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Abstract—Vision-based perception systems are crucial for prof-
itable autonomous-driving vehicle products. High accuracy in
such perception systems is being enabled by rapidly evolving
convolution neural networks (CNNs). To achieve a better un-
derstanding of its surrounding environment, a vehicle must be
provided with full coverage via multiple cameras. However, when
processing multiple video streams, existing CNN frameworks
often fail to provide enough inference performance, particularly
on embedded hardware constrained by size, weight, and power
limits. This paper presents the results of an industrial case study
that was conducted to re-think the design of CNN software
to better utilize available hardware resources. In this study,
techniques such as parallelism, pipelining, and the merging of
per-camera images into a single composite image were considered
in the context of a Drive PX2 embedded hardware platform. The
study identifies a combination of techniques that can be applied
to increase throughput (number of simultaneous camera streams)
without significantly increasing per-frame latency (camera to
CNN output) or reducing per-stream accuracy.

I. INTRODUCTION

This paper reports on the results of an industrial automotive
design study focusing on the application of convolutional neural
networks (CNNs) in computer vision (CV) for autonomous or
automated-driving cars. CNNs are essential building blocks
for CV applications that process camera images in diverse
uses including object detection and recognition (cars, people,
bicycles, signs), scene segmentation (finding roads, sidewalks,
buildings), localization (generating and following a map),
etc. CV applications based on CNN technology are essential
because cameras deployed on cars are much less costly than
other sensors such as Lidar.

CV in a resource-constrained setting. While cameras are
cheap, CV computational costs are not. Keeping overall
monetary cost low is essential for consumer-market cars and
requires effective management of computing hardware. Because
state-of-the-art CV approaches have been shown to take over
94% of the computational capacity in a simulated vehicle
[18], computer hardware costs can be significantly reduced by
optimized implementations. Existing CNN frameworks have
some amount of optimization with parallelism, but focus largely
on processing a single stream of images in a parallel manner.
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The solutions considered in this study re-think the way CNN
software is implemented so that effective resource management
can be applied to CNN applications. Our study focuses on one
of the most demanding CV applications in cars, the timely
detection/recognition of objects in the surrounding environment.
Industrial challenge. The major challenge we seek to address
is to resolve the inherent tensions among requirements for
throughput, response time, and accuracy, which are difficult to
satisfy simultaneously.

The sheer number and diversity of cameras necessary to
provide adequate coverage and redundancy (for safety) drives
throughput requirements. A typical configuration in today’s
experimental automated-driving vehicle includes ten or more
cameras that cover different fields of view, orientations, and
near/far ranges. Each camera generates a stream of images at
rates ranging from 10 to 40 frames per second (FPS) depending
on its function (e.g., lower rates for side-facing cameras, higher
rates for forward-facing ones). All streams must be processed
simultaneously by the object detection/recognition application.

For this application, response time (latency from image
capture to recognition completion) is time-sensitive because
of its position on the critical path to control and actuation
of the vehicle. Every millisecond that elapses during object
recognition is a millisecond not available for effecting safe
operation. Ideally, the camera-to-recognition latency per frame
should not substantially exceed the inter-frame time of the
input images (e.g., 25 milliseconds for a 40 FPS camera).

Accuracy requirements for detection/recognition depend on
a number of factors specific to the functions supported by
a given camera. For example, accuracy may be much more
important in streams from front-facing cameras than those from
side-facing cameras. For most of the design alternatives we
consider, our modifications have no effect on the accuracy of
the CV CNN. However, we do explore one particular instance
of a throughput vs. accuracy trade-off of relevance in systems
with many cameras (see Sec. V).

To summarize, our challenge is to re-think the design of
CNN software to better utilize hardware resources and achieve
increased throughput (number of simultaneous camera streams)
without any appreciable increase in per-frame latency (camera
to CNN output) or reduction of per-stream accuracy.

Our hardware and software environment. Cars are manufac-
tured by integrating components (including computing hardware



and software) from a supply chain of various vendors (“Tier-1”
and “Tier-2” suppliers). To meet the computational demands
of CV applications, supplier offerings are usually based on
various application-specific integrated circuits (ASICs) such as
field programmable gate arrays (FPGAs), or on digital signal
processors (DSPs) or graphics processing units (GPUs). FPGAs
and DSPs have advantages in power and density over GPUs,
but require specialized knowledge for using the hardware and
its tooling environment. Moreover, integrating CV applications
supplied by different sources using proprietary black-box
solutions built on FPGAs or DSPs can increase product cost.
Because of these complicating factors, we consider GPUs as
the primary solution for CV applications. GPUs have more
familiar development tools and a large number of open-source
software choices, TensorFlow [1] being a notable example.

In this study, we use the NVIDIA DRIVE PX Parker
AutoChauffeur (previously called the ‘DRIVE PX2’ or just
‘PX2’) [20]. This embedded computing platform is marketed
by NVIDIA as the “first artificial-intelligence (AI) supercom-
puter for autonomous and semi-autonomous vehicles.” The
PX2 incorporates multicore processors along with multiple
GPUs to accelerate CV applications. With respect to such
applications, we focus on a variant of the open-source CNN
framework ‘Darknet’ configured to implement an object
detection/recognition program called ‘Tiny YOLO’ (version 2,
‘YOLO’ for short) [22, 23, 24]. While our study targets
specific hardware and CNN software, our hardware and
software choices are representative of the multi-core/multi-GPU
hardware and CNN designs that are used and will continue to
be used for automated driving.

Our design study. As stated earlier, the fundamental challenge
we consider is to design an object-detection application that
can support independent streams of images from several
cameras. Due to the constraining nature of our hardware,
effective utilization of every part of the system is essential. Our
preliminary measurements (provided in Sec. V) revealed that
GPU execution time dominates the time spent processing each
image in YOLO, yet one of the PX2’s two GPUs! was left
completely idle and the second was utilized at less than 40%.
This result motivated us to explore system-level optimizations
of YOLO as a path to higher throughputs.

