeneity by removing the symmetry among processors. An
important property used to prove the SRT-optimality of GEDF without affinities is that the
existence of an idle processor is a sufficient condition for a pending task to begin executing.
With this property, showing that a task of interest makes progress merely requires showing
that some processor becomes idle in a bounded amount of time. With affinity masks, this
proof strategy does not work. In particular, this strategy’s use would require showing that a
processor allowed by the considered task’s affinity mask becomes idle, and doing so over the
entire space of arbitrary affinity masks leads to a case explosion.

This difficulty has left unresolved the question of whether GEDF retains its SRT-optimality
with the introduction of affinity masks. This unresolved question has rendered systems
that support both GEDF and affinity masks incomplete. For example, in the case of
SCHED_DEADLINE, either admission control is disabled or affinity masks are forbidden alto-
gether. This specific gap between theory and implementation was mentioned by Peter Zijlstra
[10] in a keynote talk at ECRTS 2017 and by Luca Abeni [1] at RTSS 2017.

Contributions. In this paper, we close the open problem of whether GEDF retains its
SRT-optimality on identical multiprocessors with affinities by showing that it does, provided
the GEDF implementation maintains a certain task-migration property. We also establish
the first ever polynomial tardiness bounds for GEDF on uniform multiprocessors. While
these two platform models (uniform and identical with affinities) may seem unrelated to each
other, we shall see that they are.

These results hinge on three proof innovations. First, we introduce a layer of abstraction
between the processor models we consider and the tardiness analysis. This abstraction layer
is a property we call “HP-LAG,” which we prove is satisfied by GEDF on the models we
consider for all sporadic task systems that do not cause platform overutilization.® This
strategy allows us to reason about tardiness without regard for specifics concerning the
underlying platform, and as a result, we are able to avoid the aforementioned case explosion.

Second, for the statement made in the prior paragraph concerning GEDF to be valid, the
definition of GEDF itself must be tailored for the specific platform type under consideration.
Prior work [9] has shown how to do so for the case of a uniform platform, and we show here

L The concept of “overutilization” is more nuanced on uniform platforms and platforms with affinities
than on identical platforms with no affinities.
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how to do so for an identical platform with affinities by specifying rules that GEDF must
adhere to in this case. These rules specify when and how tasks must be migrated as scheduling
decisions are made. Now that these rules are known, actual implementations of GEDF on
systems that support affinity masks should be designed to uphold them. Unfortunately, as
we discuss in App. C, available online [7], the current SCHED_DEADLINE implementation does
not do so, so a refinement of it is needed if affinity masks are to be used alongside admission
control. In App. A, also available online [7], we present an algorithm that implements our
GEDF scheduling rules for affinity masks with lower time complexity than SCHED_DEADLINE,
given some preprocessing.

The last innovation is our improved tardiness analysis with less pessimism than prior work,
particularly with respect to uniform multiprocessor platforms. This required maintaining an
exponential number of invariants relative to prior work.

Organization. In the rest of this paper, we cover needed background and define the import-
ant concept of Lag, which is widely used in tardiness analysis (Sec. 2), list some general Lag
properties that are predicated upon tasks being periodic and executing for their worst-case re-
quirements (Sec. 3), define HP-LAG and present our tardiness analysis for HP-LAG-compliant
schedulers using said properties (Sec. 4), show that GEDF (if implemented appropriately) is
HP-LAG-compliant on both uniform multiprocessors (Sec. 5) and identical multiprocessors
with affinities (Sec. 6), show that our results extend to sporadic tasks that may execute for
less than their worst-case requirements (Sec. 7), explain why these results cannot be easily
extended to more general models (Sec. 8), and conclude (Sec. 9).

2 Background

We consider the problem of scheduling n implicit-deadline sporadic tasks 7 = {71, ...,7,} on
a multiprocessor m = {m1,..., 7, } with m processors. We consider time to be continuous.
Each task 7; releases a sequence of jobs with a minimum separation of T; time units between
releases; T; is called 7;’s period. The j*" released job of 7; is denoted Ji j, and its release
time is denoted r; ;. When this separation between the jobs of each task 7; is exactly Tj, the
system is called periodic. With the assumption of implicit deadlines, the deadline of a job of
7; is exactly T; time units after its release; the deadline of job J; ; is denoted d; ; = r; ; + T5.
The amount of work that is needed to complete a job of 7; is bounded by 7;’s worst-case
execution requirement (WCER) C;, the largest of which among the tasks in 7 we denote as
Cinaz- Note that C; is typically called the worst-case execution time in the literature. This
is because much of the literature assumes that processors complete one unit of execution in
one unit of time. This assumption does not hold for some of the hardware platform models
we consider in this work (see Sec. 2.1). 7;’s utilization is defined as u; = C;/T;. We let upin

be the smallest utilization among the tasks in 7. For any 7/ C 7, we let U, denote Zﬂeq,, U;.

A job is pending at time t if it has been released but has not completed. Likewise, a task is
pending at t if any of its jobs are pending at t. A job is ready at t if it is the earliest released
pending job from its task.

» Definition 1. If task 7; is pending at time t, then we define its release time at t, denoted
ri(t), and its deadline at t, denoted d;(t), as the release time and deadline, respectively, of
its ready job at time t. If 7; is not pending at t, then we define d;(t) = co.

If a job has a deadline at time ¢4 and completes at time ¢, then its tardiness is defined as
max(0,t. — tq). The tardiness of a task is the supremum of the tardiness of any of its jobs.
If this value is finite, then we say that the task has bounded tardiness.

6:3
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In the real-time literature, both hard real-time (HRT) and soft real-time (SRT) systems
are considered. While SRT can be defined in different ways, we adopt the following definitions.
A task set 7 is HRT-schedulable (resp., SRT-schedulable) under a given scheduling algorithm
if each task in 7 has 0 (resp., bounded) tardiness in any schedule for 7 generated by that
algorithm. A task set 7 is HRT-feasible (resp., SRT-feasible) if it is HRT-schedulable (resp.,
SRT-schedulable) under some scheduling algorithm. A scheduler is HRT-optimal (resp.,
SRT-optimal) if it can schedule any HRT-feasible (resp., SRT-feasible) system.

2.1 Multiprocessor Platform Models

There exist several multiprocessor platform models in the literature that differ by how
execution speeds are allowed to vary. We formalize execution speeds as follows. Hereafter, we
let A(S,7;,t,t") denote the cumulative execution allocated to jobs of task 7; in the schedule
S in the time interval (¢,t').

