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Abstract—Software specifications often use natural language
to describe the desired behavior, but such specifications are
difficult to verify automatically. We present Swami, an automated
technique that extracts test oracles and generates executable tests
from structured natural language specifications. Swami focuses
on exceptional behavior and boundary conditions that often cause
field failures but that developers often fail to manually write tests
for. Evaluated on the official JavaScript specification (ECMA-
262), 98.4% of the tests Swami generated were precise to the
specification. Using Swami to augment developer-written test
suites improved coverage and identified 1 previously unknown
defect and 15 missing JavaScript features in Rhino, 1 previously
unknown defect in Node.js, and 18 semantic ambiguities in the
ECMA-262 specification.

I. INTRODUCTION

One of the central challenges of software engineering is

verifying that software does what humans want it to do.

Unfortunately, the most common way humans describe and

specify software is natural language, which is difficult to

formalize, and thus also difficult to use in an automated process

as an oracle of what the software should do.

This paper tackles the problem of automatically generating

tests from natural language specifications to verify that the

software does what the specifications say it should. Tests

consist of two parts, an input to trigger a behavior and an oracle

that indicates the expected behavior. Oracles encode intent and

are traditionally specified manually, which is time consuming

and error prone. While formal, mathematical specifications that

can be used automatically by computers are rare, developers do

write natural language specifications, often structured, as part of

software requirements specification documents. For example,

Figure 1 shows a structured, natural language specification

of a JavaScript Array(len) constructor (part of the ECMA-

262 standard). This paper focuses on generating oracles from

such structured natural language specifications. (Test inputs

can often be effectively generated randomly [20], [50], and

together with the oracles, produce executable tests.)

Of particular interest is generating tests for exceptional

behavior and boundary conditions because, while developers

spend significant time writing tests manually [2], [55], they

often fail to write tests for such behavior. In a study of

ten popular, well-tested, open-source projects, the coverage

of exception handling statements lagged significantly behind

overall statement coverage [24]. For example, Developers

new Array (len)

The [[Prototype]] internal property of the newly constructed object is set to the 
original Array prototype object, the one that is the initial value of 
Array.prototype (15.4.3.1). The [[Class]] internal property of the newly
constructed object is set to "Array". The [[Extensible]] internal property of the 
newly constructed object is set to true.

If the argument len is a Number and ToUint32(len) is equal to len, then the length 
property of the newly constructed object is set to ToUint32(len). If the argument len 
is a Number and ToUint32(len) is not equal to len, a RangeError exception is thrown.

If the argument len is not a Number, then the length property of the newly 
constructed object is set to 1 and the 0 property of the newly constructed 
object is set to len with attributes {[[Writable]]: true, [[Enumerable]]: true, 
[[Configurable]]: true}.

https://www.ecma-international.org/ecma-262/5.1/#sec-15.4.2.2

Fig. 1. Section 15.4.2.2 of ECMA-262 (v5.1), specifying the JavaScript
Array(len) constructor.

often focus on the common behavior when writing tests and

forget to account for exceptional or boundary cases [2]. At

the same time, exceptional behavior is an integral part of

the software as important as the common behavior. An

IBM study found that up to two thirds of production code

may be devoted to exceptional behavior handling [13]. And

exceptional behavior is often more complex (and thus more

buggy) because anticipating all the ways things may go

wrong, and recovering when things do go wrong, is inherently

hard. Finally, exceptional behavior is often the cause of field

failures [73], and thus warrants high-quality testing.

This paper presents Swami, a technique for automatically

generating executable tests from natural language specifications.

We scope our work by focusing on exceptional and boundary

behavior, precisely the important-in-the-field behavior develop-

ers often undertest [24], [73].

Swami uses regular expressions to identify what sections

of structured natural language specifications encode testable

behavior. (While not required, if the source code is available,

Swami can also use information retrieval techniques to identify

such sections.) Swami then applies a series of four regular-

expression-based rules to extract information about the syntax

for the methods to be tested, the relevant variable assignments,

and the conditionals that lead to visible oracle behavior,

such as return statements or exception throwing statements.

Swami then backtracks from the visible-behavior statements

to recursively fill in the variable value assignments according

to the specification, resulting in a test template encoding the
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oracle, parameterized by test inputs. Swami then generates

random, heuristic-driven test inputs to produce executable tests.

Using natural language specifications pose numerous chal-

lenges. Consider the ECMA-262 specification of a JavaScript

Array(len) constructor in Figure 1. The specification:

• Uses natural language, such as “If the argument len is

a Number and ToUint32(len) is equal to len, then the

length property of the newly constructed object is set to

ToUint32(len).”

• Refers to abstract operations defined elsewhere in the

specification, such as ToUint32, which is defined in

section 9.6 of the specification (Figure 2).

• Refers to implicit operations not formally defined by the

specification, such as min, max, is not equal to, is set to,

is an element of, and is greater than.

• Describes complex control flow, such as conditionals,

using the outputs of abstract and implicit operations in

other downstream operations and conditionals.

We evaluate Swami using ECMA-262, the official specifi-

cation of the JavaScript programming language [76], and two

well known JavaScript implementations: Java Rhino and C++

Node.js built on Chrome’s V8 JavaScript engine. We find that:

• Of the tests Swami generates, 60.3% are innocuous — they

can never fail. Of the remaining tests, 98.4% are precise

to the specification and only 1.6% are flawed and might

raise false alarms.

• Swami generates tests that are complementary to

developer-written tests. Our generated tests improved

the coverage of the Rhino developer-written test suite and

identified 1 previously unknown defect and 15 missing

JavaScript features in Rhino, 1 previously unknown defect

in Node.js, and 18 semantic ambiguities in the ECMA-262

specification.

• Swami also outperforms and complements state-of-the-art

automated test generation techniques. Most tests generated

by EvoSuite (which does not automatically extract oracles)

that cover exceptional behavior are false alarms, whereas

98.4% of Swami-generated tests are correct tests that

cannot result in false alarms. Augmenting EvoSuite-

generated tests using Swami increased the statement

coverage of 47 Rhino classes by, on average, 19.5%.

Swami also produced fewer false alarms than Toradacu

and Jdoctor, and, unlike those tools, generated tests for

missing features.

While Swami’s regular-expression-based approach is rather

rigid, it performs remarkably well in practice for exceptional

and boundary behavior. It forms both a useful tool for

generating tests for such behavior, and a baseline for further

research into improving automated oracle extraction from

natural language by using more advanced information retrieval

and natural language processing techniques.

Our research complements prior work on automatically

generating test inputs for regression tests or manually-written

oracles, such as EvoSuite [20] and Randoop [50], by automat-

ically extracting oracles from natural language specifications.

