Cross-Layer Interactions in CPS for Performance and Certification

Samarjit Chakraborty!, James H. Anderson?, Martin Becker!, Helmut Graeb!, Samiran Halder?, Ravindra Metta*
Lothar Thiele®, Stavros Tripakis®, Anand Yeolekar?

1TU Munich, 2UNC Chapel Hill, 3TDK-Micronas GmbH, TCS Research Pune
SETH Zurich, SNortheastern University
Email: samarjit@tum.de

Abstract—A central challenge in designing embedded control
systems or cyber-physical systems (CPS) is that of translating
high-level models of control algorithms into efficient implemen-
tations, while ensuring that model-level semantics are preserved.
While a large body of techniques for designing provably correct
control strategies exist in the control theory literature, when
it comes to transforming mathematical descriptions of these
strategies to an efficient implementation, the available means are
surprisingly ad hoc in nature. Among other reasons, this is be-
cause of (i) implementation platform details not sufficiently being
accounted for in controller models, (ii) side effects introduced in
the code generation process, (iii) various compiler optimizations
whose impact on the dynamics of the plant being controlled
not being properly understood, (iv) the presence of analog
components on the implementation platform whose behavior is
difficult to model, (v) computation and communication delays
that exist in an implementation but were not accounted for in
the model, and (vi) also the effects of image/video processing
whose accuracy and timing behavior are difficult to model. As
we move towards designing autonomous systems, these issues
become biting problems on the path to certification, and striking
a balance between performance and certification. In this position
paper, we discuss some of these challenges — that we formulate
as the need for modeling the interactions between various imple-
mentation layers in a CPS - and potential research directions to
address them.

I. PERFORMANCE AND CERTIFICATION IN CPS DESIGN

Control algorithms lie at the heart of many safety-critical
embedded systems ranging from cars to robots and medical
devices. These systems have a tight interaction with physical
processes, where the control inputs to these physical processes
are computed by hardware/software (or cyber) platforms. The
need for modeling and analyzing the cyber and the physical
parts in a tightly coupled fashion is espoused in a cyber-
physical systems or CPS-oriented design paradigm. However,
traditionally control theory and embedded systems have been
pursued separately, not only by distinct research communities,
but also by different engineering groups when it comes to
designing real-life products like cars.

In an usual development approach, control theorists are
concerned with modeling the dynamics of the system or the
“plant” to be controlled, and with designing a “controller” that
implements a certain control strategy based on the state of the
plant. Control theory offers a rich variety of techniques for
designing such controllers and for analyzing the joint behavior
of the plant and the controller to ensure that certain closed
loop properties such as stability are being satisfied. Till this
stage, both the plant models and the controllers are in the form
of mathematical expressions that either exist on paper or as
models in commonly used tools such as MATLAB/Simulink,
which also allow the closed loop behavior of the system to be
simulated. Such mathematical expressions of controllers serve

978-3-9819263-2-3/DATE19/©)2019 EDAA

as a specification for a (software) implementation, and at this
stage an embedded systems engineer or an implementation
team takes over. The first step in such an implementation
is either manually writing code, or generating it from the
mathematical expressions of the controller, and mostly a com-
bination of the two. Automated code generation is supported
by tools like the Simulink Coder that generates C or C++
code from different specifications such as Simulink models,
Stateflow charts or MATLAB functions. The generated code
is then cross compiled for a distributed architecture, on which
the compiled code is mapped, scheduled, and ultimately run.
This code then reads the states of the plant being controlled
via sensors, computes control inputs using the read values, and
applies these inputs via actuators. The implicit assumption in
this development approach is that the closed loop behavior of
the real plant and the implemented controller is identical to
that of the modelled plant and mathematical description of the
controller from the design stage.

Unfortunately, more often than not, this is not the case.
In other words, while the plant and controller models meet
all the higher-level requirements on the behavior of the joint
system, the real plant and the implemented controller do not
meet those requirements. In the more extreme case, while the
model might be stable, the behavior of the real plant with
the implemented version of the controller might be unstable,
or might have different settling time or overshoot properties.
These deviations in behavior can occur even if the plant model
correctly captures all the properties of the real plant to be con-
trolled, because the mathematical description of the controller
is based on an idealistic behavior of the hardware/software
implementation platform that does not reflect its real operation.
This difference results in the need for extensive testing and
debugging and is addressed in an iterative trial and error
fashion. As implementation platforms continue to be more
complex and distributed, this problem is becoming more acute.

