
Re-thinking CNN Frameworks for Time-Sensitive
Autonomous-Driving Applications: Addressing an

Industrial Challenge∗

Ming Yang1, Shige Wang2, Joshua Bakita1, Thanh Vu1, F. Donelson Smith1, James H. Anderson1, and Jan-Michael Frahm1

1Department of Computer Science, University of North Carolina at Chapel Hill 2General Motors Research

Abstract—Vision-based perception systems are crucial for prof-
itable autonomous-driving vehicle products. High accuracy in
such perception systems is being enabled by rapidly evolving
convolution neural networks (CNNs). To achieve a better un-
derstanding of its surrounding environment, a vehicle must be
provided with full coverage via multiple cameras. However, when
processing multiple video streams, existing CNN frameworks
often fail to provide enough inference performance, particularly
on embedded hardware constrained by size, weight, and power
limits. This paper presents the results of an industrial case study
that was conducted to re-think the design of CNN software
to better utilize available hardware resources. In this study,
techniques such as parallelism, pipelining, and the merging of
per-camera images into a single composite image were considered
in the context of a Drive PX2 embedded hardware platform. The
study identifies a combination of techniques that can be applied
to increase throughput (number of simultaneous camera streams)
without significantly increasing per-frame latency (camera to
CNN output) or reducing per-stream accuracy.

I. INTRODUCTION

This paper reports on the results of an industrial automotive

design study focusing on the application of convolutional neural

networks (CNNs) in computer vision (CV) for autonomous or

automated-driving cars. CNNs are essential building blocks

for CV applications that process camera images in diverse

uses including object detection and recognition (cars, people,

bicycles, signs), scene segmentation (finding roads, sidewalks,

buildings), localization (generating and following a map),

etc. CV applications based on CNN technology are essential

because cameras deployed on cars are much less costly than

other sensors such as Lidar.

CV in a resource-constrained setting. While cameras are

cheap, CV computational costs are not. Keeping overall

monetary cost low is essential for consumer-market cars and

requires effective management of computing hardware. Because

state-of-the-art CV approaches have been shown to take over

94% of the computational capacity in a simulated vehicle

[18], computer hardware costs can be significantly reduced by

optimized implementations. Existing CNN frameworks have

some amount of optimization with parallelism, but focus largely

on processing a single stream of images in a parallel manner.

∗ Most of the study described in this paper was conducted during an
internship by the first author at General Motors. Work supported by NSF
grants CNS 1409175, CPS 1446631, CNS 1563845, CNS 1717589, and CPS
1837337, ARO grant W911NF-17-1-0294, and funding from General Motors.

The solutions considered in this study re-think the way CNN

software is implemented so that effective resource management

can be applied to CNN applications. Our study focuses on one

of the most demanding CV applications in cars, the timely

detection/recognition of objects in the surrounding environment.

Industrial challenge. The major challenge we seek to address

is to resolve the inherent tensions among requirements for

throughput, response time, and accuracy, which are difficult to

satisfy simultaneously.
The sheer number and diversity of cameras necessary to

provide adequate coverage and redundancy (for safety) drives

throughput requirements. A typical configuration in today’s

experimental automated-driving vehicle includes ten or more

cameras that cover different fields of view, orientations, and

near/far ranges. Each camera generates a stream of images at

rates ranging from 10 to 40 frames per second (FPS) depending

on its function (e.g., lower rates for side-facing cameras, higher

rates for forward-facing ones). All streams must be processed

simultaneously by the object detection/recognition application.
For this application, response time (latency from image

capture to recognition completion) is time-sensitive because

of its position on the critical path to control and actuation

of the vehicle. Every millisecond that elapses during object

recognition is a millisecond not available for effecting safe

operation. Ideally, the camera-to-recognition latency per frame

should not substantially exceed the inter-frame time of the

input images (e.g., 25 milliseconds for a 40 FPS camera).
Accuracy requirements for detection/recognition depend on

a number of factors specific to the functions supported by

a given camera. For example, accuracy may be much more

important in streams from front-facing cameras than those from

side-facing cameras. For most of the design alternatives we

consider, our modifications have no effect on the accuracy of

the CV CNN. However, we do explore one particular instance

of a throughput vs. accuracy trade-off of relevance in systems

with many cameras (see Sec. V).
To summarize, our challenge is to re-think the design of

CNN software to better utilize hardware resources and achieve
increased throughput (number of simultaneous camera streams)
without any appreciable increase in per-frame latency (camera
to CNN output) or reduction of per-stream accuracy.
Our hardware and software environment. Cars are manufac-

tured by integrating components (including computing hardware
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and software) from a supply chain of various vendors (“Tier-1”

and “Tier-2” suppliers). To meet the computational demands

of CV applications, supplier offerings are usually based on

various application-specific integrated circuits (ASICs) such as

field programmable gate arrays (FPGAs), or on digital signal

processors (DSPs) or graphics processing units (GPUs). FPGAs

and DSPs have advantages in power and density over GPUs,

but require specialized knowledge for using the hardware and

its tooling environment. Moreover, integrating CV applications

supplied by different sources using proprietary black-box

solutions built on FPGAs or DSPs can increase product cost.

Because of these complicating factors, we consider GPUs as

the primary solution for CV applications. GPUs have more

familiar development tools and a large number of open-source

software choices, TensorFlow [1] being a notable example.

In this study, we use the NVIDIA DRIVE PX Parker

AutoChauffeur (previously called the ‘DRIVE PX2’ or just

‘PX2’) [20]. This embedded computing platform is marketed

by NVIDIA as the “first artificial-intelligence (AI) supercom-

puter for autonomous and semi-autonomous vehicles.” The

PX2 incorporates multicore processors along with multiple

GPUs to accelerate CV applications. With respect to such

applications, we focus on a variant of the open-source CNN

framework ‘Darknet’ configured to implement an object

detection/recognition program called ‘Tiny YOLO’ (version 2,

‘YOLO’ for short) [22, 23, 24]. While our study targets

specific hardware and CNN software, our hardware and

software choices are representative of the multi-core/multi-GPU

hardware and CNN designs that are used and will continue to

be used for automated driving.

Our design study. As stated earlier, the fundamental challenge

we consider is to design an object-detection application that

can support independent streams of images from several

cameras. Due to the constraining nature of our hardware,

effective utilization of every part of the system is essential. Our

preliminary measurements (provided in Sec. V) revealed that

GPU execution time dominates the time spent processing each

image in YOLO, yet one of the PX2’s two GPUs1 was left

completely idle and the second was utilized at less than 40%.