Many CNN implementations similarly seem to have limited
throughput and poor GPU utilization. As explained further in
Sec. III, the root of the problem lies in viewing processing as
a single run-through of all the processing layers comprising
a CNN. However, in processing an image sequence from one
camera, each layer’s processing of image ¢ is independent of
its processing of image ¢ + 1. If the intermediate per-image
data created at each layer is buffered and sequenced, there is
no reason why successive images from the same camera cannot
be processed in different layers concurrently. This motivates us
to consider the classic pipelining solution to sharing resources

I'Technically, the PX2 provides four GPUs split between two systems on a
chip (SoCs). We considered only one of these SoCs in our evaluation.
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for increased throughput.> While pipelining offers the potential
for greater parallelism, concurrent executions of the same layer
on different images are still precluded. While allowing this
may be of limited utility with one camera, it has the potential
of further increasing throughput substantially when processing
streams of images from multiple cameras (all of which are
also independent). This motivates us to extend pipelining by
enabling each layer to execute in parallel on multiple images.

We altered the design of Darknet to enable pipelined
execution, with parallel layer execution as an option, in the
YOLO CNN. We also implemented a technique whereby
different camera image streams are combined into a single
image stream by combining separate per-camera images into
a single composite image. This compositing technique can
greatly increase throughput at the expense of some accuracy
loss. We also enabled the balancing of GPU work across the
PX2’s two GPUs, which have differing processing capabilities.
The YOLO variants arising from these options and various
other implementation details are discussed in Sec. IV. The
options themselves are evaluated in Sec. V.

Contribution. This paper provides an effective solution for
a challenging industry problem: designing CNN systems that
can provide the throughput, timeliness, and accuracy for CV
applications in automated and autonomous driving. Through
re-thinking how the YOLO CNN is executed, we show that
its throughput can be improved by more than twofold with
only a minor latency increase and no change in accuracy. We
also show that throughput can be further improved with proper
GPU load balancing. Finally, we show that the compositing
technique can enable very high throughputs of up to 250 FPS
on the PX2. While this technique does incur some accuracy
loss, we show that such loss can be mitigated by redoing the
“training” CNNs require. We claim these results are sufficiently
fundamental to guide CNN construction for similar automotive
CV applications on other frameworks or hardware.

In order to understand these contributions in full, an
understanding of relevant background information and related
work is required. This we provide in the next two sections.

II. BACKGROUND

In this section, we provide detailed descriptions of our
hardware platform, the DRIVE PX2 [20], the Darknet CNN
framework, and the object-detection application (“YOLQO”) that
runs using this framework.

A. NVIDIA DRIVE PX2

The PX2 is embedded hardware specifically designed to
provide high-performance computing resources for autonomous
operation on a platform with small size, weight, and power
characteristics.

ZFor example, instruction pipelining in processors can fully utilize data-path
elements and increase throughput.
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Fig. 1: NVIDIA DRIVE PX2 architecture (showing one of the PX2’s
two identical and independent systems).

Integrated GPU (iGPU)
256 CUDA Cores

Discrete GPU (dGPU)
1152 CUDA Cores

Computing units

Accessible memory 6668 MBytes 3840 MBytes
Memory bandwidth [25] ~50 GBytes/s ~80 GBytes/s
Shared L2 cache size 512 KBytes 1,024 KBytes

TABLE I: Specifications of the PX2 iGPU and dGPU.

Architecture. The PX2 contains two identical and independent
“Parker” systems on a chip (SoCs), called Tegra A and B,
connected by a 1 Gbps Controller Area Network (CAN) bus.
We show one of the identical halves of the PX2 in Fig. 1.
Each SoC contains six CPUs (four ARMvS8 Cortex AS57 cores,
two ARMvS Denver 2.0 cores), and an integrated Pascal GPU
(iGPU). Each Parker SoC also connects to a discrete Pascal
GPU (dGPU) over its PCle x4 bus. While the iGPU and CPU
cores share main DRAM memory, the dGPU has its own
DRAM memory. Memory transfers between CPU memory and
dGPU memory use the PCle bus. The remainder of this paper,
including the design descriptions and evaluation experiments,
use only one of the PX2’s two independent systems.

iGPU vs. dGPU. As previously mentioned, the PX2 has two
types of GPUs — the iGPU and the dGPU — using the same
Pascal architecture. While they share an architecture, they share
little else. Consider their specifications as shown in TABLE 1.
The dGPU has more cores, faster memory, and a larger L2
cache. The iGPU lags behind, advantaged only by its access
to the larger, albeit shared, main memory DRAM banks.

The exact performance differences between the iGPU and
the dGPU depend on the characteristics of GPU programs used
in a specific application. We characterize these differences for
YOLO in Sec. V.

B. YOLO: You Only Look Once

In this section, we describe Tiny YOLOvV2 (simply “YOLO”

in the remainder of this paper). We use YOLO as an exemplar
for a wide class of CNN implementations that can be optimized
using the designs presented here. We also use it for empirical
evaluations of the new CNN framework.
Convolutional neural networks. YOLO is a CNN that
localizes and classifies multiple objects in an image during one
forward pass through the CNN. The localization operation
predicts the position and dimensions (in pixel units) of a
rectangle (“bounding box”) in the image that contains an
object of interest. The classification operation predicts with
a probability what specific class (car, bicycle, sign, etc.) the
object belongs to. Collectively, localization and classification
are here referred to as object detection.
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A neural network can “learn” to localize and classify objects
in images via a process called supervised training in which a
large number of images labeled with “ground-truth” bounding
boxes and class identifications are input to the CNN running in
training mode. Training typically results in computing a large
set of parameters (or “weights”) defining how the CNN will
respond when given images not in the training set (e.g., images
from cameras mounted on a car). For most of the experiments
in Sec. V, we used the YOLO CNN as already trained on a
widely used set of relevant training images (VOC 2007+12), so
we did not modify the YOLO network architecture or training
approach. This means that most of our work applies to any
CNN constructed using Darknet, from YOLOv3 to AlexNet.
This is extremely important as noted in [18] because the state
of the art rapidly changes for autonomous vehicles. Only one
optional enhancement we consider, namely image compositing,
requires retraining.