Examples of implementation platform features that are
typically abstracted away in controller models include (i) side
effects introduced in the (C or C++) code generation process,
(ii) optimizations introduced by a compiler or even manual
implementation choices that might break the semantics of the
original model, (iii) computation and communication delays
(whereas the controller model might assume that control inputs
can be computed instantaneously and are also immediately
available at the actuators), (iv) computations using limited-
precision representations of numbers, (v) image or video
processing algorithms in the feedback control loop whose
timing behavior might be highly variable and also whose
accuracy might be difficult to analyze, (vi) the presence of
analog components whose behavior is difficult to model, and

1439

(vi) finally errors introduced by the hardware stemming from
issues like processor aging that are increasingly becoming
common. Efforts to incorporate some of these in a straightfor-
ward manner — such as worst-case delays involved in reading
sensor values, computing control inputs and transmitting them
— in the mathematical descriptions of a controller often lead
to very pessimistic designs that might not be acceptable in
many cost-sensitive domains like automotive. Hence, there is
a difficult tradeoff between ensuring model-implementation
compliance in controllers and their efficient implementation.

A. Need for cross-layer modeling

In order to address the above issues, in this paper we high-
light the need for explicitly modeling the interactions between
the different layers of a CPS — the model, code, architecture,
its timing behavior and numerical accuracy, and the behavior
of the hardware, including its analog components. There is
also a need for accounting for more implementation platform
behaviors in the controller model, rather than abstracting most
of the details away as it is done today. In other words, the
traditional controller design paradigm that assumes a single
centralized controller with global and instantaneous access to
all sensors and actuators, that could compute all control inputs
accurately, synchronously, and instantaneously, worked in the
past. It is no longer suitable for modern distributed imple-
mentation platforms, complex code generation techniques and
compiler optimizations, complex video processing libraries in
the control loop, and the need to ensure both certification
and efficiency. Instead, the information processing and sharing
architecture and different optimization options available on the
implementation platform must be reflected in the controller
design. As a result, new controller design techniques, e.g., for
designing distributed controllers, are necessary.

Similarly, on the implementation platform side, i.e., in the
embedded systems domain, optimizations have traditionally
focused on metrics like improving execution time or memory
footprint. Here, it might be necessary to step back and focus on
“higher level” issues related to the dynamics of the plant being
controlled (like stability and control performance measured in
terms of settling time, peak overshoot, or the maximum volt-
age/current needed to ensure the desired control properties).
We believe that the embedded systems design and optimization
techniques required for this are also not readily available.

B. Combining metrics from computer science and control

While techniques from computer science, and in particular
from formal methods, have been used in conjunction with
control theory since a number of years (see, e.g., [1], [2])
the two disciplines focus on two completely different classes
of metrics. When designing controllers, the usual goals are to
ensure some notion of stability, followed by optimizing certain
control performance metrics like settling time. However, when
implementing the code corresponding such controllers, the
focus shifts on optimizing the usual computer science metrics
like execution time, memory footprint, utilization of different
computation and communication resources, and possibly also
energy consumption. But at this stage, the “structure” of the
controller and how it interacts with different sensors and
actuators, i.e., its communication requirements, have already
been frozen from the controller design stage, thereby limiting
the optimization of the computer science metrics that are now
possible. The scope of the opportunity lost by separating these

1440

two classes of optimizations may be appreciated from the fact
that there are several hundreds of millions of lines of software
code in a modern car, most of which implement different kinds
of controllers [3].

By incorporating the code-level optimization metrics in
the controller design step, we believe that more efficient
implementations could be obtained, while still ensuring the
stability of these controllers and satisfying their control per-
formance requirements. However, this could potentially result
in completely different controllers compared to the ones that
would be obtained by following a traditional control theoretic
design that relies on a separation of concerns, and further, new
control theoretic techniques would also be necessary for this.

C. Organization of this paper

In the next section we focus on a model to code generation
example and argue on the need for more tightly modeling the
interactions between these two layers, compared to the conven-
tional approach of first finalizing the model-level design of the
controller, followed by trying to generate code that accurately
captures the behavior of the model. More importantly, such
an approach is not suitable for more modern distributed and
multicore architectures. After this, we briefly discuss some of
the other implementation layers and related work that has been
done, before concluding the paper.

