The Synchronous Data Center

Tian Yang

University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Abstract

Today, distributed systems are typically designed to be largely
asynchronous. Designers assume that the network can drop
or significantly delay messages at unpredictable times, that
there is no way to know how quickly a node might process a
message, or how soon it might respond, and that the clocks
of different nodes are at most loosely synchronized. These as-
sumptions are certainly safe, but they come at a price: many
applications really do need predictable performance, which,
on top of an asynchronous system, has to be approximated at
great cost and with lots of redundancy, and many distributed
protocols for asynchronous systems are much more complex
and expensive than their synchronous counterparts.

The goal of this paper is to start a discussion about whether
the asynchronous model is (still) the right choice for most
distributed systems, especially ones that belong to a single
administrative domain. We argue that 1) by using ideas from
the CPS domain, it is technically feasible to build datacenter-
scale systems that are fully synchronous, and that 2) such
systems would have several interesting advantages over cur-
rent designs.

1 Introduction

Today, distributed systems are usually designed to be asyn-
chronous. Designers assume that 1) there is no way to predict,
or even bound, the time it can take to transmit a message
from one node to another; that 2) the network can drop
messages at any time; that 3) nodes could take an almost
arbitrary amount of time to process messages and respond
to them; and that 4) the clocks on different nodes are at most
weakly synchronized.

These assumptions seem entirely reasonable and prudent:
after all, packets really can encounter congestion, routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’19, May 13-15, 2019, Bertinoro, Italy

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6727-1/19/05...$15.00
https://doi.org/10.1145/3317550.3321442

142

Robert Gifford

University of Pennsylvania

Linh Thi Xuan Phan

University of Pennsylvania

loops, and various other kinds of trouble in the network
that can cause it to be delayed or dropped; with commodity
OSes, a node’s response time really can vary considerably,
depending on its workload; and clock-synchronization pro-
tocols such as NTP really do have limited precision. And
even if operators carefully orchestrate services to avoid most
of these complications during normal operation, a hardware
or software fault can easily disrupt the system’s complex
choreography.

However, asynchronous designs come at a considerable
cost, for at least two reasons. The first is that many appli-
cations do require some degree of timeliness: for instance,
VoIP services [34], web applications [10, 40], and many other
user-facing services all suffer considerably from high delays.
A number of mitigations are available, ranging from simple
overprovisioning to far more sophisticated approaches [12,
23, 36], but most of them have a substantial cost and/or are
merely best-effort - that is, they cannot guarantee any delay
bound.

The second reason is that asynchrony has inherent costs
for algorithm design. For instance, an asynchronous protocol
can never be sure that a message will not arrive — no matter
how long a node waits, the message could always have been
delayed for exactly that long and could be just about to arrive.
Many developers resort to timeouts to handle this problem,
but these are notoriously hard to choose [43] and can cause
rare and complex failure modes [18, 24], which has given
rise to an entire line of work on failure detectors [11, 32].
In contrast, protocols for synchronous systems are often
cheaper and much simpler; for instance, the lower bound for
BFT is 3f + 1 in asynchronous systems but only 2f + 1 in
synchronous systems [30].

Much of the literature seems to have accepted these costs
as inevitable — the “cost of doing business” in distributed
systems, as it were. The goal of this paper is to question that
assertion. We argue that, in fact, most of the asynchrony in
today’s distributed systems is avoidable, and that it would
be both possible and desirable to build datacenter-scale sys-
tems that are (almost) entirely synchronous. Our optimism is
based on a combination of three factors: 1) recent advances
in datacenter hardware, such as RDMA and SSDs; 2) recent
progress on the research side, including systems like Fast-
pass [36] and DTP [31]; and 3) insights from other research
areas, such as cyber-physical systems (CPS), which have

HotOS 19, May 13-15, 2019, Bertinoro, Italy

been building fully synchronous systems for decades, albeit
at much smaller scales.

Building a fully synchronous system would be far from
trivial. In a system with multiple administrative domains,
it would be nearly impossible, since a given domain can-
not be sure what the other domains are running on their
nodes. This is why we are initially targeting data centers,
which tend to be controlled by a single entity that controls
everything, from the hardware on up. But even in a data
center, synchrony would be challenging to achieve. A key
reason is that, somewhat analogous to security, synchrony
is a property that is easy to lose but hard to regain: a single
asynchronous component can destroy all end-to-end timing
guarantees. Thus, incremental deployment seems out of the
question.

