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Abstract: Small area estimation often involves constructing predictions with an estimated model followed
by a benchmarking step. In the benchmarking operation, the predictions are modified so that weighted sums
satisfy constraints. The most common constraint is the constraint that a weighted sum of predictions is
equal to the same weighted sum of the original observations. Two benchmarking procedures for nonlinear
models are proposed: a linear additive adjustment and a method based on an augmented model for the
expectation function. Variance estimators for benchmarked predictors are presented and vetted through
simulation studies. The benchmarking procedures are applied to county estimates of the proportion of area
in cropland using data from the National Resources Inventory. The Canadian Journal of Statistics 46:
482–500; 2018 © 2018 Statistical Society of Canada
Résumé: L’estimation pour des petits domaines comporte souvent des prévisions formulées à partir d’un
modèle estimé, suivi d’une étape d’ajustement. Dans cette dernière, les prévisions sont modifiées afin que
leur somme pondérée réponde à des contraintes. La plus commune consiste à exiger que le résultat d’une
somme pondérée des prévisions soit identique au meme calcul effectué sur les données originales. Les
auteurs proposent deux méthodes d’ajustement pour les modèles non linéaires : un ajustement linéaire
additif et une méthode basée sur un modèle augmenté pour la fonction d’espérance. Les auteurs présentent
les estimateurs de la variance des prévisions ajustées et les évaluent avec des études de simulation.
Ils utilisent des données du National Resources Inventory pour illustrer les procédures d’évaluation en
estimant la proportion des superficies en culture au niveau des comtés. La revue canadienne de statistique
46: 482–500; 2018 © 2018 Société statistique du Canada

1. INTRODUCTION

Small area predictors based on random models are used to improve the mean squared error (MSE)
when direct estimators are judged unreliable for domains of interest. Random model predictors
are often constrained so that the weighted sum of the predictions is equal to the same weighted
sum of the direct estimates. In the context of small area estimation, the operation of imposing
the constraint is called benchmarking. Bell, Datta, & Ghosh (2012) and Pfeffermann, Sikov, &
Tiller (2014) review constrained estimation procedures for small area estimation.

Imposing a benchmarking constraint on small area predictors typically reduces the model
efficiency of the predictors relative to predictors constructed under a model-based optimality
criterion. An important reason to impose the constraint is that forcing the small area estimates
to sum to previously released estimates prevents users from obtaining inconsistent results.
Statistical reasons to impose the constraint relate to robustness and design-consistency. Imposing
the constraint may reduce the bias associated with an imperfect model (Pfeffermann & Barnard,
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1991). Benchmarking can also lead to design-consistent estimators for aggregations of small
areas. Our procedures are motivated primarily by situations in which benchmarking is an
operational requirement to ensure consistency with published estimates.

Wang, Fuller, & Qu (2008) define a class of benchmarking procedures that minimize
a criterion. The class encompasses the benchmarking used in Pfeffermann & Barnard (1991),
Battese, Harter, & Fuller (1988), and Isaki, Tsay, & Fuller (2000). You, Rao, & Hidiroglou (2013)
derive a second-order unbiased estimator of the MSE of the You & Rao (2002) self-benchmarked
predictor. Bell, Datta, & Ghosh (2012) discuss theoretical properties of a class of benchmarked
predictors for the linear model with known variances. They extend the Wang, Fuller, & Qu
(2008) estimators to enforce a vector of restrictions (instead of a single restriction) and derive
optimal benchmarked estimators using a quadratic loss function. Steorts & Ghosh (2013) derive a
second-order approximation to the MSE of the benchmarked empirical Bayes (EB) predictor in the
Fay & Herriot (1979) model and show that the increase in MSE due to benchmarking is the same
order as the estimation error. Ugarte, Militino, & Goicoa (2009) benchmark small area estimates
to a synthetic estimator. Datta et al. (2011) and Ghosh & Steorts (2013) develop a benchmarking
procedure for a general hierarchical Bayesian model. Pfeffermann, Sikov, & Tiller (2014)
develop a hierarchical benchmarking procedure for linear, cross-sectional time series models.

