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Abstract—This paper presents CaM, a holistic cache and
memory bandwidth resource allocation strategy for multicore
real-time systems. CaM is designed for partitioned scheduling,
where tasks are mapped onto cores, and the shared cache and
memory bandwidth resources are partitioned among cores to
reduce resource interferences due to concurrent accesses. Based
on our extension of LITMUS®” with Intel’s Cache Allocation
Technology and MemGuard, we present an experimental eval-
uation of the relationship between the allocation of cache and
memory bandwidth resources and a task’s WCET. Our resource
allocation strategy exploits this relationship to map tasks onto
cores, and to compute the resource allocation for each core. By
grouping tasks with similar characteristics (in terms of resource
demands) to the same core, it enables tasks on each core to
fully utilize the assigned resources. In addition, based on the
tasks’ execution time behaviors with respect to their assigned
resources, we can determine a desirable allocation that maximizes
schedulability under resource constraints. Extensive evaluations
using real-world benchmarks show that CaM offers near optimal
schedulability performance while being highly efficient, and that
it substantially outperforms existing solutions.

I. INTRODUCTION

Multicore processors are becoming increasingly common in
real-time systems. In the automotive domain, for instance, they
have been used to consolidate features that are traditionally
implemented on separate electronic control units to reduce
size, weight, and power consumption. This trend, however,
also makes it much more difficult to guarantee timing pre-
dictability: since the cores share the last-level cache and the
memory bandwidth, tasks running concurrently on different
cores may interfere with one another through these resources.
As a result, traditional resource allocation techniques that
consider only CPU resource can no longer be safely applied.
One effective approach to mitigating interferences among
concurrent tasks is resource partitioning: by dividing the cache
and memory bandwidth among the cores, tasks running on
each core can have exclusive accesses to the resources assigned
to that core. This approach can be implemented using today’s
hardware features and memory management techniques—for
instance, the shared cache can be efficiently allocated to cores
using cache coloring or Intel’s Cache Allocation Technology
(CAT), and the memory bandwidth can be distributed among
cores using regulation mechanisms such as [72]. If we combine
this with a partitioned scheduling algorithm, e.g., partitioned
Earliest Deadline First, timing guarantees can be achieved by
applying existing schedulability analysis for uniprocessors.
However, two research questions remain in realizing this
approach: (1) how to partition tasks onto the cores? and (2)
how much cache and memory bandwidth should each core
have? One solution is to evenly divide the cache and the
memory bandwidth among the cores, and then use an existing
bin-packing technique to map tasks onto cores. This method
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works in principle, but it has important limitations: First, not
all cores need the same cache size and the same amount of
memory bandwidth, since the resource demands of a core
depend on that of the specific tasks running on it; therefore,
evenly distributing the resources among cores could lead to
inefficient use of resources. Second, existing task partitioning
techniques do not consider other types of resources besides
CPU, and they typically assume a fixed worst-case execution
time (WCET) for each task. As our experiments in Section IIT
show, the WCET of a task highly depends on the cache and
memory bandwidth resources it is given. Without considering
this behavior, the resulting mapping may result in poor timing
performance, because cache- and memory-sensitive tasks may
take much longer to execute if not given sufficient resources,
whereas computation-intensive tasks may be given more re-
sources than they strictly require. Prior work has considered
cache and memory bandwidth in scheduling [68], but it focuses
on soft real-time performance instead of schedulability.

In this paper, we take a holistic approach towards answering
these research questions. Rather than decoupling them, we
compute the mapping of tasks and the allocation of shared
resources to cores in an integrated resource allocation strategy
called CaM that considers the demands on CPU, cache, and
memory bandwidth concurrently to minimize resources while
ensuring timing guarantees. Developing such a strategy turns
out to be highly challenging. Due to the interactions between
the different types of resources, there is a tradeoff between
the demand of one type and the allocation of another. For
instance, when a task is allocated more cache space, it will
typically incur fewer cache misses and thus have fewer mem-
ory requests, resulting in less memory bandwidth demand.
Conversely, when a task is allocated more memory bandwidth,
it will have a smaller average worst-case memory request
latency and thus a smaller cache miss latency; as a result, it
will become less sensitive to the amount of cache space it is
allocated. Since all three types of resources are limited, finding
the right tradeoff is non-trivial. Further, to best assign a task
to a core, we need to know its CPU demand, but this demand
depends on the task’s WCET and thus the cache space and
the amount of memory bandwidth given to its assigned core.
This circular dependency makes the allocation non-trivial.

To address the above challenges, we first experimentally
investigate the interdependence between the WCET of a task
and the cache space and memory bandwidth it is given. For
this, we integrate both the cache partitioning (using Intel’s
CAT) and the memory regulation (using MemGuard [72])
mechanisms into an existing real-time OS (LITMUS*” [13]) to
provide an end-to-end platform that can be used to experimen-
tally explore the above relationship for real-world workloads.
By exploiting this relationship, our allocation strategy can



effectively find the right tradeoff between WCET and shared
resource needs. In addition, by grouping tasks with similar
characteristics to a core, it enables the tasks to fully utilize
the resources allocated to their assigned cores. Our evaluation
shows that our strategy is highly effective in utilizing resources
and maximizing schedulability—it performs very close to
an optimal solution based on constraint optimization, and
it substantially outperforms both a baseline solution (which
distributes the resources evenly) and MC2? (a state-of-the-art
resource allocation technique developed in [17]).

In summary, we make the following contributions:

« an extensive empirical evaluation of the impact cache and
memory bandwidth resources on the WCET of a task;

e CaM, an efficient and effective resource allocation al-
gorithm for tasks that can minimize resources while
guaranteeing schedulability; and

e an extensive performance evaluation of our algorithm
using real-world benchmarks.

For performance evaluation, we also develop an optimal solu-
tion of our resource allocation problem using Mixed Integer
Programming (MIP), which can be found in [63].

II. RELATED WORK

Memory bandwidth resource. Memory bandwidth regulation
has been studied extensively at both hardware and software
levels. Hardware-based techniques [23, 24, 25, 33, 75] can
provide fine-grained memory bandwidth allocation to the cores
using the memory controller; however, they require hardware
customization and cannot be applied to COTS platforms. In
contrast, software-based techniques [6, 71, 72, 73] extend
the system software to implement the memory bandwidth
allocation; typically, they use the performance monitoring unit
to monitor the memory requests from each core, and throttle
a core when it exceeds its allocated memory bandwidth.
Our experimental platform leverages MemGuard [72], a state-
of-the-art software-based regulation technique in real-time
systems for the memory bandwidth regulation.