We are aware that this paper may seem somewhat hereti-
cal - it proposes to flip a best-practice approach on its head;
it flies in the face of the end-to-end principle; and it proposes
sweeping changes to system designs that, at first glance, may
look like an operator’s worst nightmare. Despite all this, we
believe that it makes sense to have a discussion about this ap-
proach. We believe that the technology is ready for a change,
and that there are considerable benefits to be had.

2 The case for synchrony

Asynchrony is an assumption about a distributed system. In
its typical form, it says that a) nothing is known for certain
about the relative speeds of processes or about the delay in
delivering a message, and that b) nodes do not have access
to synchronized clocks. Notice that this “pure” definition
does not assume any bound on delays at all; thus, a protocol
that uses this assumption must work correctly even if, for
instance, a message takes thousands of years to deliver. There
are weaker definitions, such as partial synchrony [19], which
assumes that there is some upper bound on both the message
delay and the relative processing speed of the nodes, but
protocols with this assumption are less common in practice.

A related assumption is that the network is unreliable — in
other words, that any transmitted message can be lost. In its
strongest form, this assumption means that very little can
be done, since the network may very well lose all messages
that are sent over it, so a more common assumption is that
messages are eventually received if they are retransmitted
often enough. However, even the weaker version means
that one cannot effectively bound the time it takes to send
information from one node to another, since it may need to
be retransmitted several times.

2.1 Is asynchrony inherent?

No real-world system is perfectly synchronous - the laws of
physics prevent us from measuring time exactly, no pair of
real-world clocks runs at exactly the same speed, and, due
to platform features such as speculation, one often cannot
predict exactly how long a given CPU will take to execute

143

Tian Yang, Robert Gifford, Andreas Haeberlen, and Linh Thi Xuan Phan

a particular instruction. Also, to our knowledge, no real-
world network can guarantee that all messages will always
be delivered.

But — and this is a critical point! - these inherent limitations
are very small. Google’s Spanner system synchronizes clocks
in different data centers to within 4 milliseconds [16]; the
execution speed on commodity platforms can be stabilized to
within 1-2% [13], and even the worst links in real-world data
centers have a corruption loss rate on the order of 1073 [50].
Even the seemingly inevitable queueing delays are not inher-
ent: systems like Fastpass [36] have demonstrated that even
commodity network hardware can be scheduled so precisely
that packets never experience queueing delay.

So the asynchrony assumption seems incredibly conserva-
tive: real-world systems really do have a considerable amount
of synchrony, and, by designing protocols for the asynchro-
nous model, we are explicitly declining the opportunity to
profit from this synchrony.

2.2 Why is asynchrony so common?

If real-world systems are not inherently asynchronous, the
question arises why it is nevertheless so common to assume
that they are. We speculate that there are two main reasons:
Administrative domains: If parts of the system are con-
trolled by another entity, it is hard to reason about timing
with any certainty, since one cannot know how (and how
well) the other domain is handling timing. This is a signifi-
cant concern, e.g., for the Internet as a whole. However, it is
less of a concern for data centers, where the operator can -
at least in principle — know, and control, every single aspect
of the system.

Lack of predictability: To get complete synchrony, every
part of the system has to support it; even a single component
with unpredictable timing (such as a commodity kernel) can
destroy the end-to-end guarantees, since it will be hard to
tell what the worst case is. Since much of the current off-the-
shelf hardware and software is asynchronous, it is easy for
designers to throw up their hands and to dismiss synchrony
as unrealistic from the get-go. This concern, too, is significant
but not insurmountable: the current situation is akin to a
vicious circle, and it may be possible to break out of it simply
by building an initial stack of synchronous components.

2.3 What is so bad about asynchrony?

Even if it were somehow feasible to build large synchronous
systems, the reader may be wondering why that might be
worth the effort. After all, current data centers seem to be
working just fine — so why would we want to turn the design
on its head?

Source of common problems: One answer is that asyn-
chrony is at the heart of many complex problems that the
community has been dealing with. For instance, considerable
effort has been spent on topics such as mitigating conges-
tion [36, 48], reining in tail latencies [12, 38, 42], smart load

The Synchronous Data Center

balancing [17, 23] and performance debugging [6, 7, 9, 14,
27, 49]; in a hypothetical synchronous data center where all
activity is carefully scheduled, many of these problems could
potentially be alleviated or even disappear completely.

