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Abstract Dietary assessment is essential for understanding the link between diet and
health. We develop a context based image analysis system for dietary assessment to auto-
matically segment, identify and quantify food items from images. In this paper, we describe
image segmentation and object classification methods used in our system to detect and
identify food items. We then use context information to refine the classification results. We
define contextual dietary information as the data that is not directly produced by the visual
appearance of an object in the image, but yields information about a user’s diet or can be
used for diet planning. We integrate contextual dietary information that a user supplies to
the system either explicitly or implicitly to correct potential misclassifications. We evalu-
ate our models using food image datasets collected during dietary assessment studies from
natural eating events.

Keywords Image analysis · Image segmentation · Object classification · Context
information · Dietary assessment

1 Introduction

There is a health crisis in the US related to diet that is further exacerbated by our aging pop-
ulation and sedentary lifestyles. Six of the ten leading causes of death in the United States,
including cancer, diabetes, and heart disease, can be directly linked to diet [38]. Dietary
intake, the process of determining what someone eats during the course of a day, provides
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valuable insights for mounting intervention programs for prevention of many of the above
chronic diseases. Measuring accurate dietary intake is considered to be an open research
problem in the nutrition and health fields. Traditional dietary assessment is comprised of
written and orally reported methods that are time consuming and tedious, often requiring a
nutrition professional to complete, and are not widely acceptable or feasible for everyday
monitoring [29, 52].

For the past 7 years we have been investigating the use of images that a user takes of
their meal before and after eating to assess their diet. We have developed a system, known
as the Technology Assisted Dietary Assessment System (TADA), to acquire and process
food images [8, 60]. The TADA system, and the associated mobile Food Record (mFR),
allows users to acquire food images using a mobile telephone. Image processing and analy-
sis methods are then used to determine the food type, the energy (kilocalories) and nutrients
of the food [13, 59, 60]. The TADA system has been used by more than 14 scientifically
controlled user studies, including free-living environments, by more than 800 users who
have taken more than 60,000 food images.

The goals of image analysis are to identify the food objects in the image and segment the
regions in the image corresponding to the foods (see Fig. 1). This information can then be
used to estimate the food portion size used for energy and nutrient estimation [13] using the
food density [23, 51]. Before we describe the work proposed in this paper, we will overview
the current state of food record systems.

In recent years, mobile-based “nutrition” applications and Internet-based tools and ser-
vices have become popular. Some of these applications also include the capability of taking
images of foods eaten at different eating occasions and using the images as part of a food
diary to assist users in manually recording their diets. These applications include Diet Cam-
era [11], FoodLog [25], uHealth [9], Tuingle [55], Argus [2], FoodCam [20], DietCam [26]
and Im2Calories [35]. Diet Camera and Argus are basically visual food trackers that allow
users to log their diet along with various activities. DietCam, designed for automatic food
intake assessment, is based on images acquired from multiple views using a mobile tele-
phone. FoodLog provides both a mobile application and cloud service that allows users to
record daily dietary intake by acquiring images of food. In many of these systems, a user
must first identify the names and quantities of food items and then the nutrient values are
estimated, which places a large portion of the dietary assessment on the user (or on a human
analyst). The uHealth service is a image based wellness information system. However, the
authors only used a single texture feature and evaluated the system using pizza images.
Tuingle, advertised as the mobile food scanner, is able to automatically recognize food items

Fig. 1 Food image analysis. Given an eating occasion image, our goal is to identify all the food items in the
image and estimate the food weight
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and it requires users to manually input portion size to complete nutrient and calorie assess-
ment. Im2Calories developed by Google uses deep learning techniques to recognize food
but it has not been released to public. Some researchers [41] focus on improving the scal-
ability of the food image analysis service by introducing queuing management, indexing
food images, allocating cloud resources.

We have described our approach to food image analysis in [60] and our recent work in
food volume estimation and food portion size estimation in [13]. In this paper we present
new approaches to food image analysis based on the use of contextual information. Contex-
tual dietary information is the data that is not directly produced by the visual appearance of
a food object in the image, but yields information about a user’s diet or can be used for diet
planning. Examples of contextual information in dietary assessment include the time, date,
and location (GPS coordinates) of a meal occasion, the dietary patterns or combinations.

Our previous work on food classification has shown that there are several issues that need
to be addressed [60]. These include the inability to differentiate visually similar food items,
e.g. diet coke vs. regular coke, nonfat milk vs. 2% milk, solely based on their appearance
in the image. Another issue is the selection of training data for different classes. Increasing
the number of food training classes could cause a drastic increase in the food classification
error. Using contextual dietary information the classifier can assign different weights to the
food classes that are more relevant to what are commonly eaten by the individual at simi-
lar times, dates or locations. For example, we can learn that an individual is more likely to
have scrambled eggs in the morning rather than in the evening from the temporal data. GPS
information is able to indicate where a person has the meal, whether at home, at work or in
a restaurant. Assuming that people consume different foods at home/work compared to any
meal served in a restaurant, GPS data can be treated as a priori in the classification process.
Thus, the contextual information can reduce the number of classes that the classifier has to
select from and hence can learn the dietary habits of the participant. In this paper we inte-
grate contextual dietary information that a user supplies to the system either explicitly or
implicitly to correct potential misclassifications. Contexutal information such as temporal
data, food co-occurrence pattern along with a personalized model is the focus of this paper.
We extend our earlier work on food image classification [60] and on the use of contextual
information [18, 58] in which we introduced the idea of incorporating food consumption
frequency and food co-occurrence pattern in assisting food classification. The main con-
tributions of this paper include improving image segmentation and refinement methods
and integrating a personalized learning model to enhance the food classification. We show
that both our segmentation-to-classification pipeline with handcrafted features and a region
proposal based method with deep features benefit from the contextual data.