» Definition 2. A time interval (t,t') is a continuous scheduling interval if the assignment
of tasks to processors at t is maintained throughout (¢,t').

» Definition 3. Suppose task T; executes on processor m; over the continuous scheduling
interval (t,t") in schedule S. If the speed of ; on m; is s, then A(S,7;,t,t') = s(t' —t).

In order of increasing generality, the platform models of relevance to us are as follows.

1. Identical. All tasks execute with speed 1.0 on all processors.

2. Uniform. Speeds may vary by processor, but not by task. Any task on processor m;
executes with speed s;, which may differ from 1.0.

3. Unrelated. Speeds may vary by processor and by task. Task 7; executes on processor 7;
with speed s; ;.

In addition to these models, the migration scheme can be one of two types.

1. Global. A task can be scheduled on any processor.

2. Affinity. A task can only be scheduled on a specific set of processors as defined by its
affinity mask. We let «; C 7 denote the set of processors allowed by 7;’s affinity mask.

Note that global, clustered, and partitioned scheduling can all be defined using affinity
masks. We separate global scheduling as a separate case because some later proofs focus
on it exclusively. From this point on, global scheduling is assumed unless the -Aff suffix is
appended. For example, Identical and ldentical-Aff refer to an identical multiprocessor under
global and affinity scheduling, respectively. Note that Unrelated generalizes not only Identical
and Uniform, but also affinity scheduling, as 7; ¢ «; can be represented by letting s; ; = 0.
Hence, all combinations of platform and migration scheme are generalized by Unrelated.

GEDF has been proven to be SRT-optimal under Identical, but no prior work has
generalized this to Identical-Aff. GEDF’s SRT-optimality has been generalized to Uniform [9],
but with exponential tardiness bounds. In this work, we establish the SRT-optimality of
GEDF with polynomial tardiness under both Uniform and Identical-Aff.

The SRT-optimality of GEDF under Uniform-Aff and Unrelated are difficult or impossible
to prove using the techniques of this work. We describe why in Sec. 8.

We will later show that the typical GEDF scheduling rules under ldentical may be
insufficient to achieve SRT-optimality under the more general models. As such, we will later
define extended GEDF scheduling rules for Identical-Aff and Uniform, respectively (our rules
for Uniform are actually from [9]).
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The standard GEDF scheduler under Identical is:

IG-GEDF: At every time instant, if more than m tasks are pending, then the m pending tasks
with the earliest deadlines are scheduled; otherwise, all pending tasks are scheduled.

The prefix “IG” denotes that this rule applies under Identical with global scheduling.

We will keep this notation when extending GEDF, denoting the extended GEDF rules for
Identical-Aff and Uniform as IA-GEDF and UG-GEDF, respectively. Under all GEDF variants
we consider, we assume deadline ties are broken in some arbitrary but consistent way (e.g.,
by task index). For any time instant ¢, for tasks 7; and 7;, we let d;(t) < d;(t) denote that
either d;(t) < d;(t) holds or d;(t) = d;(t) holds with the tie broken in 7;’s favor. As we shall
see, IA-GEDF and UG-GEDF reduce to IG-GEDF when the underlying processor model is
Identical (note that both Uniform and ldentical-Aff generalize Identical).

2.2 Lag

As in [5], our analysis is based on the concept of Lag. Lag compares the execution of a task
in a “real” schedule R to its allocation in an “ideal” schedule Z.

» Definition 4. A non-fluid schedule is a schedule such that at any time instant t, there
exists some 0 > 0 such that (t,t + 6) is a continuous scheduling interval.

Implementable schedulers are non-fluid.

» Definition 5. We let R denote a non-fluid schedule produced under a considered scheduling
algorithm and multiprocessor platform.

» Definition 6. We let T denote a schedule that executes task T; on processor m; of speed u;.

Notice that Z is defined with respect to a Uniform multiprocessor consisting of n processors
M1, ..., T, With speeds uy, ..., uy, respectively, and not the actual platform 7.

Under the implicit-deadline sporadic task model, every job executes in Z from its release
until its completion without interference from other jobs or tasks (different tasks run on
different processors). If a job’s execution requirement is smaller than the WCER, of its task,
then the job completes in the ideal schedule before its deadline; otherwise, it completes
exactly at its deadline. Thus, in Z, at most one job from every task is ever scheduled.

We are now ready to formally define Lag.

» Definition 7. For a single task 7;, Lag;(t) = A(Z,7;,0,t) — A(R,7;,0,t). For the subset
7 C 1, LAG(7', t) = > Lag,(¢).

T, ET!

3 General Lag Properties

In [9], Yang and Anderson showed how to generalize IG-GEDF to obtain a variant, which we
denote as UG-GEDF, that is SRT-optimal under Uniform. Yang and Anderson’s proof relied
on several properties of Lag that we make use of in this work. We repeat these properties
and proofs verbatim from [9], with minor wording changes. However, unlike [9], where these
properties were considered in the context of Uniform, we consider them in the context of
Unrelated. Because Unrelated generalizes all the models in Sec. 2.1, these Lag properties
apply to all the models considered in this work.

6:5
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Lemmas 10-12 rely on the following assumptions, which we henceforth assume until
stated otherwise.

Every task is periodic. (P)

Every job J; ; has an execution requirement equal to C; (the worst case for ;). (W)

So as to leave no doubt that the properties considered in this section hold under Unrelated,
we begin by listing all of the model-related concepts the proofs below will use:

the task-system parameters C;, T;, u;, 7;(t), and d;(t);

Lag and LAG, as defined in Def. 7;

the fact that Z continuously executes task 7; with speed wu;, which follows from (P) and

(W), hence the need for these assumptions

[9] showed that removing (P) and (W) cannot cause greater tardiness in UG-GEDF under
Uniform. We will show the same for IA-GEDEF under Identical-Aff later in Sec. 7.

» Lemma 8 (Property 1 of [9]). V7' C 7: LAG(7', t) is a continuous function of t.

Proof. By definition, A(S, 7;,t,t’) is a continuous function in ¢ and ¢'. By Def. 7, LAG(7/, t) =
>, Lag..(t) = > (A(Z,7:,0,t) — A(R,7;,0,t)). Because LAG(7', t) is a finite sum of

T, ET’ T, €T!
continuous functions in ¢, it is continuous in . |

» Lemma 9 (Lemma 1 of [9]). Lag,;(¢) > 0 = 7; has a pending job at t.