There exists an alternative line of work that focuses on
memory bandwidth-aware timing analysis [18, 27, 50, 51, 52,
70]. These techniques account for the overhead caused by
memory bandwidth interference and its impact on schedula-
bility. Without any isolation, it is generally difficult to obtain a
tight bound on the interference and thus these techniques typi-
cally produce pessimistic results. Recent research [40, 43, 48]
has started to study the worst-case memory request latency in
the context of memory bandwidth regulation. We expect that
the results therein can be incorporated into CaM allocation
strategy to consider the extra memory access delay from cores
with limited memory bandwidth.

Cache resource. Several cache partitioning techniques have
been proposed to reduce the shared cache interference [9, 21,
22, 26, 28, 59, 61, 62, 68, 74]. The software-based approach
reorganizes a task’s memory layout to allocate a specific
cache area to the task using, e.g., page coloring [28, 39, 67]
or compiler-based [42] techniques. The hardware-based ap-
proach [39, 61] leverages the cache partitioning capability in
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recent COTS processors, such as the Cache Allocation Tech-
nology (CAT) in Intel processors [S] and the Lockdown-by-
Master (LbM) technology in ARM processors [2]. We use the
hardware-based approach (specifically, Intel’s CAT) to achieve
the per-core cache allocation as it is much more efficient
than the software-based approach. We note that although the
interference due to concurrent accesses to the shared cache
can be mitigated using cache partitioning, tasks running on
the same core may still experience cache-related preemption
and migration delay (CRPMD) overhead. Our work assumes
that such overhead is included in the WCET of a task, but
it can easily be extended to account for such overhead in
the allocation, e.g., by incorporating with existing CRPMD
overhead-aware analysis [8, 14, 19, 61].

Recent research [60] has also considered the shared cache
interference directly in the analysis instead of cache partition-
ing. While promising, the initial result is limited to direct-
mapped noninclusive cache (which is rarely used in COTS
multicore processors) and thus requires further research to
make it more practically applicable.

Multiple resources. There also exists a large body of work on
management schemes that consider multiple types of resources
concurrently [12, 35]. These techniques consider different
combinations of resources, such as the co-allocation of cache
and memory bank resources [35], or the co-allocation of cache
and memory bandwidth resources [12, 32, 53, 54, 58]. The
majority of these techniques focus on improving the average
performance (e.g., throughput) and fairness of the system, and
thus cannot be directly applied to our setting.

The management of multiple resources has recently been
studied for latency-sensitive systems. For instance, Hera-
cles [37] can manage CPU, cache, memory bandwidth, and
networking resources altogether to achieve low latency for
latency-sensitive tasks in data centers, such as web search
and online machine learning clustering algorithm. However,
Heracles considers a highly simplified real-time setting where
each machine has only one latency-sensitive task. In contrast,
our work solves the resource co-allocation for a much more
general real-time task setting. Ma et al [38] proposed PARD,
a new programmable hardware architecture to improve QoS
and resource utilization. However, PARD requires customized
hardware support and is not suitable for COTS platforms.

Recent research (e.g., [55, 66]) in the real-time community
has begun to investigate the impact of multiple resources on
real-time performance. Researchers in [6, 41, 47, 66] have
developed coordinated allocation schemes for CPU and mem-
ory bandwidth resources, but they ignored the cache resource.
Researchers in [30, 31, 55] considered the cache and memory
bank resources but ignored the memory bandwidth resources.
Researchers in [17] proposed a multi-resource allocation al-
gorithm for real-time mixed criticality systems, which focuses
on the tradeoffs of the cache allocation while considering the
memory bank allocation. The allocation algorithm in [17] has
two assumptions: (i) tasks have been pre-allocated to cores
(using a bin-packing algorithm); and (ii) memory banks are



evenly allocated to cores.! Thus, it focuses on the allocation
of only one resource (i.e., cache resource) and does not
consider the allocation tradeoffs between multiple resources.
Unlike these techniques, our work considers all three types
of resources (CPU, cache, and memory bandwidth) in the
allocation. Recently, Ye et al. [68] proposed MARACAS, a
multicore scheduling and load-balancing framework to address
cache and memory bandwidth interference; however, MARA-
CAS focuses on soft real-time requirements.

Existing work has also investigated the impact of other
types of shared resources on real-time performance, including
e.g., impacts of Miss Status Holding Registers (MSHR) on
partitioned caches [56], interferences due to memory bank
contention [31, 55, 69], TLB interferences [45], and effects
of interrupts [13, 29, 46, 49]. As an initial step, our work
focuses on interferences due to concurrent cache accesses and
shared memory bandwidth, while assuming that the overhead
due to other types of interferences has been accounted for in
the tasks” WCETs. We defer the extension to other types of
interferences—which is highly non-trivial—to future work.
Partitioning algorithms. The problem of partitioning real-
time tasks onto identical multiprocessor platforms has been
known to be NP-hard. Several polynomial-time algorithms [15,
20, 44] have been proposed for solving it approximately
(see [10] for a comprehensive comparison). These techniques
consider only CPU resource and assume that each task has
a fixed WCET; therefore, they cannot be directly applied to
our setting. There exists extensions to multiple WCETs per
task — for instance, energy-aware partitioning algorithms that
consider a vector of WCETs for a task depending on the speed
of the processor have been proposed in [7, 65]. However,
algorithms in this setting cannot be apply as they typically
ignore the shared cache and memory BW resources, which
work differently from that of energy.

III. IMPACT OF CACHE AND MEMORY BANDWIDTH
RESOURCES ON WCET

We begin by presenting the experimental evaluation that guides
our resource allocation strategy. Specifically, our evaluation
aims to (1) investigate the benefits of cache and memory iso-
lation on timing performance, and (2) explore the relationship
between the allocated cache and memory resources and the
timing behavior of a task. For this, we needed a real-time
OS with built-in cache partitioning and memory bandwidth
regulation features. As we were not aware of any such free
open-source platform available, we extended LITMUSK? with
Intel’s CAT and MemGuard for our experiments. Before
discussing the experimental results, we first describe this
integrated prototype. For convenience, we refer to memory
bandwidth simply as bandwidth (BW) in the rest of the paper.