This result motivated us to explore system-level optimizations

of YOLO as a path to higher throughputs.

Many CNN implementations similarly seem to have limited

throughput and poor GPU utilization. As explained further in

Sec. III, the root of the problem lies in viewing processing as

a single run-through of all the processing layers comprising

a CNN. However, in processing an image sequence from one

camera, each layer’s processing of image i is independent of

its processing of image i + 1. If the intermediate per-image

data created at each layer is buffered and sequenced, there is

no reason why successive images from the same camera cannot

be processed in different layers concurrently. This motivates us

to consider the classic pipelining solution to sharing resources

1Technically, the PX2 provides four GPUs split between two systems on a
chip (SoCs). We considered only one of these SoCs in our evaluation.

for increased throughput.2 While pipelining offers the potential

for greater parallelism, concurrent executions of the same layer

on different images are still precluded. While allowing this

may be of limited utility with one camera, it has the potential

of further increasing throughput substantially when processing

streams of images from multiple cameras (all of which are

also independent). This motivates us to extend pipelining by

enabling each layer to execute in parallel on multiple images.

We altered the design of Darknet to enable pipelined

execution, with parallel layer execution as an option, in the

YOLO CNN. We also implemented a technique whereby

different camera image streams are combined into a single

image stream by combining separate per-camera images into

a single composite image. This compositing technique can

greatly increase throughput at the expense of some accuracy

loss. We also enabled the balancing of GPU work across the

PX2’s two GPUs, which have differing processing capabilities.

The YOLO variants arising from these options and various

other implementation details are discussed in Sec. IV. The

options themselves are evaluated in Sec. V.

Contribution. This paper provides an effective solution for

a challenging industry problem: designing CNN systems that

can provide the throughput, timeliness, and accuracy for CV

applications in automated and autonomous driving. Through

re-thinking how the YOLO CNN is executed, we show that

its throughput can be improved by more than twofold with

only a minor latency increase and no change in accuracy. We

also show that throughput can be further improved with proper

GPU load balancing. Finally, we show that the compositing

technique can enable very high throughputs of up to 250 FPS

on the PX2. While this technique does incur some accuracy

loss, we show that such loss can be mitigated by redoing the

“training” CNNs require. We claim these results are sufficiently

fundamental to guide CNN construction for similar automotive

CV applications on other frameworks or hardware.

In order to understand these contributions in full, an

understanding of relevant background information and related

work is required. This we provide in the next two sections.

II. BACKGROUND

In this section, we provide detailed descriptions of our

hardware platform, the DRIVE PX2 [20], the Darknet CNN

framework, and the object-detection application (“YOLO”) that

runs using this framework.

A. NVIDIA DRIVE PX2

The PX2 is embedded hardware specifically designed to

provide high-performance computing resources for autonomous

operation on a platform with small size, weight, and power

characteristics.

2For example, instruction pipelining in processors can fully utilize data-path
elements and increase throughput.
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 NVIDIA Drive PX 2
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Fig. 1: NVIDIA DRIVE PX2 architecture (showing one of the PX2’s
two identical and independent systems).

Integrated GPU (iGPU) Discrete GPU (dGPU)

Computing units 256 CUDA Cores 1152 CUDA Cores

Accessible memory 6668 MBytes 3840 MBytes

Memory bandwidth [25] ≈50 GBytes/s ≈80 GBytes/s

Shared L2 cache size 512 KBytes 1,024 KBytes

TABLE I: Specifications of the PX2 iGPU and dGPU.

Architecture. The PX2 contains two identical and independent

“Parker” systems on a chip (SoCs), called Tegra A and B,

connected by a 1 Gbps Controller Area Network (CAN) bus.

We show one of the identical halves of the PX2 in Fig. 1.

Each SoC contains six CPUs (four ARMv8 Cortex A57 cores,

two ARMv8 Denver 2.0 cores), and an integrated Pascal GPU

(iGPU). Each Parker SoC also connects to a discrete Pascal

GPU (dGPU) over its PCIe x4 bus. While the iGPU and CPU

cores share main DRAM memory, the dGPU has its own

DRAM memory. Memory transfers between CPU memory and

dGPU memory use the PCIe bus. The remainder of this paper,
including the design descriptions and evaluation experiments,
use only one of the PX2’s two independent systems.
iGPU vs. dGPU. As previously mentioned, the PX2 has two

types of GPUs – the iGPU and the dGPU – using the same

Pascal architecture. While they share an architecture, they share

little else. Consider their specifications as shown in TABLE I.

The dGPU has more cores, faster memory, and a larger L2

cache. The iGPU lags behind, advantaged only by its access

to the larger, albeit shared, main memory DRAM banks.

The exact performance differences between the iGPU and

the dGPU depend on the characteristics of GPU programs used

in a specific application. We characterize these differences for

YOLO in Sec. V.

B. YOLO: You Only Look Once

In this section, we describe Tiny YOLOv2 (simply “YOLO”

in the remainder of this paper). We use YOLO as an exemplar

for a wide class of CNN implementations that can be optimized

using the designs presented here. We also use it for empirical

evaluations of the new CNN framework.

Convolutional neural networks. YOLO is a CNN that

localizes and classifies multiple objects in an image during one

forward pass through the CNN. The localization operation

predicts the position and dimensions (in pixel units) of a

rectangle (“bounding box”) in the image that contains an

object of interest. The classification operation predicts with

a probability what specific class (car, bicycle, sign, etc.) the

object belongs to. Collectively, localization and classification

are here referred to as object detection.

A neural network can “learn” to localize and classify objects

in images via a process called supervised training in which a

large number of images labeled with “ground-truth” bounding

boxes and class identifications are input to the CNN running in

training mode. Training typically results in computing a large

set of parameters (or “weights”) defining how the CNN will

respond when given images not in the training set (e.g., images

from cameras mounted on a car). For most of the experiments

in Sec. V, we used the YOLO CNN as already trained on a

widely used set of relevant training images (VOC 2007+12), so

we did not modify the YOLO network architecture or training

approach. This means that most of our work applies to any

CNN constructed using Darknet, from YOLOv3 to AlexNet.

This is extremely important as noted in [18] because the state

of the art rapidly changes for autonomous vehicles. Only one

optional enhancement we consider, namely image compositing,

requires retraining.

