DeDoS: Defusing DoS with Dispersion Oriented Software

Henri Maxime Demoulin®
University of Pennsylvania

Jingyu Qian

Georgetown University

Ang Chen

Rice University

ABSTRACT

This paper presents DeDoS, a novel platform for mitigating asym-
metric DoS attacks. These attacks are particularly challenging since
even attackers with limited resources can exhaust the resources
of well-provisioned servers. DeDoS offers a framework to deploy
code in a highly modular fashion. If part of the application stack
is experiencing a DoS attack, DeDoS can massively replicate only
the affected component, potentially across many machines. This
allows scaling of the impacted resource separately from the rest
of the application stack, so that resources can be precisely added
where needed to combat the attack. Our evaluation results show
that DeDoS incurs reasonable overheads in normal operations, and
that it significantly outperforms standard replication techniques
when defending against a range of asymmetric attacks.

CCS CONCEPTS

« Security and privacy — Denial-of-service attacks;

KEYWORDS

Denial-of-Service; Distributed Systems;

ACM Reference Format:

Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich, Bob DiMaiolo,
Jingyu Qian, Chirag Shah, Yuankai Zhang, Ang Chen, Andreas Haeberlen,
Boon Thau Loo, Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and Wen-
chao Zhou. 2018. DeDoS: Defusing DoS with Dispersion Oriented Software.
In 2018 Annual Computer Security Applications Conference (ACSAC ’18), De-
cember 3-7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3274694.3274727

“First Co-authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 18, December 3-7, 2018, San Juan, PR, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274727

Tavish Vaidya"*

Georgetown University

Chirag Shah

University of Pennsylvania

Andreas Haeberlen
Boon Thau Loo
Linh Thi Xuan Phan

University of Pennsylvania

Isaac Pedisich
Bob DiMaiolo

University of Pennsylvania

Yuankai Zhang

Georgetown University

Micah Sherr
Clay Shields
Wenchao Zhou

Georgetown University

1 INTRODUCTION

Denial-of-service (DoS) attacks have evolved from simple flood-
ing to pernicious asymmetric attacks that intensify the attacker’s
strength by exploiting asymmetries in protocols [33, 35, 36]. Unlike
traditional flooding attacks, adversaries that perform asymmetric
DoS are typically small in scale compared to the target victims.
These attacks are increasingly problematic; the SANS Institute de-
scribed “targeted, application-specific attacks” [33] as the most
damaging form of DoS attack, with an average of four attacks per
year, per survey respondent. Such attacks typically involve clients
launching attacks that consume the computational resources or
memory on servers. Types of asymmetric DoS vary, and are often
targeted at a specific protocol.

An invariant of these attacks is that they exploit a fixed resource.
For example, the SlowLoris/SlowPOST attacks function by establish-
ing HTTP connections with the victim webserver, sending requests
at a very slow rate to inflate their lifetime, consuming connection re-
sources (e.g., file descriptors) at the target [37]. Similarly, the ReDoS
attack uses specially crafted regular expressions that are slow to
parse, amplifying the cost of serving malicious clients’ requests [3].
Likewise, TLS Renegotiation attacks exploit an asymmetry in the
SSL/TLS protocol: the server’s cost of engaging in a handshake is
about ten times that of a client [1].

While traditional volumetric attacks can be defended against by
blocking transmissions on compromised machines [21], filtering
traffic at routers [30], or detecting bogus requests at end hosts [23,
28], such approaches are ineffective against asymmetric DoS. Since
asymmetric attacks tend to be relatively low-volume and often do
not appear different from legitimate traffic, they can easily circum-
vent these defenses over time.

A straightforward defense mechanism against asymmetric at-
tacks is simply to deploy more resources. This is often the de facto
defense deployed in production systems: during an attack, the ser-
vice is automatically replicated as virtual machines (VMs) or light-
weight containers, on multiple machines to scale “elastically” to
the extra load. Replicating all of the VM’s or container’s resources,
regardless of which are being consumed, is enormously costly, mak-
ing this approach unusable for most service providers. For example,
if only a TCP state table is being exhausted (e.g., due to a SYN flood),
the replication of an entire VM mitigates the attack, but does so at

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

an enormous overhead (since the TCP state table is a minuscule
portion of the system’s overall footprint).

In light of the limitations of existing defenses, we present a
radically different approach called DeDoS that defuses DoS attacks
via fine-granularity replication. We advocate software development
in a modular fashion, such that components can be moved and
replicated independently.

DeDoS provides a framework which allows programmers to con-
struct more resilient applications through the use of fine-grained,
modular components. Ideally, each component handles some small,
focused aspect of an application that may be vulnerable to resource
exhaustion. Example components include code for performing TLS
handshakes or HTTP requests parsing. Crucially, with DeDoS, pro-
grammers do not have to worry about most of the deployment
specifics: DeDoS offers an adaptive controller that makes real-time
decisions on placing these components within physical resources
(e.g., machines in a datacenter), and then adaptively clones, merges,
or migrates them in order to meet service-level agreement (SLA)
objectives. When SLA objectives are violated, this is treated as a
potential attack, and individual components that are overloaded
are replicated.

The DeDoS architecture offers two benefits for defending against
asymmetric attacks. First, the fine-grained components make it eas-
ier for the defender to deploy all available resources on all machines
against the attacker, exactly as needed. For instance, DeDoS can
respond to a TLS renegotiation attack by temporarily enlisting
other machines with only spare CPU cycles to help with TLS hand-
shakes. Second, the replication approach is not attack-specific and
can thus potentially mitigate unknown asymmetric attacks. Once
DeDoS recognizes that a component is overloaded or its through-
put appears to drop, it can respond by replicating that particular
component — without having seen the attack before, and without
knowing the specific vulnerability that the attacker is targeting.
This potentially allows a flexible and automatic response against
even mixed attacks [25].

Specifically, we make the following contributions:
Architecture and design. We present the DeDoS architecture,
outlining design challenges and our approach to create software
as a dataflow of minimum splittable units (MSUs). We describe the
API, communications, and synchronization components of DeDoS.

Our focus is on supporting new applications written in DeDoS’
API: as services become increasingly modularized, they can ei-
ther adopt the DeDoS API, or offload some critical functionality to
DeDoS to mitigate asymmetric DoS attacks. For the sake of complet-
ing our argument, we also demonstrate how existing applications
written in traditional or domain specific languages [26, 29] can be
entirely ported to DeDoS.

Dynamic adaptation. We present strategies for assigning MSUs to
physical machines, scheduling MSU executions assigned to threads,
and using a global controller to make decisions on cloning and
removing MSUs in the event of attacks.

Prototype implementation, case studies, and evaluation. As
motivating use cases, we deploy three applications using our pro-
totype implementation of DeDoS. These include a web server that
we develop from scratch using DeDoS’ dataflow API, and two ex-
isting software systems: a user-level transport library written in C
that we port over to DeDoS, and routing software written using a

H.M. Demoulin, T. Vaidya et al.

declarative domain-specific language [29] that we compile into a
DeDoS dataflow. Our evaluation results show that the overhead of
DeDoS is comparable to equivalent code executed outside of DeDoS’
runtime. Moreover, DeDoS is able to defend against a wide range of
asymmetric attacks, maintaining significantly higher throughput
for a much longer amount of time in the presence of changing
attacks, comparable to traditional replication strategies.