2 Food image segmentation and classification

As we indicated in Section 1 the goal of this paper is to describe how the use of contextual
information can improve food image segmentation and food classification. We first describe
the segmentation and classification methods we will use for the contextual studies. The goal
of segmentation is to locate and isolate food items in eating occasion images. The accuracy
of food segmentation plays a crucial role in the overall performance of the system because
false segmentation will cause degradation of the subsequent image analysis steps including
food identification and pose size (weight) estimation. We have previously evaluated several
approaches to generate initial segmentation results such as active contours [22], normalized
cuts [49] and local variation [14]. We reported a comparative study in [17] to quantify
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the importance of the segmentation method. Feedback from the classifier is then used to
refine the initial segmentation results [18, 60]. We use local variation for the segmentation
technique in this paper as it is fast and relatively good at preserving edges. Based on our
previous evaluation [17], local variation also shows better results in terms of being more
stable to the change of parameters.

2.1 Segmentation refinement

In this section we overview how we refine the segments generated by local variation [14].
Local variation is a graph based segmentation method, in which two regions are segmented
if the difference between the two regions is large relative to the internal difference within at
least one of the two regions. The degree to which the difference between regions must be
larger than minimum internal difference is controlled by a threshold β [14]. β roughly con-
trols the size of the regions in the resulting segmentation. Smaller values of β yield smaller
regions and favor over-segmentation. We use β = 150 in the segmentation experiment.
Since the image segmentation method is limited by a particular choice of input parameters,
some food items may be under-segmented, while others may be over-segmented. We seek
to overcome the segmentation problem by using classification feedback to refine the seg-
mentation results. In our approach, the image segments are classified to a particular food
label using the features extracted from that segment. The K most probable candidate classes
along with their classification confidence scores are used to refine initial segmentation
results. This approach is similar to our earlier work of the joint segmentation/classification
described in [60]. In our earlier work segmentation refinement is achieved through adjust-
ing a set of segmentation parameters for salient regions. In this paper we do not use salient
regions, our segmentation refinement is based on image segments generated from initial
segmentation. Figure 2 shows our segmentation refinement approach.

Fig. 2 Segmentation refinement
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To detect under-segmentation, we first scan all the segments produced by the use of
local variation in the image to filter out small segments. We define “small segments” as
segments that contain less than 1/50 pixels of the original image. Each remaining seg-
ment is re-segmented and classified again. If the food classification confidence score is
improved by re-segmentation, we accept the new segmentation; otherwise the original seg-
mentation is kept as final segmentation. After under-segmentation examination, we update
the label of the segments to {s0, s1, ..., sQ−1} and the corresponding food category label as
{(c0,0, c0,1, ..., c0,K−1), ..., (cQ−1,0, cQ−1,1, ..., cQ−1,K−1)}.

After under-segmentation examination, for each adjacent pair of segments, if a food
category label in one segment equals to a label in the other segment, and the sum of the con-
fidence score is greater than the highest individual score, we combine these two segments
with their updated K category labels corresponding to the K largest confidence scores in the
descending order. This process of over-segmentation examination is done iteratively until
the overall confidence score of a segment cannot be improved.

After under-segmentation and over-segmentation are examined, we may still have redun-
dant segments, such as in the background area. We use a fast rejection step to remove these
redundant segments [60]. We filter out the segments with low confidence scores from the
classifier. Illustration of the complete image segmentation refinement process is shown in
Fig. 3.

2.2 Feature selection

Features are used for describing the characteristics of objects. An essential step in solving
the food classification problem is to select suitable features to distinguish one food from
another. Some foods may have very distinctive color or very distinctive patterns, but for most
food items it is the combination of these aspects that make them distinctive. Previously, we
have investigated various features for food classification [18, 60]. In this paper, we overview
three types of features, color, texture and local region descriptors, among which we regard
color and texture as the global features. Based on the evaluation of these feature descrip-
tors and their combinations, we select the optimal strategy for our food image analysis
system.

Fig. 3 Examples of food image segmentation and segmentation refinement. a original food images, (b)
initial segmentation results using the local variation segmentation, (c) segmentation refinement using food
classification confidence score, and (d) final image segmentation results after fast rejection
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It should be noted that in this section we will describe a set of features used in our
contextual experiments. Other approaches such as deep networks [35, 45] could also be
used to investigate the use of contextual information.

Color features have been extensively studied in image retrieval [32]. Some foods may
exist in a wide variety of colors, but many have a distinctive color. Color information is
sensitive to environmental conditions, such as changes in light source and shadows. We
investigated two color descriptors, namely, Dominant Color Descriptor (DCD) and Scalable
Color Descriptor (SCD) [32]. DCD is a vector of D representative colors from the CIE-Luv
color space using the generalized Lloyd algorithm for color clustering [10, 24] and their
corresponding percentages. SCD is determined by quantizing the colors in the HSV color
space uniformly into 256 bins, which includes 16 levels in H, 4 levels in S, and 4 levels in
V as suggested by the MPEG-7 standard [32].