Tiny YOLO implementation. Tiny YOLOv2 is a lower-

accuracy, faster-speed derivative of YOLOv2 by the YOLOv2

authors [22, 24]. This version of YOLO runs roughly five times

faster than the standard version of YOLO (≥ 200 FPS vs. ≥ 40
FPS on a high-end GPU) [24]. The network architecture is

shown in Fig. 2, as it would be configured by default for C
cameras (denoted 0 through C − 1). In this default system,

each camera uses a separate “private” instantiation of the

network. Each instantiation contains nine convolution or

convolutional layers interleaved with six maxpool layers and

a region layer at the end. All YOLO networks run on the

Darknet [23] CNN framework. A convolutional layer convolves

over the input by computing the dot product between input and

filters to produce an activation map of features. A maxpool
layer applies a non-linear transform to the input by picking

maximum values out of non-overlapping regions. YOLO’s

region layer uses the activation maps of the last convolutional

layer alongside precalculated “anchor” values to predict the

output locations and bounding boxes of objects of interest.

These anchors characterize the common shapes and sizes of

bounding boxes in the training data and help improve the

prediction accuracy. All of our modifications and benchmarks

are based on a proprietary fork of Darknet, so frame rates in

Sec. V are not directly comparable to those from the open-

source version.3 Unfortunately, we are unable to open source

our fork due to intellectual property management issues.

The Darknet framework is programmed in C and CUDA.

CUDA is an API library and set of C language extensions

provided by NVIDIA for general-purpose programming of

applications that use a GPU for acceleration. Programs in

CUDA run on the CPU and can request execution of programs

called “kernels” that are written to run on the GPU. Kernel

execution requests are effectively placed in FIFO CUDA stream

queues managed by GPU hardware and its device driver. The

GPU scheduler executes kernels from multiple queues in a

3Specifically, our base version of Darknet pre-loads frames and performs
frame resizing in the main thread whereas the open-source version uses a
separate thread.
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Convolution Maxpool Region

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

   0 Private CNN

   C-1 Private CNN

… …

Cameras Detection box results

…

Layers:

Fig. 2: Traditional camera processing setup and the Tiny YOLOv2
network architecture. Larger boxes indicate longer execution times.
Frame data flows left to right.

complicated, semi-fair order but always respects the FIFO

ordering within a stream queue. When the CPU requests the

execution of a kernel on the GPU, control returns to the

CPU shortly after the request is enqueued, but before the

kernel is executed. The CPU program must use an explicit

synchronization operation to determine when all its requested

kernel executions have completed.

Darknet uses a common CUDA programming pattern in its

layers. The pattern is (a), if necessary, copy data from CPU

memory to GPU memory, (b) start one or more kernels, (c)

synchronize on the GPU completion of the kernels, and (d),

copy data from GPU memory to CPU memory. Requests for

copy operations use specialized hardware on the GPU but are

placed in the FIFO stream queues in order with the kernels.

The number of kernels run by YOLO varies between layers,

but in total may be hundreds of kernels per image.

III. RELATED WORK

YOLO comes from a family of “single-shot” detection

approaches. These architectures, pioneered by Redmon and

Liu [19, 21], perform all the steps of detection in one run

of a single CNN. This allows for higher throughput while

competing with the state-of-the-art on accuracy. This builds

off several foundational CV CNN works [10, 11, 17].

CNNs inherently consist largely of parallel math, and thus

GPUs serve as the ideal execution platform. Unfortunately,

the leading GPU manufacturer (NVIDIA) presently holds their

architecture and software stacks extremely closely. This secrecy

has even left some publicly documented synchronization

behaviors of their hardware to be incorrect [27]. These factors

have previously made it very challenging to build CV CNNs

that consistently or properly utilize the GPU. (We show how

inadequate the best existing efforts have been in this paper.)

Fortunately, recent work has begun to address this problem.

While AMD’s GPUOpen effort [2] helped unveil aspects of

GPU design, Amert et al. [3] and Capodieci et al. [5] recently

presented more relevant findings. These works uncover details

on how CUDA threads are scheduled inside the same process

and dispatched to the GPU cores on the NVIDIA Parker SoC,

highlighting a set of timesliced FIFO queues at the core. While

some other works [16] have critiqued Amert et al.’s efforts for

ambiguous applicability to other NVIDIA GPUs, our platform

(the PX 2) shares an SoC (the NVIDIA Parker chip) with their

work. This, and some limited validation work by Bakita et al.

in [4], allows us to safely apply the findings of [3] here.

In the area of parallel CNN scheduling, frameworks such

at TensorFlow [1] already support intra-model CNN graphs.

These graphs serve to enable “parallelism, distributed execution,

compilation, and portability” in their applications (per their

website). However, neither the original paper [1] nor their

survey of CV CNNs [12] seems to consider anything besides

parallelism inside one, serialized execution of a model on static

data. Their graphs seem mostly to serve to formalize the implicit

dataflow graph present in any CNN. In contrast, our work deals

with synthesizing an extra-model shared CNN by which to

collapse multiple CNN instances into a single shared program.

It is worth emphasizing that our efforts are designed to largely

work alongside the vast body of existing CNN optimization

and compression efforts such as DeepMon [14].

One other work similar to ours, S3DNN, applied techniques

such as kernel-level deadline-aware scheduling and batch

processing (data fusion) that require additional middleware [28].

We focus on higher-level parallelism by applying a graph-based

architecture. Such a graph-based architecture was also applied

in [26], which focuses on separating CPU and GPU workloads

at the kernel level to guarantee response-time bounds.

Some of our work here also considers ways to optimally

partition YOLO between GPUs of different capabilities. The

partitioning concept is not new, used by Kang et al. to dynam-

ically balance CNN layers between a compute-impoverished

system and a networked server with Neurosurgeon [15]. We,

however, use the technique to optimize solely for performance

without the networking constraints that dominate that work.

IV. SYSTEM DESIGN

In this section, we discuss some of our ideas for how to

implement this shared CNN. First, we describe our overarching

approach, which involves generalizing the concept of a CV

layer by combining groups of consecutive layers into “stages,”

examining opportunities for parallelism across stages (“pipelin-

ing”), and considering opportunities for parallelism inside each

stage (“parallel-pipelining”). Second, our hardware platform

provides the somewhat unique opportunity to examine GPU-

work-assignment strategies across asymmetric processors, so we

briefly consider that issue. Third, we propose a novel technique

for realizing additional throughput gains in high-camera-count

environments. Along the way, we also briefly touch on several

other issues that naturally arise with the concept of a shared

CNN. These include data handling, communication issues, and

implicit synchronization. Before delving too deeply into the

details, however, we first motivate why we are interested in

this shared approach in the first place.