The closest work to ours is Toradacu [24] and Jdoctor [8],

which focus on extracting oracles for exceptional behavior, and

@tComment [65], which focuses on extracting preconditions

related to nullness of parameters. These techniques are limited

to using Javadoc comments, which are simpler than the specifi-

cations Swami tackles because Javadoc comments (1) provide

specific annotations for pre- and post-conditions, including

@param, @throws, and @returns, making them more

formal [65]; (2) are collocated with the method implementations

they specify, (3) use the variable names as they appear in the

code, and (4) do not contain references to abstract operations

specified elsewhere. Additionally, recent work showed that

Javadoc comments are often out of date because developers

forget to update them when requirements change [65]. Our

work builds on @tComment, Toradacu, and Jdoctor, expanding

the rule-based natural language processing techniques to apply

to more complex and more natural language. Additionally,

unlike those techniques, Swami can generate oracles for not

only exceptional behavior but also boundary conditions. Finally,

prior test generation work [8], [20], [24], [50] requires access to

the source code to be tested, whereas Swami can generate black-

box tests entirely from the specification document, without

needing the source code.

Our paper’s main contributions are:

• Swami, an approach for generating tests from structured

natural language specifications.

• An open-source prototype Swami implementation, includ-

ing rules for specification documents written in ECMA-

script style, and the implementations of common abstract

operations.

• An evaluation of Swami on the ECMA-262 JavaScript

language specification, comparing Swami-generated tests

to those written by developers and those automatically

generated by EvoSuite, demonstrating that Swami gener-

ates tests often missed by developers and other tools and

that lead to discovering several unknown defects in Rhino

and Node.js.

• A replication package of all the artifacts and experiments

described in this paper.

The Swami implementation and a replication package are

available at http://swami.cs.umass.edu/.

The rest of this paper is structured as follows. Section II

illustrates Swami on an example specification in Figure 1.

Section III details the Swami approach and Section IV evaluates

it. Section V places our research in the context of related work,

and Section VI summarizes our contributions.

II. INTUITION BEHIND SWAMI

To explain our approach for generating test oracles, we will

use ECMA-262, the official specification of the JavaScript

programming language [76]. The ECMA-262 documentation

consists of hundreds of sections, including an index, a

description of the scope, definitions, notational conventions,

language semantics, abstract operations, and, finally, methods

supported by the JavaScript language.
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ToUint32: (Unsigned 32 Bit Integer)

1. Let number be the result of calling ToNumber on the input argument.
2. If number is NaN, +0, −0, +∞, or −∞, return +0.
3. Let posInt be sign(number) × floor(abs(number)).
4. Let int32bit be posInt modulo2    ; that is, a finite integer value k of Number type with

5. Return int32bit.

The abstract operation ToUint32 converts its argument to one of 232 integer values in the 
range 0 through 232−1, inclusive. This abstraction operation functions as follows:

32

positive sign and less than 2 32 in magnitude such that the mathematical difference of 
posInt and k is mathematically an integer multiple of 232.

https://www.ecma-international.org/ecma-262/5.1/index.html#sec-9.6

Fig. 2. ECMA specifications include references to abstract operations,
which are formally defined elsewhere in the specification document, but have
no public interface. Section 9.6 of ECMA-262 (v5.1) specifies the abstract
operation ToUnit32, referenced in the specification in Figure 1.

Our technique, Swami, consists of three steps: identifying

parts of the documentation relevant to the implementation

to be tested, extracting test templates from those parts of

the documentation, and generating executable tests from

those templates. We now illustrate each of these steps

on the Array(len) constructor specification from ECMA-262

(Figure 1).

To use Swami to generate tests for a project, the developer

needs to manually specify two things. First, a constructor for

instantiating test cases. For example, for Rhino, the constructor

is new TestCase(test name, test description, expected output,

actual output). This makes Swami project- and language-

agnostic, for example, we were able to generate tests for

Rhino and Node.js, two JavaScript engine implementations,

one written in Java and one in C++, simply by specifying

a different test constructor. Second, an implementation of

abstract operations used in the specification. For example,

the specification in Figure 1 uses the abstract operation

ToUnit32(len), specified in a different part of the specification

document (Figure 2), and Swami needs an executable method

that encodes that operation. For JavaScript, we found that

implementing 10 abstract operations, totaling 82 lines of code,

was sufficient for our purposes. Most of these abstract operation

implementations can be reused for other specifications, so the

library of abstract operation implementations we have built

can be reused, reducing future workload.

A. Identifying parts of the documentation relevant to the
implementation to be tested

The first step of generating test oracles is to identify which

sections of the ECMA-262 documentation encode testable

behavior. There are two ways Swami can do this. For

documentation with clearly delineated specifications of methods

that include clear labels of names of those methods, Swami

uses a regular expression to match the relevant specifications

and discards all documentation sections that do not match

the regular expression. For example, Figure 1 shows the

specification of the Array(len) constructor, clearly labeling

the name of that method at the top. This is the case for

all of ECMA-262, with all specifications of methods clearly

identifiable and labeled. For specifications like this one, Swami

uses a regular expression that matches the section number and

the method name (between the section number and the open

section ID matched Java class similarity score

15.4.2.2 ScriptRuntime.java 0.37
15.4.2.2 Interpreter.java 0.31
15.4.2.2 BaseFunction.java 0.25
15.4.2.2 ScriptableObject.java 0.24
15.4.2.2 NativeArray.java 0.21

Fig. 3. Using the information-retrieval-based approach to identify
the documentation sections relevant to the implementation, Swami finds
these Rhino classes as most relevant to section 15.4.2.2 of the ECMA-
262 (v5.1) documentation (the specification of the Array(len) construc-
tor from Figure 1). NativeArray.java is the class that imple-
ments the Array(len) constructor, and the other four classes all de-
pend on this implementation. Each of the classes listed appears in the
org.mozilla.javascript package, e.g., ScriptRuntime.java ap-
pears in org.mozilla.javascript.ScriptRuntime.java.

parenthesis). Section III-C will describe the full details of this

step.

When the documentation is not as clearly delineated, Swami

can still identify which sections are relevant, but it requires

access to the source code. However, to reiterate, this step, and

the source code, are not necessary for ECMA-262, hundreds of

other ECMA standards, and many other structured specification

documents. Swami uses the Okapi information retrieval

model [57] to map documentation sections to code elements.

The Okapi model uses term frequencies (the number of times

a term occurs in a document) and document frequency (the

number of documents in which a term appears) to map queries

to document collections. Swami uses the specification as the

query and the source code as the document collection. Swami

normalizes the documentation, removes stopwords, stems the

text, and indexes the text by its term frequency and document

frequency. (Section III-B describes this step in detail.) This

allows determining which specifications are relevant to which

code elements based on terms that appear in both, weighing

more unique terms more strongly than more common terms.

For example, when using the Rhino implementation, this

approach maps the specification from Figure 1 as relevant

to the five classes listed in Figure 3. The 5th-ranked class,

NativeArray.java, is the class that implements the Array

(len) constructor, and the other four classes all depend on this

implementation. Swami uses a threshold similarity score to

determine if a specification is relevant. We empirically found

that a similarity score threshold of 0.07 works well in practice:

If at least one class is relevant to a specification document

above this threshold, then the specification document should

be used to generate tests. Section IV-D will evaluate this

approach, showing that with this threshold, Swami’s precision

is 79.0% and recall is 98.9%, but that Swami can use regular

expressions to remove improperly identified specifications,

boosting precision to 93.1%, and all tests generated from

the remaining improperly identified specifications will fail to

compile and can be discarded automatically.

