
Exploring Portability and Performance of
OpenCL FPGA Kernels on Intel HARPv2

Anthony M. Cabrera
Washington University in St. Louis

St. Louis, Missouri, USA
acabrera@wustl.edu

Roger D. Chamberlain
Washington University in St. Louis

St. Louis, Missouri, USA
roger@wustl.edu

ABSTRACT
FPGAs offer a heterogenous compute solution to the continuous de-
sire for increased performance by enabling the creation of application-
specific hardware that accelerates computation. While the barrier
to entry has historically been steep, advances in High Level Synthe-
sis (HLS) are making FPGAs more accessible. Specifically, the Intel
FPGA OpenCL SDK allows software designers to abstract away
low level details of architecting hardware on an FPGA and allows
them to author computational kernels in a higher level language.
Furthermore, Intel has developed a system that incorporates both a
multicore Xeon CPU and Arria 10 FPGA into the same chip pack-
age as part of the Heterogeneous Accelerator Research Program
(HARP) that can be targeted by their SDK.

In this work, we target the second iteration of the HARP plat-
form (HARPv2) using HLS through porting of OpenCL kernels
originally written for FPGAs connected via a PCIe bus. We evaluate
the HARPv2 system’s performance against previously reported re-
sults, explore the portability of kernels through a hardware design
space search, and empirically show the benefits of using the SVM
abstraction over explicit reads and writes.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting; Heterogeneous (hybrid) systems.

KEYWORDS
High Level Synthesis, Needleman-Wunsch, FPGA, Design Space
Search, Shared Virtual Memory

ACM Reference Format:
Anthony M. Cabrera and Roger D. Chamberlain. 2019. Exploring Portability
and Performance of OpenCL FPGA Kernels on Intel HARPv2. In Interna-
tional Workshop on OpenCL (IWOCL’19), May 13–15, 2019, Boston, MA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3318170.3318180

1 INTRODUCTION
As the end of Moore’s law draws nearer, researchers across disci-
plines are looking beyond relying on performance increases through

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IWOCL’19, May 13–15, 2019, Boston, MA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6230-6/19/05.
https://doi.org/10.1145/3318170.3318180

packing more transistors into CPUs and scaling CPU clock fre-
quencies. Outside of multicore CPUs, people are turning towards
heterogeneous computing solutions that incorporate hardware co-
processors such as Graphics Processing Units (GPUs) and Field
Progammable Gate Arrays (FPGAs) to accelerate computation. The
former has become ubiquitous in desktop, server, and cloud envi-
ronments and has an established and mature ecosystem.

The widespread use of FPGAs, however, is still nascent while
their presence is burgeoning. This forward progress is reflected in in-
dustry with companies like Amazon and Microsoft equipping their
data center nodes with FPGAs [2, 7, 21] and Intel acquiring FPGA
manufacturer Altera. Additionally, there is a growing research trend
toward harnessing the reconfigurability of FPGAs towards salient
applications like accelerating neural networks [5, 11, 30], biocompu-
tation [15, 18, 19], and many other applications [17, 24, 26, 29, 34].

A common way to incorporate hardware acclerators like GPUs
and FPGAs into a computer system is to attach them through a
PCIe bus, which keeps hardware costs relatively low. In spite of
this, the use of FPGAs has not experienced the widespread adop-
tion that GPUs have seen, in part because of all the difficulties
inherent in their use. Historically, FPGA developers have needed
to be well versed in electronic circuits and digital logic design.
This includes knowledge of low-level hardware interaction at the
register-transfer level (RTL) and handling timing constraints at
a clock cycle granularity, as well as domain-specific knowledge
of computer-aided design tools and workflows specific to FPGA
design and development. This is generally outside of the skillset of
most software developers.

One of the steepest barriers to using FPGAs is expressing a design
in the first place using traditional hardware description languages
(HDLs) like VHDL and Verilog, which requires the domain specific
knowledge previously mentioned. A current research direction in
lowering the barrier is High Level Synthesis (HLS), which allows a
programmer to express a kernel of computation in a higher level
language like C or C++ for deployment onto an FPGA. This circum-
vents the problem of having to learn an HDL to express a kernel
and its low level interfaces, reduces the amount that a programmer
has to understand about FPGA microarchitecture, and abstracts
away the lower level details of using FPGAs.

One way that companies that build PCIe cards around FPGAs
from Intel and Xilinx enable the use of HLS is through making
their solutions OpenCL compliant. This involves providing a Board
Support Package (BSP) that provides the interface between host and
device, as well as parameters that are used by an offline compiler to
synthesize, place, and route a design onto whatever FPGA is used
on the card. In addition to PCIe cards, Intel has also developed a
system that incorporates both a multicore Xeon CPU and Arria 10

https://doi.org/10.1145/3318170.3318180
https://doi.org/10.1145/3318170.3318180


IWOCL’19, May 13–15, 2019, Boston, MA, USA Anthony M. Cabrera and Roger D. Chamberlain

FPGA into the same chip package (described more in Section 2.2).
This particular project is known as the Heterogeneous Accelerator
Research Platform, or HARP. In addition to being able to author
designs using an HDL, Intel has provided the infrastructure to
use the Intel FPGA OpenCL SDK for FPGA development. While
there have been recent publications targeting this system with a
traditional FPGA design flow [1, 9, 24, 25, 28, 31], notmuch is known
about the experience, feasibility, and performance of targeting a
HARP system using OpenCL.

In this paper we will target the second iteration of the HARP
CPU+FPGA processor (HARPv2) through HLS using the Intel Open-
CL SDK for FPGA to explore the portability and performance
of OpenCL FPGA kernels. Specifically, we use OpenCL kernels
authored for an FPGA attached via PCIe card that perform the
Needleman-Wunsch algorithm [33] and port them to the HARPv2
system. Then, we evaluate and compare our results to ones previ-
ously reported, present our findings of portabilty through exploring
the hardware design space, and show the benefit of using the Shared
Virtual Memory (SVM) abstraction implemented for the HARP sys-
tem.

The rest of the paper is as follows. Section 2 details preliminary
information about FPGAs, the HARP system, and best practices for
authoring kernels that target FPGAs through the Intel OpenCL SDK
for FPGAs. Section 3 describes the related work of HLS utilization
and development as well as hardware designs that target the HARP
system. Section 4 outlines each of the different kernel versions used
for the target application, the experience of porting the kernels to
work on our test HARP system, describing the hardware design
space, and enabling the use of the SVM abstraction. Finally, Section 5
presents the results from comparing our results to those in literature,
the results from a hardware design space exploration, and the results
of using the SVM abstraction, and Section 6 concludes and presents
directions for future work.

