SINGLE-VIEW FOOD PORTION ESTIMATION: LEARNING IMAGE-TO-ENERGY
MAPPINGS USING GENERATIVE ADVERSARIAL NETWORKS

Shaobo Fang*, Zeman Shao*, Runyu Mao*, Chichen Fu*,
Deborah A. Kerr', Carol J. Boushey*, Edward J. Delp* and Fengqing Zhu*

*School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
fSchool of Public Health, Curtin University, Perth, Western Australia
Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA

ABSTRACT

Due to the growing concern of chronic diseases and other health
problems related to diet, there is a need to develop accurate meth-
ods to estimate an individual’s food and energy intake. Measuring
accurate dietary intake is an open research problem. In particular,
accurate food portion estimation is challenging since the process of
food preparation and consumption impose large variations on food
shapes and appearances. In this paper, we present a food portion
estimation method to estimate food energy (kilocalories) from food
images using Generative Adversarial Networks (GAN). We intro-
duce the concept of an “energy distribution” for each food image.
To train the GAN, we design a food image dataset based on ground
truth food labels and segmentation masks for each food image as
well as energy information associated with the food image. Our goal
is to learn the mapping of the food image to the food energy. We
can then estimate food energy based on the energy distribution. We
show that an average energy estimation error rate of 10.89% can be
obtained by learning the image-to-energy mapping.

Index Terms— Dietary Assessment, Food Portion Estimation,
Generative Models, Generative Adversarial Networks, Image-to-
Energy Mapping

1. INTRODUCTION

Dietary assessment, the process of determining what someone eats
during the course of a day, provides valuable insights for mount-
ing intervention programs for prevention of many chronic diseases.
Traditional dietary assessment techniques, such as dietary record,
requires individuals to keep detailed written reports for 3-7 days of
all foods or drink consumed [1] and is a time consuming and tedious
process. Smartphones provide a unique mechanism for collecting di-
etary information and monitoring personal health. Several mobile di-
etary assessment systems, that use food images acquired during eat-
ing occasions, have been described such as the TADA system [2, 3],
FoodLog [4], FoodCam [5], DietCam [6], and Im2Calories [7] to
automatically determine the food types and energy consumed us-
ing image analysis and computer vision techniques. Estimating food
portion size/energy (kilocalories) is a challenging task since the pro-
cess of food preparation and consumption impose large variations on

This work was partially sponsored by the National Science Foundation
under grant 1657262, a Healthway Health Promotion Research Grant and
from the Department of Health, Western Australia, and by the endowment of
the Charles William Harrison Distinguished Professorship at Purdue Univer-
sity. Address all correspondence to Fengqing Zhu, zhuO@ecn.purdue.edu or
see www.tadaproject.org.

978-1-4799-7061-2/18/$31.00 ©2018 IEEE

251

food shapes and appearances. There are several image based tech-
niques for food portion size estimation that either require a user to
take multiple images/videos or modify the mobile device such as the
use of multiple images [8, 6, 9], video [10], 3D range finding [11]
and RGB-D images [12]. In this paper we focus on food portion es-
timation from a single food image since this reduces a user’s burden
in the number and types of images that need to be acquired [13].

Estimating food portion size or food volume from a single im-
age is an ill-posed inverse problem. Most of the 3D information has
been lost during the projection process from 3D world coordinates
onto 2D camera sensor plane. Various approaches have been devel-
oped to estimate food portion size and energy information from a
single-view food image. In [14], a 3D model is manually fitted to
a 2D food image to estimate the portion size. This approach is not
feasible for automatic food portion analysis. In [15], food image ar-
eas are used for portion size estimation based on user’s thumbnail
as a size reference. In [16], the pixels in each corresponding food
segment are counted to determine the portion sizes. In [17], food im-
age is divided into sub-regions and food portion estimation is done
via pre-determined serving size classification. We have previously
developed a 3D geometric-model based technique for portion esti-
mation [18, 19] which incorporates the 3D structure of the eating
scene and use geometric models for food objects. We showed that
more accurate food portion estimates could be obtained using geo-
metric models for food objects whose 3D shape can be well-defined
compared to a high resolution RGB-D images [20]. Geometric-
model based techniques require accurate food labels and segmenta-
tion masks. Errors from these steps can propagate into food portion
estimation.

More recently, several groups have developed food portion esti-
mation methods using deep learning [21] techniques, in particular,
Convolutional Neural Networks (CNN) [22]. In [7], a food por-
tion estimation method is proposed based on the prediction of depth
maps [23] of the eating scene. However, we have shown that the
depth based technique is not guaranteed to produce accurate esti-
mation of food portion [20]. In addition, energy/nutrient estimation
accuracy was not reported in [7]. In [24], a multi-task CNN [25]
architecture was used for simultaneous tasks of energy estimation,
food identification, ingredient estimation and cooking direction esti-
mation. Food calorie estimation is treated as a single value regres-
sion task [24] and only one unit in the last fully-connected layer (FC)
in the VGG-16 [26] is used for calorie estimation.