Tiny YOLO implementation. Tiny YOLOvV2 is a lower-
accuracy, faster-speed derivative of YOLOv2 by the YOLOv2
authors [22, 24]. This version of YOLO runs roughly five times
faster than the standard version of YOLO (> 200 FPS vs. > 40
FPS on a high-end GPU) [24]. The network architecture is
shown in Fig. 2, as it would be configured by default for C'
cameras (denoted O through C' — 1). In this default system,
each camera uses a separate “private” instantiation of the
network. Each instantiation contains nine convolution or
convolutional layers interleaved with six maxpool layers and
a region layer at the end. All YOLO networks run on the
Darknet [23] CNN framework. A convolutional layer convolves
over the input by computing the dot product between input and
filters to produce an activation map of features. A maxpool
layer applies a non-linear transform to the input by picking
maximum values out of non-overlapping regions. YOLO’s
region layer uses the activation maps of the last convolutional
layer alongside precalculated “anchor” values to predict the
output locations and bounding boxes of objects of interest.
These anchors characterize the common shapes and sizes of
bounding boxes in the training data and help improve the
prediction accuracy. All of our modifications and benchmarks
are based on a proprietary fork of Darknet, so frame rates in
Sec. V are not directly comparable to those from the open-
source version.’ Unfortunately, we are unable to open source
our fork due to intellectual property management issues.

The Darknet framework is programmed in C and CUDA.
CUDA is an API library and set of C language extensions
provided by NVIDIA for general-purpose programming of
applications that use a GPU for acceleration. Programs in
CUDA run on the CPU and can request execution of programs
called “kernels” that are written to run on the GPU. Kernel
execution requests are effectively placed in FIFO CUDA stream
queues managed by GPU hardware and its device driver. The
GPU scheduler executes kernels from multiple queues in a

3Specifically, our base version of Darknet pre-loads frames and performs
frame resizing in the main thread whereas the open-source version uses a
separate thread.
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Fig. 2: Traditional camera processing setup and the Tiny YOLOv2
network architecture. Larger boxes indicate longer execution times.
Frame data flows left to right.

complicated, semi-fair order but always respects the FIFO
ordering within a stream queue. When the CPU requests the
execution of a kernel on the GPU, control returns to the
CPU shortly after the request is enqueued, but before the
kernel is executed. The CPU program must use an explicit
synchronization operation to determine when all its requested
kernel executions have completed.

Darknet uses a common CUDA programming pattern in its
layers. The pattern is (a), if necessary, copy data from CPU
memory to GPU memory, (b) start one or more kernels, (c)
synchronize on the GPU completion of the kernels, and (d),
copy data from GPU memory to CPU memory. Requests for
copy operations use specialized hardware on the GPU but are
placed in the FIFO stream queues in order with the kernels.
The number of kernels run by YOLO varies between layers,
but in total may be hundreds of kernels per image.

III. RELATED WORK

YOLO comes from a family of ‘“single-shot” detection
approaches. These architectures, pioneered by Redmon and
Liu [19, 21], perform all the steps of detection in one run
of a single CNN. This allows for higher throughput while
competing with the state-of-the-art on accuracy. This builds
off several foundational CV CNN works [10, 11, 17].

CNNs inherently consist largely of parallel math, and thus
GPUs serve as the ideal execution platform. Unfortunately,
the leading GPU manufacturer (NVIDIA) presently holds their
architecture and software stacks extremely closely. This secrecy
has even left some publicly documented synchronization
behaviors of their hardware to be incorrect [27]. These factors
have previously made it very challenging to build CV CNNs
that consistently or properly utilize the GPU. (We show how
inadequate the best existing efforts have been in this paper.)

Fortunately, recent work has begun to address this problem.
While AMD’s GPUOpen effort [2] helped unveil aspects of
GPU design, Amert et al. [3] and Capodieci et al. [5] recently
presented more relevant findings. These works uncover details
on how CUDA threads are scheduled inside the same process
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and dispatched to the GPU cores on the NVIDIA Parker SoC,
highlighting a set of timesliced FIFO queues at the core. While
some other works [16] have critiqued Amert et al.’s efforts for
ambiguous applicability to other NVIDIA GPUs, our platform
(the PX 2) shares an SoC (the NVIDIA Parker chip) with their
work. This, and some limited validation work by Bakita et al.
in [4], allows us to safely apply the findings of [3] here.

In the area of parallel CNN scheduling, frameworks such
at TensorFlow [1] already support intra-model CNN graphs.
These graphs serve to enable “parallelism, distributed execution,
compilation, and portability” in their applications (per their
website). However, neither the original paper [1] nor their
survey of CV CNNs [12] seems to consider anything besides
parallelism inside one, serialized execution of a model on static
data. Their graphs seem mostly to serve to formalize the implicit
dataflow graph present in any CNN. In contrast, our work deals
with synthesizing an extra-model shared CNN by which to
collapse multiple CNN instances into a single shared program.
It is worth emphasizing that our efforts are designed to largely
work alongside the vast body of existing CNN optimization
and compression efforts such as DeepMon [14].

One other work similar to ours, S3DNN, applied techniques
such as kernel-level deadline-aware scheduling and batch
processing (data fusion) that require additional middleware [28].
We focus on higher-level parallelism by applying a graph-based
architecture. Such a graph-based architecture was also applied
in [26], which focuses on separating CPU and GPU workloads
at the kernel level to guarantee response-time bounds.

Some of our work here also considers ways to optimally
partition YOLO between GPUs of different capabilities. The
partitioning concept is not new, used by Kang et al. to dynam-
ically balance CNN layers between a compute-impoverished
system and a networked server with Neurosurgeon [15]. We,
however, use the technique to optimize solely for performance
without the networking constraints that dominate that work.

IV. SYSTEM DESIGN

In this section, we discuss some of our ideas for how to
implement this shared CNN. First, we describe our overarching
approach, which involves generalizing the concept of a CV
layer by combining groups of consecutive layers into “stages,”
examining opportunities for parallelism across stages (“pipelin-
ing”), and considering opportunities for parallelism inside each
stage (“parallel-pipelining”). Second, our hardware platform
provides the somewhat unique opportunity to examine GPU-
work-assignment strategies across asymmetric processors, so we
briefly consider that issue. Third, we propose a novel technique
for realizing additional throughput gains in high-camera-count
environments. Along the way, we also briefly touch on several
other issues that naturally arise with the concept of a shared
CNN. These include data handling, communication issues, and
implicit synchronization. Before delving too deeply into the
details, however, we first motivate why we are interested in
this shared approach in the first place.