A. Prototype

The prototype integrates the Intel’s CAT and MemGuard
bandwidth regulation mechanisms as Linux modules into
LITMUSRT | a real-time extension of the Linux kernel that

'We confirmed these two assumptions with the authors of [17].
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provides several real-time scheduling policies [16]. We used
LITMUSET as the base real-time OS, since it is open-source,
established, and actively maintained.

Intel’s CAT. The Intel’s CAT is a new hardware feature that
allows system software (e.g., the OS) to control the allocation
of the shared last-level cache to physical cores. It divides the
shared cache into N non-overlapped equal-size cache partitions
(e.g., N =20 on our evaluation machine). It provides two
types of model-specific registers: (1) the Class of Service
(COS) register, which has an N-bit Capacity Bitmask (CBM)
field to specify a particular cache partition set; and (2) the
IA32_PQR_ASSOC (PQR) register, which has a COS field
for linking a COS register to a core.

To allocate a set of specific cache partitions to a core,
we need to modify (1) the CBM field of a COS register
to specify the cache partition set and (2) the core’s PQR
register to link the COS register to the core. Both modifications
can be performed using the wrmsr instruction, which can be
executed from the user space using the Intel MSR Tools [1]
(or Intel RDT software package [4]). To enable the operator
to configure cache partitions for cores, we wrote a script
that takes as inputs two parameters — the core index and the
bitmask of the cache partition set for the core — and invokes
the Intel MSR Tools to set the cache partitions for the core.
MemGuard. MemGuard [73] provides different BW man-
agement mechanisms, including reservation, reclaiming and
best-effort bandwidth sharing. We leveraged the reservation
mechanism for our prototype, as it is the only one that can
achieve guaranteed per-core bandwidth reservation. We used
the existing MemGuard implementation and loaded it as a
Linux module in LITMUSR?. We controlled BW allocation
by writing to the proc filesystem exposed by MemGuard.

B. Experimental setup

Hardware. Our prototype ran on a machine with a CAT-
capable Intel Xeon E5-2618L v3 processor with a 20MB 20-
way set-associative L3 shared cache and a single channel 8GB
PC-2133 DDR4 DRAM. The cache can be divided into 20
equal partitions, and a core must be allocated at least 2 parti-
tions (due to hardware constraints). The maximum guaranteed
bandwidth was 1.4GB/s (obtained using the same method as
in [73]). For our experiments, we divided the bandwidth into
20 partitions of 70MB/s each, and the maximum bandwidth
budget allocated to a core was always equal to (the size of)
one or multiple partitions.

System configuration. We enabled 4 cores in BIOS as in [62]
because the processor has only 4 Class of Service (COS)
registers®, supporting at most 4 cores with different cache
partition settings. Like in most existing real-time research [28],
we disabled hyper-threading, SpeedStep, and hardware cache
prefetcher features to avoid non-deterministic timing behavior.
We also shut down all non-essential system services during our
experiments to minimize potential interferences.

Workload. We considered two types of workloads: (i) a
benchmark workload, taken from the PARSEC benchmark

2The number of COS registers varies across Intel processors.



suite [11] and a cache-bench synthetic benchmark, and (ii) an
interference workload. Both the PARSEC benchmark suite and
the cache-bench benchmark have been used as an evaluation
workload in prior real-time research [27, 28, 57, 62]. Charac-
teristics of the former (e.g., the working set size) are available
in [11], while the latter is a cache-intensive program that uses
a linked list to sequentially access every 64 bytes (i.e., the
cache-line size) of a 20MB array. The interference workload
consists of cache-bomb (similar to the one used in [62]), a
program that uses the array index to sequentially access every
64 bytes of a 40MB array until it is terminated.

C. Evaluation of resource isolation

To evaluate how well CaM can protect a task’s WCET from
being affected by concurrent running tasks, we ran a (PARSEC
or cache-bench) benchmark task on one core, and ran a cache-
bomb task on each of the remaining cores. We measured the
execution time of the benchmark task when it is allocated
a fixed number of cache partitions and BW partitions. For
comparision, we performed the same experiment for four more
settings, with (i) cache allocation only, (ii) BW allocation only,
(iii) neither cache nor BW management, and (iv) both cache
and BW allocation, but without running any interference task.

The results show that cache allocation or BW allocation
in isolation is often not sufficient to prevent tasks from both
cache and BW interferences. In contrast, by integrating both
techniques, CaM can effectively isolate tasks from both types
of interferences. A detailed discussion of the experiments and
results can be found in our technical report [63].

D. Impact of cache and bandwidth allocation on WCET

Experiment. For this evaluation, we ran the canneal bench-
mark on one core, which is assigned different numbers of
cache partitions and BW partitions. We measured the bench-
mark task’s execution time across 25 runs, and calculated its
resource slowdown factor under a cache and BW configuration
(as the ratio of the task’s measured WCET to the WCET when
it is allocated all cache and BW partitions in the system).

Results. Figs. 1 and 2 show the impact of BW and cache
resource allocation on the task’s WCET, respectively. Fig. 1
shows that the canneal benchmark task’s slowdown varies
from 17.06x to 2.84x when the task is allocated 1 memory
bandwidth partitions; in contrast, the slowdown does not
change substantially when the task is allocated 20 memory
bandwidth partitions. A similar trend can also be observed in
Fig. 2. In general, we can make the following observation:

Observation 1. The relation between a task’s WCET and the
amount of cache (resp. memory bandwidth) resource it receives
is highly dependent on the amount of BW (resp. cache) it
receives. In particular, a task’s WCET is more sensitive to

the cache allocation when it is allocated a smaller amount of

BW, and vice versa.

This behavior is expected, as the more cache space a
task receives, the fewer cache misses it incurs, and thus the
frequency that it is throttled also decreases. Similarly, when a
task receives less memory bandwidth, it runs out of memory

348

budget more quickly and becomes throttled more frequently,
thus making it more sensitive to its allocated cache space.

We repeated the experiment with each PARSEC benchmark
to examine the effect of the workload’s characteristics. Our
results show that the above observed pattern varies across
benchmarks. Due to space constraints, we omit the results.
Observation 2. The relation between a task’s WCET and
its allocated cache and BW resources varies across different
benchmark tasks. Some tasks (e.g., canneal benchmark) are
sensitive to both cache and BW resources, whereas others are
sensitive to only one (e.g., facesim benchmark) or none (e.g.,
swaptions benchmark) of the resources.