2 PRELIMINARIES
2.1 FPGA
Field Progammable Gate Arrays (FPGAs) are integrated circuits
that include programmable logic blocks, hardened logic blocks
such as Digital Signal Processors (DSPs) and floating point units
(FPUs), block RAMs (BRAMs, and referred to as M20K blocks for
Intel FPGAs), and reconfigurable routing circuitry to connect these
components together and to hardened I/O logic in order to interface
with external hardware. FPGAs tend to occupy the middle ground
between general purpose CPUs and application specific integrated
circuits (ASICs) in terms of programmabilty, performance, and
power dissipation. FPGA developers traditionally design hardware
using Hardware Description Languages (HDLs) such as VHDL or
Verilog. This allows them to tailor hardware to a specific application.
This usually results in better performance than CPUs. The effective
use of hardware that is specific only to the problem also leads to
lower power dissipation.

2.2 Intel HARPv2
The second iteration of the Heterogeneous Architecture Research
Platform (HARPv2) system incorporates a 14 core Intel Broadwell
Xeon CPU with an Intel Arria 10 GX1150 in the same chip package,

where both the CPU and FPGA share the same memory. Relative
to the Stratix V GX A7 in HARPv1, the FPGA in HARPv2 has 1.06
times more M20K blocks, 1.82 times more logic blocks and regis-
ters, 5.93 times more DSP blocks, and is located on the same chip
package as opposed to a different socket. Integrating the CPU and
FPGA on the same package is different from traditional FPGA ac-
celerator solutions that are connected via PCIe slot or on their own
development board. The FPGA is connected to the CPU through
three physical channels: one through Intel’s QuickPath Intercon-
nect (QPI), and the other two through PCIe lanes. Intel also provides
the low level interface hardware for the FPGA through their Board
Support Package (BSP). Faict presents an excellent overview of the
HARP system in [10].

2.3 Intel FPGA OpenCL SDK
While it is possible to target the HARPv2 system by writing custom
HDL, it is also possible to use HLS using the Intel FPGA OpenCL
SDK. This SDK is an implementation of the OpenCL standard API
that allows for programmers to author both host and device code
in a high level language. The SDK provides a runtime environ-
ment (RTE) that controls the execution of kernels on the FPGA.
All of the low level interfaces and drivers that facilitate the inter-
action between the host and target device(s) are included in the
BSP, traditionally provided by the board manufacturer. In the case
of the HARPv2 platform, a pilot BSP is provided by Intel. The In-
tel OpenCL FPGA SDK provides an offline compiler that takes an
OpenCL kernel, creates an HDL representation of that design in
Verilog, synthesizes that into logical FPGA elements (RTL), maps
that design into FPGA components (e.g. logic blocks, I/O blocks),
places the mapped design onto the target FPGA, and routes the
design.

2.3.1 NDRange vs. Single Work Item Programming Model. There
are two programming models that can be used to author OpenCL
kernels that target FPGAs: the NDRRange (NDR) and Single Work-
Item (SWI) models. These models are pictorially described in Figure
1. The NDRange (NDR) model expresses kernels through specifying
a global amount of work (i.e. global work size) to do in (up to) a
3-dimensional space, and a local amount of work to do (i.e. local
work size) in that same space that will be scheduled for execu-
tion on a processing element. In Figure 1, the NDRange kernel is
specified in a 1-dimensional space. Kernel execution, then, must
be enqueued from the host side to make sure all global work items
will be executed. Each work item is then scheduled by a hardware
scheduler on the FPGA side. The Single Work Item (SWI) model
expresses kernels by setting the global and local work size to 1 in
all dimensions so that all computation is handled by a single work
item. In both cases, a custom pipeline is created for computation,
as shown in Figure 1.

Intel recommends using the SWI model if the target kernel con-
tains many loop and memory dependencies [14]. This allows the
offline compiler to have a global view of all computation so it can
account for dependencies when constructing a custom pipeline.
Ideally, iterations can then be launched every clock cycle. Addi-
tionally, fine-grained sharing between loop iterations in an NDR
kernel requires an intricate mechanism that involves local memory



Exploring OpenCL FPGA Kernels IWOCL’19, May 13–15, 2019, Boston, MA, USA

Figure 1: (a) The NDRange model relies on using multi-
ple work items to perform kernel computations. Each of
these work items must be scheduled for execution onto
the compute unit by a hardware scheduler implemented on
the FPGA. In this case, there are two instances of some 1D
NDRange kernel enqueued for execution that each have N
global work items that need to be executed. The pipelined
compute unit in this case has been vectorized by a factor of
4. (b) The Single Work Item kernel uses only one work item
and thus does not need a hardware scheduler. Single work
items rely on pipelining to exploit instruction-level paral-
lelism and resolving of loop and memory dependencies be-
tween iterations without the use of costly memory barriers.

and barriers, and this leads to suboptimal kernel performance. Zo-
houri [32] takes this further and says that NDRange kernels should
only be employed if loops cannot be fully pipelined due to variable
exit conditions, complex loop-carried dependencies, or random ex-
ternal memory accesses. For all other cases, the SWI model should
be employed.

2.4 Needleman-Wunsch
The workload targeted in this paper is the Needleman-Wunsch
algorithm. It is a dynamic programming algorithm used for globally
aligning a pair of protein or nucleotide sequences. The end result
of the algorithm is a substitution matrix that is used to trace back
the optimal global alignment of the two sequences. The general
structure of the implementation (without any notion of blocking or
parallelism) is outlined in Algorithm 1.

The size of the substitution matrix is determined by the length
of the two strings to be compared. In this case, the two strings
are both of size N , and an extra row and column are added for
initial conditions. The substitution matrix is populated by iterating
across all elements in each row as detailed in the nested for loop
starting in line 6. Each element subst_matrix[i][j] is calculated as a
function of the elements to the left, top, and top left from the current
element, as well as a similarity score from score_matrix[i][j] and a
predetermined penalty constant for alignment gaps.