The obvious solution to support multiple cameras is simple:
run multiple instances of the application — one process for each



camera — and have them share the GPU(s), as shown in Fig. 2.
We reject this approach for two reasons. First, the high memory
requirements of each network instance heavily limits the total
number of instances (a maximum of six on our hardware
platform). Second, running the models independently does not
easily allow for fast synchronization across multiple cameras.
Ideally, we would like each network and camera to process
frames at the same rate, prioritizing work for networks that are
lagging behind. However, this proves extremely challenging
in practice as it requires modifying GPU scheduling behavior
— a task still not satisfactorily solved by any research that we
are aware of.

A. Enabling Parallelism

As noted in Sec. I, CNN layers and models are inherently
independent and thus sharable — the only major complexities
for us stem from Darknet’s limited “bookkeeping” side-effects
and from the need to correctly pipe intermediate data between
layers. In this section, we explore ways of enabling parallelism
in such a shared computation structure.

Decomposition into stages. As a precursor to introducing
parallelism, we decompose a shared CNN into a succession
of computational stages. Each stage is simply a subsequence
of layers from the YOLO CNN shown in Fig. 2, as illustrated
in Fig. 3. To correctly manage both frame data and the
bookkeeping data required by YOLO, we buffer indices to
this data using queues between stages as shown in Fig. 3.
Note that these queues are not necessarily index-ordered.
Conceptually, we can view the data being indexed as being
stored in infinite arrays, but in reality, these arrays are “wrapped”
to form ring buffers. The size of the frame ring buffer is large
enough to prevent any blocking when adding another frame
to it. However, memory constraints limit the ring buffer for
bookkeeping data to have only ten entries. This implies that
only ten frames can exist concurrently in the shared CNN at any
time. Note that Darknet ensures that the original layers execute
correctly without further modification by us when provided
with the appropriate bookkeeping data. Data buffering and
synchronization in our pipelined implementation are provided
by PGMPET | a library created as part of prior work at UNC [7].
Serialized execution. Before enabling parallelism, we first
look at the scheduling of the default serialized execution of the
unmodified YOLO through an example in Fig. 4(a). We will
explain Fig. 4(b) and (c) shortly. Fig. 4(a) shows a single three-
stage CNN that processes frames serially. At time %, the first
stage (Stage 0) starts the initial preparation work on the CPU
for frame f. This initial preparation work (for example, resizing
the frame) requires Stage 0 to execute longer on the CPU than
the following stages. Stage O launches its kernel, indicated by
SO, at time ¢; into the single CUDA stream queue belonging
to this CNN instance. Stage 1 launches another kernel, S1,
at time t1, and S2 is launched at time ¢5. These kernels SO,
S1, and S2 are executed in FIFO order and are completed at
times t4, t5, and tg respectively. Since the intermediate data
produced by the first kernels SO and S1 are not needed for
CPU computations, only the last stage suspends to wait for all
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Fig. 3: Sharing one CNN for multiple cameras.

kernels to complete (at time tg). The use of intermediate data
only by kernels running on the GPU is common to other CNN
implementations. Because the processing of multiple frames is
serialized by the single CNN, the GPU is often left idle when
no kernel requests are in the stream queue.

Pipelined execution. We now explore different methods for
enabling the parallel processing of stages. The first method
we consider is to enable pipelined execution, i.e., we allow
successive stages to execute in parallel on different frames. We
implement pipelined execution by defining a thread per stage,
which processes one frame by performing the computational
steps illustrated in Fig. 5 for a stage comprised of one
convolution layer followed by one maxpool layer. Each stage’s
thread starts by waiting on the arrival of an index from the
previous stage to signal that stage’s completion. Once this index
becomes available, the thread starts processing by calling the
original CNN layer functions with the appropriate bookkeeping
data. After these layer functions return, the thread notifies the
next stage of completion by pushing the index it just finished
into the next queue. It then returns to waiting for input data
again. This approach requires no changes to the original YOLO
layer functions.

The resulting parallelism is illustrated in Fig. 4(b). For
conciseness, we henceforth refer to this pipelined-execution
variant of YOLO as simply “PIPELINE” and refer to the original
unmodified YOLO as “SERIAL.” In PIPELINE, multiple per-
frame queues are created and pipeline stages can execute
concurrently on CPU cores. This enables kernels from different
frames to be queued and executed concurrently on the GPU
when enough of its resources are available. One example of
the concurrent GPU execution of kernels is noted in Fig. 4(b).
The threads for stages are scheduled by the Linux scheduler
SCHED_NORMAL. Threads may migrate between CPU cores or
block when cores are not available. The concurrent executions
of threads on the CPUs and kernels on the GPU should enable
PIPELINE to provide higher throughput or lower latency. We
evaluate this in Sec. V. While the longer first stage causes
some overall pipeline imbalance, we believe this is largely
confined to the CPU. We further mitigate the influence of a
pipeline imbalance by enabling thread parallelism within each
stage as described next.

Parallel-pipeline execution. As seen in Fig. 4, PIPELINE
enables parallelism across stages but not within a stage. Given
the independence properties mentioned in Sec. I, there is no
reason why the same stage cannot be executed on different
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Fig. 4: Scheduling of SERIAL, PIPELINE, and PARALLEL.

frames at the same time. To enable this, we consider a second
parallel YOLO variant, called parallel-pipeline execution, or
simply “PARALLEL” for brevity, that extends PIPELINE by
allowing parallel executions of the same stage. The PARALLEL
YOLO variant is realized by allocating a configurable number of
“worker” threads in each stage, and a “manager” thread that is
responsible for dispatching worker threads. The worker threads
can process different frames concurrently. This is illustrated in
Fig. 6 (once again) for a stage comprised of one convolution
layer and one maxpool layer. The difference between PIPELINE
and PARALLEL is illustrated in Fig. 4(c). In PARALLEL, more
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parallelism is enabled on both CPU cores and the GPU through
allowing multiple threads of the same stage to execute in
parallel. Recalling the scheduling rules revealed in [3], kernels
are scheduled in order of their arrival times to the heads of
their stream queues. In Fig. 4(c), these arrival times are such
that kernel executions from different frames are interleaved, as
shown.