Although CNN techniques have achieved impressive results
for many computer vision tasks, they depend heavily on well-
constructed training datasets and proper selection of the CNN ar-
chitecture. We propose in this paper to use generative models to
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estimate the food energy distribution from a single food image. We
construct a food energy distribution image that has a one-to-one pixel
correspondence with the food image. Each pixel in the energy dis-
tribution image represents the relative spatial amount (or weight) of
food energy at the corresponding pixel location. Therefore, a food
energy distribution image provides insight not only on where the
food items are located in the scene, but also reflects the weights of
energy in different food regions (for example, regions of the image
containing broccoli should have smaller weights due to lower energy
(kilocalories) compared to regions of the image containing steak).
The energy distribution image is one way that we can visualize these
relationships.

More specifically, the generative model is trained on paired im-
ages [27] mapping a food image to its corresponding energy distri-
bution image. Our goal is to learn the mapping of the food image
to the food energy distribution image so that we can construct an
energy distribution image for any eating occasion and then use this
energy distribution to estimate portion size. The weights in food
energy distribution image for the training data are assigned based
on ground truth energy using a linear transform described in Sec-
tion 2.1. We use a Generative Adversarial Networks (GAN) archi-
tecture [28] as GAN has shown impressive success in training gen-
erative models [27, 29, 30, 31, 32] in recent years. Currently, no
publicly available food image dataset meets all of the requirements
for training our generative model that learns the “image-to-energy
mapping.” We constructed our own dataset based on ground truth
food labels, segmentation masks and energy information for train-
ing the generative model. The contribution of this paper is twofold.
First, we show that the proposed method can obtain accurate esti-
mates of food energy from a single food image. Second, we intro-
duce a method for modeling the characteristics of energy distribution
in an eating scene.

2. LEARNING IMAGE-TO-ENERGY MAPPINGS

Here we will initially discuss the requirements of the training dataset
and then we will describe in more details how we construct the en-
ergy distribution image from the training data. Image pairs consist-
ing of the food image and corresponding energy distribution image
are required to train the GAN. There are a several publicly available
food image datasets such as the PFID [33], UEC-Food 100/256 [34]
and Food-101 [35]. However, none of these dataset contains suf-
ficient information required for training a generative model that we
can use to learn the “image-to-energy mapping". We created our own
paired image dataset for training the GAN with ground truth food
labels, segmentation masks and energy/nutrient information from a
food image dataset we have collected from dietary studies. This is
described in more details in Section 2.1. We use the conditional
GAN architecture [27] for training our generative model.

2.1. The Image-to-Energy Dataset

The generative model is designed to best capture the characteristics
of the energy distribution associated with food items in an eating
scene. For food types that have different energy distribution (such as
broccoli versus steak), the differences should be reflected in the en-
ergy distribution image. For constructing the image-to-energy train-
ing dataset, we use food images collected from a free-living dietary
TADA study [36]. We manually generated the ground truth food
label and segmentation mask associated with each food item in the
user food image dataset. The ground truth energy information (in
kilocalories) for each food item was provided by registered dieti-
tians. For these food images we have a fiducial marker with known
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dimension that is located in each eating scene to provide references
for worlds coordinates, camera pose, and color calibration. The fidu-
cial marker is a 5 X 4 color checkerboard pattern as shown in Fig-
ure 1(a). The food energy distribution image we construct from the
above ground truth information needs to reflect the differences in
spatial energy distribution for food regions in the scene. For exam-
ple, for French fries stacked in pyramid shape, the center region of
French fries should have more relative energy weight compared to
the edge regions in the energy distribution image.

To construct the energy distribution image we first detect the
location of the fiducial marker using [37]. We then obtain the 3 x 3
homography matrix H using the Direct Linear Transform (DLT) [38]
to rectify the image and remove projective distortion. Assume I is
the original food image, the rectified image I can then be obtained
by: I =H 'L The segmentation mask Sy associated with food
k can then be projected from the original pixel coordinates to the
rectified image coordinates as Sy = H 'S, Ateach pixel location
(5, j) € Sy, we assign a scale factor w; ; reflecting the distance of

the pixel location (z, 3) to the centroid of the segmentation mask Sj.
The scale factor w; ; is defined as:
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where (ic, jc) is the centroid of S and the regularization term, ¢g, ,
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outside of the segmentation mask Sk, then ; 5 = 0,V(4,7) ¢ S.

is defined as ¢z, 1). If the pixel location (z,7) is

With the scale factor w; ; assigned to each pixel location in Sk, we

can project the weighted segmentation masks S, back to the original
pixel coordinates as S = HJSj, and learn the parameter pj, such

that:
Ck = Pk Z W335
V(i,5) €Sk

2

where cy, is the ground truth energy associated with food k, py is the
energy mapping coefficient for Sy, and w; 5 is the energy weight fac-
tor at each pixel that makes up the ground truth energy distribution
image. We then update the energy weight factors in Sy, as:

Wi 5 = px - W5, V(i,7) € Sk. 3)
We repeat the process following Equation 1 and 2 for all k& €
{1,..., M} where M is the number of food items in the eating
scene image. We can then construct a ground truth energy distri-
bution image WV of the same size as I: I = HI, by overlaying all
segments Sk, k € {1,..., M} onto W. Thus, we obtain the paired
images of an eating scene: the image I and the energy distribution
image W with one-to-one pixel correspondence as shown in Fig-
ure 1(a) and 1(b).