DeDoS is not intended to be a cure against all possible DoS
attacks. If an attacker can saturate a system’s network links or com-
pletely consume the defender’s resources, then the attack will still
succeed. The goal of DeDoS is to better manage available resources
to mitigate the attack. When it cannot completely defend against
an attack, it aims to delay the attack’s effects for as long as possible
— ideally to the point where a human operator can put in place a
longer term fix. DeDoS is also not a replacement or competitor of
specialized defenses, such as hardware SSL accelerators [14]. These
hardware-based approaches are more efficient than DeDoS because
they are tailored to a particular attack vector, but are less generic in
dealing with future unknown attacks (or combinations of attacks).

2 MOTIVATING EXAMPLE

We consider a 2-tiered web service hosted in a data center, where
an HTTP server queries a database server in response to users’
requests. The attacker launches a TLS renegotiation attack [1] that
consumes CPU cycles on the HTTP server. Hence, legitimate re-
quests are being served very slowly, or not at all. In this typical
asymmetric attack, the attacker is unable to overwhelm the de-
fender’s network bandwidth, but succeeds by exhausting other
resources (here, CPU cycles).

Our goal is to automatically mitigate such an attack, even if it
has a new attack vector, and to maintain quality of service (QoS) to
the legitimate clients. DeDoS is not specifically designed to defend
against brute-force volumetric attacks that saturate a data center’s
ingress link, or exploits that take over data center machines.

2.1 Strawman solutions

One possible defense against DoS attacks is to filter or block suspi-
cious network traffic — either based on source addresses, specific
traffic content or other traffic characteristics. However, this relies
heavily on request classification, thus is susceptible to false posi-
tives and negatives. Moreover, it is difficult to differentiate between
legitimate spikes in traffic and actual attacks.

Another approach is to increase resource capacity via replication.
For instance, to handle a TLS renegotiation attack, an operator can
launch more web server VMs to sustain more connections. This
defense does not depend on accurate attack detection, but it can
be inefficient. In the TLS renegotiation example, even though the
attack is limited to the key generation logic (and thus stressing CPU
usage on the host), naive replication replicates the entire web server,
unnecessarily wasting non-affected resources such as memory.

2.2 DeDoS solution

We observe that overall, data centers machines are under utilized [11],
but current software architectures cannot effectively use them. In
our example, the database servers’ CPUs will be mostly idle while

DeDoS: Defusing DoS with Dispersion Oriented Software

the web servers’ CPUs are overwhelmed. If the former’s CPUs were
able to alleviate the load on the latter’s by contributing their com-
putational power, the capacity at the bottleneck (TLS handshake)
would increase.

Achieving this requires designing application stacks as smaller
functional pieces that can be replicated and migrated independently.
This additional flexibility would enable an attacked service to use all
of the available datacenter resources for its defense by temporarily
enlisting other machines running different services, resulting in a
substantial increase in the service’s capacity and achieving better
QoS for legitimate clients.

For example, in TLS renegotiation, instead of replicating the
entire web server, we can instead replicate only the key genera-
tion logic. If the database servers have spare CPU cycles, they will
be able to accommodate execution of this logic and alleviate the
CPU bottleneck caused by the attack. In contrast, naive replication
would not work when the database servers lack the entire set of
resource required to run additional HTTP servers. In other forms
of asymmetric attacks that exhaust other types of resources (e.g.
memory), one can adopt the same approach, in this case, replicating
the memory intensive component into other machines that have
spare memory.

3 DEDOS DESIGN

A DeDoS application consists of several components called mini-
mum splittable units (MSUs) (Figure 1). Each MSU is responsible for
some particular functionality. For instance, a web server might con-
tain an HTTP MSU, a TLS MSU, a page cache MSU, etc. (Figure 1a).

Related MSUs communicate with each other. For instance, HTTPS
requests may enter the system at a network MSU, be decrypted
by the TLS MSU, and parsed by the HTTP MSU. Collectively, the
MSUs form a dataflow graph that contains a vertex for each MSU
and an edge for each communication channel (Figure 1b).

Each DeDoS deployment contains a central controller which
provides an API for programmers to deploy their application. The
controller can either receive a pre-computed allocation, or perform
an initial allocation plan to decide how many instances of each
MSU should exist, and which machines they should run on, based
on the requested performance requirements and available resources
(Figure 1c).

Additionally, the controller continuously collects runtime statis-
tics about available resources and the performance of each MSU. If
it detects that some MSU instances are overloaded (e.g., due to an
unknown attack; Figure 1d), it can create additional instances of
these MSUs, placing them on machines where resources are still
available (Figure 1e). Thus, the data center can defend itself against
the attack with all available resources, not merely the ones that
happen to be “in the right place”

3.1 Minimum splittable units

When designing an application for DeDoS, the question of defining
the granularity and boundaries of MSUs arises. While smaller MSUs
can result in a more precise response during an attack—since it
allows DeDoS to replicate only the functions that the adversary
is actually targeting—too small and numerous MSUs can result in
unacceptable overheads because of the delay introduced on the

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

execution path. This tradeoff has already been unveiled in the past
with, for example, the fall of mainframe computers and the rise of
microservices [16, 19].

The general approach we advocate is based on the microservices
design [31]: MSU split points are appropriate when there are loose
couplings between components, functional domains are clearly
encapsulated, and individual components are provably stables.

For known attacks, it is also advantageous to purposefully de-
marcate MSUs to most optimally respond to the potential attack.
For example, to protect against a SYN flood, the portion of the TCP
stack that handles TCP connection state could be isolated into its
own MSU.

However, a key benefit of DeDoS is that it does not require
apriori knowledge of the attacks it defends against. Hence, in many
instances, programs may not be perfectly spliced to optimally match
a novel attack. Indeed, this is our expectation and observation in
practice. In such instances, MSUs may contain features unrelated to
the attack, resulting in non-optimal resource allocation. However,
we emphasize that such duplication will always be preferable and
is very likely far better than naive replication. In general, we posit
that splitting software components following a microservices-like
programming paradigm will yield significant protection against
DoS while incurring limited overheads. We empirically measure
these overheads in a number of applications, constructed using this
design pattern, in §7.

3.2 Inter-MSU communication

MSUs communicate with each other by exposing an API that can
be called by other MSUs. The API functions are asynchronous
and one-way. This enables efficient event-driven implementations
(analogous to SEDA [39]). If a call needs to return a value, this is
handled by another call in the reverse direction.

Communicating MSU instances can reside on different machines.
DeDoS makes this transparent to the MSUs by injecting a bit of
“glue code” that converts calls into a local function call (if the callee
is on the same machine) or a network packet (if the callee is remote).