With the scheduling shown in Fig. 4, we can see that
PIPELINE and PARALLEL achieve the purpose of fully utilizing
the GPU resources (much less GPU idle time than SERIAL).
We quantify the performance in Sec. V.
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Fig. 6: Stage representation for parallel-pipeline execution model.

B. Multi-GPU Execution

Recall from Sec. II that the PX2 has an iGPU and a dGPU
with different capabilities. As seen in Fig. 12, which we cover
in detail later, the iGPU tends to execute layers substantially
slower than the dGPU. However, notable exceptions (maxpool
layers and the region layer) do exist, so the iGPU is still a useful
computational resource. Given this observation, we enhanced
our PIPELINE and PARALLEL implementations to allow a
configurable distribution of stages across GPUs. While utilizing
both GPUs may be beneficial, additional data-transfer and
synchronization overheads can cause dual-GPU configurations
to sometimes under-perform single-GPU ones. We analyze this
trade-off experimentally in Sec. V-B.

C. Accelerating Multiple Streams with Multi-Camera Compos-
ite Images

What if we could combine several physical cameras into
a single “virtual” one, as illustrated in Fig. 7, by combining
independent per-camera images into a single composite image
as illustrated? Such an approach could have a tremendous
impact on throughput. For example, if all physical cameras
were combined in groups of four, throughput could potentially
be increased by fourfold. Whether this is acceptable would
depend on how latency and accuracy are impacted.

To enable this approach to be evaluated, we added flexible
support for compositing physical cameras to the YOLO variants
already described. Note that these variants themselves are not
impacted by this approach: the fact that the images to be
processed are obtained by compositing does not change the
processing to be done. Because of this, it is possible to have
both composite and full images supported in the same system,
as illustrated in Fig. 7.
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Fig. 7: CNN extended for multi-camera composite images.

The compositing approach works by exploiting the flexibility
of YOLO’s neural network to process multiple frames as a
single frame. This requires taking k2 frames for some k, tiling
them in a grid, and then passing that combined image through
YOLO as a single input, as shown in Fig. 7. For best accuracy,
this approach requires re-training the YOLO network on a set
of suitably tiled images to produce new model weights.

While compositing should yield a throughput improvement
that is linear in the number of images in the grid, there are
several additional factors to consider. First, frame arrival times
from different cameras must be synchronized or the combining
process will block waiting for all the images required to fill the
grid. This could increase latency to the time between frames on
the camera with the smallest frame rate. Second, this approach
will reduce accuracy. Because our configuration of YOLO only
accepts frames of 416 by 416 pixels, each frame in the grid
must be downscaled by a factor proportional to the grid size.
For detecting objects that are large relative to the frame size
(e.g., close vehicles), this compromise may be permissible,
however that will not be true in all cases.

Additionally, we must stress that this approach only works
for CNNs that reason locally. Using this approach in global-
classification systems such as those used in scene understanding
will yield incorrect results. While the YOLO authors believe
their network learned to use global features, we did not observe
this behavior in our analysis.

D. Avoiding Implicit Synchronization

The original Darknet framework uses the single default FIFO
queue in CUDA for kernel requests. This works flawlessly for
serialized execution by a single-threaded program, but falls
apart when we want concurrent parallel-pipeline instances.
Specifically, use of only the default queue causes destructive
implicit synchronization on the GPU, which can significantly
degrade performance. As a prior work suggested [27], our
approach mitigates that by using CUDA functions to create
a unique FIFO queue for the kernel executions and memory
transfers of each parallel-pipeline instance.

V. EVALUATION

Our evaluation experiments were designed to answer a
number of questions related to our challenge: How many
cameras of differing frame rates (FPS) can be supported with
the PX2 running a shared CNN? Can acceptable latency be
maintained for each camera supported? How can we use the



configuration options in PIPELINE and PARALLEL to increase
the number of cameras supported? Are multi-camera composite
images a viable option for supporting significant numbers of
cameras?

The evaluation of multi-camera composite images must
explicitly consider the effects on object detection/recognition
accuracy. In all other evaluations of PIPELINE and PARALLEL
using single images, we verified that accuracy remained
unchanged (as expected, since the CNN layer processing
programs were unchanged).

We next describe aspects of the experimental methodology
common to all experiments and then proceed to answer our
questions. We first evaluate the frame rates enabled by the
three basic execution models on single and multiple cameras.
Then, we explore the effects of configurable options — stage
granularity, the number of threads per stage, and the assignment
of stages to GPUs. Finally, we explore the trade-off between
throughput and accuracy with multi-camera composite images.

General experiment set-up. In each experiment, the CNN
processes an aggregate of at least 10,000 frames. Latency is
measured as the time difference between the arrival time of
a frame at the first CNN layer and the time when the object
detection result for that image is ready. Because the system
runs Linux and all its services, worst-case latency outliers can
occur. Occasionally dropping a small number of frames when
their processing time exceeds a latency threshold is acceptable
for our automated-driving platform. Therefore, latencies are
reported only for those in the 95"-percentile of all measured
values.

Unless otherwise stated, the default CNN configuration has
one CNN layer per pipeline stage for both PIPELINE and
PARALLEL and ten threads per stage for PARALLEL. In these
default configurations, only the PX2’s dGPU is used. The
choice of these default configurations is explained as part
of configuration option evaluation. All the experiments were
conducted on the NVIDIA Drive PX 2 with Linux kernel 4.9.38-
rt25-tegra with the PREEMPT_RT patch, NVIDIA Driver
390.00, and CUDA 9.0, V9.0.225. CPU threads were scheduled
under SCHED_NORMAL.