II. MODEL-CODE INTERACTIONS

There have been various efforts in the past to ensure that the
code generated from a model accurately captures the behavior
encoded in the model. This is primary prerequisite in any
model-based design. One line of work attempts to preserve the
timing semantics of the model — e.g., a synchronous behavior
— on an implementation platform that does not adhere to
the same (synchronous) timing paradigm [4], [5], [6], [7],
[8], [9]. While one possibility is to formally verify the code
generator, most commercially available code generators are
black boxes that are not amenable to any formal verification.
However, there have been various instances of bugs reported in
popular code generators [10], [11], [12] which have prompted
work on verifying instances of the generated code with re-
spect to the model from which the code has been generated
[13]. In addition, there has also been work on analyzing the
software implementation of control algorithms independently
of the specification, to verify properties like stability [14].
The reasons for ignoring the specification are that sometimes
commonly used tools like MATLAB do not have well-defined
semantics, whereas lower level languages like C are better
defined and verification at a level closer to the implementation
is considered to be more useful.

Further, in addition to the code automatically generated
from a specification, a considerable amount of code is also
handwritten. What they implement can have a considerable
influence on the performance of the final implementation and
how much deviation it has from the model. Consider the
following implementation:
loop

apply_control (u)

x <- get_plant_state ()

u <- controller_ step(x)

t next += 10 ms

sleep until t_ next
end loop

Design, Automation And Test in Europe (DATE 2019)

Here, the plant state is read at the start of the sampling period
of 10 ms and the control input is applied at the start of the next
period. The controller gain values can be determined assuming
this one sample delay. As long as the execution time of the
code of the function controller step (x) is bounded by
this 10 ms there would be conformance between the model
and the implementation. Note that here only the code of the
function controller_ step (x) is obtained from the code
generator and the surrounding code is handwritten. With the
same controller_ step (x), a different implementation
might be:

loop
x <- get_plant_state ()
u <- controller_ step(x)
apply_control (u)
t _next += 10 ms
sleep until t next

end loop

In this implementation, because of the variability in the
execution time of the function controller step (x), the
control input might get applied at different points in time
within each sampling period. This is difficult to account for at
the model level, resulting in a deviation between the behavior
of the model and the implementation. However, since the
application of the control input is not delayed till the start
of the next period, the performance of this implementation
might be better than the former implementation. In order to
see the difference between such implementations, we consider
a more detailed example in the next section.

A. Control inputs: Hold or apply?

Our example plant to be controlled is a jet transport aircraft
in cruise flight, given by its state-space model

z(t) = Ax(t) + Bu(t) (1)
y(t) = Cz(t), 2

where z is the four-dimensional state vector (slip angle, yaw
rate, roll rate, bank angle), A is the state transition mairix,
u the two-dimensional control input vector (rudder, ailerons),
and B the input matrix. Finally, vector y is the observable
plant state, which will be a subset of z. This model is based
on the example included in the Matlab control toolbox!. The
values of matrices A, B and C are as follows:

_0.0558 —0.9968 0.0802 0.0415
A [05980 01150 00318 0 3
=|_30500 03880 —04650 0 |°* 3
0 0.0805 1.0000 0
0.0073 0
~0.4750 0.0077 010 0
B=| p1530 0.1430]° C=(n 0 o 1)' @
0 0

The goal is to stabilize the jet aircraft’s attitude in level
flight, such that all angles and rates approach zero, i.e.,
& =z = (0,0,0,0)T. We always assume the initial state
z(0) = (0,0,0.6109,0.6109)T, and initial control input
u(0) = (0,0)7.

!https://de.mathworks.com/help/control/ug/mimo-state-space-models. html

Design, Automation And Test in Europe (DATE 2019)

1) The controller: We consider a discrete-time feedback
controller, which provides control inputs u periodically every
T, time units. Towards this, the plant had to be converted from
continuous time to discrete time with sampling period 7. The
plant model now becomes:

z[k] = Az[k — 1] + Bu[k — 1] 5)
y[k] = Cz[k], (6)

where k is shorthand for ¢t = kT, with k € Z. The feedback
controller was designed using a standard pole placement
technique on this discrete model, taking the form

ulk] = Kylk], M

where K are the controller gains.