Algorithm 1: Needleman-Wunsch Algorithm

1: new int subst_matrix[N+1][N+1], score_matrix[N+1][N+1]
2: new int gap_penalty
3: initialize first row and column of subst_matrix
4: initialize score_matrix
5: initialize gap_penalty
6: for i ← 1 to N + 1 do
7: for j ← 1 to N + 1 do
8: top = subst_matrix[i − 1][j] - gap_penalty
9: left = subst_matrix[i][j − 1] - gap_penalty
10: top_left = subst_matrix[i − 1][j − 1] + score_matrix[i][j]
11: subst_matrix[i][j] = max(top, left, top_left)
12: end for
13: end for

The Needleman-Wunsch algorithm is included as part of the
Rodinia benchmarking suite [8] developed by Che et al. In Rodinia,
the Needleman-Wunsch algorithm has 3 different implementations:
an OpenMP implementation that targets multicore CPUs, a CUDA
implementation that targets NVIDIA GPUs, and an OpenCL imple-
mentation for any accelerator that is compliant with the OpenCL
standard. Zohouri et al. extended this work by authoring kernels
using the Intel FPGA OpenCL SDK to target FPGAs connected as
a card on the PCIe bus [32, 33]. They do this for a subset of the
Rodinia suite and show the advantages and disadvantages of FP-
GAs as accelerators compared to GPUs and multicore CPUs. We
use the Needleman-Wunsch FPGA kernels from Zohouri et al. for
experimentation in this work, and detail each version in Section
4.1.

3 RELATEDWORK
3.1 HARP for Acceleration
Since its inception, there have been many projects that have demon-
strated the benefits of using the HARP system in a variety of differ-
ent applications and domains. Podili et al. use the HARP as their
experimental system in using Winograd FFTs to speed up con-
volutional layers in Convolutional Neural Networks [20]. Alves
et al. utilize the low-latency QPI channel for collision detection
algorithms to demonstrate the HARP’s feasibility for real-time ap-
plications [1]. Sidler et al. exploit the shared memory feature of
the HARP system to reduce superfluous data movement in pattern
matching for databases [24]. Stitt et al. develop a scalable window
generator architecture for sliding window applications, which are
a common pattern in FPGA design, to take advantage of the in-
creased memory bandwidth in the HARPv2 system and reported
future memory bandwidth increases for FPGAs [25]. Wang lever-
ages the tighter coupling of CPU and FPGA in the HARP system as
a heterogeneous platform for accelerating graph processing [28].
In all of these cases, though, custom RTL is written to express the
hardware and low-level interfaces for the HARP system, which is a
skill not generally in the toolbox of the modern software developer.
In this work, we explore the performance and portability of OpenCL
kernels, which allow developers to describe accelerator functions
in a higher level language.



IWOCL’19, May 13–15, 2019, Boston, MA, USA Anthony M. Cabrera and Roger D. Chamberlain

3.2 OpenCL + FPGA
There have been a number of recent case studies that target FPGAs
using OpenCL. Jin and Finkel evaluate the performance of varying
the number of replicated compute units for an OpenCL kernel
that computes an MD5 hash [16]. Sanaullah and Herbordt use the
Verilog created by the Intel FPGA OpenCL SDK offline compiler for
an OpenCL kernel that describe a fast fourier transform, apply code
structure optimizations, and outperform vendor IP-based designs
while also being able to fit this modified design into existing FPGA
solutions that use FFTs [22]. The kernels used in this paper are
sourced from work done by Zohouri et al. that aims to evalute
and optimize OpenCL kernels taken from the Rodinia suite [8] to
evaluate the effectiveness of FPGAs in high performance computing
applications [32, 33].

In all of these works, the OpenCL kernels are authored for FPGAs
attached via a PCIe bus. This work specifically evaluates the porta-
bility and performance of OpenCL FPGA system on the HARPv2
system, in which the CPU and FPGA are located on the same chip
package and share a common memory. To date, the only other
instance of using OpenCL to target the HARPv2 system is Faict’s
exploration of OpenCL for guided image filtering [10]. In this work,
we present a more exhaustive exploration of the hardware design
space.

3.3 High Level Synthesis and Design
In addition to the Intel FPGA OpenCL SDK, there are other ways
to leverage High Level Synthesis (HLS) and design to target FPGAs.
One of the earliest HLS languages that preceeded OpenCL for FP-
GAs was the Streams-C language and compiler, implemented by
Gokhale et al. [12], that allowed programmers to author streaming
kernels in a C-based language. They also quantified the tradeoffs be-
tween performance and ease of programmability using HLS. LegUp,
developed by Canis et al., takes a C program as input and automates
the process of finding segments of code that can be accelerated on
an FPGA [6]. Bachrach et al. develop a hardware construction lan-
guage called Chisel in the Scala programming language in order to
design hardware using object-oriented principles and functional
programming [3]. It is important to make the distinction that Chisel
is not a “C-to-Gates" form of HLS; this solution allows for a more
expressive description of hardware using higher level ideas like
object-oriented programming.

4 METHODS
This section describes the kernels built for and deployed on the Intel
HARPv2 system. We use the same kernel version enumeration from
[32]. The kernels are built using the offline compiler provided in the
Intel FPGA OpenCL SDK and a custom release of the 16.0 version
of the Intel Quartus Prime tool suite that accomodates the HARPv2
system. This is the most recent version of the Quartus tools that
is supported by the test system. Minimal changes were made to
the original host source code during the porting process. The only
change made to the kernel code was correcting an indexing error
in Kernel Version 5 that left the last column and the last two rows
unprocessed. The process of exploring the hardware design space is
detailed next. Finally, we detail how we enable the HARPv2 system,
including using the Shared Virtual Memory (SVM) abstraction.

4.1 Description of Each Kernel Version
The kernel versions used in this paper are from [8, 32, 33] and
are described in the following subsections. Versions 0 and 2 are
designed using the NDR paradigm, and Versions 1, 3, and 5 use the
SWI paradigm. Versions 2 and 3 apply basic level optimizations to
their preceding versions, and Version 5 implements a new design
using the SWI model. Each kernel was built for and deployed on
the Intel HARPv2 system for comparison to the prior work that
evaluates performance with FPGAs that are connected via PCIe
card.

4.1.1 Version 0. This kernel takes the OpenCL implementation
from [8], which uses 2D blocking to subdivide the problem with no
modifications and is used as the performance baseline. Its imple-
mentation follows the NDR paradigm. The kernel is divided into
two separate kernel functions that perform the same computation
but are indexed differently to compute the upper and lower trangu-
lar, respectively, of a given 2D block. Each function takes advantage
of diagonal parallelism in two ways: thread- and block-level par-
allelism. Once an element or block of index (i, j) is computed, it
satisfies the dependencies for the (i, j+1)th and (i+1, j)th elements
or blocks, and allows them to be computed in parallel. The size
of the 2D block is determined by a user-defined variable named
BSIZE.