B. Extracting test templates

For the specification sections found relevant, Swami next

uses rule-based natural language processing to create test

templates: source code parameterized by (not yet generated)
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test inputs that encodes the test oracle. Swami generates two

types of tests: boundary condition and exceptional condition

tests. For both kinds, Swami identifies in the specification

(1) the signature (the syntax and its arguments) of the method

to be tested, the (2) expected output for boundary condition

tests, and (3) the expected error for exceptional condition tests.
The Array(len) specification shows that the constructor has

one argument: len (first line of Figure 1). The specification

dictates that Array(len) should throw a RangeError exception if

len is not equal to ToUnit32(len) (second paragraph of Figure 1),

where ToUnit32(len) is an abstract operation defined elsewhere

in the specification (Figure 2). We now demonstrate how

Swami generates tests for this exceptional condition.
We have written four rules that Swami uses to extract this

information. Each rule consists of a set of regular expressions

that determine if a natural language sentence satisfies the

conditions necessary for the rule to apply, and another set

of regular expressions that parse relevant information from the

sentence. The rule also specifies how the parsed information

is combined into a test template. Swami applies the four rules

(described in detail in Section III-C) in series.
The first rule, Template Initialization, parses the name of the

method being tested and its arguments. The rule matches the

heading of the specification with a regular expression to identify

if the heading contains a valid function signature i.e., if there

exists a function name and function arguments. In the example

specification shown in Figure 1, the top line (heading) “15.4.2.2

new Array(len)” matches this regular expression. Swami then

creates an empty test template:

1 function test_new_array(len){}

and stores the syntax for invoking the function (var output =

new Array(len)) in its database for later use.
The second rule, Assignment Identification, identifies as-

signment descriptions in the specification that dictate how

variables’ values change, e.g., “Let posInt be sign(number) ×
floor(abs(number))” in Figure 2. For assignment sentences,

Swami’s regular expression matches the variable and the

value assigned to the variable and stores this association in

its database. Here, Swami would match the variable posInt

and value sign(number) × floor(abs(number). This populates

the database with variable-value pairs as described by the

specification. These pairs will be used by the third and fourth

rules.
The third rule, Conditional Identification, uses a regular

expression to extract the condition that leads to returning a

value or throwing an error. The rule fills in the following

template:

1 if (<condition>){
2 try{
3 <function call>
4 }
5 catch(e){
6 <test constructor>(true, eval(e instanceof <

expected error>))
7 }
8 }

replacing “<function call>” with the method invoking syntax

“var output = new Array(len)” from the database (recall it being

stored there as a result of the first rule). The <test constructor>

is a project-specific description of how test cases are written.

This is written once per project, by a developer.

The sentence “If the argument len is a Number and

ToUnit32(len) is not equal to len, a RangeError exception is

thrown” (Figure 1) matches this expression and Swami extracts

the condition “argument len is a Number and ToUnit32(len) is

not equal to len” and the expected error “RangeError exception

is thrown”, populating the following template, resulting in:

1 if (argument len is a Number and ToUnit32(len) is not
equal to len){

2 try{
3 var output = new Array(len);
4 }
5 catch(e){
6 new TestCase("test_new_array_len", "

test_new_array_len", true, eval(e
instanceof a RangeError exception is thrown
));

7 test();
8 }
9 }

Finally, the forth rule, Conditional Translation, combines

the results of the previous steps to recursively substitute the

variables and implicit operations used in the conditionals from

the previous rule with their assigned values, until all the

variables left are either expressed in terms of the method’s input

arguments, or they are function calls to abstract operations.

Then, Swami embeds the translated conditional into the

initialized test template, creating a test template that encodes

the oracle from the specification. In our example, this step

translates the above code into:

1 function test_new_array(len){
2 if (typeof(len)=="number" && (ToUint32(len)!=len)){
3 try{
4 var output = new Array ( len );
5 }catch(e){
6 new TestCase("array_len", "array_len", true,

eval(e instanceof RangeError))
7 test();
8 }
9 }

10 }

C. Generating executable tests

Swami uses the above test template with the oracle to

instantiate executable tests. To do this, Swami generates

random inputs for each argument in the template (len, in

our example). ECMA-262 describes five primitive data types:

Boolean, Null, Undefined, Number, and String (and two non-

primitive data types, Symbol and Object). Swami generates

random instances of the five primitive data types and several

subtypes of Object (Array, Map, Math, DateTime, RegExp,

etc.) using heuristics, as described in Section III-D. We have

found empirically that generating such inputs for all arguments

tests parts of the code uncovered by developer written tests,

which is consistent with prior studies [24]. Combined with the

generated oracle encoded in the template, each of these test

inputs forms a complete test.

Swami generates 1,000 random test inputs for every test

template. Many of these generated tests will not trigger

the generated conditional, but enough do, as Section IV
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1 /*ABSTRACT FUNCTIONS*/
2 function ToUint32(argument){
3 var number = Number(argument)
4 if (Object.is(number, NaN) || number == 0 || number

== Infinity || number == -Infinity || number
== +0 || number== -0){

5 return 0
6 }
7 var i = Math.floor(Math.abs(number))
8 var int32bit = i%(Math.pow(2,32))
9 return int32bit

10 }
11 ...
12 /*TEST TEMPLATE GENERATED AUTOMATICALLY*/
13 function test_new_array(len){
14 if (typeof(len)=="number" && (ToUint32(len)!=len)){
15 try{
16 var output = new Array ( len );
17 }catch(e){
18 new TestCase("array_len", "array_len", true,

eval(e instanceof RangeError))
19 test();
20 }
21 }
22 }
23 /*TESTS GENERATED AUTOMATICALLY*/
24 test_new_array(1.1825863363010669e+308);
25 test_new_array(null);
26 test_new_array(-747);
27 test_new_array(368);
28 test_new_array(false);
29 test_new_array(true);
30 test_new_array("V7KO08H");
31 test_new_array(Infinity);
32 test_new_array(undefined);
33 test_new_array(/[ˆ.]+/);
34 test_new_array(+0);
35 test_new_array(NaN);
36 test_new_array(-0);
37 ...

Fig. 4. The executable tests automatically generated for the Array(len)
constructor from the specification in Figure 1.

evaluates. The bottom part of Figure 4 shows representative

tests automatically generated for the test_new_array template.
Finally, Swami augments the generated test file with the

manually implemented abstract operations. Figure 4 shows the

final test file generated to test the Array(len) constructor.

III. THE SWAMI APPROACH

This section details the Swami approach (Figure 5). Swami

normalizes and parts-of-speech tags the specifications (Sec-

tion III-A), identifies the relevant sections (Section III-B), uses

regular-expression-based rules to create a test template encoding

an oracle (Section III-C), and instantiates the tests via heuristic-

based, random input generation (Section III-D).

A. Specification preprossessing
Swami uses standard natural language processing [27] to

convert the specification into more parsable format. Swami

normalizes the text by removing punctuation (remembering

where sentences start and end), case-folding (converting all

characters to lower case), and tokenizing terms (breaking

sentences into words). Then Swami removes stopwords

(commonly used words that are unlikely to capture semantics,

such as “to”, “the”, “be”), and stems the text to conflate word

variants (e.g., “ran”, “running”, and “run”) to improve term

matching. Swami uses the Indri toolkit [64] for removing

stopwords and stemming. Swami then tags the parts of speech

using the Standford coreNLP toolkit [39].