In linear benchmarking procedures, predictors may fall outside of the bounds of a restricted
parameter space (Ghosh, Kubokawa, & Kawakubo, 2015). A common approach to ensure
that the benchmarked predictors remain in the parameter space is to use raking (Pfeffermann,
Sikov, & Tiller, 2014). In the context of a lognormal area-level model, Ghosh, Kubokawa, &
Kawakubo (2015) specify a Kulback-Leibler loss function that leads to a raking adjustment. Berg
(2010) and Berg & Fuller (2009) consider multiple benchmarking restrictions in the context of
a nonlinear model. Nandram & Sayit (2011) incorporate the constraint in a Bayesian analysis
of a beta-binomial model. Montanari, Ranalli, & Vicarelli (2010) impose the benchmarking
restriction by adding the constraint to a penalized quasi-likelihood for a logistic mixed model.

We develop benchmarking procedures for a general class of nonlinear models. We consider
benchmarking procedures that are simple to implement, allow MSE estimation, and provide
predictions in the parameter space. In Section 2, we introduce the context, defining two classes of
nonlinear models. In Section 3, we present two benchmarking procedures for nonlinear models:
an additive adjustment and a procedure based on an augmented model. Section 4 contains
simulations for models in which the response variable is a proportion. In Section 5, we illustrate
the procedures using the proportion of cropland in Minnesota counties. Section 6 concludes with
issues to consider in application.

2. NONLINEAR AREA-LEVEL MODELS

We introduce two classes of nonlinear models that encompass many models used for small area
estimation. Examples of additive error models, the type of model defined in Section 2.1, include
the natural exponential quadratic variance function models of Ghosh & Maiti (2004) and models
satisfying the posterior linearity condition of Lahiri (1990). Generalized linear mixed models
(GLMMs) are in the class of non-additive error models, defined in Section 2.2. For the additive
error models, estimators are defined by first and second moments of the observations, while the
estimation procedures for the non-additive error models use full distributional assumptions.

2.1. Additive Error Model
We define an additive-error area-level model as one in which the observed direct estimator, yi,
satisfies

E[yi|𝜃i] = 𝜃i, Var{yi|𝜃i} = v1(𝜃i, 𝛼i),
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𝜃i = g(x⊤i 𝜷) + ui, (1)

for i = 1,… ,m, where m is the number of small areas, 𝜃i is the small area mean, xi is a known
vector, ui is a random effect, v1(⋅) and g(x⊤i 𝜷) are known functions, 𝜷 is an unknown parameter
to estimate, and 𝛼i is known. Additive error models can be expressed as

yi = g(x⊤i 𝜷) + ui + ei,

where ei = yi − 𝜃i. Assume E[(ei, ui)⊤] = 0, and

Cov{(ui, ei)} = diag{𝜎2
ui, 𝜎

2
ei},

where 𝜎2
ui = v2(xi,𝜷, 𝜎

2
u ), v2 is a known function, and 𝜎2

u is an unknown parameter to estimate.
To define the estimators of 𝜷 and 𝜎2

u , we treat 𝜎2
ei as known. In practice, 𝜎2

ei may be obtained
by smoothing a direct estimator of the design-variance of yi − 𝜃i, such as a jackknife estimator,
using a generalized variance function (Rao & Molina 2015, p. 77; Wolter, 2007).

Define an estimator of 𝜷 for an additive error model by 𝜷, the solution of

m∑
i=1

𝜕g(x⊤i 𝜷)
𝜕𝜷

(𝜎2
ui + 𝜎2

ei)
−1[yi − g(x⊤i 𝜷)] = 0, (2)

where 𝜕g(x⊤i 𝜷)∕𝜕𝜷 is the partial derivative of g(x⊤i 𝜷) with respect to 𝜷 evaluated at 𝜷,

𝜎2
ui = v2(xi, 𝜷, 𝜎

2
u ),

and 𝜎2
u is a method of moments estimator of 𝜎2

u defined in the Supporting Information. (Also see
Berg & Fuller, 2012, 2014 for estimation of 𝜎2

u .) Under standard regularity conditions,

𝜷 − 𝜷 = (H⊤Σ−1
aa H)−1H⊤Σ−1

aa a + op(m
− 1

2 )

=∶ Ma + op(m
− 1

2 ),

where H is the matrix with hi = 𝜕g(x⊤i 𝜷)∕𝜕𝜷
⊤ as the ith row, Σaa is a diagonal matrix with

𝜎2
ui + 𝜎2

ei as the ith diagonal element, and the ith element of a is ai = yi − g(x⊤i 𝜷). The variance of
the limiting distribution of 𝜷 is

Var{𝜷} = (H⊤Σ−1
aa H)−1.