3.3 Routing tables

When an MSU instance of type X wants to invoke a function on an-
other MSU of type Y, X does not need to know where the instances
of Y are currently located. DeDoS handles routing by maintain-
ing a routing table, configured by the controller, which contains
information about MSU types and implements customizable load
balancing policies and routing functions. By default, DeDoS spreads
the load evenly among MSU instances of the same type, enforcing
instance affinity to related packets (e.g., from the same flow or user
session). As we show below, we can extend this policy to implement
queue-length based routing.

3.4 DeDoS runtime API

So far, we have treated the dataflow graph as largely static. However,
the controller can also dynamically create new MSU instances. To
make this possible, each machine in a DeDoS deployment runs the
DeDoS runtime. When it is first started, the runtime process is an
empty shell: it contains the code for all the MSUs that the system
could create, but none of this code is active yet. The runtime listens

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

H.M. Demoulin, T. Vaidya et al.

E (E)

e ©
" T

A &)

® =

(a) Software built using MSUs (b) Graph of MSUs (c) Normal schedule

(d) System under attack

(e) System after MSU C has been cloned

Figure 1: Example use case of DeDoS. The software is built using MSUs (a), represented as a dataflow graph (b). MSUs are then scheduled on the
available machines (c). When an attacker attempts to overload one of the components (d), DeDoS disperses the attack by generating additional

instances on other machines (e).

for commands from the controller. The add command creates a new
MSU instance, while remove deletes one. Those operations involve
adjusting the routing table of connected MSUs. MSU also expose an
API, to execute their main function, or access their internal state.
The full API is documented online [8].

3.5 Support for existing applications

DeDoS is a new platform which aims at improving applications’
resilience from the very beginning of their development process.
Consequently, our focus is on enabling new applications using
DeDoS’ model. Nevertheless, we do not require applications to
be written from scratch in order to benefit from DeDoS’ defense
mechanisms. We provide a proof of concept in our case study (§6)
by splitting a user-level TCP stack into MSUs. Since DeDoS does not
require the entire software to be partitioned, rewriting existing code
can start small by only carving out the most vulnerable component
while the rest of the application runs as a single MSU.

We note that it is possible to — partially or fully — automate the
partitioning. Some domain-specific languages are already written in
a structured manner that lends itself naturally to this approach. For
instance, a declarative networking [29] application can be compiled
to an MSU graph that consists of database relational operators and
operators for data transfer across machines (see §6). Work in the
OS community [19] has shown that even very complex software,
such as the Linux kernel, can be split in a semi-automated fashion.

4 RESOURCE ALLOCATION

To ensure that the applications meet their SLAs, DeDoS needs a
way to make and enforce resource allocations to MSU instances at
runtime. DeDoS performs resource allocation at two layers: each
machine schedules MSU instances locally based on their resource
needs, whereas a central controller is responsible for decisions re-
quiring a global view, such as cloning or merging MSU instances.
To enable runtime adaption, each machine has an agent that con-
tinuously monitors local MSUs, periodically submits statistics to
the controller, and is responsible for handling the controller’s com-
mands.

4.1 Machine-local scheduling

When an application is divided into a large number of fine-grained
MSUs, switching from one MSU instance to another is a very fre-
quent operation, and we cannot afford to enter the kernel every

time. Because of this, we privilege user level scheduling and context
switching, using a set of kernel threads that are each pinned to a
particular core. This approach has the additional advantage that it
does not require changes to the kernel.

DeDoS schedules MSUs at the granularity of events. On each
core, DeDoS maintains a local scheduler, and a “data queue” for
each of the local MSU instances, which stores the incoming mes-
sages. Whenever the core is idle, the scheduler thread picks an MSU
instance according to a chosen policy, picks a message from that
MSU instance’s data queue, delivers that message, and waits for the
MSU instance to finish processing it. Scheduling is partitioned and
non-preemptive—cores do not “steal” messages from other cores
and they do not interrupt MSU instances while they are processing
messages. Partitioned scheduling avoids inter-core coordination in
the general case and thus keeps context-switching fast.

By default, DeDoS uses a round-robin policy, which picks at
most r; messages from data queue i and then moves on to data
queue i + 1. The parameters r; can be adjusted by the controller at
runtime, e.g., based on the relative load of the MSU instances. We
design worker threads such that each can implement specialized
policies (e.g., Earliest Deadline First — EDF).

4.2 Initial MSU assignment

When a DeDoS deployment is first started or a new application
is launched, the controller finds an initial assignment of MSU in-
stances to machines, such that the application’s SLA goals (through-
put and end-to-end latency) are met. The assignment must be fea-
sible: each machine must have sufficient resources (e.g memory)
to execute the MSU instances that are assigned to it. To find such
an assignment, we can formulate them as constraints and use an
existing solver or bin-packing heuristic.

Since the controller cannot predict the effects of future attacks,
the computed assignment only maintains the SLAs in the absence of
an attack. However, the controller monitors the system at runtime,
using the statistics that are submitted by the agents. If it detects that
the SLAs are being violated (e.g., due to a DoS attack), it adjusts the
assignment to mitigate the effects of an attack, using the process
we describe next.

4.3 Cloning and merging
The controller supports customizable cloning and merging policies.
The DeDoS native heuristics (i.e., default policies) operate by ana-

lyzing the collected metrics; forming a decision about whether to
clone, merge, or do nothing; and executing the chosen action.

DeDoS: Defusing DoS with Dispersion Oriented Software

Global Controller

Local Agent

i

Worker threads

Local Agent

Local Agent

Worker threads Worker threads

Figure 2: DeDoS architecture. A controller manages local runtimes
(represented by dotted boxes).

As native policies, the controller attempts to clone an MSU if its
minimum reported queue length is greater than 0. The rationale
here is that the system is provisioned such that the expected ar-
rival rate is sustained, and in such conditions, no queue should be
built for any of the MSU instances. In addition, if all runtimes are
utilizing more than a configurable percentage of a resource (e.g.,
memory) and an MSU type accounts for a configurable percentage
of a runtime’s utilization of that resource, the controller will begin
to clone MSUs of that type. This latter policy targets the system’s
bottlenecks by increasing parallelization.

Once the decision to clone is made, the controller picks a satisfy-
ing machine for the new instance, favoring locality with the clone’s
neighbors in the dataflow graph. A local machine is best to mini-
mize network communication. Once a machine has been elected,
the controller picks the least loaded core which does not already
host an instance of the same type, and contacts the machine’s agent
to spawn the instance. The controller also updates all the relevant
routing tables to enforce the load balancing policy in place for this
MSU type.

An attempt to clone will fail if it is not possible to place the
clone on any available runtime or if the same type of MSU has been
recently cloned.

The controller removes cloned MSU instances when they are no
longer needed (e.g., when an attack ends). Two conditions must be
met for an MSU to be removed. First, the last runtime where a clone
has been placed must report a maximum queue length of 0 in the
last monitoring interval (following the rationale described earlier);
second, the MSU type must not be significantly contributing to
more than a configurable percentage of a resource consumption
on any runtime. An attempt to remove will fail if an attempt to
clone an MSU of that type was made in the recent past (to protect
against system oscillation), or if some configurable amount of time
has passed since the last removal of that type.