Proof. We prove the lemma by contradiction. Suppose that Lag,(¢) > 0 holds but 7; is not
pending at ¢ in R. Then, all jobs of 7; released before or at ¢ have completed by ¢. Let
W denote the total execution requirement of such jobs such that W = A(R,7;,0,t). In
Z, only released jobs can be scheduled and will not execute for more than their execution
requirement. Thus, A(Z,7;,0,t) < W holds as well. Therefore, by Def. 7, we have Lag,(t) =
A(Z,7;,0,t) — A(R,7,0,t) <0, a contradiction. <

» Lemma 10 (Lemma 2 of [9]). If task 7; is pending at time t in R, then

t—“’gii(t)@i(t)gt—“gii(thn. (1)

Us Us

Proof. Let e;(t) denote the remaining execution requirement for the ready job J; ; of 7; at
time t. Because this job is ready, it must not be complete, hence

0< ei(t) < Cl (2)

All jobs of 7; prior to J; ; must have been completed by time ¢. Let E denote the total
execution requirement of these jobs. Then,

A(R,Ti,O,t):E—&—Ci—ei(t). (3)

In Z, all prior jobs of 7; have completed by r;(¢). Within (r;(t),t), Z continuously executes
T; on a processor with speed u;. Thus,

A(I)Tﬂoat) :E+(t_7‘1(t))uz (4)
Given these facts, an expression for Lag,(¢) can be derived as follows.

Lag,(t) = {by Def. 7}
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A(Z,7;,0,t) — A(R,7;,0,t)
— {by (3) and (4)}

(t=7ri(t)u; — (Cs —e;(t))
= {because d;(t) = r;(t) +T;}

(t — di(t) + T;)u; — (C; — e5(1))
= {because u;T; = C;}

(t —di(t))u; + ei(t)

By (2) and the above expression, we have
(t —d;(t))u; < Lag,(t) < (t — di(t))u; + Cy, (5)
which (using T; = C;/u;) can be rearranged to obtain (1). <

» Corollary 11 (Corollary 1 of [9]). If for some L > 0 we have Vt,Lag,;(t) < L, then the
tardiness of task T; does not exceed L/u;.

Proof. We prove the corollary by contradiction. Suppose that
Lag;(t) < L (6)

holds but 7; has tardiness exceeding L/u;. Then, there exists a job J; ; that is pending at
time ¢ > d; ; where

t—di’j > L/UZ (7)

Because J; ; is pending at ¢, 7;’s ready job cannot have been released later than J; ;. Thus,
d;(t) < d; ;. Therefore,
t—di(t) >t —di

> {by (7)}
L/Ui

> {by (6)}
Lag;(t)/u;.

Rearrangement yields ¢ — Lag,(t)/u; > d;(t), which contradicts Lemma 10. <

» Lemma 12 (Lemma 4 of [9]). If a task 7; has a pending job at t and for a task 7; we have

1 1
—Lag.(t) + Thax < —Lag;(?), 8
EIOR —Lag,(1) )

then dl(t) < dj (t)

Proof. Assume 7; is pending at ¢, as otherwise d;(t) = oo, and we trivially have d;(t) < d;(t).

d;(t) < {by Lemma 10}

i el g,
< {by (8)}

6:7
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Lag.(t
t— gij() - Tmax + E
Uj
< {because — Ty +T; <0}
. Lagj(t)
U
< {by Lemma 10}
dj (t) <

As a reminder, we are considering the properties in this section in the context of Unrelated.
This means these properties apply to all of our considered models.

4 Tardiness Bounds for HP-LAG-Compliant Schedulers

In this paper, we consider two Identical generalizations: Uniform and ldentical-Aff. In order
to prove GEDF’s SRT-optimality under these different processor models, we provide an
abstraction layer called HP-LAG. Informally, HP-LAG states that the LAG of any subset of
tasks 7/ with the earliest deadlines is temporarily non-increasing.

HP-LAG: For any time instant ¢, if 7/ C 7 is a set of pending tasks such that V7, € 7’ and
V1, € 7/7" we have dp,(t) < de(t), then 3§ > 0 such that V¢’ € (¢,t+6) : LAG(7', t) >
LAG(7', t').

» Definition 13. We say that a scheduler is HP-LAG-compliant under a given platform if
HP-LAG holds for any feasible task system T under said platform model.

In this section, we show that every HP-LAG-compliant scheduler ensures bounded
tardiness under its considered platform model. We do this by extending the approach of [9]
by maintaining as invariants bounds on the LAG of every task subset; in [9], only a linear
(with respect to m) number of invariants is instead maintained. The LAG bound we define
for any subset of tasks 7/ C 7 is

Br) = g

2umin

Uy (2U, —Uyr). 9)

We will prove by contradiction that V7' C 7 V¢ : LAG(7', t) < B(7’) holds for any
HP-LAG-compliant scheduler. We continue to consider all properties in the context of
Unrelated. Thus, Lemmas 16, 17, 18, and 19 below hold for any scheduler that is HP-LAG-
compliant under any processor model that Unrelated generalizes. We begin by defining a set
of time instants that must exist if our LAG bounds are violated.

» Definition 14. We call a time instant t invalid if 37" C 7 such that V6 > 0 3t' € (t,t +9) :
LAG(7', t') > B(1"). 7' is called an attestant set of the invalid instant t.

Note that for any invalid instant, @) is never an attestant set because for any time instant ¢
we have LAG(), t) = 0 and 8(0) = 0.

» Definition 15. If at least one invalid time instant exists, then we call the first® such instant
a boundary instant, denoted t,. We let T° denote an arbitrary attestant set of t,. We call
any task from T° a boundary task.

2 1t can be shown that the infimum of all invalid instants is itself an invalid instant. Hence, the first
invalid instant, ¢, is well-defined.
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Because t;, is the first invalid instant, we can prove specific bounds on Lag values at t;.

» Lemma 16. For the boundary instant ty,, the following three expressions hold.

vr' C 1 LAG(T, ty) < B(7") (10)
LAG(7?, t) = B(7?) (11)
V6 >0 3t € (ty, ty + 6) : LAG(7?, ) > B(7) (12)

Proof. We prove (10) by contradiction. If for some 7" C 7, LAG(7’, t,) > B(7’), then, by
Lemma 8 (continuity of LAG(7’, t)), 30 > 0 V¢’ € (t, — d,¢) : LAG(', ¢') > B(7'). Thus,
time instant ¢, — ¢ is invalid with attestant set 7/, which contradicts Def. 15.