The minimum MSE convex combination of yi and g(x⊤i 𝜷) is 𝜃i(𝛾i) = yi − (1 − 𝛾i)(yi −
g(x⊤i 𝜷)), where 𝛾i = 𝜎2

ui∕(𝜎
2
ui + 𝜎2

ei)
−1. An estimator of 𝜃i(𝛾i) is

𝜃i = yi − (1 − 𝛾̂i)(yi − g(x⊤i 𝜷)), (3)

where 𝛾̂i = 𝜎2
ui(𝜎

2
ui + 𝜎2

ei)
−1. Under regularity conditions and using approximation methods such

as Rao (2003, p. 103), the variance of the approximate distribution of the prediction error is

Var{𝜃i − 𝜃i} = 𝛾i𝜎
2
ei + (1 − 𝛾i)2h⊤

i Var{𝜷}hi + [
.
v2i(𝜎2

u )]
2(1 − 𝛾i)2Var{𝜎2

u}∕(𝜎
2
ui + 𝜎2

ei), (4)

where
.
v2i(𝜎2

u ) is the derivative of v2(xi,𝜷, 𝜎
2
u ) with respect to 𝜎2

u .
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2.2. Non-Additive Error Models
We use the term non-additive error model for a model in which

𝜃i = g2(x⊤i 𝜷 + ui)

and g2(⋅) is nonlinear. We assume the distribution functions for ui and yi|(𝜃i, 𝜓i) are F(ui|𝜎2
u ) and

F(yi|𝜃i, 𝜓i), respectively. A classical non-additive error model is the area-level GLMM in which
the conditional distribution for yi|(𝜃i, 𝜓i) is in the exponential family, and ui ∼ N(0, 𝜎2

u ).
An EB predictor of 𝜃i is

𝜃i = 𝜃i(𝜷, 𝜎2
u ), (5)

where

𝜃i(𝜷, 𝜎2
u ) = E[𝜃i|yi; (𝜷, 𝜎2

u )],

which denotes the conditional expectation of 𝜃i given yi under the distribution defined by the
true parameter values, and (𝜷, 𝜎2

u ) is the maximum likelihood estimator of (𝜷, 𝜎2
u ). The MSE of

𝜃i of (5) is

MSE(𝜃i) = E[Var{𝜃i|yi; (𝜷, 𝜎2
u )}] + E[(𝜃i − 𝜃i(𝜷, 𝜎2

u ))
2],

where Var{𝜃i|yi; (𝜷, 𝜎2
u )} = O(1), and E[(𝜃i − 𝜃i(𝜷, 𝜎2

u ))
2] = O(m−1) (Lahiri et al., 2007).

An estimator of the leading term in the MSE of 𝜃i is

Var{𝜃i|yi; (𝜷, 𝜎2
u )} = E[𝜃2

i |yi; (𝜷, 𝜎2
u )] − 𝜃2

i , (6)

where numerical approximations may be needed to compute the integrals defining (6). In the
approximations below, we evaluate the conditional expectations at the parameter estimators 𝜷

and 𝜎2
u . For replicates r = 1,… ,R, generate u(r)i ∼ F(ui|𝜎2

u ) and let 𝜃(r)i = g2(x⊤i 𝜷 + u(r)i ). An
approximation for E[𝜃i|yi; (𝜷, 𝜎2

u )] is

Ê[𝜃i|yi; (𝜷, 𝜎2
u )] =

R−1 ∑R
r=1 𝜃

(r)
i f (yi|𝜃(r)i , 𝜓i)

R−1 ∑R
r=1 f (yi|𝜃(r)i , 𝜓i)

, (7)

where f (yi|𝜃i, 𝜓i) is the probability density or mass function corresponding to F(yi|𝜃i, 𝜓i).
Likewise, an approximation for the conditional variance of 𝜃i, given yi, is

V̂ar{𝜃i|yi; (𝜷, 𝜎2
u )} =

R∑
r=1

w(r)
i {(𝜃(r)i ) − Ê[𝜃i|yi; (𝜷, 𝜎2

u )]}
2,

where w(r)
i = f (yi|𝜃(r)i , 𝜓i)(

∑R
r=1 f (yi|𝜃(r)i , 𝜓i))−1.