5 IMPLEMENTATION

The DeDoS implementation consists of 10K lines of C code, and is
available on GitHub [8] under GPLv3.

5.1 Overview

Our prototype (Figure 2) consists of two key components: a con-
troller that orchestrates all other machines and a local runtime
running on each machine.

Controller: The controller performs load balancing and responds
to DoS attacks. It takes as input DeDoS applications in the form of a

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

graph and assigns MSUs to machines based on the placement algo-
rithm described in §4. MSU cloning is on-demand and automated.

We set the following default parameters for DeDoS management
policies (see §4.3): the controller clones an MSU type if all runtimes
are utilizing more than 40% of the memory or file descriptor (FDs)
pool, and the type accounts for at least 50% of its runtime utilization
of that resource; for removal, the MSU type must not be contributing
more than 40% of the memory or FDs pool on any runtime. Removal
fails if an attempt to clone an MSU of that type was made in the last
20 seconds, or if less than 5 seconds elapsed since the last removal
of that type or its dependencies. Those parameters are based on
our domain expertise of how our testbed performs.

The controller also establishes routing policies. Within a route
toward an MSU type, endpoints are weighted proportionally to the
ratio of all requests enqueued for that type, over the endpoint’s
queue length (effectively the inverse of the occupancy ratio of the
endpoint). This allows DeDoS to load balance requests across all
instances of a type.

Local runtime: Each local runtime schedules and executes MSUs.
With some notable exceptions explained below, the local runtime
maintains a POSIX thread for each CPU core, which schedules
the MSUs for execution. The specific MSU-to-thread bindings are
determined by the controller.

Controller-runtime communication: Each runtime maintains
long-lived TCP connections to the controller and every other run-
time instance. These connections are carried over an isolated man-
agement network, and are used to manage MSUs and to pass data
between remote MSUs. Additionally, the local agent at each run-
time periodically gathers MSU and system statistics (such as queue
length, execution time, number of file descriptors in use, etc) that
are then sent to the controller.

5.2 DeDoS local runtime

The internal design of the DeDoS runtime consists of MSUs, worker
threads, and local agents.

MSUs: MSUs are constructed as a collection of C/C++ functions
with a well-defined API. Each MSU maintains a data queue that
contains incoming requests. MSUs are executed within worker
threads (explained next) that persist in the local runtime. As output,
an MSU may enqueue messages onto the data queues of other MSUs.
This is handled by efficient pointer manipulation when source
and destination are co-located, or by long-lived TCP connections
otherwise.

Worker threads: DeDoS proposes to either pin POSIX threads to
CPUs or not. Pinned threads are used for operations that avoid
blocking system calls, such as reading from non-blocking sockets
or TCP state table manipulation. A pinned worker thread may be
assigned multiple MSUs (its MSU pool). Pinned workers do not
involve the kernel’s scheduler and allow DeDoS’ operator to im-
plement their own scheduling MSU-aware algorithm. Pinning also
maximizes CPU utilization and reduces cache misses that would
otherwise occur if MSUs were migrated between cores.

In more detail, pinned threads run a scheduler (§4.1) that contin-
uously (1) picks an MSU from its pool, (2) executes it by dequeuing
one or more item(s) from its data queue and invoking the execute

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

function of the MSU’s API, and (3) repeats. Pinned threads currently
schedule MSUs in a round-robin fashion.

In our current implementation, we assign MSUs that have block-
ing operations (e.g., disk I/O) to their own non-pinned threads, such
that they are scheduled by the Linux kernel as generic kernel-level
threads. In later versions of DeDoS, we anticipate supporting MSU
preemption and resumption, which will allow blocking MSUs in
the MSU pools of pinned threads.

Each worker thread keeps statistics on resource usage of each of
its MSUs, and global metrics such as their data queue lengths and
number of page faults. In addition, MSU’s API allow programmers
to implement custom metrics (e.g., frequency of access of a given
URL in an HTTP MSU). Those statistic are then gathered by the
local agent (explained below) to be sent to the controller.

Finally, each worker thread periodically runs an update man-
ager that processes the thread’s thread queue. Unlike the MSU data
queues, the thread queue is solely for control messages, and is
itself populated by the local agent. It stores requested configura-
tion changes such as creating and destroying MSUs. In effect, the
thread queue serves as a buffer of requested changes, and avoids the
overhead of locks and other consistency mechanisms that would
otherwise be required if the local agent directly manipulated the
worker threads’ data structures.

Local agents: Each runtime operates a local agent in its main
thread. The local agent is responsible for communicating with the
controller and other DeDoS runtimes over long-lived TCP connec-
tions. In particular, the local agent receives commands for configura-
tion changes from the controller and routes them to the appropriate
worker threads. In addition, at a configurable interval which we set
to 100ms, the local agent gathers statistics from all the threads and
forwards them to the controller.

6 CASE STUDIES

We demonstrate the feasibility and applicability of DeDoS by con-
sidering three case studies: a web server written using DeDoS’
MSU interface; an existing userspace protocol stack ported to De-
DoS; and an application written using a declarative domain specific
language [29] that has been translated into a DeDoS dataflow.

Web server. For our first case study, we implemented a simple web
server constructed as five MSUs. The I/O MSU accepts incoming
requests and steers them toward the Read MSU, which performs the
TLS handshake, deciphers data, and relays plaintext to the HTTP
MSU. The HTTP MSU implements Node]S’s HTTP Parser [24].
Once the request is parsed, the HTTP MSU issues a call to the
database tier to retrieve some object file, then enqueues the request
to a Regex Parsing MSU, which uses the PCRE engine to parse it.
The final HTTP response is sent to the Write MSU, which wraps it
in a layer of TLS and sends it back to the client. We use OpenSSL
version 1.0.1f for TLS support in both Read and Write MSUs.
Importantly, with the exception of the I/O MSU, all of the web
server’s MSUs are event-driven and non-blocking. We favor non-
blocking MSUs to augment the overall utilization of our machines.
To avoid having to migrate socket states between machines, we
configured the controller to enforce that the I/O, Read, and Write
MSUs reside within the same DeDoS instance for a given client
connection. We use HAProxy [38] as a front-end load balancer,

H.M. Demoulin, T. Vaidya et al.

allowing us to direct incoming client connections to any I/O MSU
on any DeDoS instance.

Our web server leverages DeDoS’ fine-grained modular architec-
ture to mitigate DoS attacks. In §7, we demonstrate the resilience
of our application against three DoS attacks: TLS renegotiation
attacks [1], ReDOS attacks [3], and HTTP SlowLoris attacks [37].

Userspace network stack. Our second case study consists of an
existing software project that we ported to run on DeDoS with min-
imal effort. PicoTCP [34] is an open-source userspace TCP stack
written in approximately 33, 000 lines of C code (as reported by
SLOCCOUNT). We chose PicoTCP since it is well-structured and writ-
ten in a modular fashion, making it easy to manually determine
cut-points (i.e., to form MSUs).