2) Two implementation variants: We now propose two
different ways to implement the controller. The first follows
the conventional approach of applying the control input after
a delay of one sampling period. On the other hand, the second
follows the principle of applying the different components of
the control input as and when they are ready, i.e., not wait for
all the components to be computed before their application.

> x' = Ax+Bu |1
y =Cx+Du | x
plant
‘rud‘ ‘ail'
A7] —
e = 3 i
cope
rud ail op
p(t) \ 4 every
el
controller Sle- f()
I3 I
S/H In<Lo> [« =
p(t) u
f N
2
] S/H In<Lo> [« i

sync

Fig. 1. Conventional implementation: Hold till all control inputs are ready

The conventional implementation follows Equations (5) and
(7). That is, u[k] is computed based on the current observed
plant state?, but only applied after a delay of one sampling
period T,. The complete, closed-loop model is depicted in
Fig.1. In this model, the controller block is triggered every
T, time units and computes its outputs u[k] instantaneously
as in Equation (7). However, u is passed through sample and
hold blocks (“S/H”), which are triggered once every sampling
period and latch the previous cycle’s values. The resulting
signals (“ail”, “rud”) are the two components of u, but both
delayed by T%, and thus following Equation (5).

Zwe let = = y in the simulation for vizualization purposes

x'=Ax+Bu [T

I y =Cx+Du | x
plant
‘rud‘ ‘ail'
AT e
x X 3
Scope
rud ail
p(t) v every
d =
controller - f()
I3 ®
S/H In<Lo> |« =
p(t-Ts/2) ul
=
[
F u2 i
— SH In <4
sync

Fig. 2. Deviation from convention: Apply control inputs as and when ready

A different implementation is depicted in Fig.2. Instead of
delaying both components of u (i.e., ul and u2) by a full
period T, we assume that the computation of the more critical
aileron control component is scheduled first. It can then be
applied earlier at time ¢ = kT + T's/2, whereas the rudder
component remains unchanged. It is computed later and is only
updated at time ¢ = (k+1)T;. Towards this, the lower sample
and hold block is triggered half a period earlier and no longer
latches the signal, and everything else remains unchanged.

Note that this now deviates from Equation (5), since z is
now updated twice every T, time units. However, Equation (7)
is still followed, ensuring that the plant is sampled at the same
rate as earlier.

3) Results - How do the two variants compare: We have
evaluated the two implementation variants for two different
cases. They show that it is unclear which variant is best,
and therefore the second non-conventional variant could be
considered useful in some situations.

Case 1: Here, we use a short sampling period of 7, = 0.01s.
The controller gains have been chosen as

K= (—51.8397 20.3237 —5.8464

—2.1609 —10.0233 —50.2046

—20.3044
—92.6389 | -

The result can be seen in Figure 3. The closed-loop
behavior of both implementation variants is indistinguishably
similar, both stabilizing and levelling the aircraft quickly.

Case 2: Now we use a longer sampling period of Ty = 0.25s.
Note that A and B carry different values than in the previous
case, since the system has now been discretized for a different
sampling period. The controller gains for this system have
been chosen as

K- (—5.1386 6.6989

—9.9973

—0.6119

21.0567 —22.6222

—0.6751
—26.1402) -

1442

0.57%

b
n

x [rad] or [rad/s]
5

0 0.5 1 1.5 2 25 3 3.5
time [s]

Fig. 3. At high sampling rate both implementations are stable.

The results can be seen in Figures 4 and 5. Whereas the
conventional implementation leads to an oscillating aircraft
attitude, the second implementation that prioritizes the com-
putation of the aileron control component and applies it earlier
is still able to regulate the attitude to a level flight.

Q)
E o 2 g i
5 ¢ Seea0 y—>— slip angle %
= —— yaw rate
@ -1 j& roll rate
:’ {—— bank angle
2 1 - 1 1 1 1 I
0 0.5 1 1.5 2 25 3 3.5
time [s]

Fig. 4. Conventional implementation becomes unstable at low sampling rate.

B. Lessons learnt: Code generation for modern architectures

Current controller design and implementation paradigms
rely on the principle of separation of concerns. The controller
model assumes that all the components of the control input
are computed and applied synchronously. In order to account
for the fact that computations might take non-zero time,
Equation 5 is followed, i.e., it is assumed that even in the worst
case the computation is bounded by one sampling period. In
order to conform to this model in an implementation, even if
some components of the control input are ready before the
next sampling time, they are held back.