These results motivate the need for considering the rela-
tionship between CPU, cache and BW resources to achieve
better utilization and schedulability. We formally define this
co-resource allocation problem next.

IV. THEORETICAL MODELING AND PROBLEM STATEMENT

Using our prototype, we can already partition cache and
BW resources among cores to provide better isolation among
concurrent tasks. To meet timing guarantees, however, we
also need a resource allocation strategy that, given a set of
tasks, decides 1) how to map tasks onto cores, and 2) how to
distribute cache and BW resources among cores, to minimize
resource usage while ensuring schedulability. To solve this
problem, we first formalize a concrete platform model based
on our experimental platform, and a cache- and memory-
aware task model based on the tasks’ timing characteristics
observed in our empirical evaluation. (A table that summarizes
the notations is available in our technical report [63].)
Platform model. The platform consists of M identical cores,
with a shared cache and a shared memory bus that are
accessible by all cores. The cache is divided into N, equal-
size cache partitions, and the memory bandwidth is divided
into Np,, equal-size BW partitions. Cache and BW allocation
is done at the core level: each core is allocated a distinct set
of cache partitions and a certain number of BW partitions,
all of which will be available to any task currently running
on the core. As some hardware does not allow an allocation
that is fewer than a certain number of partitions, we denote
by Ni" and N the minimum numbers of cache partitions
and BW partitions that a core must be allocated, respectively.
We assume that the OS scheduler schedule tasks using the
partitioned Earliest Deadline First (EDF) policy (supported by
LITMUSRT), due to its high resource utilization bound.
Task model. We consider independent periodic tasks with
implicit deadlines’, but we extend it to capture the relationship
between the task’s WCET and the cache and BW allocation.
Specifically, a task 7; is modeled as 7; = {p;,d;, e;(cp;,bw;) |
Nj"l,i” < cpi < Nep AN < bw; < N, }, where p; is the period,
di(= pi) is the deadline, and e;(cp;,bw;) is the task’s WCET
when it is assigned cp; cache partitions and bw; bandwidth
partitions. Specifically, the WCET e¢;(cp;,bw;) of a task is
the task’s execution time when it executes alone on a core,

3We assume this for simplicity; it should be straightforward to extend the
algorithm to constrained deadline tasks.
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where the core is allocated cp; cache partitions and bw;
bandwidth partitions. We assume that all task parameters are
given a priori. (Here, the vector of WCETs e;(cp;,bw;) of a
task 7; can be obtained by analysis or measurement. In our
evaluation, it is obtained through profiling, as was done in
our experimental evaluation.) Note that, by definition, a task’s
WCET is invariant with respect to the tasks that are scheduled
on the same core. However, a task’s response time depends on
tasks running on the same core, because of scheduling delay
and various overhead such as CRPD and BW interference
caused by higher-priority tasks. As a first step towards timing
predictability, like in prior work [28, 61], we assume that a
task’s WCET values have been inflated to account for other
sources of overhead; however, it can be extended to explicitly
accounted for such overhead by incorporating with existing
work such as [64] [48] [13].

For analysis purpose, we refer to re; = e;(Ncp,Npy) as the
reference WCET of 1;, i.e., the WCET when it is allocated
all cache and memory partitions in the system. We denote
by ru; = re;/p; the reference utilization of t;, which is the
utilization based on its reference WCET. By abuse of notation,
we use the term assigned WCET and assigned utilization to
denote the WCET and utilization of a task, respectively, when
it is already assigned a fixed number of cache partitions and
a fixed number of memory bandwidth partitions. We require
that any task must be assigned to a core.

As usual, we say that a task is schedulable iff it always
finishes execution before its deadline, and the system is
schedulable if all tasks are schedulable. According to the EDF
schedulability test [34], the tasks on a core are schedulable
iff their total utilization does not exceed 1. The system is
schedulable iff the tasks on each core are schedulable.
Problem statement. Given the above model, our goal is to
develop a strategy for computing (i) a mapping of tasks to
cores, and (ii) the number of cache partitions and the number
of BW partitions (per regulation period) for each core in the
system, so that the system is schedulable and the number of
cores needed is minimized.

Challenge. In principle, our resource allocation problem can
be solved using constraint optimization techniques. For refer-
ence, we have developed an MIP formulation of the proposed
problem (details can be found in [63]). Although being opti-
mal, this approach has a very high running time complexity
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and is too inefficient to be practical. Achieving both effec-
tiveness and efficiency turns out to be highly challenging in
our setting, because of the inter-dependence between WCET,
cache allocation, and memory bandwidth allocation, as well
as their variances across tasks. The problem we consider is,
in fact, more general than the traditional problem of packing
tasks to cores, which is known to be NP-hard. In the next
section, we present a novel approach to solve this problem,
using a combination of clustering and bin-packing heuristics.

V. HEURISTIC RESOURCE ALLOCATION ALGORITHM

We first discuss the basic strategies that guide our allocation
and present a high-level overview of the algorithm. We then
present the details of the algorithm and discuss its complexity.

A. Overview

Based on the insights obtained from the empirical evaluation in
Section III-D, we propose the following high-level strategies.
These strategies aim to exploit the relationship between the
allocated resources and a task’s WCET, as well as the diverse
resource demands across tasks.

Strategy 1. (Group by sensitivity) As tasks on the same core
are always allocated the same amount of cache and BW
resources (equal to that of the core), grouping tasks with
similar sensitivity to cache and BW resource allocations onto
the same core can help better utilize cache and BW resources.

Our allocation strategy aims to group tasks with similar
resource sensitivity onto the same core. To capture how
sensitive a task is to different allocations of cache and BW
resources, we define the resource-allocation slowdown of
a task 7; under a resource configuration (cpi,bwy) to be
t_slowdown(cpy,bwy) = W, where re; is the task’s
reference WCET (i.e., the WCET when the task is given all
partitions; c.f. Section IV) and e;(cpy, bwy) is the WCET of t;
under cpy cache partitions and bwy BW partitions. Each task 7;
has an N, fi, dimensional slowdown vector §v;, where Neop fig
is the number of all valid resource configurations (cpy,bwy),
and the k™ element of the vector is the resource allocation
slowdown of 7; under the k-th resource configuration. As
the slowdown vector sV; captures how sensitive a task is to
different cache and BW configurations, we also refer to it as
the resource sensitivity of ;.