We use the parametric bootstrap to estimate E[(𝜃i − 𝜃i(𝜷, 𝜎2
u ))

2] and to estimate the bias
of Var{𝜃i | yi, (𝜷, 𝜎2

u )}. For the bootstrap, the (𝜃(r)1 ,… , 𝜃(r)m ) and (y(r)1 ,… , y(r)m ) are generated for

r = 1,… ,R using (𝜷, 𝜎2
u ) as the generating vector. Let 𝜷

(r)
and 𝜎2(r)

u denote the parameter
estimates based on the rth bootstrap sample. An MSE estimator that uses a multiplicative bias
correction is
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M̂SE
EB

i,mult = [Var{𝜃i | yi; (𝜷, 𝜎2
u )}]

2
[

R−1
R∑

r=1

Var{𝜃i|y(r)i ; (𝜷
(r)
, 𝜎2(r)

u )}
]−1

+ R−1
R∑

r=1

(𝜃(r)i (𝜷
(r)
, 𝜎2(r)

u ) − 𝜃(r)i (𝜷, 𝜎2
u ))

2, (8)

where 𝜃(r)i (𝜷, 𝜎2
u ) = E[𝜃i|y(r)i ; (𝜷, 𝜎2

u )].
A symmetric bootstrap confidence interval is

{𝜃 ∶ 𝜃i − [Var{𝜃i | yi; (𝜷, 𝜎2
u )}]

0.5q̂D(i) ≤ 𝜃 ≤ 𝜃i + [Var{𝜃i | yi; (𝜷, 𝜎2
u )}]

0.5q̂D(i)},

where q̂D(i) satisfies

1|D(i)| 1
R

∑
i∈D(i)

R∑
r=1

I

⎡⎢⎢⎢⎣
|𝜃(r)i (𝜷

(r)
, 𝜎2(r)

u ) − 𝜃(r)i |√
Var{𝜃i|y(r)i ; (𝜷

(r)
, 𝜎2(r)

u )}
≤ q̂D(i)

⎤⎥⎥⎥⎦
= 1 − 𝛼, (9)

the nominal confidence level is (1 − 𝛼)100%, and D(i) is a group of areas containing area i. For
instance, D(i) may be a single area or a collection of areas with the same sample size as area i.
We invert the confidence interval (9) and define the MSE estimator,

M̂SE
EB

i,c = Var{𝜃i | yi; (𝜷, 𝜎2
u )}q̂2

D(i)[Φ
−1(1 − 𝛼∕2)]−2, (10)

where Φ−1(⋅) is the quantile function of a standard normal distribution. We call the MSE
estimator (10) the inversion MSE estimator.

3. BENCHMARKING PROCEDURES FOR NONLINEAR MODELS

We propose two benchmarking procedures for the models defined in Section 2: a linear additive
adjustment and a method based on an augmented model. The benchmarking procedures are
applicable to both the additive error and non-additive error models of Section 2. In defining the
benchmarking procedures, we use 𝜃i to denote a predictor of 𝜃i such as (3) or (5), based on an
optimality criterion. When it is necessary to emphasize the dependence of 𝜃i on the parameter
estimators, we will write

𝜃i = 𝜃i(𝜷, 𝜎2
u ), (11)

where 𝜃i(𝜷, 𝜎2
u ) is the optimal estimator constructed with the true parameters. Let the bench-

marking restriction be

W⊤𝜽̂
w
= W⊤y, (12)

where y = (y1,… , ym)′, W = (w1,… ,wm)⊤ has full column rank, wi = (w1i,… ,wri)⊤, and the
jth row of W⊤ defines the jth restriction of a set of r restrictions.