Not as simple as it appears: Another reason is that asyn-
chronous designs are more complex than they intuitively
seem. For instance, most real-world applications cannot wait
for a response indefinitely and thus must eventually time
out requests — but timeouts are notoriously hard to set cor-
rectly [2, 43] and can lead to difficult failure modes [18, 24]
that then have to be dealt with at considerable expense. Provi-
sioning buffers and choosing transmission rates are difficult
if the network conditions are not known and must be la-
boriously inferred from RTTs. Etc. The complexity of these
all-too-familiar issues must be weighed against the perceived
additional complexity of a synchronous design.
Problematic for security: A third reason is that asynchrony
can be problematic for security: if the system does not rea-
son about how long operations can/should take, it is easy to
accidentally create a vector for DoS attacks or a side channel.
One prominent example is the paper by Clement et al. [15]
that showed that many fault-tolerance protocols can be used
to slow down the system to a crawl, and there is an entire
line of research on exploiting various kinds of timing ob-
servations to extract secrets, e.g., on cloud platforms [39].
A synchronous design would not instantly cure all of these
problems, but, by providing a way to at least reason about
timing, it could make it much easier to deal with them.
Inherently higher cost: Finally, asynchrony is known to
have an inherent cost that has been studied, e.g., by the theory
community. It is known that many distributed tasks either
have worse lower bounds in asynchronous systems [3, 5] or
cannot be performed at all when nodes can fail [21]. For in-
stance, BFT has a widely known lower bound of 3 f + 1 nodes
in an asynchronous setting, but even Lamport’s original pa-
per contained a protocol with 2f + 1 nodes for the synchro-
nous setting [30]. This lower complexity, for agreement and
other types of protocols, could mean better performance for
existing systems, and/or access to stronger protocols (such
as BFT) that are currently seen as too expensive.

We note that the synchronous variant of BFT, like many
other fully synchronous protocols, is not as widely known.
We suspect that this is partly because the protocol is much
simpler (some might call it “trivial”) and not as interesting.
But when it comes to building systems, simplicity is good -
and triviality is even better!

3 How could it be done?

A key design principle for a synchronous data center would
be that everything is scheduled. Intuitively, the data center
would have a giant timetable that specifies exactly which
resources are used when and for what - for instance, which
computations should be run on which nodes, and at what

144

HotOS 19, May 13-15, 2019, Bertinoro, Italy

times, or when packets should be sent, and over which links.
In practice, this schedule would of course not be maintained
in a single place, to avoid bottlenecks and single points of
failure, and no node would need to know every single detail.
The important thing is that nodes can no longer be allowed to
use resources spontaneously - e.g., for internal housekeeping
tasks — since this might disrupt some other activity elsewhere
in the data center of which they were not aware.

A second design principle would be that resources must be
part of all APIs: components would need to explicitly specify
the “cost” of each operation (e.g., in terms of CPU time or
bandwidth), and the caller would need to allocate the neces-
sary resources and “charge” the invocation to that allocation.
This seems unavoidable: a component in the middle of the
protocol stack can only give meaningful timing guarantees
if it can rely on guarantees from the lower layers it relies on.

The third principle would be that resource allocations are
rigorously enforced: if a component tries to run longer, or
send more traffic, than it has requested, it would have to be
preempted and would need to request additional resources.
This is the only way to reliably enforce isolation, and for
components to be sure that the resources it has allocated
will actually be available to it.

3.1 Network layer

Whenever a node wants to send a packet over the network,
it would - at least conceptually — need to request permission
from the scheduler. This may sound absurd to some readers,
and until SIGCOMM 2014 it would have sounded absurd
to the authors as well, but Fastpass [36] showed that this
is not only feasible in theory but actually quite practical:
a single machine can schedule more than two Terabits of
traffic. Fastpass does not consider real-time scheduling, but
it does provide the infrastructure for scheduling networks
at packet granularity; we see no reason why it could not be
extended to other policies.

As the Fastpass paper already notes, this approach essen-
tially eliminates the need for queueing in the network; this
not only makes latencies very predictable, it also eliminates
the most common source of packet drops, leaving only the
(rare) losses due to packet corruption and component fail-
ures. Thus, with a bit of forward error correction, it seems
feasible to build a network that is almost completely lossless
in the absence of failures.