The obvious solution to support multiple cameras is simple:

run multiple instances of the application – one process for each
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camera – and have them share the GPU(s), as shown in Fig. 2.

We reject this approach for two reasons. First, the high memory

requirements of each network instance heavily limits the total

number of instances (a maximum of six on our hardware

platform). Second, running the models independently does not

easily allow for fast synchronization across multiple cameras.

Ideally, we would like each network and camera to process

frames at the same rate, prioritizing work for networks that are

lagging behind. However, this proves extremely challenging

in practice as it requires modifying GPU scheduling behavior

– a task still not satisfactorily solved by any research that we

are aware of.

A. Enabling Parallelism

As noted in Sec. I, CNN layers and models are inherently

independent and thus sharable – the only major complexities

for us stem from Darknet’s limited “bookkeeping” side-effects

and from the need to correctly pipe intermediate data between

layers. In this section, we explore ways of enabling parallelism

in such a shared computation structure.

Decomposition into stages. As a precursor to introducing

parallelism, we decompose a shared CNN into a succession

of computational stages. Each stage is simply a subsequence

of layers from the YOLO CNN shown in Fig. 2, as illustrated

in Fig. 3. To correctly manage both frame data and the

bookkeeping data required by YOLO, we buffer indices to

this data using queues between stages as shown in Fig. 3.

Note that these queues are not necessarily index-ordered.

Conceptually, we can view the data being indexed as being

stored in infinite arrays, but in reality, these arrays are “wrapped”

to form ring buffers. The size of the frame ring buffer is large

enough to prevent any blocking when adding another frame

to it. However, memory constraints limit the ring buffer for

bookkeeping data to have only ten entries. This implies that

only ten frames can exist concurrently in the shared CNN at any

time. Note that Darknet ensures that the original layers execute

correctly without further modification by us when provided

with the appropriate bookkeeping data. Data buffering and

synchronization in our pipelined implementation are provided

by PGMRT, a library created as part of prior work at UNC [7].

Serialized execution. Before enabling parallelism, we first

look at the scheduling of the default serialized execution of the

unmodified YOLO through an example in Fig. 4(a). We will

explain Fig. 4(b) and (c) shortly. Fig. 4(a) shows a single three-

stage CNN that processes frames serially. At time t0, the first

stage (Stage 0) starts the initial preparation work on the CPU

for frame f . This initial preparation work (for example, resizing

the frame) requires Stage 0 to execute longer on the CPU than

the following stages. Stage 0 launches its kernel, indicated by

S0, at time t1 into the single CUDA stream queue belonging

to this CNN instance. Stage 1 launches another kernel, S1,

at time t1, and S2 is launched at time t2. These kernels S0,

S1, and S2 are executed in FIFO order and are completed at

times t4, t5, and t6 respectively. Since the intermediate data

produced by the first kernels S0 and S1 are not needed for

CPU computations, only the last stage suspends to wait for all

Data for 
Frame 3

   0

   C-1

…

Cameras

Stage 0

231

Stage 1 Stage N-1

…
Queue 0

Queue 1 Queue N-1

Detection box results

Layer 𝓁
Layer 𝓁+𝓀

…

Frames
0

1

2
3

…

Bookkeeping 
data 

Data for 
Frame 2

Data for 
Frame 1

Shared CNN

0

1

2
3

Fig. 3: Sharing one CNN for multiple cameras.

kernels to complete (at time t6). The use of intermediate data

only by kernels running on the GPU is common to other CNN

implementations. Because the processing of multiple frames is

serialized by the single CNN, the GPU is often left idle when

no kernel requests are in the stream queue.

Pipelined execution. We now explore different methods for

enabling the parallel processing of stages. The first method

we consider is to enable pipelined execution, i.e., we allow

successive stages to execute in parallel on different frames. We

implement pipelined execution by defining a thread per stage,

which processes one frame by performing the computational

steps illustrated in Fig. 5 for a stage comprised of one

convolution layer followed by one maxpool layer. Each stage’s

thread starts by waiting on the arrival of an index from the

previous stage to signal that stage’s completion. Once this index

becomes available, the thread starts processing by calling the

original CNN layer functions with the appropriate bookkeeping

data. After these layer functions return, the thread notifies the

next stage of completion by pushing the index it just finished

into the next queue. It then returns to waiting for input data

again. This approach requires no changes to the original YOLO
layer functions.

The resulting parallelism is illustrated in Fig. 4(b). For

conciseness, we henceforth refer to this pipelined-execution

variant of YOLO as simply “PIPELINE” and refer to the original

unmodified YOLO as “SERIAL.” In PIPELINE, multiple per-

frame queues are created and pipeline stages can execute

concurrently on CPU cores. This enables kernels from different

frames to be queued and executed concurrently on the GPU

when enough of its resources are available. One example of

the concurrent GPU execution of kernels is noted in Fig. 4(b).

The threads for stages are scheduled by the Linux scheduler

SCHED_NORMAL. Threads may migrate between CPU cores or

block when cores are not available. The concurrent executions

of threads on the CPUs and kernels on the GPU should enable

PIPELINE to provide higher throughput or lower latency. We

evaluate this in Sec. V. While the longer first stage causes

some overall pipeline imbalance, we believe this is largely

confined to the CPU. We further mitigate the influence of a

pipeline imbalance by enabling thread parallelism within each

stage as described next.

Parallel-pipeline execution. As seen in Fig. 4, PIPELINE

enables parallelism across stages but not within a stage. Given

the independence properties mentioned in Sec. I, there is no

reason why the same stage cannot be executed on different
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GPU execution of f′′:

GPU execution:

Fig. 4: Scheduling of SERIAL, PIPELINE, and PARALLEL.

frames at the same time. To enable this, we consider a second

parallel YOLO variant, called parallel-pipeline execution, or

simply “PARALLEL” for brevity, that extends PIPELINE by

allowing parallel executions of the same stage. The PARALLEL

YOLO variant is realized by allocating a configurable number of

“worker” threads in each stage, and a “manager” thread that is

responsible for dispatching worker threads. The worker threads

can process different frames concurrently. This is illustrated in

Fig. 6 (once again) for a stage comprised of one convolution

layer and one maxpool layer. The difference between PIPELINE

and PARALLEL is illustrated in Fig. 4(c). In PARALLEL, more

parallelism is enabled on both CPU cores and the GPU through

allowing multiple threads of the same stage to execute in

parallel. Recalling the scheduling rules revealed in [3], kernels

are scheduled in order of their arrival times to the heads of

their stream queues. In Fig. 4(c), these arrival times are such

that kernel executions from different frames are interleaved, as

shown.