Texture, similar to color, is a very descriptive low-level feature. In general, texture
describes the arrangement of basic elements of a material on a surface [3, 21]. We selected
two texture descriptors for food classification: Entropy-Based Categorization and Fractal
Dimension Estimation (EFD) and Gabor-Based Image Decomposition and Fractal Dimen-
sion Estimation (GFD) [60]. EFD can be seen as an attempt to characterize the variation of
roughness of homogeneous parts of the texture in terms of complexity [60]. GFD is based
on fractal dimension estimation [60].

Local region features are described for points of interest and/or local regions. The idea is
to find points in the object which can be reliably found in other samples of the same object
regardless of variations between images. An invariant local region feature describes such
points of interest in the same way in different images with illumination, scale and viewpoint
changes. Many local region features have been proposed to represent the characteristics of
points of interest [5, 30, 36, 53]. We investigated the following two local region features for
food classification: Scale Invariant Feature Transforms (SIFT) [30] and Multi-scale Dense
SIFT (MDSIFT) [60]. Table 1 summarizes the features used in our experiments.

2.3 Classification

Once the food items are segmented from a eating occasion image and the features are
extracted, we classify the color and texture features using K-Nearest Neighbors (KNN) [12]
and the local features using the Vocabulary Tree (VT) classifier [18]. Ths classification
results based on the automatic segmentation are presented in Section 5. The context integra-
tion described in this paper is independent of the type of classifier. As we indicated we are
using KNN and VT but other machine learning approaches such as SVM and deep networks
could also be used [35, 45].

Table 1 List of features investigated and their types and dimensions

Feature Feature type Dimension

DCD Color feature 20

SCD Color feature 256

EFD Texture feature 120

GFD Texture feature 120

SIFT Local region feature 128

MDSIFT Local region feature 384
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KNN [12] is widely used. Given a query feature vector, KNN predicts the classification
label based on a number of closest training vectors. The distance measure chosen for the
KNN classifier depends on the feature characteristics. We use the L1 norm for the histogram
based features (SCD, EFD and GFD). We use the L2 norm for the DCD feature [18].

Suppose the number of trained food classes is N . Given a query feature vector (fq ), we
find the L nearest training feature vectors using KNN [18]. Given the food class cl of each
of the L nearest training feature vectors (ft,l), we estimate the classification “confidence
score” of each food class as in (1). The confidence score φ(cl) describes the classifier’s
confidence that its inferred class label cl is the correct label of the query feature vector fq

[60].
φ(cl) =

∑

t,i=l

exp(−d(fq, ft,l)/(d1−NN + ε)) (1)

where d(fq, ft,l) is the distance between the query feature vector and the training feature
vector belonging to class cl . d1−NN is the distance between the query feature vector of the
input segmented region and the nearest neighbor (1-NN). We added ε to denominator to
avoid the case of division by zero.

Vocabulary trees (Fig. 4) have been shown to be efficient in large-scale image retrieval
and object recognition [1, 39, 42, 48, 57]. A vocabulary tree is a hierarchical quantization
that is based on hierarchical k-means clustering [39, 57]. K-means clustering proceeds by
assigning data samples to their closest cluster centers and re-estimating the cluster center
positions iteratively. To build a vocabulary tree, the training data is first partitioned into
P clusters using an initial k-means clustering. Each cluster center serves as a branch for
the root of the vocabulary tree. Then for each cluster, the same k-means clustering process
is done again with the cluster center as the root of the cluster. The same process is done
recursively to each new cluster until the maximum number of leaves H has been reached.
We use the branching factor P = 3 and the maximum number of leaves (H = 10, 000) [18].
Given a trained vocabulary tree, we classify a query image by assigning it to an existing food
class. We first extract a set of local region feature vectors from the query image. The query

Fig. 4 The food classification process using a vocabulary tree



Multimed Tools Appl

feature vectors are then classified by propagating them down the tree, up to the maximum
level of the tree in the same manner as the dense features in [39]. At each level of the
vocabulary tree, the descriptor feature vector is compared to all the children of the current
root, and assigned to the branch of the closest child. The same process is done recursively
until a leaf node is met. A path from the root to a leaf at the maximum level of a vocabulary
tree is known as a “visual word.” We associate each path down the vocabulary tree with a
single integer and then use it in scoring [39].

One significant advantage of using a vocabulary tree over one step k-means clustering
is the computational efficiency of adding new training data to the vocabulary tree. When a
new training descriptor vector is added to the vocabulary tree, only a part of the tree needs to
be modified, while in one-step k-means clustering the entire vocabulary may be modified.
Finally, we classify each segment using the weighted sum of confidence scores from KNN
classifiers for each global features and from the vocabulary tree for local features.

3 Region proposal based approach with deep features

Since the interest in Convolutional Neural Networks (CNN) was rekindled by AlexNet [27]
in 2012, the number of applications using deep networks has grown exponentially. CNNs
have dominated many aspects of object classification and detection [28]. Besides, recent
research indicates that the generic descriptors extracted from the convolutional neural net-
works are very effective [45]. The success of CNNs is larged attributed to big data and
carefully designed models. In terms of food image analysis, some researchers [33] focused
on improving the network structure by considering the food structure in the image, or
“vertical food layer”. However, they did not utilize any contextual information to improve
classification for foods that do not have obvious structure in their appearances.