By Defs. 14 and 15, ¥§ > 0 3t' € (ty,t, +6) : LAG(7?, ') > B(7%). By Lemma 8
(continuity of LAG(7%, t)), we have LAG(7?, t,) > B(7°). By (10), LAG(7°, t,) < B(°), so
(11) holds.

(12) follows from Defs. 14 and 15. <

T’”’LLL.'L'
» Lemma 17. For any boundary task 7; at ty,, Lag,(tp) > (2u; Uy — 2u;Ups + u?).

Umin

Proof.
Lag,(ty) = {by Def. 7}
LAG(7%, t3) — LAG(7?/{7:}, tb)

> {by (11), LAG(7", #,) = B(7?), and by (10), LAG(r*/{r;}, t,) < B(r*/{m:})}
B(r) — B(r*/{m:})

6:9

= {by (9)}
Tmam Tm(l:E
Su, (U 2U; —Uys)] — — [UTb/{ﬂ} (20U, — UTb/{Ti})]
= {by the definition of U.s/(;1}
T T,
nag [UTb (QU-r - UTb)} — AT [(UTb - ul) (QUT — U + ul)]
2umin Umin
= {rearranging}
Tmaw
ST (2u; Uy — 2u;Ure + u?) <

Note that the Lag lower bound from Lemma 17 is strictly positive, because U, > U, .
Thus, by Lemma 9, any boundary task 7; is pending at ¢;. This proves the following lemma.

» Lemma 18. At the boundary time instant ty,, every boundary task has a pending job.

As shown next, similar reasoning as in Lemma 17 can be used to upper bound the Lag
of non-boundary tasks. This allows us to establish a relationship between the deadlines of
boundary and non-boundary tasks.

» Lemma 19. At time instant ty,, every boundary task has an earlier deadline than any
non-boundary task (i.e., from 7/7°).

Proof. For any non-boundary task 7; € 7/7°, we have the following.

Lag;(ty) = {by Def. 7}
LAG(T" U {r;}, ty) — LAG(", t)

ECRTS 2019
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< {by (10), LAG(Tb U{r;}, tp) < ﬂ(Tb U{7;}), and by (11), LAG(Tb, tp) = ﬂ(Tb)}
Br* u{n}) - B(T")
= {by (9)}

Tmaz Tmaz
2u77lin l:UTbU{Tj} <2UT B UTbU{T]}):I h u'ﬂlin [U‘rb (2UT B UTb)]
= {by the definition of Uy, }
Tmaw Tmam
Qo [(Urs + uj) @U- - Un - u]))] T ou [Urs 2U- = Upe)]
= {rearranging}
Tmaz
S (2u;Ur — 2u;Up — u3) (13)

To conclude the proof, we show that the Lag of a boundary task 7; € 7% and the Lag of a
non-boundary task 7; € 7/ 7% together satisfy the requirement specified in Lemma, 12.

1
—Lag;(ts) + Tas < {by (13)}
J

]‘ Tmam
— o (20U = 2uUn — u3) + Tz
J min
= {factor in 1/u; and out 1/u; from 2u;U; — 2u;U,+}
1 Tma:l)

u;Ur — 2u;Urs) + Tonas (1 4 )

U 2Umin 2Umin

< {2umzn — Uj = Umin + (umin - uj) < Umin < ui}

1T 1 2
— Ima2 (9 Us — 2u;Uss) + T — ( Ui )

< {by Lemma 17}
Lag; (ts) (14)

By Lemma 18, a boundary task 7; is pending, and by Lemma 12, its deadline is earlier
than task 7; € 7/7° (if 7; has no pending job, then d;(t) = oo by Def. 1) at time t,,. <

» Theorem 20. If a scheduler is HP-LAG-compliant under its considered platform, then for
any feasible task system 7, the tardiness of task T; € T is at most

Tma:c

2umin

(U, — u;). (15)

Proof. If there exists at least one invalid instant, we can define the boundary time instant
t, with an attestant set 7°. By Lemma 19, tasks in 7° have earlier deadlines than any task
in 7/7°. Thus, by HP-LAG with 7/ = 7°,

36 > 0Vt € (ty, ty, +0) : LAG(7®, t) > LAG(7?, t). (16)
However, by Lemma 16,
V8 >0 3t € (ty,ty +0) : LAG(7Y, t) > B(7°) = LAG(7, t),

which contradicts (16). Because the existence of t, leads to a contradiction, there is no first
invalid instant, and hence there are no invalid time instants. Thus, by Def. 14,

V' Crvt>035 >0Vt € (t,t+9): LAG(T, t') < B().



S. Tang, S. Voronov and J. Anderson

By Lemma 8, it follows that
Vr' CrVt>0: LAG(T, t) < B(7). (17)
Hence, for any task 7; and any time instant ¢,
Lag,(t) = {by Def. 7}
< {by (17) with 7' = {r;}}
B{ri})
= {by (9)}

T/"Lax
Zmaz (U, — ;).
2umin ul( T UL)
T,
Thus, by Corollary 11, task 7; has maximum tardiness at most —— (2U, — u;). <

Umin
The theorem above is proved under the context of Unrelated. Thus, the theorem holds
for HP-LAG-compliant schedulers under Uniform and ldentical-Aff because these models are
special cases of Unrelated. In Secs. 5 and 6, we demonstrate that the GEDF generalizations
discussed in this work are HP-LAG-compliant.

5 GEDF Tardiness Bounds under the Uniform Model

In this section, we show that UG-GEDF, the generalization of IG-GEDF under Uniform in
[9], is HP-LAG-compliant. This result enables us to apply Theorem 20 to obtain tardiness
bounds for UG-GEDF that are superior to those in [9].

5.1 Refining GEDF for the Uniform Model

IG-GEDF is not SRT-optimal under Uniform. Counsider a single-task system 7 = {7} with
Cy =1 and 77 = 2 (hence u; = 0.5) running on 7 = {71, 72} with s; =1 and s = 0.1. This
system is clearly feasible if 71 always executes on the faster processor m;. Under IG-GEDF,
however, it is legal for 7; to be continuously scheduled on the slower processor mo. This
would lead to unbounded tardiness, as my’s speed is lower than 7;’s utilization.

Such counterexamples led Yang and Anderson to define UG-GEDF as below. For the
remainder of this section, we assume that processors are indexed by decreasing speed.

UG-GEDF: At any time instant, the ready job of the pending task with the k' earliest deadline
is scheduled on my, for k € [1,m].