4.1.2 Version 1. This kernel uses a doubly nested for loop as out-
lined in Algorithm 1 and takes no steps to guide the synthesis tools
on how to better achieve computational parallelism in the resulting
custom pipeline.

4.1.3 Version 2. This kernel applies basic compiler-level optimiza-
tions [33] to Version 0 in two ways. The first is through setting the
maximum work group size. This constraint allows the compiler to
perform more aggressive optimizations without wasting precious
hardware resources [14]. Additionally, setting the size also enables
the second optimization: kernel vectorization. This is achieved by
adding the SIMD attribute to the kernels in order to vectorize them.
This allows work items to execute more data. In this work, the
kernels are vectorized by a factor of 2.

4.1.4 Version 3. Version 3 improves on Version 1 in two ways. The
first is by adding a register to cache the result of the current element
so that it can satisfy the left dependency for the next iteration and
avoid an external memory access. The second is by adding the com-
piler pragma ivdep on the substitution matrix to prevent compiler
from assuming false load/store dependencies on that global buffer
(since the current element being computed depends on previously
computed values in that buffer) and to decrease stall cycles per loop
iteration.

4.1.5 Version 5. Version 5 is a kernel programmed using the SWI
model. Instead of iterating across elements left to right as in previ-
ous SWI implementations, Version 5 takes advantage of diagonal
parallelism similar to the NDR kernel versions. It divides the sub-
stitution matrix into groups of rows, i.e. 1D blocks. The number
of rows in each 1D block is set by a tunable hardware parameter
named BSIZE. Each 1D block of the matrix is processed by dividing
the block into column chunks. Specifically, there is a hardware pa-
rameter named PAR that sets how many columns are in each chunk.



Exploring OpenCL FPGA Kernels IWOCL’19, May 13–15, 2019, Boston, MA, USA

The chunks of columns are processed in a diagonal fashion, and
wrap around to the next chunk of columns once the current one
is finished. Since all loops are successfully fully unrolled, there is
no need to employ any kernel vectorization. The kernel is done
processing once all of the columns of the 1D chunk have been
computed. The exit condition is precomputed on the host side.

While there are other optimizations employed as described in [32],
the main optimization is use of shift registers as local storage to
satisfy dependencies. This is done in two ways. The first is by using
shift registers to hold onto computed elements of the substitution
matrix between iterations of the loop. This is similar to the idea of
caching a computed element in Version 3, but the shift registers
act as buffers that satisfy dependencies across multiple rows and
columns instead of just the next element to be computed in the
substitution matrix. The size of these shift registers are a function
of BSIZE and PAR. The second way is by creating 2D shift registers
and utilizing them in a staircase fashion as shown in Figure 2. Be-
cause each 1D block is traversed in a diagonal fashion, the access
patterns of global memory are not spatially local. To this end, the
staircase shift registers are employed such that reads and writes to
global memory can still be coalesced, but are buffered until they
are needed to compute an element in the substitution matrix.

4.2 Hardware Design Space Search
In [32], Zohouri reports the optimal parameter settings for BSIZE
in kernel Versions 0 and 2 and the optimal settings for BSIZE and
PAR for Version 5 for the PCIe-connected Stratix V and Arria 10
FPGAs that he uses in his experimentation. These parameters are
effectively hardware design knobs that are exposed by the kernel
designer. BSIZE controls how much of the substitution matrix was
computed for the NDR kernels, and is a parameter for sizing some
shift registers in kernel Version 5. The PAR parameter controls the
degree of parallelism for kernel Version 5, i.e. how many substitu-
tion matrix elements can be processed at the end of a loop iteration,
and determines how large to make the staircase shift register array,
as shown in Figure 2. In order to find the parameter configurations
for the Intel HARPv2 system that produce optimal performance,
we define a hardware design space by creating a range of values
that BSIZE can take for Versions 0 and 2, and a range of values that
BSIZE and PAR can take for kernel Version 5. This range is defined,
in part, by what configurations the tools are able to successfully
build.

4.3 Shared Virtual Memory
Though the Intel HARPv2 nodes used in this paper are techni-
cally only OpenCL 1.0 compliant (as reported by querying the
CL_DEVICE_VERSION parameter of the device), they do support the
feature of using Shared Virtual Memory (SVM) implemented as an
extension to the OpenCL 1.0 API. It is worth noting, though, that
devices compliant with versions of OpenCL 2.0 and up are required
to support SVM.

Instead of having to explicitly enqueue writes and reads to and
from the HARPv2 FPGA, shared memory is allocated on the host
side and then is pointed to as a special SVM kernel parameter from
the host code. In order to utilize this feature in the HARPv2 sys-
tem, the host code needed to be edited in the following ways: all

Figure 2: Hardware effect of staircase shift register when
sweeping the PAR parameter. A 2D array of shift registers is
allocated in the OpenCL kernel, but only half of the struc-
ture is used. This is represented by boldening the lines of
the utilized shift registers and using dashed lines to repre-
sent the shift registers that are unused. The top figure is the
shape of the arrays used to buffer data and coalesce reads
from global memory, and the bottom is the shape used to
buffer data and coalesce writes to global memory.

previously created cl_mem objects created and freed for the de-
vice were removed and replaced with shared memory allocated by
clSVMMallocAltera() and clSVMFreeAltera(), respectively. En-
queueing writes and reads to cl_mem objects were removed. Finally,
calls to clSetKernelArg() that pointed to cl_mem objects were re-
placed with setArgSVMAltera(). Conveniently, no changes need
to be made to the kernel code to accomdate using SVM instead of
explicit reads and writes. Thus, kernels do not need to be rebuilt to
accomodate using the SVM feature.