3.1. Linear Additive Benchmarking
Wang, Fuller, & Qu (2008) show that the linear predictor for the linear model that satisfies (12)
and minimizes

Q(t) =
m∑

i=1

𝜙iE[(ti − 𝜃i)2] with t = (t1,… , tm)⊤
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can be expressed as

𝜃w
i = 𝜃i + 𝜙−1

i w⊤
i 𝜷𝓁a, (13)

where

𝜷𝓁a =
( m∑

j=1

𝜙−1
j wj(𝜙−1

j wj)⊤𝜙j

)−1 m∑
j=1

wj𝜙
−1
j 𝜙j(yj − 𝜃j), (14)

{𝜙i ∶ i = 1,… ,m} is a set of constants specified by the investigator, and 𝜃i is the best linear
unbiased predictor (BLUP) of 𝜃i for the linear model. Although 𝜙−1

j 𝜙j in (14) may seem awkward
because 𝜙−1

j 𝜙j is clearly 1, the expression (14) illustrates that 𝜷𝓁a can be viewed as a generalized
least squares coefficient, where 𝜙−1

j wj is the explanatory variable, 𝜙j is the weight, and yj − 𝜃j is
the dependent variable. An equivalent expression for 𝜷𝓁a is

𝜷𝓁a =
( m∑

i=1

zi𝜓
−1
i z⊤i

)−1 m∑
i=1

zi𝜓
−1
i (yi − x⊤i 𝜷), (15)

where 𝜓i = 𝜙−1
i (1 − 𝛾i)−2, zi = 𝜓i(1 − 𝛾i)wi, 𝜷 = (X⊤Σ−1

aa X)−1X⊤Σ−1
aa y, and X = (x1,… , xm)⊤.

The predictor (13) applies immediately to the nonlinear models of Section 2 with 𝜃i = 𝜃i(𝜷, 𝜎2
u ),

where 𝜃i(𝜷, 𝜎2
u ) is defined following (11).

In practice, an estimated predictor can be benchmarked using the procedures defined
previously with 𝜎2

ui evaluated at an estimate and permitting 𝜙i to depend on an estimate 𝜎2
ui. We

let 𝜙i, 𝜃𝓁a,i, and 𝜷𝓁a denote 𝜙i, 𝜃
w
i , and 𝜷𝓁a, respectively, evaluated at 𝜎2

ui.
The predictor (13) is not constrained to fall in the parameter space for models with restricted

parameter space, but in situations we have studied, benchmarked predictors outside the parameter
space are rare. Should such a situation occur, one can choose 𝜙i to place predictions in the
parameter space. Assume all of the original predictions are in the interior of the parameter space.
One can fix the benchmarked prediction for area i equal to the initial prediction for area i by
setting 𝜙−1

i = 0 and 𝜙−1
i 𝜙i = 1 in the adjustment expressions. A possible new 𝜙−1

i for elements
with initial predictions close to the boundary is

𝜙−1
∗i = 0.5(w⊤

i 𝜷𝓁a)−1|Ki − 𝜃i|
where Ki is the boundary closest to 𝜃i. The new benchmarked predictor will fall between the
prediction and the boundary unless observation i is extremely important in 𝜷𝓁a.

To estimate the variance of 𝜃𝓁a,i, we use a linearization approximation for the additive error
models and the bootstrap for non-additive error models. The MSE estimator for the additive error
model is defined in (A1) and (A2) of the appendix. For non-additive error models, we apply (8)
or (10) with the benchmarked predictor in place of the EB predictor. See (A4) and (A5) of the
Appendix for details of how we apply the bootstrap procedure to the benchmarked predictors.

Remark 1. A ratio adjustment is a common way to benchmark predictors with a restricted
parameter space. Simple ratio adjustment (raking) is not a linear predictor but can be written as
predictor (13), where 𝜙−1

i = 𝜃iw
−1
i and

𝛽𝓁a =
( m∑

i=1

𝜃iwi

)−1 m∑
i=1

wi(yi − 𝜃i). (16)
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An estimator of the variance of the predictor obtained from the ratio benchmarking adjustment
is

V̂ar{𝜃𝓁a,i − 𝜃i} = V̂ar{𝜃i − 𝜃i} + (𝜃i𝛽𝓁a)2, (17)

where 𝛽𝓁a is defined in (16). Variance estimation for the ratio adjustment is discussed in more
detail in the Supporting Information.