With the scheduling shown in Fig. 4, we can see that

PIPELINE and PARALLEL achieve the purpose of fully utilizing

the GPU resources (much less GPU idle time than SERIAL).

We quantify the performance in Sec. V.

310



Layer 𝓁Stage n Layer 𝓁+1

Steps:
1. Wait for data on Queue n
2. Execute Layer 𝓁 and then 𝓁+1
3. Write output to Queue n+1 and notify Stage n+1
4. Loop again from 1

Convolution Maxpool

Fig. 5: Stage representation for pipelined execution model.

Layer 𝓁Stage n Layer 𝓁+1

Manager thread:
1. Wait for data on Queue n
2. Launch a worker thread
3. Loop again from 1

Convolution Maxpool

Worker threads:
1. Execute Layer 𝓁 and then 𝓁+1
2. Write output to Queue n+1 and notify Stage n+1
3. Exit

…

Fig. 6: Stage representation for parallel-pipeline execution model.

B. Multi-GPU Execution

Recall from Sec. II that the PX2 has an iGPU and a dGPU

with different capabilities. As seen in Fig. 12, which we cover

in detail later, the iGPU tends to execute layers substantially

slower than the dGPU. However, notable exceptions (maxpool

layers and the region layer) do exist, so the iGPU is still a useful

computational resource. Given this observation, we enhanced

our PIPELINE and PARALLEL implementations to allow a

configurable distribution of stages across GPUs. While utilizing

both GPUs may be beneficial, additional data-transfer and

synchronization overheads can cause dual-GPU configurations

to sometimes under-perform single-GPU ones. We analyze this

trade-off experimentally in Sec. V-B.

C. Accelerating Multiple Streams with Multi-Camera Compos-
ite Images

What if we could combine several physical cameras into

a single “virtual” one, as illustrated in Fig. 7, by combining

independent per-camera images into a single composite image

as illustrated? Such an approach could have a tremendous

impact on throughput. For example, if all physical cameras

were combined in groups of four, throughput could potentially

be increased by fourfold. Whether this is acceptable would

depend on how latency and accuracy are impacted.

To enable this approach to be evaluated, we added flexible

support for compositing physical cameras to the YOLO variants

already described. Note that these variants themselves are not

impacted by this approach: the fact that the images to be

processed are obtained by compositing does not change the

processing to be done. Because of this, it is possible to have

both composite and full images supported in the same system,

as illustrated in Fig. 7.

     𝐶-1

Physical 
cameras

0 1

2 3

Physical 
cameras

0 1

2 3

𝑉 virtual cameras

   4𝑉

𝐶-4𝑉 physical 
cameras

…

…
Shared CNN

Composite images

Full-size images

Detection box results

…

…

…

Fig. 7: CNN extended for multi-camera composite images.

The compositing approach works by exploiting the flexibility

of YOLO’s neural network to process multiple frames as a

single frame. This requires taking k2 frames for some k, tiling

them in a grid, and then passing that combined image through

YOLO as a single input, as shown in Fig. 7. For best accuracy,
this approach requires re-training the YOLO network on a set
of suitably tiled images to produce new model weights.

While compositing should yield a throughput improvement

that is linear in the number of images in the grid, there are

several additional factors to consider. First, frame arrival times

from different cameras must be synchronized or the combining

process will block waiting for all the images required to fill the

grid. This could increase latency to the time between frames on

the camera with the smallest frame rate. Second, this approach

will reduce accuracy. Because our configuration of YOLO only

accepts frames of 416 by 416 pixels, each frame in the grid

must be downscaled by a factor proportional to the grid size.

For detecting objects that are large relative to the frame size

(e.g., close vehicles), this compromise may be permissible,

however that will not be true in all cases.

Additionally, we must stress that this approach only works

for CNNs that reason locally. Using this approach in global-

classification systems such as those used in scene understanding

will yield incorrect results. While the YOLO authors believe

their network learned to use global features, we did not observe

this behavior in our analysis.

D. Avoiding Implicit Synchronization

The original Darknet framework uses the single default FIFO

queue in CUDA for kernel requests. This works flawlessly for

serialized execution by a single-threaded program, but falls

apart when we want concurrent parallel-pipeline instances.

Specifically, use of only the default queue causes destructive

implicit synchronization on the GPU, which can significantly

degrade performance. As a prior work suggested [27], our

approach mitigates that by using CUDA functions to create

a unique FIFO queue for the kernel executions and memory

transfers of each parallel-pipeline instance.

V. EVALUATION

Our evaluation experiments were designed to answer a

number of questions related to our challenge: How many

cameras of differing frame rates (FPS) can be supported with

the PX2 running a shared CNN? Can acceptable latency be

maintained for each camera supported? How can we use the
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configuration options in PIPELINE and PARALLEL to increase

the number of cameras supported? Are multi-camera composite

images a viable option for supporting significant numbers of

cameras?

The evaluation of multi-camera composite images must

explicitly consider the effects on object detection/recognition

accuracy. In all other evaluations of PIPELINE and PARALLEL

using single images, we verified that accuracy remained

unchanged (as expected, since the CNN layer processing

programs were unchanged).

We next describe aspects of the experimental methodology

common to all experiments and then proceed to answer our

questions. We first evaluate the frame rates enabled by the

three basic execution models on single and multiple cameras.

Then, we explore the effects of configurable options – stage

granularity, the number of threads per stage, and the assignment

of stages to GPUs. Finally, we explore the trade-off between

throughput and accuracy with multi-camera composite images.

General experiment set-up. In each experiment, the CNN

processes an aggregate of at least 10,000 frames. Latency is

measured as the time difference between the arrival time of

a frame at the first CNN layer and the time when the object

detection result for that image is ready. Because the system

runs Linux and all its services, worst-case latency outliers can

occur. Occasionally dropping a small number of frames when

their processing time exceeds a latency threshold is acceptable

for our automated-driving platform. Therefore, latencies are

reported only for those in the 95th-percentile of all measured

values.

Unless otherwise stated, the default CNN configuration has

one CNN layer per pipeline stage for both PIPELINE and

PARALLEL and ten threads per stage for PARALLEL. In these

default configurations, only the PX2’s dGPU is used. The

choice of these default configurations is explained as part

of configuration option evaluation. All the experiments were

conducted on the NVIDIA Drive PX 2 with Linux kernel 4.9.38-

rt25-tegra with the PREEMPT RT patch, NVIDIA Driver

390.00, and CUDA 9.0, V9.0.225. CPU threads were scheduled

under SCHED_NORMAL.