We are of the opinion that such abstractions are not suitable
for complex control algorithms, which might e.g., involve
video and complex signal processing, and also modern (mul-
ticore) processor architectures, compiler optimizations, and
distributed implementation platforms. Here, for example, by
scheduling the computations of the different components of the

Design, Automation And Test in Europe (DATE 2019)

u [deg]

2
£

Y
5 —»—slip angle
| yaw rate
@ —¥—roll rate
TG —— bank angle

_2 1 1 1 1 1 1]

0 0.5 1 1.5 2 25 3 3.5
time [s]

Fig. 5. Implementation in Fig. 2 is stable even at a low sampling rate.

control input appropriately, much better control performance
might be obtained. There are two possibilities of realizing
this. The first would require the control theorist to understand
these implementation-level optimization options and incor-
porate them in the controller design. This option has been
followed in Fig. 2, where the model incorporates the fact
that one of the components of the control input should be
computed first and applied before the next component is ready.
However, this possibility is difficult to realize since the number
of implementation and optimization options might be too large.

The second possibility is to automate this procedure, and
incorporate it in the code generator. In other words, corre-
sponding to each implementation option, the code generation
should construct the model of the corresponding dynamical
system (i.e., plant + controller) and be able to analyze its
properties. By using the outcome of such analysis, it should
decide on the optimal implementation. In other words, the code
generation does not attempt to strictly preserve the semantics
of the model. In fact, the model in such a case would be more
abstract — with just a template of the controller and the desired
control performance objectives. Also, unlike conventional code
generators or compilers whose goals are typically to minimize
execution time or memory footprint, such a code generator
would attempt to optimize metrics related to the dynamics of
the system.

How to do this is not straightforward. Clearly, there are two
main technical hurdles. The first is to automatically construct
the underlying model of the dynamical system corresponding
to each implementation choice (e.g., the order in which the
different components of a control input should be computed
and applied) and analyze its performance. The second is to
formulate an optimization problem over the space of all such
implementation choices. We believe that some recent advances
in distributed controller synthesis [15] could be a good starting
point for addressing these hurdles.

III. RELATED WORK AND OTHER LAYERS

As discussed in Section I, in addition to the need for
modeling the interactions between the model and the code,
various other subsequent implementation layers also impact
both, the efficiency of the implementation and also the extent
of the deviation from the semantics of the model. In this

Design, Automation And Test in Europe (DATE 2019)

section we briefly discuss some of these issues and related
results in the literature.

A. Model and timing

While controller models often assume that sensor reading
are available instantaneously to the controller, control inputs
based on these sensor values get computed instantaneously,
and these computed values are also communicated instanta-
neously to the actuators, on many distributed platforms these
assumptions are not true. Even if a one sample delay is
incorporated in the design (as in Equation 5), the computation
and communication times might be highly variable on modern
processing platforms [16], making such designs to be over
pessimistic.

In the control theory literature, this issue of timing has been
widely addressed in the context of networked control systems
[17]. Here, the focus has been on distributed control systems
where control signals are communicated over lossy and delay-
prone wireless networks. The goal has been to design control
algorithms that can mitigate such delays and packet losses
and nevertheless achieve the desired control performance.
However, in all of these studies, the wireless network and
its loss and delay properties are assumed to be given. In
our context, the delays are introduced by the implementation
architecture that is not given, but is a part of our design task.
Hence, there is the opportunity of co-designing the control
algorithms and the implementation architecture (and thereby
its delay properties) [18], [19], [20]. It is only recently, that the
architecture design problem and the co-design of the controller
and its sensing, actuation and communication architecture is
being studied in the control theory literature [21] and we
expect more work in this direction now.

The characterization of the tolerable delays experienced by
control signals, while still ensuring stability was studied in
[22]. How to incorporate such delay characterization in a
schedulability analysis problem however still remains to be
seen. Most of the timing/schedulability analysis techniques
from the real-time systems literature rely on different task and
timing models and there has been much less work on timing
models geared towards control applications [23].