A. How Many Cameras can be Supported?

To answer this question we first consider processing one
stream of images by the shared CNN. Cameras are characterized
by their frame rates (FPS), and we emulate camera inputs to the
CNN at rates common to cameras used in automated driving
(10, 15, 30, 40 FPS). We also consider streams with much
higher frame rates (up to 100 FPS) to represent aggregate frame
rates from multiple cameras sharing the CNN. Our emulated
camera is a program running on a separate thread that generates
input frames to the shared CNN at a defined inter-frame interval
corresponding to a given FPS (e.g., 25 milliseconds for 40
FPS). Because latency is a critical metric, we present results as
a plot of latency for different input camera rates and compare
execution under SERIAL, PIPELINE, and PARALLEL.
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PIPELINE supports 63 FPS, PARALLEL may support 71
FPS. Fig. 8 shows the latency results. Our main criterion
for supporting a frame rate is that latency does not become
unbounded at that rate. Using this criterion, SERIAL (essentially
the original YOLO) can support rates up to 28 FPS and
PIPELINE can support up to 63 FPS. PARALLEL can also
support 63 FPS with negligible latency reduction and up to 71
FPS before latency becomes unbounded. Note that the latency
at rates lower than 63 FPS is essentially constant indicating that
36 milliseconds is the minimum latency for YOLO (as seen on
the y-axis of Fig. 8). Latency becomes unbounded in any of
these scenarios when either the GPU becomes overloaded or
the CNN execution model cannot further utilize the available
GPU capacity. The latency increase of PARALLEL at 71 FPS
over PIPELINE at 63 FPS is 20 milliseconds. This may be
acceptable in scenarios such as maneuvering in a parking lot.
However, running multiple SERIAL instances (at most six due
to memory constraints) can support at most 53 FPS with latency
of 114 milliseconds before getting unbounded latency.

We attribute these results to the inter-stage GPU dispatch
parallelism of PIPELINE and the additional intra-stage GPU
dispatch parallelism of PARALLEL. These simultaneous dis-
patches allow us to more fully utilize the GPU and achieve a
higher frame rate. Although some dispatch parallelism can
be achieved by running multiple SERIAL instances, GPU
resource usage is still limited because kernels from different
process contexts cannot run concurrently in CUDA. Concurrent
kernel execution from different processes can be enabled with
NVIDIA’s MPS (Multi-Process Service), however, NVIDIA
has not implemented this on the PX2.

These results are perhaps most useful as ways to estimate
how many cameras with differing rates can share the CNN.
As long as the aggregate rate from all cameras is less than the
supported total rate, latency should not be compromised. For
example, the results show that a single, shared SERIAL YOLO
could not support a single 30 FPS camera on the PX2 hardware
while PIPELINE and PARALLEL should easily support two 30
FPS cameras. Similarly, PIPELINE can support up to four 15
FPS cameras, or two at 15 FPS and one at 30 FPS, etc.

Note that all these results are from using only one of the two
independent computing systems on the PX2 board. Using both
systems to run two independent CNN configurations should
double the number of cameras supported by one PX2.
Multiple cameras are supported for aggregate frame rates.
We verified that estimations based on the FPS of a single image
stream are valid for multiple. This experiment investigated
whether the additional competition from multiple input streams
to the shared CNN changed latencies. The results are shown
in Fig. 9 for one, two, and four cameras generating input to
PARALLEL YOLO. The supported total camera frame rate is
determined by the hardware capacity and the CNN framework
execution model, thus it is constant with multiple cameras
instead of one. That is, this data corroborates the estimate given
above that supporting one 60 FPS camera is the equivalent of
supporting two 30 FPS cameras, four 15 FPS cameras, etc. The
increased latencies for two and four cameras seen on the y-axis
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Fig. 9: PARALLEL YOLO latency with different numbers of cameras.

in Fig. 9 are an artifact of the experiment. The input images are
processed in sequence, so longer latency measurements will be
incurred when a frame starts being processed after frames that
arrive at the same time from other cameras. These in-phase
frame arrivals can be avoided in a real system by setting a
different phasing for each camera (a topic for future work).

B. Can Our CNN Implementations Be Better Configured?

PIPELINE can be configured with multiple CNN layers
aggregated into the pipeline stages, i.e., configuring the
granularity of each stage. PARALLEL can be configured in
the same way, but also adds the option to adjust the number
of threads assigned per stage, i.e., configure the degree of
parallelism within each stage. In addition, sequences of stages
can be assigned to either the iGPU or the dGPU on the PX2 to
avoid wasting any available GPU capacity. We evaluate these
configuration options next.

Granularity of stages improves latency under heavy loads
for PARALLEL. In Fig. 10, we compare the latency results at
frame rates from a single camera stream for PARALLEL with
different stage granularities. We did not observe any impact of
granularities on PIPELINE, so those results are not shown here.

Note that pipeline is effectively disabled by configuring a
single stage containing all 16 layers. This approximates multiple
instances of SERIAL that are running in one process context,
a configuration not supported in the original framework.

As shown in Fig. 10, latencies of different granularities
up to a frame rate at most 63 FPS (the maximum load
before latencies increase significantly, e.g., the max steady
state) are very close. While all the granularities can support
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Fig. 11: PARALLEL YOLO latency with different numbers of threads.

a heavier processing load up to 71 FPS with an increase in
latency, the finer-granularity stages have smaller latencies in this
region. Because each stage is implemented by one manager
thread and multiple worker threads, more stages with finer
granularity enable more parallelism among stages on the CPU.
Our design for data communication between stages introduces
small overheads, which is reflected in the very small changes
in the performance of different granularities when the frame
rate is low. A granularity of one layer per stage is a good
configuration choice.

More threads for PARALLEL improves latency under heavy
loads. In Fig. 11, we compare the latency results at frame rates
from a single camera stream for PARALLEL with different
numbers of threads. More parallelism is enabled with more
threads per stage, so more frames can be processed in parallel
by a stage. Having only one thread per stage is essentially the
same as pipelined execution, so latency becomes unbounded at
63 FPS as shown previously. Between 63 FPS and 71 FPS the
latencies increase substantially but higher numbers of threads
have somewhat lower latencies and a slower rate of latency
increase with load. A larger number of threads, 10 or so, is a
good configuration choice.