2.2. Learning The Image-to-Energy Mappings

In this paper we use a Conditional GAN (cGAN) [27] that learns
a generative model under conditional setting based on an input im-
age. A cGAN is a natural fit for our “image-to-energy mapping"
task since we want to predict the energy distribution image based on
a food image.

More specifically, the cGAN attempts to learn the mapping from
a random noise vector z to a target image y conditioned on the ob-



(a) Eating occasion image I.

(b) Ground truth energy distribution image WV.

(c) Estimated energy distribution image W.

Fig. 1: Learning image-to-energy translation using generative models.

served image x: G(x,z) — y. The objective function of a condi-
tional GAN is expressed as:

[’CGAN(G7 D) = Exvprdata(an) [lOg D(X7 Y)]+
B pyara (x),2~p, (2 [108(1 — D(x, G(x, 2))].

An additional conditional 108 Lconditionat(G) is added [27] that
further improves the generative model’s mapping G(x,z) — y:

“

[fconditional (G) - Ex,yrvpdata(x,y),zrvpz (z) [D(% G(X, Z))L (5)

where D(y, G(x, z)) measure the distance between y and G(x, z).
Commonly used criteria for D(-) are the Lo distance [39]:

n
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the L, distance [27]:
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and a smooth version of the L1 distance:
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The final objective for both the cGAN and the conditional terms is
defined as [28, 27]:

G" = arg min max Leaan(G, D) + ALconditionat(G).  (9)
The generative model G* obtained from Equation 9 is then used to
predict the energy distribution image WV (Figure 1(c)) based on the
food image (Figure 1(a)).

3. EXPERIMENTAL RESULTS

We have 202 food images that have been manually annotated with
ground truth segmentation masks and labels as training samples. All
the food images are collected from a free-living (in the wild) TADA
dietary study [36]. Registered dietitians provided the ground truth
energy information for each food item in the images. We constructed
a dataset of paired images based on the 202 food images. Data aug-
mentation techniques such as rotating, cropping and flipping were
used to further expand our training dataset so that a total of 1875
paired images were used to train the cGAN. We used 220 paired
images for testing.

if ly: — G(xi,2z:)| < 1
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We believe the training dataset size is sufficient for our task of
predicting the energy distribution image because the cGAN is a map-
ping of a higher dimensional food image to a lower dimensional en-
ergy distribution image. In addition, since all food images are cap-
tured by users sitting naturally at a table, there is no drastic changes
in viewing angles (for example, from wide angle to close up). In
other image-to-image mapping tasks, a training dataset size of 400
has been used [27] for architectural labels (simple features) to photo
translation (complex features) [40].

In testing, once the cGAN estimates the energy distribution im-
age VW, we can then determine the energy for a food image (portion
size estimation) as: estimated energy = » v (; ;) c7(@i ;). We com-

pared the estimated energy image w (Figure 1(c)) to the ground
truth energy image W (Figure 1(b)), and define the error between
W and W as:

Zv(i,j)ei(wid — Wi ;)

Energy Estimation Error Rate = -
Zv(i,j)ei(wi,j)

10)

To compare different cGAN models, we used the encoder-
decoder architecture [41] and the U-Net architecture [42]. We com-
pared the energy estimation error rates at different epochs for both
architectures. We observed that the U-Net architecture (Figure 2(b))
is more accurate in energy estimation and more stable compared to
the encoder-decoder architecture (Figure 2(a)). This is due to the
fact that the U-Net can copy information from the “encoder” layers
directly to the “decoder" layers to provide precise locations [42], an
idea similar to ResNet [43].

We also compared the energy estimation error rates under dif-
ferent conditional loss settings: Lconditionat (G) using U-Net. We
used the batch size of 16 with A = 100 in Equation 9, the Adam [44]
solver with initial learning rate o = 0.0002, and momentum param-
eters 81 = 0.5, B2 = 0.999 as in [27]. Based on our experiments,
distance measure D(+) using the L1 or Lo norms is better than using
smoothed L1 norm. At epoch 200, the energy estimation error rates
are 10.89% (using L1 criterion) and 12.67% (using Lo criterion),
respectively. Using geometric-models [18] techniques, the energy
estimation error was 35.58% [19].

4. CONCLUSION

In this paper, we presented a food portion estimation technique based
on generative models. We showed that the energy estimation error
was reduced to 10.89%. Compared to earlier geometric model-based
technique that relies on accurate food segmentation and classifica-
tion, the energy estimation task can be performed in parallel with
segmentation and classification. We are interested in incorporating
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Fig. 2: Comparison of error rates of different generative models: encoder-decoder versus U-Net.
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