The next strategy simply aims to balance load across cores;
the number of cores is a parameter to our algorithm:
Strategy 2. (Load balancing) Given an allocation of resources
to tasks, evenly distributing the tasks among cores based on the
assigned tasks’ utilizations can help balance the load across

cores and_avoid under-utilized cores.
We define the resource utility of a core i as the average

reduced utilization per additional cache and BW partition
allocated to the core:

if u; > 1
otherwise

(i —ui) [ (cp +bw)
0

where u; and u are the core’s utilization before and after it
is given extra cp cache partitions and bw memory bandwidth
partitions, respectively. In our algorithm, each core is assigned
a set of tasks, and it is initially allocated the minimum amount
of cache and BW resources. If a core is schedulable, its
resource utility is always 0. Among the cores that are not
schedulable (if any), we will allocate additional resources to
the core with the largest resource utility, so that we can better
use the limited resources to make all cores schedulable:

resourcel;(cp,bw) =

Strategy 3. When adding more cache and BW resources to
a core that is unschedulable under the current allocation,
allocating resources to a core that results in the maximum
resource utility can provide a more effective use of the limited
cache and BW resources.

Overview of the algorithm. Algorithm 1 shows the high-
level idea of our allocation algorithm for m cores. Initially,
each core is given the minimum number of cache and BW
partitions. The algorithm then works in three phases:

(1) Phase 1 (Lines 1-2): It first groups tasks that have
similar resource sensitivity (i.e., similar slowdown vector) into
the same cluster, based on Strategy 1. Then, it sorts tasks in
each cluster in decreasing order of tasks’ reference utilization
— this is because it typically is harder for a task with higher
utilization to find a feasible core.

(2) Phase 2 (Lines 4-9): It randomly picks one permutation
of the clusters as the order of packing clusters to cores. It
then packs each task in each cluster onto cores, such that
the total reference utilization of tasks on each core is similar
(i.e., close to the average reference utilization of all cores),
as guided by Strategy 2. Next, using the allocResource()
procedure, it allocates cache and BW resources to cores to
maximize the resulting resource utility, based on Strategy 3.
Once the resources allocated to each core are determined, it
calculates the resulting utilization of each core and checks the
system’s schedulability. If the resulting utilization of each core
is no larger than 1, the system is schedulable. If the system is
schedulable, the algorithm terminates and outputs the resource
allocation policy that schedules the system; otherwise, it
continues to the next phase.

(3) Phase 3 (Lines 10-18): The algorithm tries to balance
the workload across cores (Line 13). For each unschedulable
core, it migrates each of its tasks to a schedulable core that
will have the smallest utilization after the migration, until the
unschedulable core becomes schedulable. After the balance

Algorithm 1 Heuristic resource allocator

Input: V: the set of tasks, m: the number of cores, N,,: the
number of cache partitions, Np,: the number of band-
width partitions, maxIlterKM: the maximum iterations for
KMeans, maxlterPerm: the maximum iterations.

Output: Schedulable or Unschedulable.

1: clusters < clusterTasks(V,m,maxIterKM)
2: Sort tasks in each cluster in decreasing order of their
reference utilization

3: repeat

4: perm_clusters <— permute(clusters) > randomly pick
one permutation of clusters

5: cores + binPackClusters(perm_clusters,m)

6: cores <— allocResource(cores,m,Nep, Np,,) >
The cores variable specifies tasks and resources allocated
to each core

7: sched < checkSchedulability(cores) 1> schedulable if
each core’s assigned utilization is no larger than 1

8: if sched = schedulable then

9: break

10: oldVal < o > previous imbalance value

11: while true do > balance cores’ utilizations iteratively

12: val < getImbalanceValue(cores)

13: cores < balance(cores)

14: cores <— allocResource(cores,m,N¢p, Np,,)

15: sched < checkSchedulability(cores)

16: if sched = schedulable or val > 0ldVal then

17: break

18: oldVal <+ val

19: maxlIterPerm <— maxIterPerm — 1

20: until maxiterPerm =0
21: return sched
22:

23: function getImbalanceValue(cores)

24: imbalance =0

25: for all ¢ € cores do

26: if ¢’s assigned utilization > 1 then

27: imbalance += c's assigned utilization — 1
28: return imbalance rounded to 2 fractional digits

procedure finishes, the algorithm re-runs the allocResource()
procedure for cores and checks if the system will become
schedulable. The algorithm keeps balancing tasks on cores
until the system becomes schedulable or there is no benefit
in balancing (Line 16). Because the order of the clusters may
affect the bin packing result (Line 5), which may later affect
the resource allocation and balance procedure, the algorithm
re-orders the clusters and repeats Phases 2 and 3 (Lines 3—
20) for a user-specified constant number (i.e., maxIterPerm)
before it claims that the system is unschedulable.

As discussed in the previous section, a system that is
unschedulable when using m cores may become schedulable
with fewer cores. This is because with fewer cores, there
are more cache and BW resources available to each core on



average (since each active core must have at least some cache
and BW partitions). This can lead to smaller tasks’ utilizations
(if the tasks are sensitive to cache and bandwidth resources),
hence making the system easier to schedule. To obtain a
feasible allocation with the minimum number of cores, we use
Algorithm 1 to find a feasible allocation on every valid number
of cores m, where 1 <m <M, and M is the maximum number
of cores supported by the hardware. We then use the smallest
value of m for which an allocation exists and its corresponding
task mapping and allocation configuration for the system.

B. Details of the algorithm

We now discuss the key ideas of the four main procedures
used in our algorithm: clusterTasks(), binPackClusters(), al-
locResource(), and balance(). Due to space constraints, we
present their pseudo-code in [63].

The clusterTasks() procedure uses the KMeans algo-
rithm [36]—a widely used machine learning method for
clustering data points with similar features—to cluster tasks
that have similar sensitivity to cache and memory bandwidth
resources. Recall from Section V-A that the resource sensi-
tivity of each task 7; is defined as its slowdown vector sV,
whose elements are the slowdown values of 7; under different
valid cache and BW resource configurations. Formally, the
procedure aims to divide the set of tasks 7 into m clusters,
such that the pairwise deviation of tasks in the same cluster
is minimized:

argmlnz Z |[s9; — s9;||*
r, 7;€Ck
where |Cy| is the number of tasks in the cluster C; and C is
the set of clusters.