5 RESULTS AND DISCUSSION
5.1 FPGA Kernel Results
Table 1 shows the results of building and evaluating each kernel
version described in Section 4.1 on the Intel HARPv2 system and
compares them to previously reported results in [32]. Specifically,
any row that contains "HARP" in the "FPGA" column contains our
results for the Intel HARPv2 platform, and all other data is from
[32]. The percentages reported are how much of that particular



IWOCL’19, May 13–15, 2019, Boston, MA, USA Anthony M. Cabrera and Roger D. Chamberlain

Version Opt. Level Kernel
Type FPGA Time

(sec)
fmax
(MHz) Logic M20K

Bits
M20K
Blocks DSP Speedup

v0 None NDR Stratix V, PCie 9.937 267.52 27% 16% 30% 6% 1.00
Arria 10, HARP 13.367 211.77 25% 39% 25% 1% 0.74

v1 None SWI Stratix V, PCie 203.864 304.50 20% 5% 17% < 1% 0.05
Arria 10, HARP 830.131 256.6 26% 9% 18% < 1% 0.01

v2 Basic NDR Stratix V, PCie 3.999 164.20 38% 68% 100% 8% 2.48
Arria 10, HARP 2.545 162.865 50% 47% 81% 1% 3.90

v3 Basic SWI Stratix V, PCie 2.803 191.97 19% 8% 18% < 1% 3.55
Arria 10, HARP 3.069 178.12 25% 10% 19% < 1% 3.24

v5 Advanced SWI
Stratix V, PCie 0.260 218.15 53% 7% 28% 2% 38.22
Arria 10, PCie 0.176 201.06 28% 8% 25% < 1% 56.46
Arria 10, HARP 0.290 186.81 40% 19% 30% < 1% 34.27

Dummy N/A N/A Arria 10, HARP N/A 350.26 23% 6% 14% 0% N/A

Table 1: Results of executing the NeedlemanWunsch kernel versions on the HARPv2 System and how they compare to results
in [32]. The values in the Speedup column are relative to the kernel Version 0 Stratix V result. The first two rows for kernel
Version 5 are both results from [32]. The last row of the table is the result for building a “Dummy” kernel that is simply a
kernel that contains no computation.

FPGA resource is utilized relative to the amount available. The
execution times presented are the lowest times over 100 runs of the
respective kernels. The Speedup column is the calculated speedup
relative to the Stratix V result from [32] for kernel Version 0.

Comparing results from [32] to those observed from the HARPv2
system, the trends regarding NDR and SWI kernels reported in [32]
also appear here. The applied optimizations to Versions 0 and 1
result in decreases in execution time relative to each kernel’s re-
spective runtime. Version 2 executes 5.25 faster than Version 0, and
Version 3 executes 270.49 times faster than Version 1. However, our
HARPv2 system results, except for Version 2, execute slower than
those from [32], despite the Arria 10 FPGA having more resources
to use than the Stratix V FPGA.

The biggest contributing factor to this is the amount of resources
needed to implement designs. This causes the place and route pro-
cess of the FPGA to be more difficult, involving more complex
routing solutions that drive the maximum possible clock speed
down. In almost all cases, the Arria 10 FPGA HARPv2 system uses a
larger percentage of its available resources than the Stratix V FPGA
does, which has less resources to begin with. In all cases, fmax for
the Arria 10 is lower than the those for the Stratix V.

This is because of all of the resources necessary to implement the
BSP components that interface to the host CPU to the FPGA. The
last row in Table 1 shows the resource utilization for a “Dummy”
kernel, which is an OpenCL kernel that contains no computation in
its function body. We use this as a proxy for the resources required
to implement the interface BSP components. As a comparison, con-
sider the Arria 10, PCIe result for kernel Version 5, which uses the
same FPGA. The percentage of total logic blocks used is 28%, com-
pared to the 23% of logic blocks used just to implement the BSP for
the HARPv2 system. Though addressing this shortcoming is com-
pounded by the opacity of the toolflow for the Intel FPGA OpenCL
SDK, work done by Sanaullah and Herbordt describe a methodol-
ogy to isolate the HDL generated from the toolflow [23]. This is
done, in part, to classify the common interfaces generated by the

tools and either remove unnecessary parts or modify unoptimized
parts of the OpenCL-generated HDL to reduce the amount of FPGA
resources necessary to build the design and increase performance.

Another inefficiency that is specific to the implementation of
kernel Version 5, but applies to both the PCIe and HARPv2 systems,
is theway the staircase shift registers are implemented. In the kernel
source, this is done by allocating local space for a 2D array and
then inferring a shift register from it. Though they are synthesized
as a 2D shift register, as shown in Figure 2, only half of it is used. A
more efficient approach would be to allocate PAR shift registers that
are the exact size needed to achieve the buffering effect explained
in Section 4.1. However, this is more complex than just allocating a
2D array and inferring a shift register because it involves further
tweaks to the OpenCL kernel such as manual unrolling of loops to
account for boundary conditions in the algorithm. This problem
exemplifies the tradeoff of productivity versus performance.

5.2 Hardware Design Space Search
Table 2 shows the results for sweeping BSIZE for kernel Versions 0
and 2, as well as the results for sweeping BSIZE and PAR for kernel
Version 5. As in the previous section, the execution times presented
are the lowest times over 100 runs of the respective kernels.

In our experimentation, we define the kernel version design
search space for kernel Version 0 as

BSIZE = {64, 128, 256}.

For kernel Version 2, it is

BSIZE = {8, 16}.
For kernel Version 5, the search space is the Cartesian product
between

BSIZE = {256, 512, 1024, 2048, 4096, 8192}

and
PAR = {8, 16, 32, 64}.



Exploring OpenCL FPGA Kernels IWOCL’19, May 13–15, 2019, Boston, MA, USA

Kernel
version PAR BSIZE Time

(sec)
fmax
(MHz) Logic M20K

Bits
M20K
Blocks DSP Build Time

(hr:min:sec)

v0 N/A
64 20.530 232.665 30% 16% 28% 1% 11:43:22
128 13.367 211.77 31% 25% 39% 1% 9:8:36
256 15.836 153.985 31% 59% 81% 1% 12:56:10

v2 N/A 8 2.545 162.865 50% 47% 81% < 1% 12:24:00
16 16.735 182.415 35% 40% 58% < 1% 7:26:49