We have separated out a standalone handshaking MSU from
PicoTCP. When a SYN flood attack occurs, the TCP Handshake MSU
is replicated into multiple copies on the same or different machines.
Load-balancing across these clones is achieved by using a consistent
hashing scheme within the PicoTCP MSU: based on a hash over
the incoming packet’s four-tuple (source and destination addresses
and ports), DeDoS performs load-balancing by distributing the
handshaking requests (in the form of SYN, SYN/ACK, ACK packets)
to the various TCP Handshake MSU instances. Packets belonging
to the same three-way handshake (e.g., the client’s SYN and ACK)
are routed towards the same TCP Handshake MSU, obviating the
need to transfer state.

Given the modular nature of the PicoTCP code, separating the
TCP stack into separate MSUs was fairly straightforward. The bulk
of our efforts lay in wrapping PicoTCP’s “main loop” within an
MSU to allow DeDoS’s runtime’s scheduler to execute the MSU
according to its scheduling policy. Within the PicoTCP MSU, we
added functionality to re-inject SYN-ACKs generated by Handshake
MSUs into the PicoTCP stack for them to be sent back to the client,
and code to restore TCP state received from Handshake MSUs
(for successful connections) into PicoTCP’s internal TCP state data
structure.

In summary, with only minor modifications, we transformed the
monolithic PicoTCP application into a DeDoS-enabled version in
which handshake components could be replicated on demand, both
within the local machine and on remote DeDoS instances. Overall,
we changed less than 0.1% of PicoTCP’s original codebase.

Declarative packet processing. We also consider an application
that is written in a domain specific language. We select an ap-
plication that does routing (packet forwarding), written entirely
as a declarative networking [29] program. Declarative network-
ing programs are written in a variant of Datalog called Network
Datalog (or NDlog). An NDlog program consists of a set of rules,
where each rule is of the form h :- b1,b2,. . ., bn, indicat-
ing that a head tuple is generated so long as all body tuples b1, b2,
..., bn are available. For example, the rule packet(@Y,A,Data) :-
packet (@X,A,Data), Neighbor(@X,A,Y) results in all packets
arriving at X being forwarded to neighbor Y based on some at-
tribute A (e.g., the packet’s header data). Declarative networking
has been adopted for network forensics, datacenter programming,
and overlay routing.

Since these programs have their roots in the database relational
model, they can be compiled into an MSU dataflow of relational

DeDoS: Defusing DoS with Dispersion Oriented Software

--- PicoTCP
— DeDoS

10

Connection latency (ms)

10 100

50
Number of good requests per second

Figure 3: Connection latency for standalone PicoTCP and DeDoS-
enabled PicoTCP (“DeDoS”).

operators. For example, the body tuples are executed as a series of
pair-wise database join operations, additional filters in the form of
selection operators, and the head tuple is generated as a projection
operator. The generated tuple may be sent to the same or different
machine using DeDoS. We find such automatic translation to be a
promising method of adopting existing applications to DeDoS.

7 EVALUATION

In this section, we aim to answer two high-level questions through
several sets of experiments: (1) does DeDoS run with reasonable
overheads in normal operation, and (2) how well can DeDoS defend
against asymmetric DoS attacks, as compared to whole-system
replication? Our experimental testbed consists of a cluster of 8
machines connected via a 10 Gbps switch in a star topology. Each
machine has 8 1.80 GHz cores (with hyperthreading and DVFS
disabled), 64 GB of memory, and runs Linux kernel 4.4.0-62. We
note that a video demonstration of DeDoS is available online [2].

7.1 Overheads

To measure the overhead introduced by the DeDoS runtime during
normal operation, we run two applications described in §6 within
and outside of DeDoS on a single server machine.

Web server: We compare a DeDoS web server to a standalone web
server with the same implementation but compiled as a monolithic
application outside of DeDoS. Our workload consists of HTTPS
requests generated by Tsung [4] at an exponentially distributed
rate for a period of five minutes, with a mean of 2500 requests
per second (r/s). We average latencies over intervals of one sec-
ond. The standalone webserver has mean latency of 43ms, and
1.8ms standard deviation. DeDoS’ webserver has a mean latency of
48.5ms and 12.3 standard deviation. This accounts for a mean 10.5%
overhead introduced by DeDoS, which is caused primarily by the
enqueuing and dequeuing of data across MSUs. Because in their
current implementation, worker threads on DeDoS do not “steal”
work from remote queues, there are some rare instances of MSUs
sitting idles while others are building a queue, hence the higher
number of outliers with DeDoS.

PicoTCP: We compare a DeDoS-enabled version of PicoTCP to
the standalone monolithic (“vanilla”) version. The DeDoS-enabled
version uses a single worker thread on a single runtime and has
two MSUs: a handshake MSU and the remainder of the PicoTCP
stack as a separate MSU. As an application, we use a simple echo
server that mirrors back incoming requests.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

We consider connection latency, the time required to complete
a TCP handshake as measured by the client. We measure the con-
nection latency over a 15-minute period. During this time, the
client continuously creates new TCP connections at a steady rate,
sends (and receives) 32 bytes of data, and disconnects. Figure 3
shows the distribution of connection latencies for the vanilla and
DeDoS-enabled versions of PicoTCP under different client request
rates. The DeDoS-enabled version incurs a modest 5.5% increase in
connection latency.

Next, we measure the throughput that both TCP stacks can
achieve. We create a number of different clients that simultaneously
access the echo server. Each client repeatedly sends and receives
1024 bytes, with a 10ms pause between transmissions. We observed
that there is no significant difference between the throughput that
both stacks can achieve. PicoTCP and DeDoS both reached their
maximum bandwidth of 57.66 Mb/s and 57.71 Mb/s respectively
around 100 simultaneous connections and the throughput remained
similar for more than 100 simultaneous connections. (The absolute
numbers are low because PicoTCP is a userspace network stack,
designed for portability instead of maximum performance. Our goal
here is to measure the overhead of the DeDoS runtime.)

Overall, our results suggest that running applications within the
DeDoS runtime does not significantly change the throughput or
the latency it can achieve.

7.2 Attack mitigation

To evaluate the efficacy of DeDoS in mitigating DoS attacks, we
launch ReDOS, TLS renegotiation, SlowLoris, SYN flood, and a
volumetric flood attack against our applications. The first three are
launched on the webserver, while the latter two are on PicoTCP
and an NDlog program respectively.

7.2.1 Attacks against webserver . We configure our testbed for
attacks against our webserver as follows: the webserver is deployed
on three machines while three other machines run instances of
an in-memory database. All web requests access the database, and
HAProxy is used to distribute HTTP and database requests. The
remaining two machines are used to generate legitimate (“good”)
and attack traffic respectively. To demonstrate DeDoS’ ability to
defend against changing attacks and reclaim resources, under dy-
namic traffic patterns, we run a two hours long experiment during
which attack durations are randomly distributed. Good traffic is
generated by Tsung, and exponentially distributed. We simulate
diurnal variations by setting Tsung’s distribution mean at 1500 r/s,
and increasing by slices of 500 r/s up to 3000 r/s, at which point
it gradually decreases back down to 1500 1/s. Tsung’s requests are
configured to time out after 1s if they cannot connect. When no at-
tack occurs, clients experience average latencies of 50ms. For attack
traffic, we develop a C client which generates malicious ReDOS
and TLS renegotiation requests, and use an existing Python-based
SlowLoris [20] attack tool.