The clusterTasks() procedure has three steps: (1) initializa-
tion, which calculates each task’s slowdown vector and creates
an initial set of m clusters; (2) assignment, which assigns each
task to its closest cluster whose mean has the least square
distance to the task; and (3) update, which calculates the new
mean of each cluster as the new centroid of the cluster. The
algorithm repeats the assignment step and the update step until
all clusters’ assigned tasks are no longer changed or until
maxIterKM iterations have reached.

Observe that, since the clusterTasks() procedure does not
consider load balancing during its clustering, the reference
utilizations of the resulting task clusters may vary substan-
tially. Therefore, if we map each cluster directly to a core, the
cores corresponding to clusters with high reference utilizations
will likely be overloaded and become unschedulable, causing
the entire system to become unschedulable. To avoid this
issue, we employ the binPackCluster() procedure to balance
the workload assigned to each core.

The binPackCluster() procedure packs tasks of clusters
into m cores, such that each core’s reference utilization (i.e.,
the total reference utilizations of all tasks on the core) is
similar. The procedure first computes the average reference
utilization meanRefU of m clusters (i.e., the total reference
utilization of all tasks divided by m). Then it uses our modified
first-fit bin-packing algorithm to pack tasks to cores: for each

2

task, it attempts to pack the task into cores, going from core
0 to core m— 1. It packs a task to a core if the core’s current
reference utilization is smaller than the average reference uti-
lization meanRefU and the core’s current reference utilization
plus the task’s reference utilization is no larger than 1. The
procedure packs a task to core 0 if it cannot find any core that
satisfies the above condition.

The allocResource() procedure allocates cache and BW
resources to cores, such that the system is schedulable while
minimizing cache and BW resources. We define the optimal
resource utility of a core ¢; when the system has Néf,[" unused
cache partitions and Nl’;‘f‘fe unused bandwidth partitions as the
maximum resource utility of core ¢; when it is given cp extra
cache partitions and bw extra bandwidth partitions, for all cp <
Né‘;’e and bw < N,’;‘fv{e That is,

optResourcel; (Né‘f,[‘),N,’,‘fvle)

max
Nmm <Cp<Nldle Nmm <bw <Nldle

resourceU;(cp, bw)

3)

The allockesaurce( ) procedure "has three steps: The ini-
tialization step allocates the minimum number of cache and
BW partitions to each core. Next, the resource allocation step
allocates cp cache partitions and bw bandwidth partitions to
the core c¢ that has the maximum optimal resource utility with
Ndle cache partitions and N/ bandwidth partitions available.
In other words, it follows Eq. (4) to allocate some or all
remaining partitions to the core that has the maximum optimal

resource utility:

arg max optResourceU; (N"‘;J,[",N’dle) (€))]
cp,bw,c Ci€C

where C is the set of cores, and ¢p and bw are the number
of cache partitions and BW partitions, respectively, to be
allocated to the core ¢ with the currently remaining N4’
idle cache partitions and N,i‘fvle idle BW partitions. Finally, the
update step updates the remaining amount of cache and BW
resources and the utilization of the core c. The entire procedure
repeats until all cores become schedulable or there is no benefit
in reducing the utilization of unschedulable cores.

The balance() procedure migrates tasks from unschedu-
lable cores to schedulable cores to balance the utilizations
across cores, to make it easier to schedule the system. It
takes as input m cores whose tasks and number of cache
and memory bandwidth partitions have been determined. The
procedure first sorts tasks on unschedulable cores in increasing
order of tasks’ assigned slowdowns (recall that the assigned
slowdown of a task is its assigned utilization divided by
its reference utilization). For each unschedulable core, the
procedure migrates each sorted task to the core that has
the smallest assigned utilization after the migration, until
the unschedulable core becomes schedulable. The procedure
terminates after all unschedulable cores in the input become
schedulable. Note that the schedulable cores in the input
may become unschedulable after the migration, in which case
the heuristic algorithm will call allocResource() to re-allocate
resources to cores (c.f. Algorithm 1).

Complexity. We first discuss the complexity of the sub-
procedures. The clusterTasks() procedure enumerates all clus-
ters for all tasks for maxIterKM iterations; hence, it takes



O(N - m-maxIterKM) time. The binPackCluster() procedure
iterates over all tasks in each cluster (i.e., N tasks in total) for
each core, which takes O(N-m) time. The allocResource()
procedure takes O(N.p - Npy) to calculate Eq 3 for each
core and iterates for maximum N, - Np,, times, thus it takes
(’)(m~NCp2 -Nj,,%) time. The balance() procedure sorts at most
N tasks and iterates at most N tasks for at most m cores, so
it takes O(N -logN) + O(N -m) time.

We next discuss the complexity of the entire heuristic algo-
rithm by analyzing Algorithm 1. In the loop of the balancing
operation (Line 13 to Line 16), the algorithm invokes the
balance() and allocResource() procedures for at most 100
times, because imbalance’s value decreases by at least 0.01
for each loop and the algorithm stops the loop if imbalance’s
value does not decrease. In each iteration (Line 3 to Line 20),
the heuristic algorithm invokes the binPackCluster() and al-
locResource() procedures once, and it invokes the loop of
the balancing operation once. The heuristic algorithm invokes
the iteration for at most maxlterPerm times (Line 20). The
algorithm’s complexity is determined by the longest path in the
algorithm: O(N - m - maxIterKM) + O(maxIterPerm - max{N -
m,N -1ogN,m - Nep? - N2 }).

VI. NUMERICAL PERFORMANCE EVALUATION

To evaluate the effectiveness and efficiency of our heuristic
resource allocation algorithm, we conducted an extensive set
of experiments using randomly generated real-time workloads.
We had three main objectives: (i) to evaluate the performance
of our algorithm in terms of schedulability; (ii) to investigate
the impact of platform configurations and task parameters
on the schedulability performance; and (iii) to evaluate the
efficiency of our algorithm. For comparison, we performed
the same set of experiments for three other solutions: an MIP-
based optimal algorithm [63]; a baseline algorithm that com-
bines existing bin-packing heuristics with evenly distributing
cache and BW resources to cores; and a variant of MC2, a
state-of-the-art resource allocation algorithm proposed in [17].