Once these mechanisms are in place, the higher proto-
col layers could be simplified considerably, since much of
their current complexity (congestion control, flow control,
retransmissions, reordering, ...) is needed to deal with the
consequences of packet loss, variable delay, and the fact that
the available bandwidth is not known. To push this point to
the extreme: it is not even completely clear that one would
still need sequence numbers, since the receiver can know
which packets are supposed to arrive when and from where!

HotOS 19, May 13-15, 2019, Bertinoro, Italy

3.2 Synchronized clocks

Since a synchronized data center would rely heavily on time,
precise clock synchronization would be a key building block.
Clock synchronization has traditionally had a somewhat bad
reputation, and the common knowledge is that it is somewhat
imprecise. This is certainly true in wide-area networks — but
recall that our focus is a data-center network, and moreover,
one that has virtually no queueing delays (Section 3.1)! Hav-
ing stable propagation delays means much higher precision,
and, as DTP [31] has shown, one can get all the way down to
nanoseconds by enlisting some help from the physical layer.

Still, the laws of physics prevent us from synchronizing
clocks exactly, but we are not aware of any important use
case that requires exact time; a small tolerance is usually
okay, as long as it is quantifiable.

3.3 Building blocks

In combination, synchronized clocks, bounded delays, and
reliable transmission (in the absence of faults) unlock the
distributed-systems equivalent of the land of plenty, where
grilled geese fly directly into one’s mouth and cooked fish
jump out of the water. We mention only two examples. The
first is that message ordering, a notorious challenge in many
building blocks for distributed systems, becomes almost triv-
ial: if clocks are synchronized to +7 and the maximum trans-
mission delay is d, nodes can simply use their local times-
tamps as sequence numbers (with node IDs as tiebreakers)
and process messages after a short delay of 27 + d, to make
sure they have seen all messages from other nodes that need
to be ordered before theirs (see, e.g., Spanner [16]). This prop-
erty alone can potentially help to simplify a wide range of
ordering-related protocols that deal with consistency, repli-
cation, and group communication.

Our second example is fault detection. In a synchronous
system, the absence of a message at an expected time carries
meaning as well! For instance, if the scheduler has arranged
for a task on a node Nj to send a message to another node N,
at some time t, then all the necessary resources have been
provisioned and the message really should arrive no later
than t + 27. If the message does not arrive, then something
must have gone wrong somewhere, and N, can trigger re-
covery right away. Although the reality will be a bit more
complicated (because of FEC, etc.), synchrony can still dra-
matically simplify fault detection, which is currently a line
of research on its own [22, 32].

3.4 Node hardware

To achieve end-to-end synchrony, it is not sufficient if the
network is synchronous - the nodes must be as well. Today’s
commodity platforms do not fit that description: most have
been optimized for high throughput, using massive caches
and extensive speculation, and, as a result, programs running
on these platforms do not have very predictable timing. Other
approaches have been investigated in research - e.g., the fully

145

Tian Yang, Robert Gifford, Andreas Haeberlen, and Linh Thi Xuan Phan

synchronous PRET machine [20], which delivers both high
performance and predictable timing — and of course many
embedded systems are designed for predictability. But, at
least at first glance, current hardware does not have very
good support for synchrony.

However, the picture is not quite as bleak as it may seem.
Prior work [13] has shown that, even on commodity hard-
ware, timing stability of less than 2% is achievable. SSDs are
replacing the more variable HDDs, and commodity CPUs
have been adding more and more features that can help with
isolation: a recent example is Intel’s Cache Allocation Tech-
nology (CAT) feature, which can be used to explicitly manage
cache usage. Moreover, the recent Meltdown/Spectre disas-
ter [29, 33] has increased skepticism towards speculation
and will presumably lead to better hardware support for pre-
dictable timing. Even though the primary purpose of these
mechanisms is security, we speculate that they could also be
used to enforce synchrony.

3.5 Software

Even if the network were synchronous and the hardware had
the necessary mechanisms to implement guaranteed timing,
it would be up to the OS kernel to actually deliver this guar-
antee to the applications. Recall that the kernel should ideally
a) account for all resources, b) make resource usage explicit
in all APIs, and c) be able to enforce all allocations through
preemption. Most popular kernels do only a subset of this,
and only for a subset of the system resources: for instance,
Linux will consume CPU and memory resources for various
internal housekeeping tasks, which can cause big latency
spikes, and time or memory usage within the kernel itself
is not always properly accounted for. Moreover, retrofitting
real-time technology into an existing kernel could be diffi-
cult because many design decisions have already been made
without timing guarantees in mind; thus, it is not reasonable
to expect that a kernel like Linux can be upgraded with a
short “synchrony patch”.