Overhead analysis and performance bottleneck. Enabling
PIPELINE and PARALLEL certainly causes additional overheads.
We evaluate the computational and spatial overheads with
different configurations by comparing the CPU and main
memory usage between SERIAL and PIPELINE or PARALLEL.
In each experiment, process or thread instances share the
six active CPU cores on the PX2. The maximum CPU



CPUs (%) Memory (MB)
SERIAL 92 774
SERIAL X6 536 4,644
PIPELINE (single thread) 219 1,132
PARALLEL (10 threads) 239 1,136

TABLE II: CPU and memory usage.

capacity is 600%. As shown in TABLE II, a single instance
of SERIAL uses 92% of the CPU capacity, essentially one
core’s worth. Six instances of SERIAL use 536%, most of the
available CPU resources. PIPELINE with one thread per stage
uses 219% of the CPU capacity and 1,132 MB of memory.
Compared to one SERIAL instance, these figures represent
an increase of 127% in CPU capacity and 358 MB with
respect to memory. These increases reflect added overheads
for synchronization, scheduling, and data buffering. Moving to
a PARALLEL implementation with ten threads per stage causes
only a slight increase in CPU usage, from 219% to 239%,
and a negligible increase in memory usage. We have shown
in Sec. V-A that a significant increase in the supported frame
rate is achieved with PARALLEL and PIPELINE configurations
compared to both one and six SERIAL instances. Under SERIAL,
the GPU is around 60% utilized, while under PARALLEL and
PIPELINE, it is nearly 100% utilized, shown from CUDA
profiling results that are similar to Fig. 4. This demonstrates
that using more CPU resources in order to fully utilize the
scarce resources of the GPU is a reasonable strategy.

Multi-GPU execution improves latency under heavy loads
We evaluate the latency performance of different GPU assign-
ment strategies next to understand the impact of assigning
some layers to the iGPU.

Layer performance on both GPUs. We first measured the
performance of each layer on both GPUs. We executed SERIAL
using each GPU individually and measured per-layer response
times and per-layer CPU computation times. Results are shown
in Fig. 12, which consists of two parts that use a common
z-axis; the top part depicts per-layer dGPU-iGPU performance
ratios (obtained by dividing a layer’s iGPU response time
by its dGPU response time); the bottom part depicts the per-
layer data just mentioned. As seen, convolution layers typically
take longer on the iGPU, some two to three times longer.
Convolution layers contain heavy matrix computations that are
completed much faster with more CUDA cores. The maxpool
and region layers have lower performance ratios because they
have lighter computation loads. These layers are good choices
to be moved to the iGPU.

GPU assignment strategy. To introduce as little latency
degradation as possible while using both GPUs, our strategy is
to move layers with low dGPU-iGPU performance ratios to the
iGPU. Given the performance ratios at the top of Fig. 12, we
evaluate the GPU assignment strategies shown in TABLE III.
Each strategy is characterized by the sequence of layer numbers
assigned to each GPU. For example, strategy S1 assigns layers
0 to 13 to the dGPU and layers 14 and 15 to the iGPU.

Strategy S1 substantially reduces latency for PARALLEL
under heavy loads. Fig. 13 shows that, for PARALLEL, moving
the last two CNN layers to the iGPU under strategy S1 improves

314

- mmm dGPU-iGPU performance ratio

Bl Response time (dGPU)
CPU time (dGPU)

Bl Response time (iGPU)

Bl CPU time (iGPU)

Time (milliseconds)

ORI IR I T T T TR R VR AR SN Y
I T M I O S > & N MY MY YYDy N
PO RO S RO LSRR SN PR I
<,°&0+Q c°6&+<e & B [$4 & L°@®+Q co;®+Q0 BN Lo“‘égo
Layers
Fig. 12: Per-layer execution times.
Strategy ID | dGPU iGPU
SO All 0
ST 0,1,..,13} 14,15}
S2 0,1,..,4,12,13,14, 15} 5.6,...,11}
S3 0,1,..,4,12,13} 5,6,..,11,14,15}
S4 0,1,.,7} 8,9,..,15)

TABLE III: GPU assignment strategies.

latency. S1 provides support for a frame rate of 71 FPS with
latency only slightly greater than a frame rate of 63 FPS when
using only the dGPU. At a frame rate of 80 FPS, the latency
is approximately the same as a frame rate of 71 FPS using
only the dGPU. All other strategies considered either increase
latencies or have negligible effect.

Strategies S1 and S3 provide some latency reduction for
PIPELINE under heavy loads. In Fig. 14, S1 provides support
for a frame rate of 71 FPS in PIPELINE with latency only
slightly greater than a frame rate of 63 FPS using only the
dGPU. S3 for PIPELINE supports a frame rate of 71 FPS
with reduced latency comparable to that for PARALLEL using
only the dGPU. All other strategies considered either increase
latencies or have negligible effect.

C. Are Multi-Camera Composite Images Effective?

Any combination of the features and execution models above
fails to provide enough throughput at desired latencies for a
vehicle equipped with more than four cameras at a frame rate
of 30 FPS using both systems on the PX2 board. We propose to
tackle this by leveraging the technique of compositing frames
from multiple cameras into one image for processing. Although
compositing might introduce a small loss of accuracy as the
image resolution will be reduced, this can be acceptable for
low-criticality cameras in certain circumstances. We devote
this section to evaluate the effectiveness of the technique.

With a multi-camera composite, the throughput is multiplied
by the number of images in the composite image. However,
the frame concatenation introduces overhead. Also, because
the frames are down-sampled as explained in Sec. IV-C, the
object detection accuracy could be reduced. We evaluate
the throughput, latency, and accuracy of the multi-camera
composite image technique.
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Experimental set-up. We focus on comparing YOLO’s per-
formance on full-size images and 2x2 composite images. The
network is evaluated on a standard object-detection dataset
called PASCAL VOC [8], using two types of tests: one of
full-size images and one of composite images. For the full-size
test, the original VOC test data is used. For the composite,
we generate test images by randomly choosing four full-size
VOC test images and combining them into a composite image
with a 2x2 grid. Each VOC test image is used exactly once
as a component of a composite image, hence, the size of
the composite test set is four times smaller than the full-
size one. This ensures that the total numbers of objects to
be detected are the same in both tests. At runtime, full-size and
composite images are both resized by YOLO to be 416x416
during processing.

Evaluation of detection results. Evaluation of the network’s
output is done using mean average precision (mAP) — a metric
commonly used to evaluate object-detection algorithms [9]. In
loose terms, mAP characterizes a model’s ability to have high
recall and high precision. In other words, higher mAP means
more objects are detected and the detections and localizations
are more accurate. A detailed explanation of mAP is provided
in Appendix A.