5.2 HP-LAG-Compliance for UG-GEDF

To prove HP-LAG-compliance, we reference the feasibility condition under Uniform, which
references the following definition.

k
» Definition 21. Let Si, = > s; for k < m.
i=1
When tasks are indexed by decreasing utilization, the feasibility condition is as follows [6, 9].

k
VE<m:Y u; < S (18)

=1
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U, < Sy (19)
In terms of subsets of tasks, this condition is equivalent to
V1" C 7 Up < Swin(r/|,m)- (20)
» Lemma 22. UG-GEDF is HP-LAG-compliant under Uniform.

Proof. By Def. 13, we need only consider the case that task system 7 is feasible under
Uniform. Let 7 C 7 be any subset as defined in HP-LAG for any time instant ¢. HP-LAG
states that the tasks in 7/ have earlier deadlines at time ¢ than any tasks outside of 7. Under
UG-GEDF, tasks from 7/ occupy the min(|7’|,m) fastest processors. Because UG-GEDF is a
non-fluid scheduler (see Def. 4), for any time instant ¢, for some § > 0 we have that (¢,¢ + 9)
is a continuous scheduling interval (see Def. 2). For any ¢’ € (¢,t + §),

LAG(7, t') ={by Def. 7}
LAG(, )+ Y AT, 7i,t,t)) = Y AR, 7i,t,1')

T ET! TiET!
= {by Defs. 3 and 6}
LAG(™, )+ Y wi(t' —t) — > AR, 7,t,t))
TET! T ET!
= {tasks from 7’ occupy processors with speeds s1, ..., Smin(|r|,m) }

min(|7’|,m)

LAG(™, t)+ Y wi(t' —t)— > si(t' —t)

T ET! i=1
= {by Def. 21}
LAG(T/7 t) =+ Z ui(t/ - t) - Smin(\r’\,m) : (t/ - t)
T, €T’

= LAG(7, t) 4+ (t' —t) [Ur — Swin(r|,m)]
< A{t' > t by definition and Uy < Syin(r,m) by (20)}
LAG(T', 1).

Therefore, UG-GEDF is HP-LAG-compliant. <

Because we have proven in Lemma 22 that UG-GEDF is HP-LAG-compliant, we have
the following corollary of Theorem 20.

» Corollary 23. Under UG-GEDF on a Uniform multiprocessor executing a feasible task
system, the tardiness of any task 7; is at most (15).

We assumed without loss of generality that tasks (processors) are indexed by decreasing
utilizations (speeds) to make stating UG-GEDEF and the Uniform feasibility condition simpler.
We no longer keep these assumptions in the following sections.

6 GEDF Tardiness Bounds under the ldentical Model with Affinities

In this section, we generalize the IG-GEDF scheduling rules under the context of Identical-
Aff. We show that the resulting scheduling policy, IA-GEDF, is HP-LAG-compliant. Thus,
Theorem 20 ensures bounded tardiness because Identical-Aff is a special case of Unrelated.

Under |dentical-Aff, all processors have speed equal to 1.0. As in [8], we use in our analysis
the concept of an affinity graph.
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Figure 1 Affinity graph (AG) example.

» Definition 24. An affinity graph (AG) G, of a task system T on platform m with affinity
masks is a undirected bipartite graph containing one vertex for each task and each processor.
An edge exists between 1; and w; if and only if m; € o;. For any 7' C 7, we let G, denote
the subgraph of G, containing only the vertices that correspond to the tasks in 7 and the
processors in the union of their affinity masks.

» Example 25. An example G, for the task system 7 = {71,792, 73} on m = {m, w2} with
ay = {7, ma} and ap = ag = {72} is given in Fig. 1. The same figure also shows G, ;.

6.1 Refining GEDF for the Identical Model with Affinities

Unlike under Identical or Uniform, it is not always possible to schedule the m tasks with the
earliest deadlines under ldentical-Aff. Consider the example in Fig. 1 with two processors
and three tasks. If all tasks are pending at a time instant ¢ and the deadlines are such that
da(t) < ds(t) < di(t) holds, then the tasks with the earliest deadlines, 75 and 75, cannot be
simultaneously scheduled because they share a single processor.

The choice of processor assignments can also leave a processor idle, i.e., with no job to
execute. Consider again Fig. 1 with the assumption that only 77 is pending and is assigned to
2. Suppose that 7o at time instant ¢ releases a job such that d(¢) < da(t). Under IG-GEDF,
a lower-priority task such as 75 would be scheduled on my, but affinity-mask restrictions
disallow this. Because d;(t) < da(t), 71 has higher priority, and 72 is not scheduled, leaving
processor 71 idle. However, forcing 7 to migrate to m; is a more efficient use of processor
capacity in this example. The problem here is that the availability of processors for different
tasks under affinity scheduling is not symmetrical.

Under IG-GEDF, a preemption only affects the preempting and preempted tasks and a
single processor. We define IA-GEDF to extend this preemption rule to avoid unnecessary
idleness. To formally specify IA-GEDF, we require several graph-theory definitions.

» Definition 26. A matching of a graph G with edge set E is an edge set M C E such that
no two edges in M share a common vertexr. A vertex is matched if it is an endpoint of one
of the edges in the matching; otherwise, the vertex is unmatched.

» Example 27. An example matching can be found in the left graph of Fig. 2. We have the
matching M = {(71, m2), (3, 73), (74, 74) }, with vertices w1 and 72 being unmatched.

Observe that any assignment of tasks to processors at runtime that obeys the tasks’
affinity masks defines a matching of G, (and vice versa). While the concept of a matching
can be applied to any graph, we restrict attention to only AGs and their subgraphs.

» Definition 28. An alternating path p of a matching in a graph is a path that begins with
an unmatched “task” verter, has edges that alternately are in the matching and not in the
matching, and ends with a “processor” verter. An augmenting path p of a matching is an
alternating path that ends with an unmatched vertez.
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Figure 2 Two examples of a scheduling cascade.

» Example 29. In the left graph of Fig. 2, (72, 73, 73, 74) is an alternating path that is not
an augmenting path for the given matching, and (72,72,71,m1) is an augmenting path.

Observe that an alternating path must have an odd number of edges because its first and
last vertices are task and processor vertices, respectively. The following lemma establishes a
relationship between augmenting and alternating paths.

» Lemma 30. Consider a matching M for G, and 7/ C 7. Let M’ denote the set of edges
of M that are present in G... Then, M’ is a matching in G,.. Furthermore, if p is an
augmenting path of the matching M' in G/, then p is an alternating path of M in G.