Nevertheless, we see no fundamental reason why a suit-
able kernel cannot be built. An existing real-time OS, or the
recently developed real-time Xen hypervisor [47], would
already closely approximate our requirements, and the tech-
nology for handling the more esoteric resources, such as
kernel memory, already exists [8, 25].

On the software side, a key challenge is that applications
would need to provide worst-case execution times (WCETs)
in order to be scheduled. Fortunately, WCET analysis is an
old problem [45] that has been studied in the real-time com-
munity for many years, and there is a variety of solutions
available, including static analysis, special language support,
linear type systems, and profiling-based tools.

3.6 Responding to faults

Faults are a serious threat to a synchronous system because
they can disrupt the careful choreography that the scheduler

The Synchronous Data Center

attempts to establish. For instance, the scheduler may direct
nodes to send traffic over a certain link, without realizing that
the link has failed, or it may assign a task to a node that has
crashed. Just like an asynchronous system, a synchronous
system needs a way to respond, and ideally to tolerate, such
a situation.

At first glance, the same options are available as in asyn-
chronous systems: for instance, the system can accept a brief
outage while it reconfigures itself (e.g., brief routing loops
while the routing protocol is computing a new set of paths),
or it can establish enough redundancy up front (e.g., in the
form of redundant paths or task replicas) to mask the symp-
toms of a limited number of faults. But there is an additional
complication: with synchrony, the system will eventually
need to transition to a new schedule, and this can easily lead
to a brief period of chaos, during which tasks and traffic are
being migrated and miss their deadlines as a result. Unless
this threat can be averted, there is a risk that the system will
become very brittle.

However, synchronous systems could avoid this problem
using a trick from the cyber-physical systems literature. CPS
can operate in multiple different modes — for instance, the
control unit in a car might have a mode for manual driving,
another for cruise control, and a third for emergency braking.
These modes can differ both in the sets of tasks that they
run (e.g., the cruise-control task might run only in the first
mode, but not in the others), as well as the parameters of
these tasks. Since CPS are often safety-critical, they must not
miss deadlines even while transitioning between modes; for
instance, airbags must be inflated within a very short time
from impact, regardless of the current state of the system.

To accomplish this, the CPS literature has developed mode
change protocols (MCPs) [37], which are essentially small,
transient schedules that transform a system from one mode
to another - by stopping or migrating old tasks, or by launch-
ing new tasks — without missing any deadlines in the process.
MCPs can be precomputed offline and then simply executed
when a mode transition is triggered; this is somewhat anal-
ogous to fast rerouting [44], which similarly precomputes
alternative paths that can be activated in the event of a fail-
ure. On a grander scale, MCPs could help a synchronous data
center to recover from faults without losing its synchrony.

3.7 Scheduling

The elephant in the room, of course, is scheduling: maintain-
ing a detailed schedule for a datacenter-sized system would
be a truly herculean task. And, despite the fact that real-time
scheduling has been studied for decades, there appears to be
relatively little prior work. Most of the classical algorithms
were designed for uniprocessors, and even current work
tends to focus mostly on multicore CPUs; if networks are
considered at all, they tend to be very small.

However, there are at least two reasons to be optimistic.
One is the fact that, over the past few years, data center

146

HotOS 19, May 13-15, 2019, Bertinoro, Italy

scheduling systems have been moving towards finer and
finer granularities: for instance, Sparrow [35] can schedule
100ms tasks on tends of thousands of cores. True, Sparrow
does not perform real-time scheduling, but, at the very least,
fine-grained scheduling at datacenter scale is not as implausi-
ble as it may once have been. The ongoing work on Function-
as-a-service (FaaS) systems [1] is going in a similar direction.
Second, there are now interesting candidate solutions, such
as the compositional scheduling approach from the CPS liter-
ature [41]. This approach provides a way to recursively and
efficiently subdivide a large scheduling problem into smaller
ones, and it also makes it possible to (mostly) schedule sub-
systems independently, which avoids the need for a single
global “master schedule” for the entire system.

4 Related Work

Synchronous systems have been studied thoroughly by at
least two other communities: the theory community and the
real-time/embedded/CPS community. We have already dis-
cussed a number of relevant papers from both communities.
However, to our knowledge, nobody has gone as far as to
suggest that the fully synchronous model can be applied to
anything as large as a data center.