In the section, we describe a region proposal based method to identify multiple food
items in an image. In contrast to the segmention-to-classification pipeline we discussed in
Section 2, deep features are extracted from redundant proposed regions instead of segments.
Then, support vector machine (SVM) [45] is used to classify each region as either a specific
food item or background. Similar to RCNN [16], we adopted selective search [56] as the
generic region proposal method. We finetuned VGG-16 [50] on Food-101 dataset [7] and
used the output from the first fully connected layer as the deep features.

Before we forward propagate the region proposals through the network, we first run a
fast rejection to eliminate tiny regions and regions with large aspect ratios. The fast rejection
is based on the assumption that the food items in a food image usually occupies the majority
of the scene.

We used the PyTorch [43] implementation of the VGG-16 [50] to obtain the 4096-
dimensional features from each region proposal that was not rejected. In order to convert a
region proposal to the dimension compatible with the deep network, we proposed a random
10-crop technique. Since VGG-16 requires the input image of 224×224, for any region pro-
posal, we first resize it so that the shorter dimension of the region is 224. Then we randomly
select 10 224 × 224 cropped regions from the resized proposal. Features are computed by
propagating a mean-subtracted 224 × 224 RGB image through the network.

Finally, we used a SVM to classify food items and the background. For regions that are
classified as a certain food class with greater than 75% confidence, we apply non-maximum
suppression to select the best proposal. We combine the majority vote from the 10-crop
technique with the confidence score from SVM to finalize our prediction. As improving
deep features or region proposal methods is not the focus of this paper, we only show the
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experimental result using our own dataset in Section 5 as a comparison to the method we
discussed in Section 2. More importantly, we show that the contextual information can be
integrated as easily in the region proposal based approach as in the previously discussed
segmentation-to-classifiation pipeline.

4 Context refinement

Contextual information has gained more attention in image analysis and computer vision in
the past few years [6, 15, 34, 37, 40, 44, 54]. Context such as semantic, spatial images and
poses has been proved to be effective for natural images. Examples of contextual informa-
tion in the dietary applications include the date, time and location of the eating occasion,
who the subject is eating with, and personal eating habits. In this section we overview our
previous approaches for integrating contextual information which the participant supplies
to the system either explicitly or implicitly [58] and propose a new approach for combin-
ing temporal eating information and food co-occurrence into a personalized learning model.
Note that the contextual information we investigate are independent of the classifier and can
be used with other types of machine learning techniques (e.g SVM and deep networks [35,
45]).

4.1 Temporal dietary information

We explore temporal information of food images to generate the preference of different
food classes based on time of an eating occasion. People usually eat different types of foods
with regard to the time of a day, such as breakfast vs. dinner. We incorporate this contextual
dietary information to assign a weight to different food classes.

We divide eating time into three time intervals: 12am - 11am, 11am - 4pm, and 4pm
- 12am (midnight). For example, from our “free-living” dietary assessment study [58] the
food consumption frequency of these three time intervals are shown in Figs. 5, 6 and 7,
respectively. We can see unique food consumption patterns for different time intervals. For
example, from 12am to 11am, “Bagel”, “English Muffin” and “Pancake” are more likely to
be consumed than other foods such as “Chicken Wrap,” “Frozen Meal Meatloaf” and “Ham
Sandwich.” From 11am to 4pm, people tend to eat more “Ham Sandwich” and “Potato
Chips” than earlier in the day. When it comes to 4pm to 12am, there is a significant increase
in the consumption of “Garlic Bread” and “Lasagna.” Given a participant’s food consump-
tion frequency over time, we assign different weights to different food classes according to
the eating occasion time.

4.2 Food co-occurrence patterns

A food co-occurrence pattern describes the likelihood of food combinations. It is the joint
probability of food items existing together in a single eating occasion [58]. Semantic context
can provide valuable information for improving classification. In this section, we describe
the use of the co-occurrence of food items in order to reach a labeling agreement for all the
segmented regions in an image. The goal is to detect potential misclassifications and refine
the classification results that were obtained by using only visual features.

After image segmentation and food classification, an eating occasion image I is seg-
mented into multiple regions s0, ..., sq , ..., sQ−1. A segment sq is assigned K food labels.
A classification confidence score φ(cq,k) measuring the probability that any food label
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Fig. 5 Examples of food consumption preference between 12am (midnight) and 11am

matches the segment sq based on the distance of the visual features between the segmented
region and the training data. We now want to adjust the food labels to achieve maximal
global contextual agreement with respect to the food co-occurrence pattern given the con-
straints of the segments’ visual features. For example, in most cases “fries” has a higher
contextual agreement with “ketchup” than with “pepper.”

Graphical models provide a simple way to visualize the structure of a probabilistic model.
Since the number of food segments in an eating occasion is relatively small, we construct
a weighted complete digraph between all segments [19]. In our graph, each node in the
weighted complete digraph represents a segment and its associated food labels from the
food classification results. Therefore, the graph contains Q nodes and each contains K food
labels. Obviously, one node has Q − 1 outgoing edges and Q − 1 incoming edges.