Figure 4 shows our main findings for different attacks on the
HTTP servers for a single run of the experiment than ran contin-
uously for 2 hours. The top figure shows response times for suc-
cessful connections averaged every second, while the middle figure
presents the connection success rate during this experiment. The
bottom figure shows the number of MSU instances of a given type

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

deployed on the system over time. Attacks occur during the period
colored in red. We compare DeDoS to two other approaches: (1) an
approach that does not replicate at all under attack (“standalone”),
and (2) an approach that naively replicates an entire webserver to
one of the database servers when under attack (“naive”). Initially,
the DeDoS’ webserver has 4 Read and 2 Regex MSUs on each of
the three starting machines.

During the entire course of the experiment, DeDoS is auto-

piloting without inputs from human users. We observe that DeDoS
can accurately detect and react to the injected attacks based on the
resource allocation polices described in §4 without apriori knowl-
edge of the attacks. DeDoS can consistently and automatically de-
cide on an effective mitigation strategy against different types of
attacks. Figure 4 shows that DeDoS consistently outperforms stan-
dalone and naive approaches, and sustains low latency and high
response rate while standalone and naive can only provide limited
or sporadic services.
TLS renegotiation attack: This attack consumes the victim’s CPU
by having malicious connections repetitively triggering TLS hand-
shakes. In our setup, a single handshake requires about 2.1ms com-
putation time (we use a 2048-bits RSA key), and every malicious
request triggers 100 renegotiations before closing. During the first
TLS renegotiation attack in Figure 4, the attacker increases the
strength of the attack from 1 to 100 r/s over a period of 13 mins.
At the start of the attack, standalone performs better than DeDoS
until CPUs get overwhelmed by attack requests (around 75 r/s);
it increases the average latency for good requests to the order of
seconds. Naive replication performs even worse and causes connec-
tion success rate to drop to almost 0% once the entire webserver
has been replicated to the database machines. This is due to paging
that occurs on the database server as a result of the additional mem-
ory footprint imposed by the cloned webserver. Even successful
connections experience latency on the order of tens of seconds.

During the attack, DeDoS’ controller observes abnormal levels of
pending requests in the system, and gradually increases the number
of Read MSUs from 12 to 39 (1 more on each original machine, plus
8 per database machine). Unlike naive replication, Read MSUs have
a low memory footprint and do not cause paging on the database
machines. This results in average latency of 70ms for good requests
during attack.

Once the attack stops, the DeDoS controller observes that the
conditions explained in Section 4.3 are met, and reclaims resources
by tearing down the cloned MSUs.

The second TLS attack in Figure 4 shows the performance of
DeDoS under a steady state attack with 100 r/s instead of a grad-
ual increase in attack strength. Under this relatively hight attack
strength, CPU resources for standalone are quickly overwhelmed,
and connection success rate for good clients falls to 50% with 3s
latency on average. DeDoS applies the same policies for resource
management, maintaining 39 Read MSUs, and while its perfor-
mance drops momentarily, it manages to serve good clients with
an average latency of 70ms.

ReDOS attack: In this attack, each malicious request issues a com-
plex regular expression operation that exploits a PCRE vulnerabil-
ity [7], requiring approximately 100ms of computation time. The
first ReDOS attack increases attack strength from 1 r/s to 200 r/s
and lasts 9 mins. Similar to TLS renegotiation, standalone initially

H.M. Demoulin, T. Vaidya et al.

does better than DeDoS until CPUs are overwhelmed by malicious
requests. On the other hand, DeDoS gradually increases the num-
ber of Regex MSUs (up to 27 new instances) and maintains 100%
success rate, but with an increased average latency of 150ms. We
observe much less variations in the number of Regex MSU than
Read MSU because of the nature of the workload: TLS handshakes
are much shorter, and performed over non-blocking I/O, while the
regex parsing operating cannot be preempted by DeDoS. The sec-
ond ReDOS attack is performed at a steady rate of 200 r/s over
11mins. Standalone clients almost instantly experience average la-
tencies on the order of seconds after the attack is launched. DeDoS,
while initially overwhelmed as well, quickly recovers by spawning
27 new Regex MSUs, managing to keep the latency on the order of
tens of milliseconds.

HTTP SlowLoris: This attack targets the connection pool of the
webserver by exhausting the file descriptors (FDs) available for the
process. The attack works by opening a connection to the server,
and slowly sending HTTP headers one after the other, at such a
pace that the server keeps each connection open for a significantly
longer time than usual. We configure our kernels to allow each
process to open 2! concurrent FDs (from an initial value of 210).
We configure the attack tool to open up to about 41K concurrent
connections to the webserver during 17mins. Standalone is able to
withstand the attack until the FDs limit is reached (in about 220
seconds). Then the connection success rate quickly drops to about
3 1/s, and the good requests experience a sharp increase in latency,
since the webserver threads are kept busy with processing HTTP
headers that are continuously sent from malicious clients. DeDoS,
on the other hand, is able to spawn 22 new Read MSUs on each
of the database server, increasing its global file descriptors pool,
and allowing it to sustain 100% successful connection rate. Due to
paging, naive is unable to respond to a majority of the connections.

7.2.2 Additional attacks. In addition to the attacks discussed on

the web server, we discuss two more attacks and their mitigation
using DeDoS.
SYN flood attack: Our SYN flood experiment consists of a num-
ber of “good” (i.e., non-attack) clients accessing an echo server
built on top of PicoTCP. Each good client attempts 10 requests per
second, where each request establishes a TCP connection, sends
and receives 32 bytes of data, and then closes the connection. A
TCP connection is considered successful only if the handshake
completes within 60 seconds. The SYN flood is launched after one
minute of normal traffic, runs for three minutes, and then stops. We
use HPING3 to launch SYN flood attacks and vary the intensity of
the flood. The experiment continues for an additional two minutes
(during which no attack occurs) to observe the recovery period.

Since under normal conditions, an application’s use of TCP is
tightly coupled to (i.e., inseparable from) the machine’s local net-
work stack, standalone PicoTCP is assigned a single process on a
single machine. We set the size of its connection buffer to 1MB,
corresponding to 26,214 pending connections. We note that this
limit is significantly larger than the 2'° pending connection limit
offered by default on Linux.

In contrast, DeDoS can mitigate a SYN flood by cloning MSUs,
potentially on other hosts. Our DeDoS-enabled version of PicoTCP
consists of separate MSUs for performing the handshake and for

DeDoS: Defusing DoS with Dispersion Oriented Software

Slowloris

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Redos TLS

Latency
(ms)

—e— Naive —=— Monolithic

- 105
E
E 103

Response
Rate

- 0 I write [regex Il http [read Hl socket
:: a [oA e Y —————\ N W 50
St 0
0 Time (min) 120

Figure 4: Requests latency and success rate during TLS renegotiation, ReDOS, and SlowLoris attacks on the web server.