3.2. Augmented Model Benchmarking Procedure
If the mean function and 𝜃i satisfy parameter restrictions for all i, an alternative benchmarking
procedure begins with the augmented model, x⊤i 𝜷 + z⊤i 𝜷aug, where zi is a specified vector with
the same dimension as the vector wi defining the restrictions (12) such that

∑m
i=1 zi(1 − 𝛾i)w⊤

i is
invertible. We define the benchmarked predictor 𝜃aug

i by

𝜃
aug
i = 𝜃i((𝜷

⊤
,𝜷

⊤

aug)
⊤, 𝜎2

u ) (18)

which is (11) evaluated at 𝜷 = (𝜷
⊤
,𝜷

⊤

aug)
⊤. The benchmarking restriction is achieved provided

𝜷aug satisfies Sw(𝜷aug) = 0, where

Sw(𝜷aug) =
m∑

i=1

wi[yi − 𝜃i((𝜷,𝜷aug)⊤, 𝜎2
u )]. (19)

We may take zi = 𝜙−1
i wi. The root of the estimating equation 19 can be obtained using

Newton-type methods. For the additive error model predictors defined in (3), the estimating
equation 19 simplifies to

Sw(𝜷aug) =
m∑

i=1

wi(1 − 𝛾̂i)(yi − g(x⊤i 𝜷 + z⊤i 𝜷aug)). (20)

For non-additive error models in which 𝜃i is an estimator of the conditional mean (5), the
estimating equation 19 takes the form

Sw(𝜷aug) =
m∑

i=1

wi(yi − E[𝜃i|yi; (𝜷,𝜷aug)⊤, 𝜎2
u ]). (21)

The form of zi in (15) motivates alternative choices of zi for additive error models. By
analogy with (15), one choice of zi is

zi = dg,i(0)−1𝜓i(1 − 𝛾i)w⊤
i , (22)

where dg,i(0) is the derivative of g(x⊤i 𝜷) with respect to x⊤i 𝜷 evaluated at 𝜷, 𝜓i = 𝜙−1
i (1 − 𝛾i)−2,

and 𝜙i is specified. For the choice of zi in (22), the root of the estimating equation can be obtained
by the following iterative sequence. Let 𝜷

(0)
aug be a specified initial value. For j = 1, 2,… , define

𝜷
(j)
aug = 𝜷

(j−1)
aug +
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(Z⊤Dg(0)Ψ−1Dg(0)Z)−1
m∑

i=1

zidg,i(0)𝜓−1
i (yi − g(x⊤i 𝜷 + z⊤i 𝜷

(j−1)
aug )), (23)

where Z = (z1,… , zm)⊤, Dg(0) is the diagonal matrix with the derivative of g(x⊤i 𝜷) with respect
to x⊤i 𝜷 evaluated at 𝜷 on the diagonal, and Ψ is a diagonal matrix with 𝜓i = 𝜙−1

i (1 − 𝛾i)−2 on

the diagonal. The iteration is terminated when ||𝜷(j)
aug − 𝜷

(j−1)
aug || is less than a specified tolerance.

In our experience, 𝜷
(0)
aug = 0 can be used as a starting value. By the definition of zi in (22), an

equivalent form for the iterative sequence (23) is

𝜷
(j)
aug = 𝜷

(j−1)
aug + (Z̃

⊤
ΨZ̃)−1

m∑
i=1

z̃i(yi − g(x⊤i 𝜷 + z⊤i 𝜷
(j−1)
aug )), (24)

where Z̃ = (I − Γ)W, z̃i = (1 − 𝛾i)wi, W is defined in (12), and Γ = diag(𝛾1,… , 𝛾m). A related
approach is to define zi in two steps. First, define 𝜷

1
aug to minimize Qaug(𝜷aug), where

Qaug(𝜷aug) =
m∑

i=1

𝜓−1
i [yi − g(x⊤i 𝜷 + (z(0)i )⊤𝜷aug)]2,

and z(0)i = dg,i(0)−1𝜓i(1 − 𝛾i)w⊤
i . Then, define 𝜷aug through the iteration (23) with 𝜷

1
aug as a

starting value.
We use Taylor approximations to obtain an estimator of the MSE of the augmented model

predictors for the additive error models and use the bootstrap for the non-additive error models.
The MSE estimator for the additive error model is defined in (A3) of the Appendix. For the
non-additive error model, we apply (8) or (10) with the benchmarked predictor in place of the
EB predictor, as described in (A4) and (A5) of the Appendix.