SwamiS

specifications test constructor
(~1 line of code)

Template 
Initialization

Assignment 
Identification

Conditional 
Translation

Conditional 
Identification

test template
with oracles

random input 
generationtest instantiation

legend
Swami 
input

Swami 
process

optional 
process

Swami 
product matching 

sentences
non-matching 

sentences 
(discarded)

database

specifications

normalize, remove stop 
words, stem, index, 
parts of speech tag

optional

Okapi model 
retrieval

source 
code

Section 
Identification

abstract operations implementation
(82 lines of code for JavaScript)

p 

executable tests
with orcales

Fig. 5. Swami generates tests by applying a series of regular expressions to
processed (e.g., tagged with parts of speech) natural language specifications,
discarding non-matching sentences. Swami does not require access to the
source code; however, Swami can optionally use the code to identify relevant
specifications. Swami’s output is executable tests with oracles and test templates
that can be instantiated to generate more tests.

B. Identifying parts of the documentation relevant to the
implementation to be tested

As Section II-A described, Swami has two ways of deciding

which sections of the specification to generate tests from. For

many structured specifications such as ECMA-262, the sections

that describe methods are clearly labeled with the name of the

method (e.g., see Figure 1). For such specifications, Swami uses

a regular expression it calls Section Identification to identify

the relevant sections.

Swami’s Section Identification regular expression discards

white space and square brackets (indicating optional arguments),

and looks for a numerical section label (which is labeled as

“CD” by the parts of speech tagger), followed optionally by the

“new” keyword (labeled “JJ”), a method name (labeled “NN”),

then by a left parenthesis (labeled “LRB”), then arguments

(labeled “NN”), and then a right parenthesis (labeled “RRB”).

If the first line of a section matches this regular expression,

Swami will attempt to generate tests; otherwise, this section

is discarded. For example, the heading of the specification in

Figure 1, “15.4.2.2 new Array (len)” is pre-processed to

1 [(’15.4.2.2’, ’CD’), (’new’, ’JJ’), (’Array’, ’NN’), (’(
’, ’-LRB-’), (’len’, ’NN’), (’)’, ’-RRB-’)]

matching the Section Identification regular expression.

If the specifications do not have a clear label, Swami

can use information retrieval to identify which sections to

generate tests for. (This step does not require the parts of

speech tags.) The fundamental assumption underlying this

approach is that some terms in a specification will be found

in relevant source files. Swami considers the source code to

be a collection of documents and the specification to be a

query. Swami parses the abstract syntax trees of the source

code files and identifies comments and class, method, and

variable names. Swami then splits the extracted identifiers
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into tokens using CamelCase splitting. Swami will index both

the split and intact identifies, as the specifications can contain

either kind. Swami then tokenizes the specification and uses

the Indri toolkit [64] for stopword removal, stemming, and

indexing by computing the term frequency, the number of

times a term occurs in a document, and document frequency,

the number of documents in which a term appears. Finally,

Swami uses the Indri toolkit to apply the Okapi information

retrieval model [57] to map specification sections to source

code, weighing more unique terms more strongly than more

common terms. We chose to use the Okapi model because

recent studies have found it to outperform more complex

models on both text and source code artifacts [53], [67]. The

Okapi model computes the inverse document frequency, which

captures both the frequency of the co-occurring terms and

the uniqueness of those terms [80]. This model also weighs

more heavily class and method names, which can otherwise

get lost in the relatively large number of variable names and

comment terms. Swami will attempt to generate tests from all

specifications with a similarity score to at least one class of

0.07 or above (recall the example in Figure 3). We selected this

threshold by computing the similarity scores of a small subset

(196 sections) of ECMA-262, selecting the minimum similarity

score of the relevant specifications (where relevant is defined

by the ground-truth [17], described in Section IV-D). This

prioritizes recall over precision. More advanced models [56]

might improve model quality by improving term weights, but

as Section IV-D will show, this model produces sufficiently

high-quality results.

C. Extracting test templates

To generate test templates, Swami uses rule-based natural

language processing on the specification sections identified

as relevant in Section III-B. Swami applies four rules —

Template Initialization, Assignment Identification, Conditional
Identification, and Conditional Translation — in series. Each

rule first uses a regular expression to decide if a sentence should

be processed by the rule. If it should, the rule then applies

other regular expressions to extract salient information, such

as method names, argument names, assignments, conditional

predicates, etc. When sentences do not match a rule, they are

discarded from processing by further rules (recall Figure 5).

Only the sentences that match all four rules will produce test

templates.

Rule 1: Template Initialization locates and parses the

name of the method being tested and the arguments used

to run that method, and produces a test template with a valid

method signature and an empty body. Template Initialization
works similarly to the Section Identification regular expression;

it matches the numerical section label, method name, and

arguments by using their parts of speech tags and parentheses.

Unlike Section Identification, Template Initialization also

matches and extracts the method and argument names. Swami

generates a test name by concatenating terms in the method

under test’s name with “ ”, and concatenating the extracted

arguments with “, ”, populating the following template:

1 function test_<func name> ([thisObj], <func args>){}

Swami uses the thisObj variable as an argument to specify

this, an object on which this method will be invoked.

For example, the specification section “21.1.3.20

String.prototype.startsWith (searchString [,position])” results

in the empty test template

1 function test_string_prototype_startswith(thisObj,
searchString, position){}

Swami identifies the type of the object on which the tested

method is invoked and stores the method’s syntax in a database.

For example, the String.startsWith method is invoked on String
objects, so Swami stores var output = new String(thisObj).

startsWith(searchString, position) in the database.

Rule 2: Assignment Identification identifies assignment

sentences and produces pairs of variables and their values,

which it stores in Swami database. Specifications often use

intermediate variables, described in the form of assignment

sentences. For example, the ToUint32 specification (Figure 2)

contained the assignment sentence “Let posInt be sign(number

) × floor(abs(number))” and posInt was used later in the

specification. Assignment sentences are of the form “Let <var>

be <value>”, where <var> and <value> are phrases. Assignment
Identification uses a regular expression to check if a sentence

satisfies this form. If it does, regular expressions extract the

variable and value names, using the parts of speech tags and

keywords, such as “Let”. Values can be abstract operations

(e.g., ToUint32), implicit operations (e.g., max), constant literals,

or other variables. Each type requires a separate regular

expression. For the example assignment sentence from Figure 2,

Swami extracts variable posInt and value sign(number) × floor

(abs(number)). Swami inserts this variable-value pair into its

database. This populates the database with assigned variable-

value pairs as specified by the specification.

Rule 3: Conditional Identification identifies conditional

sentences that result in a return statement or the throwing

of an exception, and produces source code (an if-then

statement) that encodes the oracle capturing that behavior.

Our key observation is that exceptional and boundary behavior

is often specified in conditional sentences and that this

behavior can be extracted by regular expressions, capturing

both the predicate that should lead to the behavior and the

expected behavior. Conditional sentences are of the form “If

<condition> <action>”, where <condition> and <action> are

phrases, often containing variables and method calls described

in assignment statements. Conditional Identification uses three

regular expressions to check if a sentence satisfies this form

and if the <action> is a boundary condition or an exception.