v5

8 256 1.011 215.4 27% 12% 21% < 1% 5:29:05
8 512 1.035 216.26 27% 12% 21% < 1% 5:34:20
8 1024 1.156 213.67 27% 12% 21% < 1% 14:35:26
8 2048 1.210 215.26 28% 12% 21% < 1% 14:22:57
8 4096 1.227 214.17 27% 12% 22% < 1% 13:35:46
8 8192 1.270 213.44 27% 13% 22% < 1% 6:23:05
16 256 0.417 200.8 30% 13% 23% < 1% 9:48:13
16 512 0.410 209.16 30% 13% 23% < 1% 9:27:11
16 1024 0.414 197.86 30% 13% 23% < 1% 15:25:55
16 2048 0.437 205.42 30% 13% 24% < 1% 9:53:23
16 4096 0.449 196.54 30% 14% 24% < 1% 6:00:06
16 8192 1.267 199.84 30% 14% 24% < 1% 15:21:19
32 256 0.338 171.02 40% 19% 30% < 1% 22:30:28
32 512 0.312 180.27 40% 19% 30% < 1% 22:18:48
32 1024 0.298 179.01 40% 19% 30% < 1% 21:41:14
32 2048 0.292 186.81 40% 19% 30% < 1% 18:38:15
32 4096 0.296 179.5 40% 19% 30% < 1% 8:04:14
32 8192 0.297 187.37 40% 19% 30% < 1% 8:27:33
64 2048 0.363 117.85 66% 30% 47% < 1% 31:10:3
64 4096 0.330 129.04 67% 30% 47% < 1% 44:54:53
64 8192 0.332 128.22 67% 31% 48% < 1% 38:16:34

Table 2: Results for sweeping the BSIZE parameter for kernel versions 0 and 2 and the BSIZE and PAR parameters for kernel
version 5.

Figure 3: Graphical depiction of execution times for sweeping across hardware parameters BSIZE and PAR in kernel Version 5.
The bars with greyed-out and diagonal lines represent parameter configurations for designs that were unable to be fitted for
the FPGA.



IWOCL’19, May 13–15, 2019, Boston, MA, USA Anthony M. Cabrera and Roger D. Chamberlain

In the case of kernel Versions 0 and 2, the upper bound of the
search space was determined by the largest value that BSIZE could
assume while still being synthesizable by the Intel FPGA OpenCL
SDK offline compiler. The upper bounds for kernel Version 5 were
determined by the amount of time required to synthesize a design.
It must be noted, though, that for BSIZE = 256, 512, 1024
and PAR = 64, the compiler was not able to synthesize a design.
Investigating the logs revealed that despite multiple attempts at
fitting the design, the routing was too congested and the fitting
phase ultimately failed. Slightly larger designs fit on the FPGA, i.e.
kernels with BSIZE = 2048, 4096, 8192, so we attribute these
failures to shortcomings with the offline compiler.

The optimal settings for BSIZE in kernel Versions 0 and 2 re-
ported in [32] were 128 and 64, respectively, for the Stratix V FPGA.
The optimal HARPv2 BSIZE for Versions 0 and 2 were found to be
128 and 8, respectively. Thus, the setting matches the optimal set-
ting in [32] for Version 0 but not for 2. The design space for Version
2 on HARPv2 did not include the optimal setting from [32], yet it
outperformed [32] by a factor of 1.57 and with a smaller BSIZE. For
kernel Version 5, BSIZE and PAR are set to 4096 and 64, respectively,
for both the Stratix V and the Arria 10 FPGA to achieve optimal
performance in [32]. However, the configuration that was optimal
in [32] was not the most performant configuration for the HARPv2
system; the result in [32] is 1.64 times faster. While we expect the
best configuration not to align for different FPGAs, this speaks to
the portability of kernels designed for FPGAs connected through a
PCIe slot versus the HARPv2 system even when the FPGAs are the
same. Some of this performance difference can be attributed to the
large amount of resources used to implement the CPU/FPGA inter-
face as previously discussed. While the performance difference is
relatively small, this result also suggests that further consideration
must be given when authoring kernels specific to the HARPv2. This
is similar to the claim that OpenCL kernels intended for one type of
accelerator will not be the most performant for another type made
in [33] when describing GPUs and FPGAs.

The build times of the different configurations of the kernels
are also shown in Table 2. Perhaps the most startling result is the
amount of time spent buiding kernels for Version 5. The longest
build time was for BSIZE = 4096 and PAR = 64, which took nearly
two days. In total, it took 14 days to build all the kernels in order
to search the design space and find the most optimal kernel. The
amount of time it takes to search the design space by brute force
necessitates the need for performance models, using facets of the
kernel and its estimated resources as inputs, that can be more in-
telligently searched. To this end, work done by Wang et al. has
demonstrated progress in this area by modeling OpenCL workloads
on FPGAs for the NDR model [27]. Additionally, it would be bene-
ficial to isolate the parameters of such analytic models which affect
performance the most in order to prune the search space of lower
weight parameters. Consider Figure 3, which graphically shows the
execution times for all the configurations of kernel Version 5.

When PAR is small (i.e., PAR = 8), execution time increases as
BSIZE increases because the effects of the inefficient staircase regis-
ter allocation outweighs the benefits of processing a small number
of the substitution matrix in a pipeline-parallel fashion. However,
as PAR grows, the effects of processing more and more columns in
parallel has a greater impact on performance than sweeping the

BSIZE parameter. Holding BSIZE to some constant and sweeping
the PAR parameter, which has only 4 discrete values, would lead
to finding the optimal setting of 32 for PAR. In this case, the range
of execution times for the different values of BSIZE is 46ms at 4
days of kernel build time, while the global range is 978ms at 14
days. This then becomes a tradeoff between an approximate answer
found quickly versus a precise answer found slowly.

5.3 SVM Performance
Since the kernel built for the runs with explicit reads and writes
is the same one used for the runs using SVM, the FPGA resource
utilization remains the same between the two. Figure 4 shows the
benefit in modifying the host code to use the SVM abstraction, as
described in Section 4.3, for kernel Version 5 at the best performing
parameter configuration for the HARPv2 system: BSIZE = 2048
and PAR = 32. The execution time reported is the smallest out of
100 runs.

Figure 4: Execution times for kernel Version 5 with BSIZE =
2048 and PAR = 32 for host code that enqueues reads and
writes explicitly to the device and host code that uses the
SVM abstraction.

The left bar shows total amount of time the kernel took to exe-
cute, as well as the explicit reads and writes to global memory. Both
the explicit reads and writes take longer than the execution of the
kernel and increase the running time by a factor of 4. The right bar
shows the execution time using the modified host code that uses
the SVM abstraction. The time taken to allocate shared buffers was
also recorded, but takes 10s of milliseconds and is negligible relative
to the execution time. The time taken to explicitly read and write
buffers was not recorded in [32], but conservatively assuming that
explicit reads and writes execute in one-eighth the time that it does
on the HARPv2 system would still have the HARPv2 outperforming
the Arria 10 FPGA connected via PCIe slot.