B. Image and video processing in the control loop

There is now a rapid growth in the number of applications
that involve some image or video processing within a control
loop [24]. In other words, one or more sensors in such
applications are video cameras or radar sensors, and they
are referred to as visual servoing systems [25]. As we move
towards adopting autonomous systems — be it in robotics or
autonomous vehicles — the need for certifying such systems
with video processing in the loop is becoming a necessity.
There are two main technical challenges involved in this
process. The first is that timing analysis of complex video
processing applications is non-trivial. Standards like OpenVX
offer abstractions with the aim of developing real-time com-
puter vision algorithms, and recently there have been efforts to
further improve these abstractions to allow efficient mapping
of computer vision tasks on both general purpose and graphics
processors [26].

The second challenge is to provide guarantees on the results
returned by such image and video processing algorithms. For
example, what is the guarantee on the distance estimates re-
turned by a video processing algorithm in an automated cruise
control application? This is equivalent to questions on the

reliability of the state estimation in closed loop control. While
there are techniques to address this within control theory, with
the increasing use of machine learning in computer vision
algorithms, the verification questions of the above from are
becoming more important [27]. Incorporating the uncertainties
in such estimates as a lumped error when designing controllers
is increasingly becoming too pessimistic.

C. Implementation platform metrics in controller design

In Section I-B we have discussed current design flows where
control algorithms are first designed to ensure stability and
optimize control performance metrics, e.g., settling time. This
is followed by optimizing the generated code for execution
time, memory usage and other related metrics, although the
high-level (control) algorithm has been frozen by now without
taking these issues into account. In order to optimize both
classes of metrics, implementation platform features need
to be incorporated in the controller design stage. In [28]
it has been shown that when trying to optimize the usage
of the memory architecture on an implementation platform
during the controller design stage, the resulting controllers are
fundamentally different from those that would have focused
on stability and control performance alone.

Similar conclusions were also drawn in [29] that tried to
exploit operating system level task schedules when designing
the control algorithms. In all of these cases, the recurring
questions that arise are: How to design switched control
systems where the switching patterns are known? Or, How
to optimally co-design control algorithms and their associated
switching strategies? The design and analysis of switched con-
trol systems have been extensively studied [30]. But questions
such as stability in the case of a given (rather than an arbitrary)
switching pattern, or the synthesis of switching patterns —
that would translate into implementation-level schedules — that
ensure stability, have not been sufficiently addressed.

IV. CONCLUDING REMARKS
In this paper we tried to highlight the need for modeling and

analyzing the interactions between different implementation
layers in embedded control systems or CPS design. We con-
clude that as implementation platforms and compilation tech-
niques become more advanced, traditional abstractions used
for controller design and code generation with the aim of pre-
serving model-level semantics are no longer suitable. Instead,
more dynamical systems modeling and analysis knowledge
needs to be incorporated in code generators and compilers, and
new optimization techniques need to be developed. In other
words, the focus needs to shift from “lower level” metrics
like execution time and memory footprint, to more system
level properties that directly relate to the dynamics of the
system being controlled. Our discussion of the different layers
was by no means exhaustive. In particular, we believe that the
modeling of circuit level details (like semiconductor aging and
reliability) and the impact of analog components will also play
an important role in controller design in the future.

REFERENCES

[1] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstrac-
tions of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp.
971-984, 2000.

[2] P. Tabuada, Verification and Control of Hybrid Systems - A Symbolic
Approach. Springer, 2009.

[3] S.Chakraborty, M. A. A. Faruque, W. Chang, D. Goswami, M. Wolf, and
Q. Zhu, “Automotive cyber-physical systems: A tutorial introduction,”
IEEE Design & Test, vol. 33, no. 4, pp. 92-108, 2016.

1444

[4] Y. Yang, S. Tripakis, and A. L. Sangiovanni-Vincentelli, “Efficient
distribution of triggered synchronous block diagrams on asynchronous
platforms,” in International Conference on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS), 2015.

[5] S. Tripakis, C. Pinello, A. Benveniste, A. L. Sangiovanni-Vincentelli,
P. Caspi, and M. D. Natale, “Implementing synchronous models on
loosely time triggered architectures,” IEEE Trans. Computers, vol. 57,
no. 10, pp. 1300-1314, 2008.

[6] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis, “Semantics-preserving
multitask implementation of synchronous programs,” ACM Trans. Em-
bedded Comput. Syst., vol. 7, no. 2, pp. 15:1-15:40, 2008.