-
N
o
e

o
100 8
C
80 Y
— Success % ‘G_.)
- - Attack Window H 60
*|ee. PicoTcP Q
40 2
3
20 9
o3
120 @
o
100 8
]
T
© 30000 uccess]
o
2 @
t; [
[)
£ S
& @
o 0 50 100 150 200 250 300 350 400

Time (seconds)

Figure 5: Handshake latency of good clients under a SYN flood (2000
SYNs/sec) with standalone PicoTCP (top) and DeDoS with 3 Hand-
shake MSUs (bottom). Vertical lines denote the start and end of the
SYN flood. The right y-axis plots the good clients’ average percent-
age of successful TCP handshakes.

transferring data. Each instance of a Handshake MSU is provided
with a 1IMB connection buffer. We operate the PicoTCP MSU (the
non-handshake related portion of TCP) on a single machine that
also hosts the echo server. We use three other physical machines
in our cluster and spawn a maximum of three additional Hand-
shake MSUs per machine. To evaluate the efficacy of DeDoS, we
vary the number of Handshake MSUs (by manually overriding the
controller’s actions) and measure system performance.

We consider the success rate of TCP handshakes during the inter-
val between the first and last instances in which a TCP connection
failed, as observed by a good client. This reflects the steady state of
the attack and avoids the “ramp up” period in which the attack has
not yet become effective.

Our results show that DeDoS is able to provide superior ser-
vice throughout the attack. Figure 5 shows the connection latency
of good clients during a 2000 SYN/second attack. On the second
y-axis, we show the average percentage of successful TCP hand-
shakes (“success percentage”) computed over a two-second interval.
PicoTCP (top graph) fails to service good requests as soon as the
attack starts—the percentage of successful TCP handshakes almost
immediately drops to below 10%. The few connections that are
successful experience very high latencies (first y-axis).

100

"
o
=)

N
®
S
>
\

81.3

0
92.42
- 83.97 5517 9167
/' 84.98
13 76.71

69.3
62.2

@
o

Y
=)
o
&
£
(5

N
°

12.9

Success percentage in
steady state under attack
£
s
IS
5
i
o
w
Y
>

o—o 1000 SYNs per second
®=—a 2000 SYNs per second
e—e 3000 SYNs per second

7 8 9

=)
Ind
@
5]

6
Number of handshake MSUs

Figure 6: Percentage of successful TCP connections with varying
numbers of Handshake MSUs during a SYN flood.

3000 1.0
mm Standalone @ m
55001 DeDoS-Single'
== DeDoS-Clone B 0.8
7 b
£ 2000 9
X [T}
] N 069
= g
2 1500 o
£ g
S €
3 04%
£ 1000 g
[Q
500 _|_H 0.2
0 1" < 0.0

10 15 20 25 30 35 40
Number of clients

Figure 7: The throughput of the declarative packet processing appli-
cation when under DoS attack.

In contrast, with three cloned Handshake MSUs running on
the same physical host (bottom graph of Figure 5), DeDoS is able
to achieve an average success percentage of approximately 64%
during the steady state of the attack and recovers quickly after
the attack ends. (The stratified “bars” in the figure are due to TCP
retransmissions and TCP backoft.)

Figure 6 shows the scalability of DeDoS and the improved re-
sponse to various SYN floods with increasing resources. For a given
attack strength, DeDoS is able to serve more legitimate requests as
the number of handshake MSUs increases. Here, Handshake MSUs
are equally distributed across the cores on three physical machines.
Notably, we are able to completely mitigate the attack (as measured

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

by successful client TCP connections) for moderate attack rates of
1000 and 2000 SYNs/second with four and seven MSUs, respectively.
Declarative packet processing attack: In our final experiment,
we launched an attack against the declarative packet processing
application described in §6. We initialized the packet processing
application with a large in-memory neighbor table, rendering naive
replication too expensive in this case. Our workload consists of
a varying number of clients that forward packets via our appli-
cation. We increase the attack rate by using more clients to send
more traffic. Figure 7 shows the throughput (pkts/s) that can be
processed by (i) a standalone implementation, (ii) a DeDoS-enabled
application with cloning disabled, and (iii) a normal DeDoS-enabled
application. As before, the results show that standalone and DeDoS
achieve comparable throughputs (which indicates low overhead),
but that cloning enables DeDoS to handle roughly twice as many
clients during an attack.

8 RELATED WORK

Volumetric attacks: Most existing DoS defenses focus on volu-
metric attacks, e.g., the attack on Dyn’s DNS service [18]. Zargar et
al. [41] provides a detailed survey. These defenses are orthogonal to
DeDoS, whose main focus is asymmetric attacks. They are also com-
plementary to DeDoS, and can be deployed together: for instance,
we can deploy traditional traffic scrubbing as an initial defense to
filter out certain suspicious traffic, and then use DeDoS to handle
the attack traffic that cannot be easily recognized as suspicious;
moreover, the fine-granularity cloning strategy in DeDoS can also
help mitigate volumetric attacks as well.

Amplification attacks: Newer attacks, such as reflective denial-
of-service (DRDoS) attacks exploit network protocols to launch
amplification-based attacks [35]. DeDoS may be useful for defend-
ing against these attacks, and we plan to investigate this in future
work.

Dispersion-based defenses: DeDoS [13] is a type of dispersion-
based defense against DoS attacks. Load balancing strategies [27,
30, 32] can also disperse the effect of DoS attacks, but they tend
to require a significant amount of redundancy and is costly in
terms of resource management. DeDoS is also inspired by the Split-
Stack architecture [12]; relative to SplitStack, DeDoS comes with
novel schemes for resource management and automated cloning,
a concrete implementation, as well as a thorough experimental
evaluation.

Cloning-based defenses: XenoService dynamically clones web-
sites when they are under attack [40]. Bohatei [15] also dynamically
launches more VMs to defend against known attacks. Similarly, Jia
et al. [22] describe a technique that attempts to conceal the location
of replicated services from an adversary. All these approaches use
whole-system replication of services, which offers less protection
than DeDoS because of the significant resource waste. Unlike exist-
ing approaches, DeDoS does not attempt to recognize legacy attacks
and deploy pre-developed defenses; instead, DeDoS dynamically
responds to new attacks by cloning just the system components
that are under attack.

Function-as-a-Service and Micro-services platforms: DeDoS
is conceptually related to the trend toward fine-grained granularity

H.M. Demoulin, T. Vaidya et al.

decomposition of functions seen in FaaS platforms [17]. However,
those platforms [5, 6, 9, 10] have often constraints that make them
unsuitable for the deployment of stateful, long-lived services. Sim-
ilarly, DeDoS is not a Micro-services platform. We envision that
DeDoS can be integrated to those platforms.