This coherent, low-latency access to shared memory has impor-
tant implications that require rethinking current paradigms of of-
floading computation to accelerators. Most commonly for compute-
intensive tasks marked for accelerator offload, all data necessary
for the computation is moved from from host to device. Since data
movement is such an expensive operation, it is beneficial to per-
form as much computation as possible on the accelerator before
shipping the results back to the host. This is the model used in
all of the Needleman-Wunsch kernel versions in this work when



Exploring OpenCL FPGA Kernels IWOCL’19, May 13–15, 2019, Boston, MA, USA

using explicit reads and writes. The initial state for the substitution
matrix and the entirety of the score matrix are moved to the FPGA.
Once all of the substitution matrix has been computed, the updated
substitution matrix is moved back to the host for reading.

The tighter integration present in the HARPv2 system, however,
would allow for more fine-grained interactions between host and
device without the overhead currently of explicitly moving data
from CPU to FPGA memory. Huang et al. have investigated the
tradeoffs associated in partitioning tasks and data in heterogeneous
systems that collaboratively use CPUs and FPGAs attached via a
PCIe bus [13]. They find that both partitioning schemes improve
the execution time over systems that do not use any kind of col-
laborative execution. Future OpenCL FPGA kernels targeting the
HARPv2 system, then, should take advantage of the low latency
communication between shared memory and the FPGA. Addition-
ally, application designers should find ways to collaboratively use
the CPU and FPGA for a computation region of interest, instead of
relying on one or the other to perform the entirety of that region.

6 CONCLUSION
As Moore’s law draws nearer, researchers across disciplines are
looking beyond relying on performance increases through faster
CPU clock speeds and advances in semiconductor process technolo-
gies. FPGAs offer a heterogenous compute solution to this problem
by enabling the creation of application-specific hardware that accel-
erates computation. While the barrier to entry has historically been
steep, advances in High Level Synthesis (HLS) are making FPGAs
more accessible. Specifically, the Intel FPGA OpenCL SDK allows
software designers to abstract away low level details of architecting
hardware on an FPGA and allows them to author computational
kernels in higher level languages. Furthermore, Intel has developed
a system that incorporates both a multicore Xeon CPU and Arria
10 FPGA into the same chip package, as part of the Heterogeneous
Accelerator Research Program (HARP), that can be targeted by their
SDK.

In this work, we target the second iteration of the HARP platform
(HARPv2) using HLS through porting OpenCL kernels written for
FPGAs connected via PCIe card. We evaluate their performance
against previously reported results, explore the portability of ker-
nels intended for PCIe-connected FPGAs through a hardware design
space search, and empirically show the benefits of using the SVM
abstraction over explicit reads and writes to the FPGA. Additionally,
all artifacts associated with this paper (code and data) will be made
available through WashU OpenScholarship [4].

Through this research, we have also identified many directions
for future work. The Hardware Description Language (HDL) level
representation generated by the offline compiler may contain many
unused hardware components or unnecessary connections to the
components of the Board Support Package (BSP). Isolating these
and editing/removing them would free up resources and make the
FPGA place and route process easier for the offline compiler. Search-
ing the entire hardware design space by brute force is inefficient.
The amount of time spent building kernels for evaluation could be
shortened by using performance models to represent the kernels.
Searching that design space would be faster than building all possi-
ble kernel variations. Additionally, developing a method of isolating

the parameters of the model that most affect performance would
allow for a pruning of the search space, thus shortening the time
spent building kernels. Finally, it would be beneficial to target algo-
rithms that can take advantage of the low latency between shared
memory and FPGA, as well as research how to author kernels in
OpenCL that exploit that low latency.

ACKNOWLEDGMENTS
Supported by NSF grants CNS-1205721, CSR-1527510, CCF-1527692,
and CNS-1763503. Thanks to Intel for access to the CPU+FPGA sys-
tem through the Hardware Accelerator Research Program. Thanks
to Alex Hsu of the Texas Advanced Computing Center (TACC)
for prompt responses and feedback to our queries regarding the
HARPv2 nodes at TACC.

REFERENCES
[1] Fredy Augusto M Alves, Peter Jamieson, Lucas B da Silva, Ricardo S Ferreira,

and José Augusto M Nacif. 2017. Designing a collision detection accelerator on
a heterogeneous CPU-FPGA platform. In Proc. of Int’l Conf. on ReConFigurable
Computing and FPGAs.

[2] Amazon Web Services 2019. Amazon EC2 Instance Types. Retrieved January
2019 from https://aws.amazon.com/ec2/instance-types/

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a Scala embedded language. In Proc. of 49th Design Automation
Conference. 1212–1221.

[4] Anthony M. Cabrera and Roger D. Chamberlain. 2019. Exploring Portability
and Performance of OpenCL FPGA Kernels on Intel HARPv2: Research Artifacts.
https:/doi.org/XX.XXXX/XXXXXXXX.

[5] Srihari Cadambi, Abhinandan Majumdar, Michela Becchi, Srimat Chakradhar,
and Hans Peter Graf. 2010. A Programmable Parallel Accelerator for Learning and
Classification. In Proc. of 19th Int’l Conf. on Parallel Architectures and Compilation
Techniques. 273–284.

[6] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: high-
level synthesis for FPGA-based processor/accelerator systems. In Proc. of 19th
ACM/SIGDA Int’l Symp. on Field Programmable Gate Arrays. 33–36.

[7] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fow-
ers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale accel-
eration architecture. In Proc. of 49th IEEE/ACM Int’l Symp. on Microarchitecture.
7:1–7:13.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Proc. of IEEE Int’l Symp. on Workload Characterization. 44–54.

[9] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman,
and Peng Wei. 2016. A Quantitative Analysis on Microarchitectures of Modern
CPU-FPGA Platforms. In Proc. of 53rd Design Automation Conference. 109:1–109:6.

[10] Thomas Faict. 2018. Exploring OpenCL on a CPU-FPGA Heterogeneous Architecture.
Master’s thesis. Ghent University. https://lib.ugent.be/fulltxt/RUG01/002/495/
122/RUG01-002495122_2018_0001_AC.pdf

[11] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. 2009. CNP: An
FPGA-based processor for convolutional networks. In Proc. of Int’l Conf. on Field
Programmable Logic and Applications. 32–37.