[7] L. Ju, B. K. Huynh, S. Chakraborty, and A. Roychoudhury, “Context-
sensitive timing analysis of Esterel programs,” in 46th Design Automa-
tion Conference (DAC), 2009.

[8] L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty, “Timing
analysis of esterel programs on general-purpose multiprocessors,” in
47th Design Automation Conference (DAC), 2010.

[9] ——. “Performance debugging of Esterel specifications,” Real-Time

Systems, vol. 48, no. 5, pp. 570-600, 2012.

“Simulink code generation bugs,” https://de.mathworks.com/support/

search_results.html?q=&fq=asset_type_name:bugreport%20product:

RTé&page=1, 2018.

[11] “Mathworks Embedded Coder bugs,” https://de.mathworks.com/support/
search_results.html?q=&fq=asset_type_name:bugreport%20product:
EC&page=1, 2018.

[12] “MATLAB Coder code generation bugs,” https://de.mathworks.
com/support/search_results.html?q=&fq=asset_type_name:
bugreport%20product ME&page=1, 2018.

[13] 1. Park, M. Pajic, O. Sokolsky, and I. Lee, “Automatic verification of
finite precision implementations of linear controllers,” in 23rd Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2017.

[14] E Alegre, E. Feron, and S. Pande, “Using ellipsoidal domains to
analyze control systems software,” CoRR, vol. abs/0909.1977, 2009.
[Online]. Available: http://arxiv.org/abs/0909.1977

[15] I C. Doyle, N. Matni, Y. S. Wang, J. Anderson, and S. H. Low, “System
level synthesis: A tutorial,” in 56th IEEE Annual Conference on Decision
and Control (CDC), 2017.

[16] L. Thiele and R. Wilhelm, “Design for timing predictability.” Real-Time

Systems, vol. 28, no. 2-3, pp. 157-177, 2004.

1. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results

in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,

pp. 138-162, 2007.

[18] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty, “Multi-
objective co-optimization of flexray-based distributed control systems,”
in IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2016.

[19] D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of cyber-
physical systems via controllers with flexible delay constraints,” in J6th
Asia South Pacific Design Automation Conference (ASP-DAC), 2011.

[20] D. Roy, L. Zhang, W. Chang, S. K. Mitter, and S. Chakraborty,
“Semantics-preserving cosynthesis of cyber-physical systems,” Proceed-
ings of the IEEE, vol. 106, no. 1, pp. 171-200, 2018.

[21] N. Matni and V. Chandrasekaran, “Regularization for design.” IEEE
Trans. Automat. Contr., vol. 61, no. 12, pp. 39914006, 2016.

[22] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay
constraints in distributed embedded controllers,” IEEE Trans. Contr. Sys.
Techn., vol. 22, no. 6, pp. 2337-2345, 2014.

[23] P. Ramanathan, “Overload management in real-time control applications
using (m, k)-firm guarantee,” IEEE Trans. Parallel Distrib. Syst., vol. 10,
no. 6, pp. 549-559, 1999.

[24] M. Geier, F. Franzen, and S. Chakraborty, “Hardware-accelerated data
acquisition and authentication for high-speed video streams on future
heterogeneous automotive ssing platforms,” in International Con-
ference on Computer-Aided Design (ICCAD), 2018.

[25] B. Espiau, E Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Trans. Robotics and Automation, vol. 8,
no. 3, pp. 313-326, 1992.

[26] M. Yang, T. Amert, K. Yang, N. Otterness, J. H. Anderson, E D. Smith,
and S. Wang, “Making nVX really ‘real time’.” in 39th IEEE Real-
Time Systems Symposium (RTSS), 2018.

[27] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in 15th International Symposium on Automated Technology
for Verification and Analysis (ATVA), 2017.

[28] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and S. An-
dalam, “Memory-aware embedded control systems design,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 36, no. 4, pp. 586-599,
2017.

[29] W. Chang, D. Goswami, S. Chakraborty, and A. Hamann, “Os-aware
automotive controller design using non-uniform sampling,” TCPS, vol. 2,
no. 4, pp. 26:1-26:22, 2018.

[30] D. Liberzon, Switching in systems and control.

2

[17

Springer, 2003.

Design, Automation And Test in Europe (DATE 2019)