If If * NN * is .* return .* or If * NN * the result is .*

match the sentence, Swami extracts the predicate <condition>

as the text that occurs between the words If and either

return or the result is. Swami extracts the <action> as the

text that occurs after the words return or the result is. If

If * NN * is .* throw .* exception matches the sentence,

Swami extracts the predicate <condition> as the text that

occurs between If and throw and the expected exception
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as the noun (NN) term between throw and exception. For

example, consider the following three sentences taken

from section 21.1.3.20 of the ECMA-262 specification for

the String.prototype.startsWith method. The sentence “If

isRegExp is true, throw a TypeError exception.” results in

a condition-action pair isRegExp is true - TypeError. The

sentence “If searchLength+start is greater than len, return false.”

results in searchLength+start is greater than len - false.

And the sentence “If the sequence of elements of S starting at

start of length searchLength is the same as the full element

sequence of searchStr, return true.” results in the sequence of

elements of S starting at start of length searchLength is

same as the full element sequence of searchStr - true.

Finally, Conditional Identification generates source code by

filling in the following templates for exceptional behavior:

1 if (<condition>){
2 try{
3 <function call>
4 return
5 }catch(e){
6 <test constructor>(true, eval(e instanceof <

action>))
7 return;
8 }
9 }

and for return statement behavior:

1 if (<condition>){
2 <function call>
3 <test constructor>(output, <action>))
4 return;
5 }
6 }

The <function call> placeholder is replaced with the code

generated by Template Initialization (and stored in the

database) to invoke the method under test, e.g., var output =

new String(thisObj).startsWith(searchString, position). The

<test constructor> placeholder is a project-specific description

of how test cases are written, and is an input to Swami (recall

Figure 5 and Section II); for Rhino, it is new TestCase(test name,

test description, expected output, actual output). Figure 6

shows the code Template Initialization generates from the three

conditional sentences in the String.startsWith specification.

Rule 4: Conditional Translation processes the oracle code

generated by Conditional Identification by recursively filling

in the variable value assignments according to the specification

and injects the code into the template produced by Template
Initialization, producing a complete test template.

Conditional Translation identifies the intermediate variables

in the code generated by Conditional Identification and replaces

them with their values from the database (placed in the database

by Assignment Identification). If an intermediate variable does

not have a value in the database (e.g., because the specification

was incomplete or because the text describing this variable

did not match Assignment Identification’s regular expressions),

this test will fail to compile and Swami will remove the entire

condition from the test. Next, Swami translates the implicit

operations in the code. For example, is greater than or equal

to and ≥ are translated to >=; this value is translated to thisObj;

is exactly, is equal to, and is are translated to ===; <x> is one

1 if (isRegExp is true){
2 try{
3 var output = new String(thisObj).startsWith(

searchString, position)
4 return
5 }catch(e){
6 new TestCase(<test name>, <test description>,

true, eval(e instanceof TypeError))
7 return;
8 }
9 }
10 if (searchLength+start is greater than len){
11 var output = new String(thisObj).startsWith(

searchString, position)
12 new TestCase(<test name>, <test description>,

output, false))
13 return;
14 }
15 }
16 if (the sequence of elements of S starting at start of

length searchLength is same as the full element
sequence of searchStr){

17 var output = new String(thisObj).startsWith(
searchString, position)

18 new TestCase(<test name>, <test description>,
output, true))

19 return;
20 }
21 }

Fig. 6. The test code generated by the Template Initialization rule from the
JavaScript String.startsWith specification.

of <a>, <b>, ... is translated to x===a || x===b. . . ; the number

of elements in <S> is translated to <S>.length; etc. Swami

contains 54 such patterns, composed of keywords, special

characters, wildcard characters, and parts of speech tags.

An inherent limitation of the regular expressions is that

they are rigid, and fail on some sentences. For example,

Swami fails on the sentence “If the sequence of elements

of S starting at start of length searchLength is the same as

the full element sequence of searchStr, return true.” Swami

correctly encodes most variable values and implicit operations,

but fails to encode the sequence of elements of S starting at

the start of length searchLength, resulting in a non-compiling

if statement, which Swami removes as a final post-processing

step.

Swami adds each of the translated conditionals that compiles

to the test template initialized by Template Initialization.

Figure 7 shows the final test template Swami generates for the

String.startsWith JavaScript method.

D. Generating executable tests

Swami instantiates the test template via heuristic-driven

random input generation. ECMA-262 describes five primitive

data types: Boolean, Null, Undefined, Number, and String, and

two non-primitive data types, Symbol and Object. Swami uses

the five primitive data types and several subtypes of Object

(Array, Map, Math, DateTime, RegExp, etc.). For Boolean,

Swami generates true and false; for Null, null; for Undefined,

undefined; for Number, random integers and floating point

values. Swami also uses the following special values: NaN, -0,

+0, Infinity, and -Infinity. For the Object subtypes, Swami

follows several heuristics for generating Maps, Arrays, regular

expressions, etc. For example, when generating an Array,
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1 function test_string_prototype_startswith(thisObj,
searchString, position){}

2 if (isRegExp === true){
3 try{
4 var output = new String(thisObj).startsWith(

searchString, position)
5 return
6 }catch(e){
7 new TestCase(<test name>, <test description>,

true, eval(e instanceof TypeError))
8 return;
9 }
10 }
11 if (ToString(searchString).length + Math.min(Math.max(

ToInteger(position), 0), ToString(
RequireObjectCoercible(thisObj)).length) >
ToString(RequireObjectCoercible(thisObj)).length
)){

12 var output = new String(thisObj).startsWith(
searchString, position)

13 new TestCase(<test name>, <test description>,
output, false))

14 return;
15 }
16 }
17 }

Fig. 7. The final test template Swami generates for the String.startsWith
JavaScript method.

Swami ensures to generate only valid length arguments (an

integer between 1 and 232). (Invalid lengths throw a RangeError

at runtime, which would result in false alarm test failures.)

Finally, Swami augments the test suite with the developer

written implementation of abstract operations used in the

specification. Recall that for JavaScript, this consisted of 82

total lines of code, and that most of these abstract operation

implementations can be reused for other specifications.

IV. EVALUATION

We evaluate Swami on two well-known JavaScript implemen-

tations: Mozilla’s Rhino (in Java) and Node.js (in C++, built

on Chrome’s V8 JavaScript engine). We answer four research

questions:

RQ1 How precise are Swami-generated tests? Of the

tests Swami generates, 60.3% are innocuous — they

can never fail. Of the remaining tests, 98.4% are

precise to the specification and only 1.6% are flawed

and might raise false alarms.

RQ2 Do Swami-generated tests cover behavior missed
by developer-written tests? Swami-generated tests

identified 1 previously unknown defect and 15 missing

JavaScript features in Rhino, 1 previously unknown

defect in Node.js, and 18 semantic ambiguities in the

ECMA-262 specification. Further, Swami generated

tests for behavior uncovered by developer-written

tests for 12 Rhino methods. The average statement

coverage for these methods improved by 15.2% and

the average branch coverage improved by 19.3%.