9 CONCLUSION

DeDoS is a new approach to defending against asymmetric DoS
attacks. In DeDoS, software is built as a set of functional units called
Minimal Splittable Units (MSUs) that can be replicated indepen-
dently when under attack. DeDoS allows for more flexible allocation
of resources and can efficiently dedicate more resources to MSUs
under attack. Our evaluation shows that DeDoS runs with mod-
est overheads and constitutes an effective defense against several
state-of-the-art DoS attacks.

10 ACKNOWLEDGMENTS

This material is based upon work supported in parts by NSF Grants
CNS-1527401, CNS-1513679, CNS-1563873, CNS-1703936, CNS-1453392,
CNS-1513734, CNS-1704189, CNS 1750158, and CNS-1801884, as
well as by the the Defense Advanced Research Projects Agency
(DARPA) under Contracts No. HR0011-16-C-0056, No. HR001117C0047
and No. HR0011-16-C0061. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA or NSF.

REFERENCES

[1] 2011. SSL Renegotiation DoS. (2011). https://www.ietf.org/mail-archive/web/tls/

current/msg07553.html.

[2] 2017. DeDOS demonstration at SIGCOMM 2017. https://www.youtube.com/

watch?v=KX4EPnUzDgk. https://www.youtube.com/watch?v=KX4EPnUzDgk

[3] 2017. Regular expression Denial of Service - ReDoS. (2017). https://www.owasp.

org/index.php/Regular_expression_Denial_of Service_-_ReDoS.

[4] 2017. Tsung. http://tsung.erlang-projects.org/. http://tsung.erlang-projects.org/

[5] 2018. AWS Lambda. https://aws.amazon.com/lambda. https://aws.amazon.com/

lambda

[6] 2018. Azure functions. https://functions.azure.com. https://functions.azure.com

[7] 2018. Common Vulnerabilities and Exposures (see CVE-2015-8386). (2018).

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8386.

[8] 2018. DeDOS on GitHub. https://github.com/dedos-project/DeDOS. https:

//github.com/dedos-project/DeDOS

[9] 2018. Google Cloud Functions. https://cloud.google.com/functions.
[10] 2018. OpenWhisk. https://developer.ibm.com/openwhisk.

11] Luiz André Barroso, Jimmy Clidaras, and Urs Holzle. 2013. The datacenter as a

computer: An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture 8, 3 (2013), 1-154.
Ang Chen, Akshay Sriraman, Tavish Vaidya, Yuankai Zhang, Andreas Haeberlen,
Boon Thau Loo, Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and Wenchao
Zhou. 2016. Dispersing Asymmetric DDoS Attacks with SplitStack. In Proc.
HotNets.
[13] Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich, Nik Sultana, Bowen
Wang, Jingyu Qian, Yuankai Zhang, Ang Chen, Andreas Haeberlen, Boon Thau
Loo, et al. 2017. A Demonstration of the DeDoS Platform for Defusing Asymmetric
DDoS Attacks in Data Centers. In Proceedings of the SGCOMM Posters and Demos.
ACM.
F5. 2018. SSL Acceleration. https://f5.com/glossary/ssl-acceleration.
Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015. Bohatei:
Flexible and Elastic DDoS Defense. In Proc. USENIX Security.
Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers.
1997. The Flux OSKit: A Substrate for Kernel and Language Research. In Proc.
SOSP.
Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Balasubramaniam,
William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads.. In NSDI 363-376.

[12

— =
S

[16

[17

DeDoS: Defusing DoS with Dispersion Oriented Software ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

[18] Sean Gallagher. 2016. Double-dip Internet-of-Things Botnet Attack [30] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and
Felt Across the Internet. https://arstechnica.com/security/2016/10/ Scott Shenker. 2002. Controlling High Bandwidth Aggregates in the Network. In
double-dip-internet-of-things-botnet-attack-felt-across-the-internet/. Proc. CCR.

[19] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. Elphinstone, [31] Sam Newman. 2015. Building microservices: designing fine-grained systems. "
Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther. 2000. The O’Reilly Media, Inc.".

SawMill Multiserver Approach. In Proc 9th ACM SIGOPS European Workshop. [32] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
109-114. berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,

[20] Gkbrk. 2018. SlowLoris attack tool. https://github.com/gkbrk/slowloris. Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.

[21] Saikat Guha, Paul Francis, and Nina Taft. 2008. ShutUp: End-to-End Containment In Proc. SIGCOMM.
of Unwanted Traffic. Technical Report. Cornell University. [33] John Pescatore. 2014. DDoS Attacks Advancing and Enduring: A SANS Survey.

[22] Quan Jia, Huangxin Wang, Dan Fleck, Fei Li, Angelos Stavrou, and Walter Powell. Technical Report. SANS Institute.

2014. Catch Me if You Can: A Cloud-Enabled DDoS Defense. In Proc. DSN. [34] picoTCP 2018. picoTCP. http://www.picotcp.com/.

[23] Cheng Jin, Haining Wang, and Kang G. Shin. 2003. Hop-count filtering: an [35] Christian Rossow. 2014. Amplification Hell: Revisiting Network Protocols for
effective defense against spoofed DDoS traffic. In Proc. CCS. DDoS Abuse. In Proc. NDSS.

[24] Joyent Inc. and other Node contributors. [n. d.]. NodeJS HTTP Parser. https: [36] Fabrice J. Ryba, Matthew Orlinski, Matthias Wahlisch, Christian Rossow, and
//github.com/nodejs/http-parser. Thomas C. Schmidt. 2015. Amplification and DRDoS Attack Defense — A Survey

[25] Christine Kern. 2016. Increased Use Of Multi-Vector DDoS At- and New Perspectives. CoRR abs/1505.07892 (2015). http://arxiv.org/abs/1505.
tacks Targeting Companies. (2016). http://www.bsminfo.com/doc/ 07892
increased-use-of-multi-vector-ddos-attacks- targeting-companies-0001. [37] David Senecal. 2013. Slow DoS on the Rise. (2013). https://blogs.akamai.com/

[26] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. 2013/09/slow-dos-on-the-rise.html.

2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000), [38] Willy Tarreau. 2018. HA-Proxy load balancer. http://haproxy.com/.
263-297. [39] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for

[27] Soom Bum Lee, Min Suk Kang, and Virgil D. Gligor. 2013. CoDef: Collaborative Well-conditioned, Scalable Internet Services. In Proc. SOSP.

Defense Against Large-Scale Link-Flooding Attacks. In Proc. CONEXT. [40] Jianxin Yan, Stephen Early, and Ross Anderson. 2000. The XenoService — A

[28] Qi Liao, David A. Cieslak, Aaron D. Striegel, and Nitesh V. Chawla. 2008. Using Distributed Defeat for Distributed Denial of Service. In Proc. ISW.
selective, short-term memory to improve resilience against DDoS exhaustion [41] Saman Taghavi Zargar, James Joshi, and David Tipper. 2013. A Survey of Defense
attacks. Security and Communication Networks 1, 4 (2008), 287-299. Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks.

[29] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. IEEE Communications Surveys & Tutorials 15, 4 (2013), 2046-2069.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. 2009. Declarative networking. Comm. ACM 52, 11 (Nov. 2009), 87-95.

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