A. How Many Cameras can be Supported?

To answer this question we first consider processing one

stream of images by the shared CNN. Cameras are characterized

by their frame rates (FPS), and we emulate camera inputs to the

CNN at rates common to cameras used in automated driving

(10, 15, 30, 40 FPS). We also consider streams with much

higher frame rates (up to 100 FPS) to represent aggregate frame

rates from multiple cameras sharing the CNN. Our emulated

camera is a program running on a separate thread that generates

input frames to the shared CNN at a defined inter-frame interval

corresponding to a given FPS (e.g., 25 milliseconds for 40

FPS). Because latency is a critical metric, we present results as

a plot of latency for different input camera rates and compare

execution under SERIAL, PIPELINE, and PARALLEL.

PIPELINE supports 63 FPS, PARALLEL may support 71
FPS. Fig. 8 shows the latency results. Our main criterion

for supporting a frame rate is that latency does not become

unbounded at that rate. Using this criterion, SERIAL (essentially

the original YOLO) can support rates up to 28 FPS and

PIPELINE can support up to 63 FPS. PARALLEL can also

support 63 FPS with negligible latency reduction and up to 71

FPS before latency becomes unbounded. Note that the latency

at rates lower than 63 FPS is essentially constant indicating that

36 milliseconds is the minimum latency for YOLO (as seen on

the y-axis of Fig. 8). Latency becomes unbounded in any of

these scenarios when either the GPU becomes overloaded or

the CNN execution model cannot further utilize the available

GPU capacity. The latency increase of PARALLEL at 71 FPS

over PIPELINE at 63 FPS is 20 milliseconds. This may be

acceptable in scenarios such as maneuvering in a parking lot.

However, running multiple SERIAL instances (at most six due

to memory constraints) can support at most 53 FPS with latency

of 114 milliseconds before getting unbounded latency.
We attribute these results to the inter-stage GPU dispatch

parallelism of PIPELINE and the additional intra-stage GPU

dispatch parallelism of PARALLEL. These simultaneous dis-

patches allow us to more fully utilize the GPU and achieve a

higher frame rate. Although some dispatch parallelism can

be achieved by running multiple SERIAL instances, GPU

resource usage is still limited because kernels from different

process contexts cannot run concurrently in CUDA. Concurrent

kernel execution from different processes can be enabled with

NVIDIA’s MPS (Multi-Process Service), however, NVIDIA

has not implemented this on the PX2.
These results are perhaps most useful as ways to estimate

how many cameras with differing rates can share the CNN.

As long as the aggregate rate from all cameras is less than the

supported total rate, latency should not be compromised. For

example, the results show that a single, shared SERIAL YOLO

could not support a single 30 FPS camera on the PX2 hardware

while PIPELINE and PARALLEL should easily support two 30

FPS cameras. Similarly, PIPELINE can support up to four 15

FPS cameras, or two at 15 FPS and one at 30 FPS, etc.
Note that all these results are from using only one of the two

independent computing systems on the PX2 board. Using both

systems to run two independent CNN configurations should

double the number of cameras supported by one PX2.

Multiple cameras are supported for aggregate frame rates.
We verified that estimations based on the FPS of a single image

stream are valid for multiple. This experiment investigated

whether the additional competition from multiple input streams

to the shared CNN changed latencies. The results are shown

in Fig. 9 for one, two, and four cameras generating input to

PARALLEL YOLO. The supported total camera frame rate is

determined by the hardware capacity and the CNN framework

execution model, thus it is constant with multiple cameras

instead of one. That is, this data corroborates the estimate given

above that supporting one 60 FPS camera is the equivalent of

supporting two 30 FPS cameras, four 15 FPS cameras, etc. The

increased latencies for two and four cameras seen on the y-axis
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Fig. 8: Latency of SERIAL, PIPELINE, and PARALLEL YOLO.

Fig. 9: PARALLEL YOLO latency with different numbers of cameras.

in Fig. 9 are an artifact of the experiment. The input images are

processed in sequence, so longer latency measurements will be

incurred when a frame starts being processed after frames that

arrive at the same time from other cameras. These in-phase

frame arrivals can be avoided in a real system by setting a

different phasing for each camera (a topic for future work).

B. Can Our CNN Implementations Be Better Configured?

PIPELINE can be configured with multiple CNN layers

aggregated into the pipeline stages, i.e., configuring the

granularity of each stage. PARALLEL can be configured in

the same way, but also adds the option to adjust the number

of threads assigned per stage, i.e., configure the degree of

parallelism within each stage. In addition, sequences of stages

can be assigned to either the iGPU or the dGPU on the PX2 to

avoid wasting any available GPU capacity. We evaluate these

configuration options next.

Granularity of stages improves latency under heavy loads
for PARALLEL. In Fig. 10, we compare the latency results at

frame rates from a single camera stream for PARALLEL with

different stage granularities. We did not observe any impact of

granularities on PIPELINE, so those results are not shown here.

Note that pipeline is effectively disabled by configuring a

single stage containing all 16 layers. This approximates multiple

instances of SERIAL that are running in one process context,

a configuration not supported in the original framework.

As shown in Fig. 10, latencies of different granularities

up to a frame rate at most 63 FPS (the maximum load

before latencies increase significantly, e.g., the max steady

state) are very close. While all the granularities can support

Fig. 10: PARALLEL YOLO latency with different granularities (number
of layers per stage).

Fig. 11: PARALLEL YOLO latency with different numbers of threads.

a heavier processing load up to 71 FPS with an increase in

latency, the finer-granularity stages have smaller latencies in this

region. Because each stage is implemented by one manager

thread and multiple worker threads, more stages with finer

granularity enable more parallelism among stages on the CPU.

Our design for data communication between stages introduces

small overheads, which is reflected in the very small changes

in the performance of different granularities when the frame

rate is low. A granularity of one layer per stage is a good
configuration choice.
More threads for PARALLEL improves latency under heavy
loads. In Fig. 11, we compare the latency results at frame rates

from a single camera stream for PARALLEL with different

numbers of threads. More parallelism is enabled with more

threads per stage, so more frames can be processed in parallel

by a stage. Having only one thread per stage is essentially the

same as pipelined execution, so latency becomes unbounded at

63 FPS as shown previously. Between 63 FPS and 71 FPS the

latencies increase substantially but higher numbers of threads

have somewhat lower latencies and a slower rate of latency

increase with load. A larger number of threads, 10 or so, is a
good configuration choice.
Overhead analysis and performance bottleneck. Enabling

PIPELINE and PARALLEL certainly causes additional overheads.