RQ3 Do Swami-generated tests cover behavior missed
by state-of-the-art automated test generation
tools? We compare Swami to EvoSuite and find

that most of the EvoSuite-generated failing tests that

cover exceptional behavior are false alarms, whereas

98.4% of the Swami-generated tests are precise to

the specification and can only result in true alarms.

Augmenting EvoSuite-generated tests using Swami

increased the statement coverage of 47 classes by, on

average, 19.5%. Swami also produced fewer false

alarms than Toradacu and Jdoctor, and, unlike those

tools, generated tests for missing features.

RQ4 Does Swami’s Okapi model precisely identify
relevant specifications? The Okapi model’s pre-

cision is 79.0% and recall is 98.9%, but further

regular expressions can remove improperly identified

specifications, increasing precision to 93.1%; all tests

generated from the remaining improperly identified

specifications fail to compile and can be automatically

discarded.

A. RQ1: How precise are Swami-generated tests?

Swami’s goal is generating tests for exceptional behavior

and boundary conditions, so we do not expect it to produce

tests for most of the specifications. Instead, in the ideal, Swami

produces highly-precise tests for a subset of the specifications.

We applied Swami to ECMA-262 (v8) to generate black-box

tests for JavaScript implementations. Swami generated test

templates for 98 methods, but 15 of these test templates failed

to compile, resulting in 83 compiling templates. We manually

examined the 83 test templates and compared them to the

natural language specifications to ensure that they correctly

capture specification’s oracles. We then instantiated each

template with 1,000 randomly generated test inputs, creating

83,000 tests. We instrumented test templates to help us

classify the 83,000 tests into three categories: (1) good tests

that correctly encode the specification and would catch some

improper implementation, (2) bad tests that incorrectly encode

the specification and could fail on a correct implementation,

and (3) innocuous tests that pass on all implementations.

Of the 83,000 tests, 32,379 (39.0%) tests were good tests,

535 (0.6%) were bad tests, and 50,086 (60.3%) were innocuous.

It is unsurprising that innocuous tests are common. For

example, if a test template checks that a RangeError exception

is thrown (recall Figure 1), but the randomly-generated inputs

are not outside the allowed range, the test can never fail.

Innocuous tests cannot raise false alarms, since they can never

fail, but could waste test-running resources. Existing test

prioritization tools may be able to remove innocuous tests.

Of the non-innocuous tests, 98.4% (32,379 out of 32,914)

are good tests. We conclude that Swami produces tests

that are precise to the specification.

We manually analyzed the 535 bad tests. (Of course, many

of these tests could be grouped into a few equivalence classes

based on the behavior they were triggering.) All bad tests

came from 3 specifications. First, 176 of the tests tested

the ArrayBuffer.prototype.slice method, and all invoked the

method on objects of type String (instead of ArrayBuffer).
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Because slice is a valid method for String objects, that

other method was dynamically dispatched at runtime and no

TypeError exception was thrown, violating the specification and

causing the tests to fail.

Second, 26 of the tests tested the Array.from(items,mapfn,

thisArg) method, expecting a TypeError whenever mapfn was

not a function that can be called. The 26 tests invoke the

Array.from with mapfn set to undefined. While undefined cannot

be called, the specification describes different behavior for this

value, but Swami fails to encode that behavior.

Third, 333 of the tests tested the Array(len) constructor with

nonnumeric len values, such as Strings, booleans, etc. This

dynamically dispatched a different Array constructor based on

the type of the argument, and thus, no RangeError was thrown.

These imprecisions in Swami’s tests illustrate the complexity

of disambiguating natural language descriptions of code

elements. The tests were generated to test specific methods,

but different methods executed at runtime. Swami could be

improved to avoid generating these bad tests by adding more

heuristics to the input generation algorithm.

B. RQ2: Do Swami-generated tests cover behavior missed by
developer-written tests?

Rhino and Node.js are two extremely well-known and

mature JavaScript engines. Rhino, developed by Mozilla, and

Node.js, developed by the Node.js Foundation on Chrome’s V8

JavaScript engine, both follow rigorous development processes

that include creating high-quality regression test suites. We

compared the tests Swami generated to these developer-written

test suites for Rhino v1.7.8 and Node.js v10.7.0 to measure if

Swami effectively covered behavior undertested by developers.

Rhino’s developer-written test suites have an overall state-

ment coverage of 71% and branch coverage of 66%. Swami

generated tests for behavior uncovered by developer-written

tests for 12 Rhino methods, increasing those methods’ statement

coverage, on average, by 15.2% and branch coverage by 19.3%.

For Node.js, the developer-written test suites are already of

high coverage, and Swami did not increase Node.js statement

and branch coverage. However, coverage is an underestimate

of test suite quality [69], as evidenced by the fact that Swami

discovered defects in both projects.

Swami generated tests that identified 1 previously unknown

defect and 15 missing JavaScript features in Rhino, 1 previously

unknown defect in Node.js, and 18 semantic ambiguities in

the ECMA-262 specification. The Rhino issue tracker contains

2 open feature requests (but no tests) corresponding to 12 of

15 missing features in Rhino. We have submitted a bug report

for the new defect1 and a missing feature request for the 3

features not covered by existing requests2.

The newly discovered defect dealt with accessing the

ArrayBuffer.prototype.byteLength property of an ArrayBuffer

using an object other than an ArrayBuffer. Neither Rhino nor

Node.js threw a TypeError, failing to satisfy the JavaScript

specification.

1https://github.com/mozilla/rhino/issues/522
2https://github.com/mozilla/rhino/issues/521

The missing features dealt with 6 Map methods3, 6 Math

methods4, 2 String methods (padStart and padEnd), and 1 Array

method (includes) not being implemented in Rhino, failing to

satisfy the JavaScript specification.

The 18 semantic ambiguities are caused by JavaScipt’s

multiple ways of comparing the equality of values, e.g., ==, ===,

and Object.is. In particular, === and Object.is differ only in

their treatment of -0, +0, and NaN. The specification often says

two values should be equal without specifying which equality

operator should be used. This causes a semantic ambiguity in

the specifications of methods that differentiate between these

values. In fact, developer-written tests for Node.js and Rhino

differ in which operators they use to compare these values,

with Rhino’s developers implementing their own comparator

and explicitly stating that they consider differentiating between

+0 and -0 unimportant5, whereas the specification dictates

otherwise. With this ambiguity in the specification, Swami has

no obvious way to infer which equality operator should be

used and can generate imprecise tests. When using ===, Swami

generated 18 false alarms revealing this ambiguity. Using

Object.is removes these false alarms.

C. RQ3: Do Swami-generated tests cover behavior missed by
state-of-the-art automated test generation tools?

Random test generation tools, such as EvoSuite [20] and

Randoop [50], can generate tests in two ways: using explicit

assertions in the code (typically written manually), or as

regression tests, ensuring the tested behavior doesn’t change

as the software evolves. As such, Swami is fundamentally

different, extracting oracles from specifications to capture the

intent encoded in those specifications. Still, we wanted to

compare the tests generated by Swami and EvoSuite, as we

anticipated they would cover complementary behavior.