A. Experimental setup

Workload. Each workload contained a number of randomly
generated periodic tasksets. The tasks’ reference utilizations
followed one of the three uniform distributions, whose uti-
lizations were distributed uniformly over [0.01,0.1] (light),
[0.1,0.4] (medium), and [0.4,0.9] (heavy). The tasks’ work-
loads were selected randomly from the PARSEC bench-
marks [11]. A task’s WCET values under different cache
and BW configurations were assigned to be the same as the
WCET values of the corresponding benchmark, which were
obtained by profiling using our experimental prototype on a
real machine. A task’s period was assigned to be the ratio of
its reference WCET to its reference utilization.

We profiled the WCETs of different PARSEC benchmarks
with the simlarge input type under different resource config-
urations using CaM prototype on the machine we used for
our empirical evaluation (c.f. Section III). For each PARSEC
benchmark with each type of input, we dedicated one core
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for the benchmark, configured the core with a valid cache and
BW configuration, and measured the WCET of the benchmark
for 25 runs. The valid number of cache partitions was ranged
from 2 to 20, with a step of 1; the valid number of BW
partitions was ranged from 1 to 20, with a step of 1. The
set of valid resource configurations is the cartesian product of
the valid number of cache partitions and the valid number of
BW partitions. For each PARSEC benchmark with each type
of input, we measured its WCETs under 19 x 20 = 380 valid
resource configurations. The obtained WCETs were used for
the tasks, as explained above.

Platform configurations. We analyzed the above generated
workloads for two platform configurations, which are based
on the Intel Xeon 2618v3 (Platform A) and Intel Xeon D-
1518 (Platform B) processors we have available: Platform A
has 4 cores and 20 cache partitions; Platform B has 4 cores
and 12 cache partitions. The number of BW partitions is the
same as the number of cache partitions on each platform.
Baseline algorithm. The baseline algorithm evenly distributes
cache and BW resources to cores. Each core has N, /M cache
partitions and Np,, /M bandwidth partitions, where N, is the
total number of cache partitions, Np, is the total number
of BW partitions, and M is the number of cores on the
platform. The WCET of a task is the measured WCET of the
corresponding benchmark under N.,/M cache partitions and
Npy/M bandwidth partitions. The algorithm uses bin-packing
algorithms to pack tasks into cores. If the total assigned
utilization of tasks on each core is no larger than 1, the system
is deemed schedulable; otherwise, it is deemed unschedulable.
We considered three bin-packing approaches: first-fit, best-fit,
and worst-fit. For each task set, we ran all three approaches
and selected the best one as the result (i.e., if the task set was
schedulable by at least one of the approaches, we considered
it as schedulable by the baseline algorithm).

MC? algorithm. As we are not aware of any prior work that
solves the resource allocation of cache and BW resources con-
currently, we selected the MC? algorithm [17] for comparison
because it is the closest state-of-the-art algorithm to ours. As
MC? considers cache and memory bank allocation, it cannot
be directly applied and thus we modified it for our setting as
follows: (1) we pre-allocated tasks to cores by using the same
bin-packing algorithm used in [17]; (2) we evenly allocated
the BW partitions to cores, just as the original MC? algorithm
does for memory bank resources; and (3) we used the same
MILP in [17] to determine the cache allocations for tasks. As
mixed-criticality is out of scope of this work, we considered
only level-B criticality in MC? and used partitioned EDF for
task scheduling. We refer to this modified algorithm as MC?.
Variances of our heuristic algorithm. The heuristic al-
gorithm we propose consists of two phases: clustering and
resource allocation. To evaluate the impact of each phase on
the overall performance of the algorithm, we considered two
variances of our algorithm: (1) Heuristic/CL algorithm, which
skips the clustering phase; and (2) Heuristic/RA algorithm,
which skips the resource allocation phase.

Analysis. We analyzed the same set of tasksets with each of



the algorithms considered above. For our heuristic algorithm,
we considered three settings of (maxlterKM ,maxIterPerm),
including (100,24), (50,12), and (200,48). As the perfor-
mance results are consistent across these settings, we present
only the results for (100,24) due to space constraints.

Our analyses were performed on an Intel Xeon E5-2620 v3
processor, which has 24 cores (with hyper threading enabled)
operating at 2.40GHz. We set the analysis timeout value as 8
hours*. We refer to a taskset for which an analysis timed out
as an incomputable taskset for the analysis.

B. Schedulability performance

We generated tasksets with taskset utilization ranging from
1 to 4, with a step of 0.1. For each taskset utilization, we
generated 50 independent tasksets (i.e., 1550 tasksets in total),
with tasks’ utilizations uniformly distributed in [0.1,0.4]. We
analyzed the tasksets for Platform A using all the algorithms.
Relative performance of the different algorithms. Fig. 3
shows the fraction of schedulable tasksets out of 1550 tasksets
under each algorithm. The number of schedulable tasksets
under Optimal, Heuristic, MC?, and Baseline algorithms are
1247, 1146, 576 and 551, respectively. The results show
that the fraction of schedulable tasksets under our heuristic
algorithm was very close to that of the optimal algorithm:
only 8.10% of the tasksets (i.e., 1247 — 1146 = 101 out
of 1247) were deemed schedulable by the optimal solution
but deemed unschedulable under our algorithm. Further, our
algorithm significantly outperformed both baseline and MC?
algorithms: it was able to schedule about twice many tasksets
(1146/551 =2.08x and 1146/576 = 1.99x) compared to the
baseline and MC? algorithms, respectively. We also observe
that all tasksets that were schedulable under the baseline and
MC? algorithms were also schedulable under our heuristic
algorithm in our experiments.

Impact of the clustering and resource allocation phases.
The impact of the clustering and resource allocation phases on
our heuristic algorithm can be observed based on the relative
schedulability performance of the heuristic algorithm and its
two variances, Heuristic/CL and Heuristic/RA, respectively
(see also Fig. 3). The results show that, while Heuristic
could schedule 1146 tasksets, Heuristic/CL and Heuristic/RA
could only schedule 1037 and 463 tasksets, respectively. This
suggests that (1) both phases are critical to the performance
of our heuristic algorithm, and that (2) the resource allocation
phase has a more positive impact on the overall performance
of our heuristic algorithm than the clustering phase does, since
omitting the resource allocation phase (i.e., Heuristic/RA)
leads to substantially fewer schedulable tasksets.