Proof. By Def. 26, no two edges in M share a common vertex. This does not change when
removing edges and vertices from G, and edges from M, through which we get G+ and M’,
respectively. Thus, M’ is also a matching in G,

Let the first vertex of p (as mentioned in the lemma statement) be task 7;. By Def. 28, 7;
is unmatched in G,,. By Def. 24, G+ contains 7; and all the processors in its affinity mask.
Hence, all edges from 7; that are in G are also in G». Thus, 7; is also unmatched in G.

By definition, M’ contains all the edges in M that are also in G,~. Hence, an edge of G,
is in M’ if and only if it is also in M, which applies to all edges of p because it is contained
in G,/. Because an augmenting path is a special case of an alternating path, edges of p are
alternately in and not in M’, and hence, alternately in and not in M. This fact and the fact
that the first vertex of p, task 7;, is unmatched in M make p an alternating path in G,. <«

We now have sufficient terminology to define a generalized notion of a preemption that
occurs under Identical-Aff and that we call a scheduling cascade. Informally, in a scheduling
cascade, an unscheduled task is scheduled by making an idle processor busy or by unscheduling
a different task, perhaps on a different processor, with a later deadline. Note that this may
require several migrations.

» Definition 31. A scheduling cascade at time t via the alternating path p in G, changes
the task-to-processor assignments (i.e., the matching M at t in G;) via Alg. 1.

We can write p = (Ti,, M)y, Tigs Wiy - - -  Tiy Tj,, ) for some k > 1 and task (resp., processor)
indicies 41,42, ..., (resp., j1,Jj2,...,Jjk) because the first vertex of p is a task by Def. 28.
Because p is alternating, Vr € [1,k — 1] : (75, ,,,7;,) € M and Vr € [1,k] : (73, 7;,) ¢ M.

Note that M remains a matching after a scheduling cascade. All tasks and processors
in p are unmatched prior to line 6 and each iteration of line 7 matches a distinct task and
processor from the other iterations.
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Input : Matching M of the AG G, at time ¢;
Alternating path p = (7;,, M)y, Tigs Tjas - - - » Ti s Wi, ) SUch that if 7, exists such that
(1e,m;,,) € M, then d;, (t) < de(t)
if m;, is matched in M then
Tp <= m;,.’s matched task;
Remove edge (¢, 7}, ) from M;
forre[l,k—1] do
‘ Remove edge (7;,,,7;,) from M;
for r € [1,k] do
7 ‘ Add edge (7;,.,7j,) to M;
8 return

[ I S U

Algorithm 1: The scheduling cascade algorithm.

» Example 32. Consider the lower scheduling cascade in Fig. 2. In the scheduling cascade,
we have 7;, = 7 and 7, = m4. Because m4 is matched to task 74, we have 7, = 74. Thus,
the condition d;, (t) < d¢(t) becomes da(t) < da(t) in this example, and we remove edge
(14, 74) from the matching (line 3). Of the edges in the alternating path, we remove edge
(73,73) (line 5) and add edges (72, m3) and (73, 74) (line 7). This results in a new matching,
as indicated in Fig. 2.

» Example 33. Consider the higher scheduling cascade in Fig. 2. In the scheduling cascade,
we have 7;, = 7 and 7;, = 7. We do not execute line 3 because m; is unmatched. Of the
edges in the alternating path, we remove edge (71,72) (line 5) and add edges (72, m2) and
(r1,m1) (line 7). This results in a new matching, as indicated in Fig. 2.

The net result of a scheduling cascade is that task 7;, that was not scheduled prior to the
scheduling cascade is now scheduled, and task 7, (if it exists) with later deadline than 7;,
is now not scheduled. All other tasks that were scheduled in matching M continue to be
scheduled after the scheduling cascade, though the other tasks in p have migrated.

To define our GEDF scheduling policy with affinity masks, we define the task-to-processor
assignments at scheduling events, i.e., job releases or job completions, and assume these
assignments hold between scheduling events.

TA-GEDF: At every scheduling event, task-to-processor assignments are made such that after-
wards no scheduling cascade is possible. These assignments do not change until the
next scheduling event.

One might assume that a simpler scheduling policy may be sufficient, but issues arise
when weaker scheduling rules are used. For example, SCHED_DEADLINE under ldentical-Aff is
not HP-LAG-compliant. These details can be found in App. C, available online [7].

Because we do not explicitly specify the task-to-processor assignments, there may exist
multiple assignments that satisfy IA-GEDF at every scheduling event. Note that every
scheduling cascade either schedules an additional task or replaces a scheduled task with an
unscheduled task with an earlier deadline. Thus, the total number of possible scheduling
cascades per scheduling event is finite. To show IA-GEDF is possible to implement, we
created an O(mn) algorithm that computes task-to-processor assignments at every scheduling
event that obeys IA-GEDF. With offline preprocessing, the time complexity is reduced to
O(m + logn) per scheduling event. The algorithm and preprocessing details are available in
App. A, available online [7]. In App. C, also available online [7], we show that SCHED_DEADLINE
under ldentical-Aff has higher time complexity per scheduling event.
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Note that a preemption in IG-GEDF can be interpreted as a scheduling cascade with an
alternating path of a single edge. Thus, IA-GEDF reduces to IG-GEDF under Identical.

6.2 HP-LAG-Compliance for IA-GEDF

Here we consider only feasible task systems 7 because HP-LAG-compliance is defined only
for such systems. Exact feasibility conditions under Identical-Aff were established in [8], but
in our reasoning about IA-GEDF’s HP-LAG-compliance, we only use a necessary condition
for a feasible task system, provided in Lemma 35.

» Definition 34. A matching M of a graph G is a mazimal matching if |M| > |M’'| for any
matching M' of G, where |M| denotes the number of edges of the matching M.

» Lemma 35. If a task system 7 is feasible under ldentical-Aff, then for any task subset
7' C 7, a mazimal matching M' under G, has |M'| > U, edges.