We used EvoSuite to generate five independent test-suites

for Rhino using 5 minute time budgets and line coverage as

the testing criterion, resulting in 16,760 tests generated for

251 classes implemented in Rhino. Of these, 392 (2.3%)

tests failed because the generated inputs resulted in exceptions

EvoSuite had no oracles for (Rhino source code did not encode

explicit assertions for this behavior). This finding is consistent

with prior studies of automated test generation of exceptional

behavior [8]. By comparison, only 1.6% of the non-innocuous

Swami-generated tests and only 0.6% of all the tests were

false alarms (recall RQ1). Swami significantly outperforms

EvoSuite because it extracts oracles from the specifications.

Since EvoSuite, unlike Swami, requires project source code

to generate tests, EvoSuite failed to generate tests for the 15

methods that exposed missing functionality defects in Rhino,

which Swami detected by generating specification-based tests.

The EvoSuite-generated test suite achieved, on average,

77.7% statement coverage on the Rhino classes. Augmenting

that test suite with Swami-generated tests increased the

statement coverage of 47 classes by 19.5%, on average.

3https://github.com/mozilla/rhino/issues/159
4https://github.com/mozilla/rhino/issues/200
5https://github.com/mozilla/rhino/blob/22e2f5eb313b/testsrc/tests/shell.js

196



The tools most similar to Swami, Toradacu [24] and

Jdoctor [8], are difficult to compare to directly because they

work on Javadoc specifications and cannot generalize to the

more complex natural language specifications Swami can

handle. On nine classes from Google Guava, Toradocu reduced

EvoSuite’s false alarm rate by 11%: out of 290 tests, the false

alarms went from 97 (33%) to 65 (22%) [24]. Meanwhile,

on six Java libraries, Jdoctor eliminated only 3 of Randoop’s

false alarms out of 43,791 tests (but did generate 15 more

tests and correct 20 tests’ oracles) [8]. And again, without an

implementation (or without the associated Javadoc comments),

neither Toradacu nor Jdoctor could generate tests to identify

the missing functionality Swami discovered. Overall, Swami

showed more significant improvements in the generated tests.

D. RQ4: Does Swami precisely identify relevant specifications?

Swami’s regular expression approach to Section Identification
is precise: in our evaluation, 100% of the specification sections

identified encoded testable behavior. But it requires specific

specification structure. Without that structure, Swami relies on

its Okapi-model approach. We now evaluate the Okapi model’s

precision (the fraction of the sections the model identifies as

relevant that are actually relevant) and recall (the fraction of

all the relevant sections that the model identifies as relevant).

Eaddy et al. [16] have constructed a ground-truth benchmark

by manually mapping parts of the Rhino source code (v1.5R6)

to the relevant concerns from ECMA-262 (v3). Research

on information retrieval in software engineering uses this

benchmark extensively [17], [25]. The benchmark consists of

480 specifications and 140 Rhino classes. On this benchmark,

Swami’s precision was 79.0% and recall was 98.9%, suggesting

that Swami will attempt to generate tests from nearly all

relevant specifications, and that 21.0% of the specifications

Swami may consider generating tests from may not be relevant.

However, of the irrelevant specifications, 45.3% do not

satisfy the Template Initialization rule, and 27.3% do not

satisfy the Conditional Identification rule. All the test templates

generated from the remaining 27.4% fail to compile, so Swami

removes them, resulting in an effective precision of 100%.

E. Threats to validity

Regular expressions are brittle and may not generalize

to other specifications or other software. We address this

threat in three ways. First, our evaluation uses ECMA-

based specifications which has been used to specify hundreds

of systems [4], from software systems, to programming

languages, to Windows APIs, to data communication protocols,

to telecommunication networks, to data storage formats, to

wireless proximity systems, and so on. This makes our work

directly applicable to at least that large number of systems, and

it can likely can be extended to other standards. Second, our

evaluation focuses on the specification of JavaScript, a mature,

popular language. The ECMA-262 standard is the official

specification of JavaScript. Third, we evaluate our approach

on two well-known, mature, well-developed software systems,

Rhino, written in Java, and Node.js, in C++, demonstrating

generalizability to test generation for different languages and

systems.

The correctness of Swami-generated tests relies on the test

constructor written by the developer. For example, the Rhino’s

test case constructor internally uses method getTestCaseResult

(expected, actual), which fails to distinguish -0 from +0

(recall Section IV-B). This inhibits the Swami-generated tests

from correctly testing methods whose behavior depends on

differentiating signed zeros.

Our evaluation of the Okapi-model-based approach and our

choice of similarity score threshold rely on a manually-created

ground truth benchmark [16]. Errors in the benchmark may

impact our evaluation. We mitigate this threat by using a

well-established benchmark from prior studies [17], [25], [26].

V. RELATED WORK

Techniques that extract oracles from Javadoc specifications

are the closest prior work to ours. Toradacu [24] and Jdoctor [8]

do this for exceptional behavior, and @tComment [65] for null

pointers. These tools interface with EvoSuite or Randoop to

reduce their false alarms. JDoctor, the latest such technique,

combines pattern, lexical, and semantic matching to translate

Javadoc comments into executable procedure specifications for

pre-conditions, and normal and exceptional post-conditions.

Our approach builds on these ideas but applies to more

general specifications than Javadoc, with more complex natural

language. Unlike these tools, Swami does not require access to

the source code and generates tests only from the specification,

while also handling boundary conditions. When structured

specifications, Javadoc, and source code are all available, these

techniques are likely complementary. Meanwhile, instead of

generating tests, runtime verification of Java API specifications

can discover bugs, but with high false-alarm rates [32].

Requirements tracing maps specifications, bug reports, and

other artifacts to code elements [15], [26], [77], which is

related to Swami’s Section Identification using the Okapi

model [57], [64]. Static analysis techniques typically rely on

similar information-retrieval-based approaches as Swami, e.g.,

BLUiR [51], for identifying code relevant to a bug report [58].

Swami’s model is simpler, but works well in practice; recent

studies have found it to outperform more complex models on

both text and source code artifacts [53], [67].

Dynamic analysis can also aid tracing, e.g., in the way

CERBERUS uses execution tracing and dependency pruning

analysis [17]. Machine learning can aid tracing, e.g., via word

embeddings to identify similarities between API documents,

tutorials, and reference documents [79]. Unlike Swami, these

approaches require large ground-truth training datasets. Future

research will evaluate the impact of using more involved

information retrieval models.

Automated test generation (e.g., EvoSuite [20] and Ran-

doop [50]) and test fuzzing (e.g., afl [1]) generate test

inputs. They require manually-specified oracles or oracles

manually encoded in the code (e.g., assertions), or generate

regression tests [20]. Swami’s oracles can complement these

techniques. Differential testing can also produce oracles by
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comparing behavior of multiple implementations of the same

specification [10], [12], [19], [59], [63], [78] (e.g., comparing

the behavior of Node.js to that of Rhino), but requires multiple

implementations, whereas Swami requires none.