Aguilera and Walfish [2] argues that, outside of a real-
time context, the synchronous model is dangerous because
it often leads to end-to-end timeouts, which are hard to set.
It proposes a middle ground that adds an approximation of
a perfect failure detector [11] but leaves the unbounded pro-
cessing and communication delays in place. This approach
should be easier to implement than ours, but it provides only
a subset of the benefits.

Prior work has shown how to make specific parts of a
data center more predictable - including, e.g., SILO [26], Pul-
sar [4], and Chronos [28] - or even how to support real-time
workloads [46]. However, these papers use a more evolution-
ary approach that is far easier to deploy incrementally but
fundamentally cannot lead to the design we are advocating;
recall from Section 3.3 that many of the potential benefits
would accrue only once the system is fully synchronous.

5 Conclusion

The goal of this paper was to question an assumption that
is very common in distributed systems today: that systems
should be asynchronous by default, and that the synchronous
model is impractical and not a realistic option, except for a
few special cases (such as embedded systems). We have made
a case that this assumption is wrong, and that, by leveraging
some ideas from the CPS domain, it may in fact be possible
to build fully synchronous datacenter-scale systems.

Algorithms for the synchronous model are often consid-
ered “boring”, and for a reason: they are often much simpler
(and less expensive) than their asynchronous equivalent, to
the point of being almost trivial. But, in this particular case,
“boring” and “trivial” could be a very good thing!

HotOS 19, May 13-15, 2019, Bertinoro, Italy

Acknowledgments

We the anonymous reviewers for their thoughtful comments
and suggestions. This work was supported in part by NSF
grants CNS-1703936, CNS-1563873, and CNS-1750158.

References

[1] NSF Cloud 3.0 workshop report. http://pages.cs.wisc.edu/~akella/

cloud3workshopreport.pdf, Jan. 2018.

M. Aguilera and M. Walfish. No time for asynchrony. In Proc. HotOS,

2009.

D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers. Of choices, failures

and asynchrony: The many faces of set agreement. Algorithmica,

62(1):595-629, Feb 2012.

S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska. End-

to-end performance isolation through virtual datacenters. In Proc.

OSDI, 2014.

E. Arjomandi, M. J. Fischer, and N. A. Lynch. Efficiency of synchronous

versus asynchronous distributed systems. J. ACM, 30(3):449-456, July

1983.

M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause

diagnosis of performance anomalies in production software. In Proc.

OSDI, Oct. 2012.

P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and

M. Zhang. Towards highly reliable enterprise network services via

inference of multi-level dependencies. In Proc. SSIGCOMM, 2007.

G. Banga, P. Druschel, and]J. C. Mogul. Resource containers: A new

facility for resource management in server systems. In Proc. OSDI,

1999.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for

request extraction and workload modelling. In Proc. OSDI, 2004.

[10] J. Brutlag. Speed matters for google web search. http://services.google.

com/fh/files/blogs/google_delayexp.pdf.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. J ACM, 43(2):225-267, Mar. 1996.

A. Chatzieleftheriou, S. Legtchenko, H. Williams, and A. Rowstron.

Larry: Practical network reconfigurability in the data center. In Proc.

NSDI, 2018.

A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan,

M. Sherr, and W. Zhou. Detecting covert timing channels with time-

deterministic replay. In Proc. OSDI, 2014.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:

Problem determination in large, dynamic internet services. In Proc.

DSN, 2002.

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making

Byzantine fault tolerant systems tolerate Byzantine faults. In Proc.

NSDI, 2009.

[16] J. Corbett et al. Spanner: Google’s globally-distributed database. In

Proc. OSDI, 2012.

A.R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-overhead dat-

acenter traffic management using end-host-based elephant detection.

In Proc. INFOCOM, 2011.

T. Dai, J. He, X. Gu, and S. Lu. Understanding real-world timeout

problems in cloud server systems. In Proc. IC2E, 2018.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of

partial synchrony. J. ACM, 35(2), Apr. 1988.

S. A. Edwards and E. A. Lee. The case for the precision timed (PRET)

machine. In Proc. DAC, 2007.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of dis-

tributed consensus with one faulty process. J ACM, 32(2):374-382,

Apr. 1985.