[12] Maya Gokhale, Jan Stone, Jeff Arnold, and Mirek Kalinowski. 2000. Stream-
oriented FPGA computing in the Streams-C high level language. In Proc. of IEEE
Symp. on Field-Programmable Custom Computing Machines. 49–56.

[13] Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia De Gonzalo, Juan Gómez-
Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan Milojicic, Onur
Mutlu, Deming Chen, et al. 2019. Analysis and Modeling of Collaborative Execu-
tion Strategies for Heterogeneous CPU-FPGA Architectures. (April 2019).

[14] Intel-Altera. 2016. Altera SDK for OpenCL Best Practices Guide.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/opencl-sdk/archives/ug-aocl-best-practices-guide-16.0.pdf

[15] Arpith Jacob, Joseph Lancaster, Jeremy Buhler, Brandon Harris, and Roger D.
Chamberlain. 2008. Mercury BLASTP: Accelerating Protein Sequence Alignment.
ACM Trans. Reconfigurable Technol. Syst. 1, 2 (June 2008), 9:1–9:44.

[16] Zheming Jin and Hal Finkel. 2018. Evaluation of MD5Hash Kernel on OpenCL
FPGA Platform. In Proc. of IEEE International Parallel and Distributed Processing
Symposium Workshops. 1026–1032.

https://aws.amazon.com/ec2/instance-types/
https:/doi.org/XX.XXXX/XXXXXXXX
https://lib.ugent.be/fulltxt/RUG01/002/495/122/RUG01-002495122_2018_0001_AC.pdf
https://lib.ugent.be/fulltxt/RUG01/002/495/122/RUG01-002495122_2018_0001_AC.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-best-practices-guide-16.0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-best-practices-guide-16.0.pdf


IWOCL’19, May 13–15, 2019, Boston, MA, USA Anthony M. Cabrera and Roger D. Chamberlain

[17] Ryouhei Maeda and Tsutomu Maruyama. 2017. An implementation method of
Poisson image editing on FPGA. In Proc. of 27th Int’l Conf. on Field Programmable
Logic and Applications. 1–6.

[18] Atabak Mahram and Martin C Herbordt. 2012. FMSA: FPGA-accelerated
ClustalW-based multiple sequence alignment through pipelined prefiltering. In
Proc. of IEEE 20th Int’l Symp. on Field-Programmable Custom Computing Machines.
177–183.

[19] Nathaniel McVicar, Chih-Ching Lin, and Scott Hauck. 2017. K-mer counting
using Bloom filters with an FPGA-attached HMC. In Proc. of IEEE 25th Int’l Symp.
on Field-Programmable Custom Computing Machines. 203–210.

[20] Abhinav Podili, Chi Zhang, and Viktor Prasanna. 2017. Fast and efficient imple-
mentation of Convolutional Neural Networks on FPGA. In Proc. of 28th Int’l Conf.
on Application-specific Systems, Architectures and Processors. IEEE, 11–18.

[21] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services. In Proc. of 41st Int’l Symp.
on Computer Architecuture (ISCA). 13–24.

[22] Ahmed Sanaullah and Martin C Herbordt. 2018. FPGA HPC using OpenCL: Case
Study in 3D FFT. In Proc. of 9th Int’l Symp. on Highly-Efficient Accelerators and
Reconfigurable Technologies. 7:1–7:6.

[23] Ahmed Sanaullah and Martin C Herbordt. 2018. Unlocking Performance-
Programmability by Penetrating the Intel FPGA OpenCL Toolflow. In Proc. of
IEEE High Performance Extreme Computing Conference.

[24] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Acceler-
ating Pattern Matching Queries in Hybrid CPU-FPGA Architectures. In Proc. of
ACM International Conference on Management of Data. 403–415.

[25] Greg Stitt, Abhay Gupta, Madison N. Emas, David Wilson, and Austin Baylis.
2018. Scalable Window Generation for the Intel Broadwell+Arria 10 and High-
Bandwidth FPGA Systems. In Proc. of ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 173–182.

[26] Qing Y. Tang and Mohammed A. S. Khalid. 2016. Acceleration of k-Means
Algorithm Using Altera SDK for OpenCL. ACM Trans. Reconfigurable Technol.
Syst. 10, 1 (Dec. 2016), 6:1–6:19.

[27] Shuo Wang, Yun Liang, and Wei Zhang. 2017. FlexCL: An analytical perfor-
mance model for OpenCL workloads on flexible FPGAs. In Proc. of 54th Design
Automation Conference.

[28] Yu Wang. 2018. Accelerating Graph Processing on a Shared-Memory FPGA System.
Ph.D. Dissertation. Carnegie Mellon University.

[29] Masato Yoshimi, Yasin Oge, and Tsutomu Yoshinaga. 2017. Pipelined Parallel
Join and Its FPGA-Based Acceleration. ACM Trans. Reconfigurable Technol. Syst.
10, 4 (Dec. 2017), 28:1–28:28.

[30] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proc. of ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays.
161–170.

[31] Chi Zhang and Viktor Prasanna. 2017. Frequency Domain Acceleration of Con-
volutional Neural Networks on CPU-FPGA Shared Memory System. In Proc. of
ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays. 35–44.

[32] Hamid Reza Zohouri. 2018. High Performance Computing with FPGAs and OpenCL.
Ph.D. Dissertation. Tokyo Institute of Technology. arXiv:1810.09773

[33] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and
Satoshi Matsuoka. 2016. Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs. In Proc. of Int’l Conf. on High Performance
Computing, Networking, Storage and Analysis (SC16). 409–420.

[34] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. 2018. Combined
Spatial and Temporal Blocking for High-Performance Stencil Computation on
FPGAs Using OpenCL. In Proc. of ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 153–162.

http://arxiv.org/abs/1810.09773

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 FPGA
	2.2 Intel HARPv2
	2.3 Intel FPGA OpenCL SDK
	2.4 Needleman-Wunsch

	3 Related Work
	3.1 HARP for Acceleration
	3.2 OpenCL + FPGA
	3.3 High Level Synthesis and Design

	4 Methods
	4.1 Description of Each Kernel Version
	4.2 Hardware Design Space Search
	4.3 Shared Virtual Memory

	5 Results and Discussion
	5.1 FPGA Kernel Results
	5.2 Hardware Design Space Search
	5.3 SVM Performance

	6 Conclusion
	Acknowledgments
	References