We evaluate the computational and spatial overheads with

different configurations by comparing the CPU and main

memory usage between SERIAL and PIPELINE or PARALLEL.

In each experiment, process or thread instances share the

six active CPU cores on the PX2. The maximum CPU
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CPUs (%) Memory (MB)

SERIAL 92 774

SERIAL x6 536 4,644

PIPELINE (single thread) 219 1,132

PARALLEL (10 threads) 239 1,136

TABLE II: CPU and memory usage.

capacity is 600%. As shown in TABLE II, a single instance

of SERIAL uses 92% of the CPU capacity, essentially one

core’s worth. Six instances of SERIAL use 536%, most of the

available CPU resources. PIPELINE with one thread per stage

uses 219% of the CPU capacity and 1,132 MB of memory.

Compared to one SERIAL instance, these figures represent

an increase of 127% in CPU capacity and 358 MB with

respect to memory. These increases reflect added overheads

for synchronization, scheduling, and data buffering. Moving to

a PARALLEL implementation with ten threads per stage causes

only a slight increase in CPU usage, from 219% to 239%,

and a negligible increase in memory usage. We have shown

in Sec. V-A that a significant increase in the supported frame

rate is achieved with PARALLEL and PIPELINE configurations

compared to both one and six SERIAL instances. Under SERIAL,

the GPU is around 60% utilized, while under PARALLEL and

PIPELINE, it is nearly 100% utilized, shown from CUDA

profiling results that are similar to Fig. 4. This demonstrates

that using more CPU resources in order to fully utilize the

scarce resources of the GPU is a reasonable strategy.

Multi-GPU execution improves latency under heavy loads
We evaluate the latency performance of different GPU assign-

ment strategies next to understand the impact of assigning

some layers to the iGPU.

Layer performance on both GPUs. We first measured the

performance of each layer on both GPUs. We executed SERIAL

using each GPU individually and measured per-layer response

times and per-layer CPU computation times. Results are shown

in Fig. 12, which consists of two parts that use a common

x-axis; the top part depicts per-layer dGPU-iGPU performance

ratios (obtained by dividing a layer’s iGPU response time

by its dGPU response time); the bottom part depicts the per-

layer data just mentioned. As seen, convolution layers typically

take longer on the iGPU, some two to three times longer.

Convolution layers contain heavy matrix computations that are

completed much faster with more CUDA cores. The maxpool

and region layers have lower performance ratios because they

have lighter computation loads. These layers are good choices
to be moved to the iGPU.
GPU assignment strategy. To introduce as little latency

degradation as possible while using both GPUs, our strategy is

to move layers with low dGPU-iGPU performance ratios to the

iGPU. Given the performance ratios at the top of Fig. 12, we

evaluate the GPU assignment strategies shown in TABLE III.

Each strategy is characterized by the sequence of layer numbers

assigned to each GPU. For example, strategy S1 assigns layers

0 to 13 to the dGPU and layers 14 and 15 to the iGPU.

Strategy S1 substantially reduces latency for PARALLEL
under heavy loads. Fig. 13 shows that, for PARALLEL, moving

the last two CNN layers to the iGPU under strategy S1 improves

Fig. 12: Per-layer execution times.

Strategy ID dGPU iGPU

S0 All ∅
S1 {0, 1, ..., 13} {14, 15}
S2 {0, 1, ..., 4, 12, 13, 14, 15} {5, 6, ..., 11}
S3 {0, 1, ..., 4, 12, 13} {5, 6, ..., 11, 14, 15}
S4 {0, 1, ..., 7} {8, 9, ..., 15}

TABLE III: GPU assignment strategies.

latency. S1 provides support for a frame rate of 71 FPS with

latency only slightly greater than a frame rate of 63 FPS when

using only the dGPU. At a frame rate of 80 FPS, the latency

is approximately the same as a frame rate of 71 FPS using

only the dGPU. All other strategies considered either increase

latencies or have negligible effect.

Strategies S1 and S3 provide some latency reduction for
PIPELINE under heavy loads. In Fig. 14, S1 provides support

for a frame rate of 71 FPS in PIPELINE with latency only

slightly greater than a frame rate of 63 FPS using only the

dGPU. S3 for PIPELINE supports a frame rate of 71 FPS

with reduced latency comparable to that for PARALLEL using

only the dGPU. All other strategies considered either increase

latencies or have negligible effect.

C. Are Multi-Camera Composite Images Effective?

Any combination of the features and execution models above

fails to provide enough throughput at desired latencies for a

vehicle equipped with more than four cameras at a frame rate

of 30 FPS using both systems on the PX2 board. We propose to

tackle this by leveraging the technique of compositing frames

from multiple cameras into one image for processing. Although

compositing might introduce a small loss of accuracy as the

image resolution will be reduced, this can be acceptable for

low-criticality cameras in certain circumstances. We devote

this section to evaluate the effectiveness of the technique.

With a multi-camera composite, the throughput is multiplied

by the number of images in the composite image. However,

the frame concatenation introduces overhead. Also, because

the frames are down-sampled as explained in Sec. IV-C, the

object detection accuracy could be reduced. We evaluate

the throughput, latency, and accuracy of the multi-camera

composite image technique.
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Fig. 13: PARALLEL YOLO latency with different GPU assignments.

Fig. 14: PIPELINE YOLO latency with different GPU assignments.

Experimental set-up. We focus on comparing YOLO’s per-

formance on full-size images and 2x2 composite images. The

network is evaluated on a standard object-detection dataset

called PASCAL VOC [8], using two types of tests: one of

full-size images and one of composite images. For the full-size

test, the original VOC test data is used. For the composite,

we generate test images by randomly choosing four full-size

VOC test images and combining them into a composite image

with a 2x2 grid. Each VOC test image is used exactly once

as a component of a composite image, hence, the size of

the composite test set is four times smaller than the full-

size one. This ensures that the total numbers of objects to

be detected are the same in both tests. At runtime, full-size and

composite images are both resized by YOLO to be 416x416

during processing.

Evaluation of detection results. Evaluation of the network’s

output is done using mean average precision (mAP) – a metric

commonly used to evaluate object-detection algorithms [9]. In

loose terms, mAP characterizes a model’s ability to have high

recall and high precision. In other words, higher mAP means

more objects are detected and the detections and localizations

are more accurate. A detailed explanation of mAP is provided

in Appendix A.