Proof. Suppose otherwise that 7 is feasible and there exists 7/ such that a maximal matching
M’ under G, has |M’| edges with |M’| < U,,. Because M’ is maximal, the tasks of 7" are
scheduled on at most |M’| processors at any time instant, and hence, for any schedule R
and time instant ¢, Y. A(R,7;,0,t) < |M’|t. Hence, by Defs. 3, 6, 7, and the definition

T, €T’
of U/, we have LAG(7/, t) = >, A(Z,7;,0,t) — >, A(R,7:,0,t) > Ut — |M'|t. Because
T ET! T ET’

Uy > |M'|, Upt — |M'|t = 0o as t — oo. Thus, LAG(7/, t) is unbounded under any schedule
R, making 7’ unfeasible, which contradicts the asumption that 7 is feasible. |

We use Berge’s Theorem to prove that IA-GEDF is HP-LAG-compliant. Berge’s definition
of an augmenting path reduces to Def. 28 in the context of an AG and its subgraphs.

» Theorem 36 (Theorem 1 of [3], Berge's Theorem). A matching M of a graph G is mazimal
if and only if there is no augmenting path for M and G.

» Lemma 37. [A-GEDF is HP-LAG-compliant under Identical-Aff.

Proof. We use Fig. 3 to illustrate the key steps of the proof. Consider a matching M in G,
defined by the IA-GEDF task-to-processor assignments at time ¢. Let 7/ be as defined in
HP-LAG at time ¢ (7' = {7, 72,73} in Fig. 3). Consider a matching M’ in G, defined by
the assignments of tasks in 7’ to processors (M’ = {(r1,71), (73, 72)}).

We will first show that M’ is maximal in G,. Suppose otherwise that M’ is not
maximal in G,s. Then, by Theorem 36, there exists an augmenting path p for M’ in G,
(p = (12, m2,73,73)). By Lemma 30, p is an alternating path for M in G,.

Consider the task 7, that is represented by the first vertex of p (72), and the processor
7; that is represented by the last vertex of p (m3). If there is a task 7, that is scheduled
on 7; (14 on m3), then 7, € 7/ and 7, € 7/7" because p is an augmenting path in G,/. By
the definition of 7/ in HP-LAG, we have dj,(t) < dg(t) (d2(t) < d4(t)). Thus, because we
have satisfied the input requirements of Alg. 1, we can perform a scheduling cascade via p
at time ¢ (remove (74, 73) and (73, 72) and add (73,73) and (72, 72) to the matching), which
contradicts our definition of IA-GEDF. Hence, M’ is maximal.

Because TA-GEDF produces a non-fluid schedule (Def. 4), the interval (¢, + 6) must be
a continuous scheduling interval for some § > 0. Thus, for all ¢’ € (¢,¢ + 9),

LAG(7', t') ={by Def. 7}
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Figure 3 An example graph G,/ for the proof of Lemma 37. Solid gray edges represent the
task-to-processor assignments prior to a scheduling cascade and dashed edges represent affinity.

LAG(, t) + > A(Z,7i,t,t') = > AR, 7i,t,t)

T, ET’ T ET!

= {by Defs. 3 and 6}
LAG(™, t)+ Y (' —thui — > A(R,7;,t,t))
T, ET’ T, ET!
= {the number of processors scheduling tasks of 7’ is |M’|}

LAG(r/, &)+ Y (t' — thu; — (t' — )| M|

Tier!
={ Z u; = Up}
rier
LAG(7, t)+ (¢ —t)(U — | M)
< {t < t' and by Lemma 35, U, < |M'|}
LAG(7, t).

Therefore, IA-GEDF is HP-LAG-compliant. |
Applying Theorem 20 yields the following.

» Corollary 38. Under IA-GEDF on a ldentical-Aff multiprocessor executing a feasible task
system, the tardiness of any task 7; is at most (15).

7 Extending to the Sporadic Task Model

As in [9], we made assumptions (P) and (W). It was proven in Theorems 3 and 4 of [9]
that any tardiness bounds derived for UG-GEDF under Uniform assuming (P) and (W)
hold without these assumptions. Thus, Corollary 23, which establishes tardiness bounds for
UG-GEDF under Uniform, applies to sporadic tasks.

It remains to show that these assumptions can be removed from Corollary 38, which
pertains to IA-GEDF on ldentical-Aff. We use reasoning similar to [9] to show this, though
some details are changed due to the different scheduler and platform. Due to space constraints,
we present a proof sketch and provide the formal proofs in App. B, available online [7].

Removing assumption (W). The intuition here is that reducing the execution requirement
of a job cannot cause jobs to complete later. Consider Figs. 4b and 4c, which show two
schedules under IA-GEDF for two periodic instances of the task system defined in Fig. 4a. In
Fig. 4b, assumption (W) is true, while in Fig. 4c, job Ji 1 completes with 1.0 less execution
unit than 71’s WCER of 2.0. As a result, jobs Js 2 and J3 1 complete earlier in Fig. 4c than in
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(a) Affinity graph. (b) IA-GEDF schedule with (W). (c) TA-GEDF schedule where the first
job of 71 completes early.

Figure 4 An example task system where removing assumption (W) only causes jobs to complete
earlier. When the completion times in the two schedules differ for a job, a dashed gray marker in 4c
indicates its original completion time in 4b. Every task has (C,T) = (2, 3).

Sporadic task | R — . T : —
co2r-s L L L, LV
o 1 2 3 4 5 6 7 &8 9 10 11 12 13
VPP task  Fr P T ................ T .......... - e Actual
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Figure b Transformation of a sporadic task to a VPP task.

Fig. 4b, while all other jobs complete at the same time in both schedules (the two schedules
converge at time ¢ = 6). Thus, reducing the execution time of a job did not increase tardiness
for any other job. We prove in App. B, available online [7], that this is always the case. By
applying this fact inductively, it follows that tardiness bounds derived assuming (W) hold in
systems without (W) under TA-GEDF on ldentical-Aff.

Removing assumption (P). In order to remove (P), we use the varying-period periodic
(VPP) task model, defined in [9]. A VPP task 7" of task set 7V is defined through its
utilization u) . Every job JZV] has its own WCER CZVJ max; C;; is denoted as CY. Unlike
the sporadic task model, each VPP task TZV releases its first job JX ; at time ¢t = 0. Afterwards,
each job J; j11 is released exactly Tlvj = C’,Vj/uy time units after the release of JZV] for j > 1.
CY Ju} is denoted as T, .

It was shown in App. A of [9] that sporadic task systems are special cases of VPP task
systems. For example, in Fig. 5, the first timeline represents a sporadic release of jobs by
some task 7; and the second timeline represents a VPP release of jobs by a VPP task 7
with u; = u) and C; = CY. When the separation between jobs of 7; is greater than T},
arbitrarily small VPP jobs with an execution requirement of 0.0 are inserted between the
gap in releases, thereby making the second timeline a valid VPP release sequence. Thus, the
sporadic release of jobs is also a VPP release of jobs.