C. Impact of platform configurations and task parameters

Impact of platform configurations. We investigated the im-
pact of the platform configurations on the fraction of schedu-
lable tasksets for all four algorithms. For this, we repeated the
above experiment on another platform (i.e., Platform B) and
reported the results in Fig. 5.

“We thought 8 hours (i.e., a typical work day) is sufficiently large to deem
an algorithm that does not complete within the timeout impractical.
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We observe that, again, our heuristic algorithm consis-
tently performed very close to the optimal solution on both
platforms. On Platform B, the optimal algorithm was able
to schedule 673 tasks, while our heuristic algorithm could
schedule 638 tasksets (i.e., only 1 —638/673 = 5.20% reduc-
tion). Our heuristic algorithm also substantially outperformed
the baseline and MC? algorithms: it could schedule 3.39x
(= 638/188) and 2.24x (= 638/285) more tasksets than the
baseline algorithm and the MC? algorithm did, respectively.
Impact of task parameters. We investigated the impact of the
task parameters on the fraction of schedulable tasksets for all
four algorithms. We repeated the experiment in Section VI-B
using tasksets with uniform-heavy and uniform-light utiliza-
tion distributions. The results are shown in Fig. 4.

We observe that our heuristic algorithm continued to per-
form close optimal across different distributions of tasks’ uti-
lizations. For the tasksets with uniform-heavy utilization dis-
tribution, the optimal algorithm had 1081 schedulable tasksets,
while our heuristic algorithm had 1057 schedulable tasksets,
which is only 1—1057/1081 =2.22% fewer.

TABLE [: Number of analyzed tasksets (out of 1550 tasksets)
for uniform-light tasksets on Platform A.

Heuristic | Optimal | Baseline | MC?
Schedulable 1154 713 537 513
Unschedulable 396 56 1013 1037
Incomputable 0 781 0 0

We further observe that for the tasksets with uniform-
light utilization distribution, the optimal algorithm started to
time out after 8-hour computation for a taskset when the
taskset utilization was larger than 1.9, while our heuristic
algorithm never timed out. Table 1 summarizes the number of
schedulable tasksets, unschedulable tasksets and incomputable
tasksets for all four algorithms for the uniform-light tasksets on
the Platform A. Note that, even in the unlikely situation where
all incomputable tasksets had turned out to be schedulable for
the optimal algorithm, our heuristic algorithm still performed
close to optimal: at most 21.94% of the tasksets, i.e., (713 +
781 - 1154) out of 1550, would be deemed schedulable by the
optimal solution but unschedulable under our algorithm. It can
also be observed that our algorithm outperformed the baseline
algorithm and the MC? algorithm by a significant factor: it was
able to schedule more than twice as many tasksets compared
to the baseline and MC? algorithms (1154/537 = 2.15x and
1154/513 = 2.25x, respectively). These results demonstrate
that not only is our heuristic algorithm substantially more
efficient than the optimal solution but it is also highly effective
in allocating resources.

D. Running time efficiency

We measured the running time of four algorithms in the
evaluation in Fig. 3, under which the optimal algorithm never
times out.> The result is shown in Fig. 7. We observed that
our algorithm is highly efficient: its maximum average running
time was 0.90 minute. On the contrary, the optimal algorithm’s
running time increased exponentially as the taskset’s utiliza-

SThis running-time measurement favors the optimal algorithm.
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tion increased, and its maximum average running time was
35.75 minutes, i.e., 35.75/0.90 = 39.72x slower than ours.

VII. EXPERIMENTAL PERFORMANCE EVALUATION

To demonstrate the utility of CaM and to validate its perfor-
mance experimentally, we ran a set of PARSEC benchmarks
with real-time parameters in our experimental platform (de-
scribed in Section IIT). We used the task mapping and alloca-
tion configuration computed by our heuristic allocation algo-
rithm (Heuristic). For comparison, we also ran the same taskset
with the task mapping and allocation configurations computed
by two other settings: the optimal algorithm (Optimal) on our
prototype; and and a baseline (vanilla) that uses first-fit bin-
packing algorithm to pack tasks onto cores in LITMUSK”
(without cache or memory bandwidth management support).
Workload. We first converted the PARSEC benchmarks into
LITMUSAT -compatible real-time tasks. We then randomly
generated real-time tasks whose utilizations are uniformly
distributed in [0.1, 0.4] until we obtained a taskset with
reference utilization of 2.0. We also used one cache-bomb
(which was used in Section III) as a background task.

Experiment. Under the heuristic and optimal settings, we
reserved one core, two cache partitions and one BW partition
for the background task, and we computed the system configu-
ration for the real-time tasks with the rest of resources. Under
the vanilla setting, we reserved one core for the background
task but we did not control cache or bandwidth resources. We
ran the taskset for 2 minutes for each setting and used the
feather-trace [3] to collect the response time of real-time jobs.
Results. Fig. 7 shows the Cumulative Distribution Function
(CDF) plot of the normalized response time of all real-time
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tasks’ jobs under the three different settings. The normalized
response time of a job is the ratio of its observed response
time to its relative deadline. In Fig. 7, the vertical blue line
(marked as Deadline) shows the time when the normalized
response time is 1. The data points that fall to the right of this
line correspond to the jobs that missed their deadlines.

We observe that all jobs met their deadlines under the
heuristic setting. In addition, the response times of jobs when
using the heuristic algorithm were near to the values obtained
under the optimal setting. In contrast, not all jobs met their
deadlines under the vanilla setting, and some jobs experienced
unreasonably long response time (multiple times the deadline).
The results validate that CaM can effectively manage cache
and memory shared resources to reduce interference and
improve the timing performance on real multicore platforms.

VIII. CONCLUSION

We have presented a resource allocation strategy for real-time
multicore systems that considers CPU resource demand of
a task and the allocation of cache and memory bandwidth
resources in a holistic manner. Our strategy integrates existing
cache partitioning and memory bandwidth regulation mecha-
nisms to enable the co-allocation of both resources. Through
insights from our empirical evaluation of real workloads on
real hardware, we designed an effective and efficient algo-
rithm that exploits the interdependence relationship between
the cache and BW resources and the tasks’ WCETs in its
allocation. We have shown through extensive evaluations that
our strategy can effectively reduce interference, and that it
offers near optimal schedulability performance while being
highly efficient.
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