Specification mining uses execution data to infer (typically)

FSM-based specifications [5], [6], [7], [23], [29], [30], [31],

[33], [34], [35], [36], [49], [54], [60]. TAUTOKO uses such

specifications to generate tests, e.g., of sequences of method

invokations on a data structure [14], then iteratively improving

the inferred model [14], [68]. These dynamic approaches rely

on manually-written or simple oracles (e.g., the program should

not crash) and are complementary to Swami, which uses natural

language specifications to infer oracles. Work on generating

tests for non-functional properties, such as software fairness,

relies on oracles inferred by observing system behavior, e.g.,

by asserting that the behavior on inputs differing in a controlled

way should be sufficiently similar [22], [11], [3]. Meanwhile,

assertions on system data can also act as oracles [46], [47], and

inferred causal relationships in data management systems [21],

[42], [43] can help explain query results and suggest oracles

for systems that rely on data management systems [45]. Such

inference can also help debug errors [70], [71], [72] by tracking

and using data provenance [44].

Dynamic invariant mining, e.g., Daikon [18], can infer

oracles from test executions by observing arguments’ values

method return values [48]. Such oracles are a kind of regression

testing, ensuring only that behavior does not change during

software evolution. Korat uses formal specifications of pre- and

post-conditions (e.g., written by the developer or inferred by

invariant mining) to generate oracles and tests [9]. By contrast,

Swami infers oracles from the specification and neither requires

source code nor an existing test suite.

Automated program repair, e.g., [74], [28], [37], [38], [40],

[41], [61], [66], [75], relies on test suites to judge repair

quality. Unfortunately, incomplete test suites lead to low repair

quality [62], [52]. Swami’s oracles may improve repair quality.

VI. CONTRIBUTIONS

We have presented Swami, a regular-expression-based ap-

proach to automatically generate oracles and tests for boundary

and exceptional behavior from structured natural language

specifications. While regular expressions are rigid, Swami

performs remarkably well in practice. Swami is the first

approach to work on specifications as complex as the ECMA-

262 JavaScript standard. Our evaluation demonstrates that

Swami is effective at generating tests, complements tests written

by developers and generated by EvoSuite, and finds previously

unknown bugs in mature, well-developed software.
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[47] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. Preventing data
errors with continuous testing. In ISSTA, pages 373–384, 2015.

[48] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of
program specifications. In ISSTA, 2002.

[49] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc
Palyart, Ivan Beschastnikh, and Yuriy Brun. Behavioral resource-aware
model inference. In ASE, pages 19–30, 2014.

[50] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed
random testing for Java. In OOPSLA, pages 815–816, 2007.

[51] Denys Poshyvanyk, Malcom Gethers, and Andrian Marcus. Concept
location using formal concept analysis and information retrieval. ACM
TOSEM, 21(4):23, 2012.

[52] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis
of patch plausibility and correctness for generate-and-validate patch
generation systems. In ISSTA, pages 24–36, 2015.

[53] Md Masudur Rahman, Saikat Chakraborty, Gail Kaiser, and Baishakhi
Ray. A case study on the impact of similarity measure on information
retrieval based software engineering tasks. CoRR, abs/1808.02911, 2018.

[54] Steven P. Reiss and Manos Renieris. Encoding program executions. In
ICSE, pages 221–230, 2001.

[55] Research Triangle Institute. The economic impacts of inadequate
infrastructure for software testing. NIST Planning Report 02-3, May
2002.

[56] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple BM25
extension to multiple weighted fields. In CIKM, pages 42–49, 2004.

[57] Stephen E. Robertson, Stephen Walker, and Micheline Beaulieu. Exper-
imentation as a way of life: Okapi at TREC. Information Processing
and Management, 36:95–108, January 2000.

[58] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry.
Improving bug localization using structured information retrieval. In
ASE, pages 345–355, 2013.

[59] Vipin Samar and Sangeeta Patni. Differential testing for variational analy-
ses: Experience from developing KConfigReader. CoRR, abs/1706.09357,
2017.

[60] Matthias Schur, Andreas Roth, and Andreas Zeller. Mining behavior
models from enterprise web applications. In ESEC/FSE, pages 422–432,
2013.

[61] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard.
Automatic error elimination by horizontal code transfer across multiple
applications. In PLDI, pages 43–54, 2015.

[62] Edward K. Smith, Earl Barr, Claire Le Goues, and Yuriy Brun. Is the
cure worse than the disease? Overfitting in automated program repair.
In ESEC/FSE, pages 532–543, 2015.

[63] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and Vitaly
Shmatikov. A security policy oracle: Detecting security holes using
multiple API implementations. In PLDI, pages 343–354, 2011.

[64] Trevor Strohman, Donald Metzler, HowardTurtle, and W. Bruce Croft.
Indri: A language model-based search engine for complex queries. In
International Conference on Intelligence Analysis, pages 2–6, 2005.

[65] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tCom-
ment: Testing Javadoc comments to detect comment-code inconsistencies.
In ICST, pages 260–269, 2012.

[66] Shin Hwei Tan and Abhik Roychoudhury. relifix: Automated repair of
software regressions. In ICSE, pages 471–482, 2015.

[67] Chakkrit Tantithamthavorn, Surafel Abebe Lemma, Ahmed E. Hassan,
Akinori Ihara, and Kenichi Matsumoto. The impact of IR-based classifier
configuration on the performance and the effort of method-level bug
localization. Information and Software Technology, 2018.

[68] Robert J. Walls, Yuriy Brun, Marc Liberatore, and Brian Neil Levine.
Discovering specification violations in networked software systems. In
ISSRE, pages 496–506, 2015.

[69] Qianqian Wang, Yuriy Brun, and Alessandro Orso. Behavioral execution
comparison: Are tests representative of field behavior? In ICST, pages
321–332, 2017.

[70] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. Data X-Ray: A
diagnostic tool for data errors. In SIGMOD, pages 1231–1245, 2015.

[71] Xiaolan Wang, Alexandra Meliou, and Eugene Wu. QFix: Demonstrating
error diagnosis in query histories. In SIGMOD Demo, pages 2177–2180,
2016.

[72] Xiaolan Wang, Alexandra Meliou, and Eugene Wu. QFix: Diagnosing
errors through query histories. In SIGMOD, pages 1369–1384, 2017.

[73] Westley Weimer and George C. Necula. Finding and preventing run-time
error handling mistakes. In OOPSLA, pages 419–431, 2004.

[74] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
ICSE, pages 364–374, 2009.

[75] Aaron Weiss, Arjun Guha, and Yuriy Brun. Tortoise: Interactive system
configuration repair. In ASE, pages 625–636, 2017.

[76] Allen Wirfs-Brock and Brian Terlson. ECMA-262, ECMAScript 2017
language specification, 8th edition. https://www.ecma-international.org/
ecma-262/8.0, 2017.

[77] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A
survey on software fault localization. IEEE TSE, 42(8):707–740, 2016.

[78] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In PLDI, pages 283–294, 2011.

[79] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From
word embeddings to document similarities for improved information
retrieval in software engineering. In ICSE, pages 404–415, 2016.

[80] Chengxiang Zhai and John Lafferty. A study of smoothing methods
for language models applied to ad hoc information retrieval. In SIGIR,
pages 334–342, 2001.

199