The food co-occurrence probability of food label cj,k given food label ci,k′ , denoted as
P(cj,k|ci,k′) is defined as follows,

P(cj,k|ci,k′) = max{P(cj,k|ci,1), ..., P (cj,k|ci,K−1)} (2)

where k and k′ independently indeces K . Then the influence of segment i on the kth food
label of segment j , v(cj,k|si), is calculated as:

v(cj,k|si) = φ(ci,k′)P (cj,k|ci,k′) (3)

where φ(ci,k′) is the classification confidence score of food label ck′ in the ith segment.
Finally, the weight of the edge from node i to node j , vij , is defined as an influence vector

Fig. 6 Examples of food consumption preference between 11am and 4pm



Multimed Tools Appl

Fig. 7 Examples of food consumption preference between 4pm and 12am (midnight)

indicating how much influence the food labels in segment i have on all the food labels
in segment j . An influence vector of K-dimension is computed from the food occurrence
pattern as follows,

vij = [v(cj,0|si), ..., v(cj,k|si), ..., v(cj,K−1)|si)] (4)

To estimate the co-occurrence probability, we first construct a food co-occurrence matrix
MFCO that contains the food co-occurrence counts among food labels in the training set of
the database [58]. Figure 8 shows an example of a food co-occurrence matrix. The entry
(i, j) in a food co-occurrence matrix is the number of times that food λj is in an eating
occasion image when food λi is in the image [58].

Figure 8 illustrates the structure and content of a food co-occurrence matrix. As we can
see, some food items have a high probability of existing together in the same image, e.g.
“Wheaties” with “Milk,” “Garlic Bread” with “Lasagna;” while some food items rarely
appear together in the same image, e.g. “Carrots” with “Celery.” Note that the co-occurrence
matrix is trained on training data, where we have perfect segmentation and food labels from
our dietary studies. The matrix is only updated when we receive a participant’s confirmation
from the review process of the TADA system where the participant can confirm, change or
add food labels [58].

So far we have found the influence vector from si to sj . Following the same approach,
we find the influence vectors from all other segments to sj . The next step is to find the total
influence on sj from all other nodes in the graph. We propose to use the maximal influence
vector wj :

wj = [max({vij (0), i �= j}), ...,max({vij (K − 1), i �= j})]
where {vij (k), i �= j} is the set containing the kth element of each of the influence vectors
that point to node j . We choose the largest influence given to each food label of node j as
the final influence vector wj . We finally update the food classification confidence score of
each food label of node j as follows:

φ′(cj,k) = φ(cj,k)(wj (k) + ε) (5)

where ε > 0 and wj(k) is the kth element of wj . The term ε is used to avoid setting φ′(cj,k)

to zero whenwj(k) = 0. The max influence of one segment on another is constrained by the
max confidence score of the food label. For each adjacent pair of segments, we only accept
the new segmentation if a food category label in one segment equals to a label in the other
segment, and the sum of the confidence score is greater than the highest individual score.
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Fig. 8 An example of food co-occurrence patterns

After the confidence scores for segment i is updated to {φ′(ci,0), ..., φ
′(ci,K−1)}, we

update the order of food labels accordingly, with the Top 1 food label being the one asso-
ciated with the largest updated confidence score, and the Top M food label being the one
associated with the Mth largest updated confidence score.

4.3 Personalized learning model

The goal of a personalized learning model is to improve food classification by using dietary
preferences (Fig. 9). For example, if it learns that a person prefers diet coke and he/she never
drinks regular coke from his/her dietary history, the personalized learning model will adjust
the prediction of different coke products if a classifier initially assigns similar confidence
scores to those classes.

Figure 10 illustrates a list of food consumption frequency patterns for various participants
in our free-living study. For example in Fig. 10, most of the participants shown here drink
milk quite frequently but participant 36 rarely drinks milk. We can also tell that the favorite
fruit of participant 3 is “Grapes;” the favorite drink for participant 35 is “Orange Juice;”
and the favorite food for participant 36 is “Lasagna.” The figure shows the differences in
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Fig. 9 An example of food consumption frequency by a participant with the integrated time information
integrated. The colors indicated different eating time intervals

individual eating habits using food consumption frequency for this subset of foods. The
food consumption frequency of food item λi for a participant Sj is:

F(Sj , λi) = γi(Sj , λi)∑
k γk(Sj , λi)

for k = 1, ..., K (6)

where γi is the food consumption counts of a participant and K is the number of food
classes.

The personalized learning model takes into account both temporal dietary
information and food co-occurrence patterns. Figure 11 shows how we propose
to do context-based classification refinement. Given a set of labeled segments
{(c0,0, ..., c0,K−1), ..., (cq,0, ..., cq,K−1)} with associated confidence scores {(φ(c0,0), ...,

φ(c0,K−1)), ..., (φ(cq,0), ..., φ(cq,K−1))}, the food co-occurrence pattern generates an
updated confidence scores for each segment in the image,

{(φ′(c0,0), ..., φ′(c0,K−1)), ..., (φ
′(cq,0), ..., φ

′(cq,K−1))}.
In the temporal information block of Fig. 11, we use recursive Bayesian estimation

to incrementally learn a participant’s dietary pattern [4, 46, 58]. We model whether a
participant, Sj eats a particular food, λi in time internal, V , as a Bernoulli trial,

W =
{
1, X
0, 1 − X

.

whereW = 1, X represents Sj eats λi in V with a possibility,X, andX is assumed to follow
a Gaussian-like distribution with the support from 0 to 1. As discussed in Section 4.1, we
used three time intervals 12am - 11am, 11am - 4pm, and 4pm - 12am (midnight).