[22] F. C. Freiling, R. Guerraoui, and P. Kuznetsov. The failure detector
abstraction. ACM Comput. Surv., 43(2):9:1-9:40, Feb. 2011.

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(]

(11]

(12]

(13]

(14]

(15]

(17]

(18]
(19]
[20]

[21]

147

Tian Yang, Robert Gifford, Andreas Haeberlen, and Linh Thi Xuan Phan

[23] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian.
DRILL: Micro load balancing for low-latency data center networks. In
Proc. SIGCOMM, 2017.

H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,

J. Adityatama, K. J. Eliazar, A. Laksono,]J. F. Lukman, V. Martin, and

A. D. Satria. What bugs live in the cloud? A study of 3000+ issues in

cloud systems. In Proc. SoCC, 2014.

A. Haeberlen and K. Elphinstone. User-level management of kernel

memory. In Proc. ACSAC, 2003.

K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Predictable

message latency in the cloud. In Proc. SIGCOMM, 2015.

S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl.

Detailed diagnosis in enterprise networks. In Proc. SSIGCOMM, Aug.

2009.

R.Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat. Chronos:

Predictable low latency for data center applications. In Proc. SoCC,

2012.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-

gard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting

speculative execution. ArXiv 1801.01203, 2018.

L.Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.

ACM Trans. Program. Lang. Syst., 4(3):382-401, July 1982.

K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon. Globally

synchronized time via datacenter networks. In Proc. SSGCOMM, 2016.

[32] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish. De-
tecting failures in distributed systems with the Falcon Spy Network.
In Proc. SOSP, 2011.

[33] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv
1801.01207, 2018.

[34] A.P. Markopoulou, F. A. Tobagi, and M. J. Karam. Assessment of VoIP
quality over Internet backbones. In Proc. INFOCOM, 2002.

[35] K. Ousterhout, P. Wendell, M. Zaharia, and L Stoica. Sparrow: Dis-
tributed, low latency scheduling. In Proc. SOSP, 2013.

[36] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fast-
pass: A centralized "zero-queue" datacenter network. In Proc. SIG-
COMM, 2014.

[37] J. Real and A. Crespo. Mode change protocols for real-time systems:
A survey and a new proposal. Real-Time Systems, 26:161-197, 2004.

[38] W.Reda, L. Suresh, M. Canini, and S. Braithwaite. BRB: BetteR Batch

scheduling to reduce tail latencies in cloud data stores. In Proc. SIG-

COMM, 2015.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off

of my cloud: Exploring information leakage in third-party compute

clouds. In Proc. CCS, 2009.

N. Shalom. Amazon found every 100ms of latency cost

them 1% in sales. GigaSpaces blog, https://blog.gigaspaces.com/

amazon-found-every-100ms-of-latency-cost-them- 1-in-sales/, 2008.

1. Shin and I. Lee. Periodic resource model for compositional real-time

guarantees. In Proc. RTSS, 2003.

L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail

latency in cloud data stores via adaptive replica selection. In Proc.

NSDI, 2015.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,

G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-

grained TCP retransmissions for datacenter communication. In Proc.

SIGCOMM, 2009.

[44] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and Y. R.
Yang. R3: Resilient routing reconfiguration. In Proc. SSIGCOMM, 2010.

[45] R. Wilhelm et al. The worst-case execution-time problem. ACM Trans.
Embed. Comput. Syst., 7(3):36:1-36:53, May 2008.

[46] S.Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. X. Phan, I. Lee, and O. Sokol-
sky. RT-OpenStack: CPU resource management for real-time cloud
computing. In Proc. CLOUD, 2015.

[24]

[25]
[26]

[27]

(28]

[29]

(30]

(31]

(39]

[40]

[41]

[42]

(43]

The Synchronous Data Center

[47] S.Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: Towards real-time hyper-
visor scheduling in Xen. In Proc. EMSOFT, 2011.

[48] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and J. Padhye.
DIBS: Just-in-time congestion mitigation for data centers. In Proc.
EuroSys, 2014.

148

HotOS 19, May 13-15, 2019, Bertinoro, Italy

[49] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes.
CPI 2: CPU performance isolation for shared compute clusters. In Proc.
EuroSys, Apr. 2013.

[50] D.Zhuo, M. Ghobadi, R. Mahajan, K. Férster, A. Krishnamurthy, and
T. E. Anderson. Understanding and mitigating packet corruption in
data center networks. In Proc. SSIGCOMM, 2017.