Similar to other state-of-the-art detection networks, YOLO

is designed to be scale-invariant, meaning it can detect objects

at different scales and resolutions. However, when image

resolutions decrease significantly (in our case, by a factor

of four), the network’s performance can start to degrade. As

seen in TABLE IV, with a 2x2 grid setup, YOLO trained on

mAP Full-size Test Composite Test
YOLO 55.63 36.46

Composite YOLO 57.64 48.29

TABLE IV: mAPs for full-size and composite tests with PASCAL
VOC dataset.

mAP Full-size Test Composite Test
YOLO 63.66 44.91

Composite YOLO 66.20 56.21

TABLE V: mAPs of object classes relevant to autonomous driving.4

the original VOC data can only perform at 36.46% mAP when

inferring composite images, an almost 20% accuracy drop.

To mitigate this, we retrained the network on the VOC dataset

using the same number of training images for both full-size and

composite data. The resulting mAPs are shown in TABLE IV.

Moreover, since our primary applications are to autonomous

driving, we also show in TABLE V the detection results

for relevant object classes.4 Overall, our results consistently

indicate that with YOLO retrained on both composite and

full-size data, the detection accuracy of composite images

is improved without reducing that of full-size images. With

the retrained composite network, we can provide a trade-off

between a 10% accuracy drop and a fourfold increase of

throughput.

Although the mAP decreases with composite images, it is

important to remember the following. First, the focus of our

work is on providing the option to trade-off between higher

throughput and acceptably lower accuracy, and not on the

magnitude of the accuracy itself. Second, YOLO represents a

state-of-the-art detection network, but we are tackling a very

challenging CV problem with strictly limited resources. Third,

real-life autonomous driving systems usually deploy tracking

algorithms, which can use information of multiple frames to

improve detection accuracy. Finally, as shown in [22], YOLO

tends to perform better for bigger objects than for smaller ones.

Thus, we expect the mAPs to be higher for nearby objects,

which are usually prioritized in the case of automated driving.

A four-camera composite image supports 250 FPS (!) and
a latency of 48 milliseconds. This is shown in Fig. 15.

Examining the y-axis Fig. 15, observe that for lower respective

frame rates, latency is higher in the four-camera scenario than

in the one-camera scenario (about 45 vs. 36 milliseconds). This

is due to the additional overhead incurred to combine multiple

frames.

VI. CONCLUSIONS

In this paper, we presented the results of an industrial

design study that addresses the challenge of re-designing CNN

software to support multiple cameras with better throughput

for automated-driving systems. We showed how to transform

a traditional CNN framework to obtain pipelined and parallel-

pipelined variants to better utilize hardware resources. We also

examined the impact of properly load balancing GPU work

4Among 20 object classes, we deem the following eight to be irrelevant
to the task of autonomous driving: airplane, boat, bottle, chair, dining table,
potted plant, sofa, and TV monitor.
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Fig. 15: PARALLEL YOLO latency with multi-camera-image process-
ing and different numbers of cameras.

across the GPUs of a multi-GPU hardware platform. These

basic techniques resulted in an improvement in throughput

of over twofold with only minor latency increases and no

accuracy loss. In order to accommodate more cameras that

these basic techniques allow, we proposed the technique of

compositing multiple image streams from different cameras

into a single stream. We showed that this technique can greatly

boost throughput (up to 250 FPS) at the expense of some

accuracy loss. We demonstrated that this accuracy loss can be

partially mitigated through network retraining.

The results of this study open up many interesting avenues

for future work. For example, we would like to determine

whether the compositing technique can be dynamically applied

at runtime for input streams that may change in criticality. For

example, when driving forward, side-facing cameras are less

critical and thus could be reasonable to composite. However,

when turning, these cameras become more critical, so disabling

compositing for them might be appropriate. In multi-mode

systems, compositing might also be mode-dependent, in which

case it becomes an issue mode-change protocols must consider.

In addition to these issues, we would like to explore whether

the CNN model can be further optimized to increase detection

precision at the center boundaries of a composite image.

Embedded hardware platforms other than the PX2 and CV

applications other than YOLO also certainly warrant attention.

APPENDIX A: MEAN AVERAGE PRECISION (MAP)

This appendix provides an intuitive understanding of the

Mean Average Precision (mAP) metric, which is a popular

metric for evaluating object detection accuracy. For a more

detailed introduction, we refer the reader to [13] and Section

4.2 in [9] for further details on the precision-recall curve and

mAP.

1) IoU, Precision, and Recall

In order to determine the precision of object detection we

first need to measure the quality of object detections, which

is done through the Intersection over Union (IoU) measure. It

is defined as the proportion of overlapping area between the

predicted and expected area of an object over their union:

IoU =
PredictedArea ∩ ExpectedArea

PredictedArea ∪ ExpectedArea
.

Fig. 16: Example Precision/Recall curves [6].

If the IoU of a prediction is greater than a chosen threshold

(e.g., 0.5, as specified in PASCAL VOC dataset), we consider

it to be a “correct” detection or a true positive.

Being able to measure correct detections for a given class

(e.g., car), enables us to measure the precision and recall for

the class, which are defined as follows.

Precision =
TruePositive

TruePositive+ FalsePositive

Recall =
TruePositive

TruePositive+ FalseNegative

The precision measures the proportion of correctly detected

objects over all predictions, while recall measures the propor-

tion of correctly detected objects over all test objects. A good

object detector should be able to detect most of the objects

in the scene (high recall/completeness) and do so accurately

(high precision/correctness). Please note, there are typically

trade-offs to be made, i.e., in order to improve precision usually

the recall suffers and vice versa.

2) Precision-Recall curve and Mean Average Precision

A precision-recall curve (see Fig. 16) is used to evaluate

these trade-offs between precision and recall or false positives

and false negatives [1,3]. For a given class, Average Precision

(AP) is a numerical value that summarizes the shape of

the precision/recall curve. Specifically, it is calculated by

taking the average precision of 11 equally spaced recall levels

{0, 0.1, , 1} [9].

AP =
1

10

∑

r∈0,0.1,..1

pinterp(r)

with pinterp(r) = max
r∗>r

p(r∗)
A method with high AP has relatively high precision at all

levels of recall and thus, can perform accurate detection for

the given class. Mean Average Precision (mAP) is the mean

AP over all classes (e.g., car, people, dog, etc.).
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