We would like to estimate the probability, Pλi
, that a participant, Sj , will eat a particu-

lar food, λi on the next day given the history [58]. Let pλi
(xn) be the probability density

function (PDF) representing Sj eats λi , in the time interval V on the nth day, and zn be the
observation whether Sj eats λi in V on the nth day [58].

The following equations describe the posteriori update step in the recursive Bayesian
network,

pλi
(xn|z1:n, V ) = pλi

(zn|xn, V )pλi
(xn|z1:n−1, V )

pλi
(zn|z1:n−1, V )

= likelihood × prior

normalization term
. (7)
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Fig. 10 An example of food consumption frequency for various participants.Horizontal axis shows the IDs
of participants and vertical axis represents various food items

Initially, pλi
(x1|V ) is assumed to have a Gaussian-like distribution centered at 0.5 with unit

variance. If the participant eats λi in V on the nth day, pλi
(zn|xn, V ) becomes the Gaussian-

like distribution centered at 1 with unit variance, otherwise the distribution centers at 0.
pλi

(xn|z1:n, V ) is used to predict pλi
(xn+1|z1:n, V ) and the PDF is computed by multiply-

ing the likelihood and prior followed by normalization between 0 and 1. On the n + 1th day,
the optimal estimate of Pλi

(V ) is computed as Pλi
(V ) = argmax

x
pλi

(xn|z1:n, V ) (Fig. 9).

For all the foods in the training dataset, we have a set of probabilities,
{P n+1

λ0
(V ), . . . , P n+1

λK−1
(V )} where N is the total number of food categories. We further

define the context-based confidence scores (CCS) to be:

�n+1(V ) =
[
ψn+1

λ0
(V ), . . . , ψn+1

λK−1
(V )

]T

=
[
ωP n+1

λ0
(V ), . . . , ωP n+1

λK−1
(V )

]T
. (8)

where ω controls the trust weight we assigned to the context-based decisions. For each
image segment, the CCS associated with the Top M food labels, (ψi,0, ..., ψi,M−1), can
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Fig. 11 The use of contextual dietary information in food classification refinement

be obtained from �n+1(V ). The final confidence scores are calculated using a strategy of
majority vote,

(φ′′(ci,0), ..., φ
′′(ci,M−1)) = (φ′(ci,0), ..., φ

′(ci,M−1))

+ (ψi,1(V ), ..., ψi,M−1(V ))

= (φ′(ci,0), ..., φ
′(ci,M−1))

+ (ωPi,1(V ), ..., ωPi,M−1(V )) (9)

ω, also in (8), is set to be 1/h of the maximum automatic analysis based confidence score.
In our experiments, we observed best results when h was set to 4-5. The food labels are
updated again according to the new confidence scores to generate the final food labels
{(c′′

0,0, ..., c
′′
1,M−1), ..., (c

′′
q,0, ..., c

′′
q,M−1)}.

5 Experimental results

5.1 Experiment setup and datasets

We evaluate our system using a free-living dietary study where we provided some foods to
the participants and were flexible relative to their preferences regarding how and when foods
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were eaten [58]. In addition, we encouraged the participants to select their own favorite
foods if not provided [47]. They used the TADA mobile application to record their eating
occasions and all the images were uploaded to our back-end server and then analyzed using
the techniques we described in the previous sections.

This study consists of 45 participants. Each participant was asked to acquire eating occa-
sion images at each eating occasion for a 7-day period. In total 1,453 eating occasion images
were collected in the study and 42 commonly eaten food items were analyzed. Moreover, the
dataset contains rich contextual information, such as participant feedback, temporal data,
GPS location and nutrient information.

We used the free-living dataset as it is for evaluating features and classification. To eval-
uate the personalized learning model on a day-to-day basis, we selected participants in the
free-living study with similar food consumption patterns to construct three datasets. We
measure the similarity using Euclidean distance between each food consumption pattern
and used K-means for clustering. For example, one of the datasets contains 119 food images
from participant 14, 17, 20 and 32. As illustrated in Fig. 10, participant 14, 17, 20 and 32 all
show relatively high consumption frequency of milk, mixed salad and lasagna. Each dataset
features a different food consumption pattern and contains approximately 120 images. We
labeled them as Dataset 1, 2 and 3 corresponding to User 1, 2 and 3. Milk, lasagna, mixed
salad and garlic bread are the most frequently-consumed foods in Dataset 1, while Dataset
2 does not have any frequently-consumed foods except milk. Dataset 3 represents a sig-
nificant dietary pattern change within a month. The first three weeks in Dataset 3 have
similar food consumption style as Dataset 1. However, the eating pattern of the last week
was selected to be noticeably different.

In addition, we use a subset of the 1453 images for evaluating the performance of the
region proposal method with deep features. Due to the limitation of the bounding box
groundtruth we have in the free-living dataset, the subset consists of 60 images of 24 food
classes and we denote it as Dataset 4. On average, each image contains 4 instances of the
24 food classes. The bounding box groundtruth of the 24 food classes from the rest of the
free-living dataset are used for training.