Because sporadic task systems are special cases of VPP task systems, our proof obligation
is to show that our tardiness bounds apply under the VPP model. The tardiness bounds
under IA-GEDF depend only on properties of HP-LAG schedulers, which in turn depend
only on the properties in Sec. 3. The fact that these properties hold under the VPP model
with assumption (W) (with some reinterpretation of parameters, e.g., substituting u; with
u;” and C; with CY; in proofs) was shown in App. A of [9]. Hence, because removing (W)
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(a) Affinity graph. (b) A SRT schedule (with a maximum tardiness of 0.5) of a periodic instance of
the task system in Theorem 39. The height of a scheduling interval represents
the speed of the allocated processor.

Figure 6 Task system considered in the proof of Theorem 39.

does not increase tardiness, Corollary 38 holds with VPP task systems (substituting Ci,qx
with max; C} in (15)). If the VPP task system is also a sporadic system, as in Fig. 5, then
max; C’Z-V = max; C; = Cpuqz. Thus, the tardiness bound in Corollary 38 for sporadic tasks is
exactly as written in (15).

8 Problems with Extending to the Uniform Model with Affinities

Of the models listed in Sec. 2.1, we have not addressed Uniform-Aff and Unrelated. In this
section, we explain why extending our proof techniques to these models is difficult. The
exact proof strategy used in this work cannot be directly applied to the more general models
in Sec. 2.1 because HP-LAG may not hold.

» Theorem 39. No non-fluid scheduler always satisfies HP-LAG under Uniform-Aff.

Proof. We prove the theorem by constructing a feasible task system, deadline ordering, and
Uniform-Aff platform for which no scheduler satisfies HP-LAG. Consider the task system
T = {m, 2} with (C1,T1) = (3,2) and (C3,T2) = (4,4). Then, uy = 1.5 and uz = 1. 7 runs
on two processors m = {71, e} with s; =2 and so = 1. G, is illustrated in Fig. 6a.

We know this system is feasible from the schedule in Fig. 6b, which contains a timeline for
each task that describes what processor, if any, schedules the task at any time instant. The
schedule repeats every four time units. This schedule provides six units of execution to 71 and
four units of execution to 75 every four time units. Because the schedule provides execution
to each task at a long-run rate equal to its utilization (6/4 = 3/2 = u; and 4/4 = usy), both
tasks have bounded tardiness.

Let the deadline ordering at some time instant ¢ be d;(t) < dz(t) (e.g., t = 0). Suppose
some non-fluid scheduling algorithm is HP-LAG-compliant at ¢t. By Def. 4, we have that
(t,t + ) is a continuous scheduling interval for some § > 0. Note that 7" as defined in
HP-LAG for this task system may be either {m} or {71, 72} at time ¢. HP-LAG states for
these two task subsets that Vt' € (¢,¢ + 9):

LAG({r}, t) < LAG({m}, 1) (21)
LAG({Tl, T2}7t/) S LAG({Tl, TQ},t) (22)

We show that 71 must execute on 71 over (¢,¢ + ) by contradiction. Consider otherwise
that there exists a time instant in (¢,¢ + &) where 71 executes on my. Because (t,t + ) is a
continuous scheduling interval, by Def. 2, 71 executes on 7y for all ¢’ € (¢,t + §). Thus,

LAG({r}, #) = {by Def. 7}
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LAG({71}, t) + A(Z,71,t,t") — A(R, 71, t,t)
= {by Defs. 3 and 6}
LAG({71}, t) +ui(t' —t) — A(R,71,t,t)
= {by Def. 3 and the assumption that 7 is scheduled on 7}
LAG({71}, t) +ur(t' —t) — sa(t' — 1)
= {u; =15 and s, =1}
LAG({71}, t) + 0.5(t' — t)
> {t' —t > 0 by definition}
LAG({r1}, 1),

which contradicts (21). A similar contradiction arises when 71 is not executing for any instant
in (t,t + 0), so any HP-LAG compliant scheduler must schedule 7, on m during (¢,t + 9).
Scheduling 7 on 7 means 79 is not scheduled over this interval, because m; is the only
processor in 75’s affinity mask.

Consider the LAG of {7y, 2} for all t’ € (¢,t+ §) given that 7| executes on m; and 75 is
not executing over this interval. Through reasoning similar to that above, we can conclude
LAG({m1, m},t') = LAG({m1, 72},t) + 0.5(t' — t) > LAG({71, 72},¢), which contradicts
(22). Because no non-fluid scheduler can simultaneously satisfy (21) and (22), no non-fluid
scheduler can satisfy HP-LAG for this feasible task system. <

9 Conclusion

We have derived the first ever GEDF tardiness bounds that are polynomial in the number
of processors under Uniform. We have also derived for the first time generalized GEDF
scheduling rules that are provably SRT-optimal under Identical-Aff. This result shows that
the open problem mentioned by Peter Zijlstra and Luca Abeni can be resolved by altering
SCHED_DEADLINE to be HP-LAG-compliant. In App. A, available online [7], we have provided
an algorithm that implements our generalized GEDF scheduling rules with lower time
complexity per scheduling event than SCHED_DEADLINE, given some preprocessing.

Note that the proofs in Sec. 4 only require that the values of § satisfy certain linear
constraints. Thus, lower 8 values than ours can be derived using linear programming (though
the constraint set grows exponentially with the task count). This suggests that the properties
in Sec. 3 are sufficient to derive tighter analytical tardiness bounds than ours.

In future work, we will investigate dynamic task systems, where tasks may enter or exit
the system and affinity masks may change at runtime. The interaction of affinity masks
with dynamic task systems is particularly relevant to SCHED_DEADLINE, as admission control
with affinity masks is currently broken. We plan to investigate what restrictions must be
placed on these dynamics to avoid compromising bounded tardiness, as done in prior work [4]
on GEDF without affinity masks. We are also interested in how overhead accounting and
non-preemptive sections might be handled as well as how algorithms that satisfy IA-GEDF
might be constructed with lower time complexity than in App. A.

The SRT-optimality of GEDF on more general platforms also remains an open problem.
We have shown via a counterexample that HP-LAG, a property that applies to both Uniform
and ldentical-Aff individually, does not hold when the models are combined. It is unknown
whether a weaker version of HP-LAG exists that applies to the more general processor models
while still being sufficient to bound tardiness. If not, these open problems may require new
proof techniques.
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