Similar to other state-of-the-art detection networks, YOLO
is designed to be scale-invariant, meaning it can detect objects
at different scales and resolutions. However, when image
resolutions decrease significantly (in our case, by a factor
of four), the network’s performance can start to degrade. As
seen in TABLE IV, with a 2x2 grid setup, YOLO trained on
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mAP Full-size Test
YOLO 55.63 36.46

Composite YOLO 57.64 48.29
TABLE IV: mAPs for full-size and composite tests with PASCAL

Composite Test

VOC dataset.
mAP Full-size Test | Composite Test
YOLO 63.66 4491
Composite YOLO 66.20 56.21

TABLE V: mAPs of object classes relevant to autonomous driving.*

the original VOC data can only perform at 36.46% mAP when
inferring composite images, an almost 20% accuracy drop.

To mitigate this, we retrained the network on the VOC dataset
using the same number of training images for both full-size and
composite data. The resulting mAPs are shown in TABLE IV.
Moreover, since our primary applications are to autonomous
driving, we also show in TABLE V the detection results
for relevant object classes.* Overall, our results consistently
indicate that with YOLO retrained on both composite and
full-size data, the detection accuracy of composite images
is improved without reducing that of full-size images. With
the retrained composite network, we can provide a trade-off
between a 10% accuracy drop and a fourfold increase of
throughput.

Although the mAP decreases with composite images, it is
important to remember the following. First, the focus of our
work is on providing the option to trade-off between higher
throughput and acceptably lower accuracy, and not on the
magnitude of the accuracy itself. Second, YOLO represents a
state-of-the-art detection network, but we are tackling a very
challenging CV problem with strictly limited resources. Third,
real-life autonomous driving systems usually deploy tracking
algorithms, which can use information of multiple frames to
improve detection accuracy. Finally, as shown in [22], YOLO
tends to perform better for bigger objects than for smaller ones.
Thus, we expect the mAPs to be higher for nearby objects,
which are usually prioritized in the case of automated driving.

A four-camera composite image supports 250 FPS (!) and
a latency of 48 milliseconds. This is shown in Fig. 15.
Examining the y-axis Fig. 15, observe that for lower respective
frame rates, latency is higher in the four-camera scenario than
in the one-camera scenario (about 45 vs. 36 milliseconds). This
is due to the additional overhead incurred to combine multiple
frames.

VI. CONCLUSIONS

In this paper, we presented the results of an industrial
design study that addresses the challenge of re-designing CNN
software to support multiple cameras with better throughput
for automated-driving systems. We showed how to transform
a traditional CNN framework to obtain pipelined and parallel-
pipelined variants to better utilize hardware resources. We also
examined the impact of properly load balancing GPU work

4Among 20 object classes, we deem the following eight to be irrelevant
to the task of autonomous driving: airplane, boat, bottle, chair, dining table,
potted plant, sofa, and TV monitor.
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across the GPUs of a multi-GPU hardware platform. These
basic techniques resulted in an improvement in throughput
of over twofold with only minor latency increases and no
accuracy loss. In order to accommodate more cameras that
these basic techniques allow, we proposed the technique of
compositing multiple image streams from different cameras
into a single stream. We showed that this technique can greatly
boost throughput (up to 250 FPS) at the expense of some
accuracy loss. We demonstrated that this accuracy loss can be
partially mitigated through network retraining.

The results of this study open up many interesting avenues
for future work. For example, we would like to determine
whether the compositing technique can be dynamically applied
at runtime for input streams that may change in criticality. For
example, when driving forward, side-facing cameras are less
critical and thus could be reasonable to composite. However,
when turning, these cameras become more critical, so disabling
compositing for them might be appropriate. In multi-mode
systems, compositing might also be mode-dependent, in which
case it becomes an issue mode-change protocols must consider.
In addition to these issues, we would like to explore whether
the CNN model can be further optimized to increase detection

precision at the center boundaries of a composite image.

Embedded hardware platforms other than the PX2 and CV
applications other than YOLO also certainly warrant attention.

APPENDIX A: MEAN AVERAGE PRECISION (MAP)

This appendix provides an intuitive understanding of the
Mean Average Precision (mAP) metric, which is a popular
metric for evaluating object detection accuracy. For a more
detailed introduction, we refer the reader to [13] and Section
4.2 in [9] for further details on the precision-recall curve and
mAP.

1) IoU, Precision, and Recall

In order to determine the precision of object detection we
first need to measure the quality of object detections, which
is done through the Intersection over Union (IoU) measure. It
is defined as the proportion of overlapping area between the
predicted and expected area of an object over their union:

PredictedArea N ExpectedArea
PredictedArea U ExpectedArea

IoU =
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If the IoU of a prediction is greater than a chosen threshold
(e.g., 0.5, as specified in PASCAL VOC dataset), we consider
it to be a “correct” detection or a true positive.

Being able to measure correct detections for a given class
(e.g., car), enables us to measure the precision and recall for
the class, which are defined as follows.

Precisi TruePositive
recision =
TruePositive + FalsePositive
TruePositive
Recall =

TruePositive + FalseNegative

The precision measures the proportion of correctly detected
objects over all predictions, while recall measures the propor-
tion of correctly detected objects over all test objects. A good
object detector should be able to detect most of the objects
in the scene (high recall/completeness) and do so accurately
(high precision/correctness). Please note, there are typically
trade-offs to be made, i.e., in order to improve precision usually
the recall suffers and vice versa.

2) Precision-Recall curve and Mean Average Precision

A precision-recall curve (see Fig. 16) is used to evaluate
these trade-offs between precision and recall or false positives
and false negatives [1,3]. For a given class, Average Precision
(AP) is a numerical value that summarizes the shape of
the precision/recall curve. Specifically, it is calculated by
taking the average precision of 11 equally spaced recall levels
{0,0.1,,1} [9].

AP =+

Z pinterp (7')

re€0,0.1,..1
with Dinterp(r) = mz;xp(r*)

A method with high AP has relatively high precision at all
levels of recall and thus, can perform accurate detection for
the given class. Mean Average Precision (mAP) is the mean
AP over all classes (e.g., car, people, dog, etc.).
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