5.2 Feature and classification

As we discussed in Section 2, we classify food items based on the automatic segmentation
result and the features extracted from each segment. The food identification accuracy is
defined as: accuracy = T P/(T P + FP/M + FN)

where TP indicates True Positives (correctly detected food segments); FP indicates False
Positives (incorrectly detected food segments or misidentified foods); FN indicates False
Negatives (food not detected). Finally, M refers to the identification accuracy order. If
one food classification label is generated for each image segment, then M = 1. In our
implementation, after image segmentation and food classification, each image segment is
assigned 4 food categories (or classes) with the 4 largest class labeling confidence scores
(M = 4).

The classification accuracy of a single feature is discussed in [18]. From the results,
we see that color features achieve better classification accuracy compared to texture fea-
tures. DCD outperformed all other features. This suggests that in general we can represent
the color content of food items using only a few colors, which is consistent with color
representation of general objects [31]. As to local features, the MDSIFT feature achieves
better food classification results than the SIFT feature. We combine the confidence scores
of food labels that belong to the same food class and choose M food classes with Top M
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Table 2 Food classification accuracy from feature combination

Features Top 1 accuracy Top 4 accuracy

DCD + MDSIFT 60.9% 83.27%

DCD + MDSIFT + SCD 62.9% 85.1%

DCD + MDSIFT + SCD + SIFT 64.5% 84.2%

DCD + MDSIFT + SCD + SIFT + EFD 63.5% 83.4%

DCD + MDSIFT + SCD + SIFT + EFD + GFD 62.9% 82.8%

confidence scores. Each feature is assigned with a weight from 0 to 1 based on our train-
ing experiment and the final confidence score is obtained by a weighted sum model. The
food classification accuracy of Top 1 and Top 4 most probable food classes is shown in
Table 2.

Table 2 summaries the food classification results after combining multiple features.
Based on the performance of feature combinations and complexity consideration, we choose
three features, namely, DCD, MDSIFT and SCD, in our food classification system. The Top
1 and Top 4 food classification accuracy for each food item using the combination of these
three features is shown in Fig. 12. When tested on Intel Xeon X5550 CPU, it usually takes
30-70s for one image to complete segmentation and classification depending on the number
of food items in the image.

We fully understand that automatic identification of food items in an image is not an easy
problem and we will not be able to recognize every type of food. The way of packaging or
the way the food is served will present problems for automatic recognition. Also some food
items are inherently difficult to identify due to their visual similarity in the feature space.
In some cases, even if a food is undetected or not correctly identified, it may not make
much difference with respect to the energy or nutrients consumed. For example, if we fail
to detect water in an eating occasion image, it will have little impact on the estimate of the
energy or nutrients consumed in the meal due to the low energy content of water. Similarly,
if our system identifies a “brownie” as “chocolate cake,” there is no significant difference
in energy or nutrients consumed.

Fig. 12 Top 1 and Top 4 food classification accuracy for each food item with three features fused together,
DCD, MDSIFT and SCD. The top of the orange bar: Top 1 classification accuracy; the top of the blue bar:
Top 4 classification accuracy



Multimed Tools Appl

5.3 Region proposal based approach with deep features

To evaluate the performance of the region proposal based method, we selected 24 food
classes with relatively sufficient bounding box groundtruth as mentioned in Section 5.1. We
start with 20 bounding boxes on average for each class and we augment the training set
by applying minor shifting to the original groundtruth. We end up getting more than 100
bounding boxes for each class. We validate the SVM model using a 5-fold cross-validation.
For each bounding box groundtruth, we first resize it so that the shorter dimension of the
region is 224 while keeping the aspect ratio. Then the deep features are extracted from
the 224 × 224 center-cropped region. In our experiment, we chose the SVM model with
the Radial Basis Function kernel where C = 1000 and γ = 0.001. Dataset 4 was used
to evaluate the proposed method. For each detected region, we consider it correct if it has
more than 80% overlap with the groundtruth. We report 52.4% detection and classification
accuracy.

5.4 Contextual refinement

We conducted two experiments to validate the personalized learning model. First, we
tested on the same 1453 eating images used in the feature and classification experiment
by assuming the food assumption frequency and co-occurrence pattern are known. If the
food co-occurrence pattern is given, the Top 1 and Top 4 food identification accuracy
increased to 65.3% and 85.9% compared to 62.9% and 85.1% without contextual informa-
tion. The accuracy is further improved to 71.4% and 88.3% with both food assumption
frequency and co-occurrence pattern. The food identification accuracy for each food item
is shown in Fig. 13. Comparing food classification accuracy obtained after contextual
refinement (Fig. 13) and before contextual refinement (Fig. 12), we can see that most
of the food items in our dataset achieve a better classification accuracy. Similarly, we
tested the region proposal based method on Dataset 4. We achieved 57.5% detection
and classification accuracy with contextual information by assuming the food assump-
tion frequency and co-occurrence pattern are given compared to 52.4% without contextual
information.

Next, we would like to examine how the personalized learning model behaves day by
day over a month. As we mentioned in Section 5.1, we have created three datasets from

Fig. 13 Food identification accuracy for each food item after integrating contextual dietary information
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the free-living study, each of which features a different food consumption pattern. In the
following experiment, we use the method discussed in Section 2 as it shows better result
than the region proposal based method in the previous evaluation.

Figure 14a shows how the recursive Bayesian network updates the prediction probabili-
ties for three example food items inDataset 1 from 12 am to 11am. On Day 1, every food has
the same prediction. In the end, the prediction of milk, orange juice and muffin converges
to 0.51, 0.19 and 0.06 respectively. Figure 14b compares the prediction of milk among all
three datasets from 11am to 4pm. It is clear that User 1 consumes milk during lunch time
more frequently than other Users.

Note we use the food label with the highest confidence score (top 1) from the classi-
fier. As we show below the classification accuracy from the highest confidence score is
in the range of 50-65%. In the TADA system we report the top 4 food labels and have a
classification accuracy of 80-85% [18].

Figure 15 demonstrates the food classification accuracy improvement. The blue lines in
Fig. 15a, c and e indicate the average daily food classification accuracy with temporal con-
text, 
context, while the red lines indicate the one without, 
auto. The accuracy improvement
is illustrated in Fig. 15b and it is defined as, improvement = (
context − 
auto)/
auto.

As shown in Fig. 15b, the accuracy improvement drops from Day 10 to Day 20 as the
baseline (classification accuracy without context) increases from 47% to 57%. This implies
that the proposed method is more effective when the automatic image analysis does not
work well. The 80% accuracy rate achieved with temporal context on Day 25 in Fig. 15a
demonstrates the effectiveness of the proposed method when the automatic image analysis
result is poor (36%). In Dataset 2, the classification accuracy without context is always
above 55% (see the red line in Fig. 15c). The drop in the first few days shown in Fig. 15d
implies the undergoing learning process. Nevertheless, Fig. 15b and d both illustrate an
ascent trend of accuracy improvement.

We selected images of the last 7 days to have a noticeably different food consumption
pattern compared to the first 23 days in Dataset 3. We would like to verify the behav-
ior of our training model under circumstance where a participant may change their eating
style. We witnessed a huge drop in Fig. 15f followed by the re-learning state. The accuracy
improvement is the minimum on Day 24 after the first week, because the context-based
prediction puts more confidence on the specific food, which Dataset 3 no longer contains
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Fig. 14 a Food occurrence prediction of three food items, b Prediction of milk among three datasets
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Fig. 15 Learning curves for one month. Daily classification rates with(blue) and without(red) tempo-
ral context are illustrated in (a),(c) and (e). Corresponding accuracy improvements are shown in (b),(d)
and (f)

after the user 3 changes eating habit. For example, milk is not consumed on Day 24. Due
to the dietary change in Dataset 3, the increasing trend of classification accuracy is not
as obvious. Table 3 compares the average daily classification accuracy with and without
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Table 3 Food Classification with Context Information

Statistics User ID With context Without context

Average daily classification accuracy(%) user1 62.90 53.23

user2 69.81 62.90

user3 62.12 53.28

Average daily accuracy improvement(%) user1 18.69

user2 10.94

user3 17.05

contextual information for each user. The average daily accuracy improvement is calculated
as:

1

N

N∑

i=1



(i)
context − 


(i)
auto



(i)
auto

(10)

Due to our dataset selection, the classification accuracy using automatic image analysis
alone in Dataset 2 is significantly higher than other datasets. The lower accuracy in Dataset
1 andDataset 3 reflects the variation in the subset of the total 1453 testing images. Thus, the
accuracy improvement forDataset 2 is expected to be lower (10.94%). The fact thatDataset
2 has less frequently-consumed foods also contributed to the lower accuracy improvement.
When a person has a more consistent eating pattern, such as User 1, the classification
accuracy gain using temporal contextual information is higher (18.69%). On average, the
proposed method of utilizing temporal context shows 15.56% improvement. In the end,
three datasets obtain roughly 65% accuracy with contextual information, which slightly
lower than 71.4% we reported in the first experiment. This is because the classifier grad-
ually learns the personalized eating patterns throughout 30 days, therefore the accuracy
improvement in the earlier days is expected to be relatively lower than the one of the later
days.

6 Conclusions

Dietary assessment is a comprehensive evaluation of a person’s food intake which may
suggest risk factors for diet-related chronic diseases and help to prevent them. In this paper,
we explored methods for use of contextual information dietary assessment.

After the classifying an object with visual features, we use contextual information to
refine the classification decision. The temporal dietary information is used to predict the
likelihood of eating certain foods based on the time of a day and improve the precision of
food classification results. The food co-occurrence pattern is investigated to reach a label-
ing agreement for all the segmented regions of the input image. Both temporal information
and food co-occurrence pattern are integrated in the personalized learning model to accom-
modate different users’ preferences. Experimental results using a free-living dietary study
show that the contextual refinement step is able to improve the classification accuracy of
segmented regions in the images by 15.56%. The increase in food identification accuracy
through incorporating contextual dietary information indicates that our contextual mod-
els are promising and further investigation is warranted. In the future, dietary patterns can
also be incorporated as “side” information for the classifier, if an individual has a repeated
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dietary behavior, the classifier can dynamically select the food classes in the training dataset
that match the eating pattern.
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