4. SIMULATIONS

We evaluate the properties of the estimators using two simulation models. The simulation study
of Section 4.1 uses an additive error model and is designed to demonstrate the impacts of different
choices of zi in the augmented model approach. In Section 4.2, we compare the augmented
benchmarking approach to the linear additive approach using the binomial-logistic model.

4.1. Additive Error Simulation Study
Our example is a simplification of the small area model that motivated the research on bench-
marking. The model was initially developed to obtain predictors of proportions using direct
estimators from the Canadian Labour Force Survey (LFS) and covariates from the previous
Canadian Census of Population. See Hidiroglou & Patak (2009), Berg & Fuller (2012, 2014) for
details about the data and the model.

Letting p̂i, pc,i, and ni be the direct estimator, Census proportion, and number of primary
sampling units, respectively, for area i, we consider the model

p̂i = 𝜃i + ei,

𝜃i = g(x⊤i 𝜷) + ui,

g(x⊤i 𝜷) = [1 + exp(𝛽0 + 𝛽1xi)]−1 exp(𝛽0 + 𝛽1xi),

xi = log[(pc,i)(1 − pc,i)−1] + log[(pc,1)(1 − pc,1)−1], (25)
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TABLE 1: Parameters for simulation areas.

Area 1–4 5–8 9–12 13–16 17–20 21–24 25–28 29–32 33–36 37–40

xi 0 −2.48 −1.39 0 −2.48 −2.48 −1.39 0 −2.48 −1.39

gi 0.2 0.75 0.5 0.2 0.75 0.75 0.5 0.2 0.75 0.5

Sample size 16 16 16 30 30 60 60 204 204 204

10𝜎2
ei 0.1 0.15 0.26 0.07 0.11 0.04 0.07 0.01 0.01 0.02

𝜷 = (𝛽0, 𝛽1)⊤, xi = (1, xi)⊤, and (ui, ei) ∼ (0, diag(𝜎2
ui, n

−1
i 𝜎2

ei)). The model for the variance of the
random effects is

𝜎2
ui = 𝜎2

ug(x⊤i 𝜷)(1 − g(x⊤i 𝜷)),

where the definition of xi is the interaction in a saturated loglinear model fit to the Census counts,
as in Berg & Fuller (2012), and 𝜎2

u is a parameter to be estimated. The simulation is built to
reflect the LFS cluster sampling design, so n−1

i 𝜎2
ei is the variance of a 2-stage cluster sample

of size ni. To generate variables that remain in the natural parameter space for proportions, we
generate 𝜃i from a beta distribution and generate p̂i from a mixture of beta-binomial distributions
with parameters chosen to give the specified first and second moments. Berg & Fuller (2012)
describes the simulation procedure in detail.

We simulate proportions for 40 areas, with sample sizes and parameters as in LFS. The areas
are divided into 10 groups, each of size four, where each area in a group has the same value for
xi, ni, and 𝜎2

ei. The proportions and sample sizes for the simulation are given in Table 1, where
gi denotes g(x⊤i 𝜷) of (25). The MSE of the EBLUP depends on both the sample size and the
proportion. Comparing results from areas with the same sample size but different proportions
provides information about the effect of the mean parameters. On the other hand, comparing
results from areas with different sample sizes but the same proportion provides information
about the effect of sample sizes. The value of 𝜎2

u for the simulation is 0.005, which is similar to
the estimate obtained from the LFS data.

4.1.1. Model estimation and benchmarking prediction
We use a working model for 𝜎2

ei. Under a working assumption that the sampling variance is
proportional to a multinomial variance, an estimator of the variance of

√
niei is

𝜎2
ei,w = ĉh(i)g(x⊤i 𝜷

(0)
)(1 − g(x⊤i 𝜷

(0)
)),

where 𝜷
(0)

is the MLE under an assumption that nip̂i has a binomial distribution with 𝜎2
u = 0,

h(i) denotes the index set of the group of four containing area i,

ĉh(i) = 𝛿i

∑
k∈h(i)𝜎

2
ek∑

k∈h(i)g(x⊤k 𝜷
(0)
)(1 − g(x⊤k 𝜷

(0)
))

+ (1 − 𝛿i)1,

𝛿i =
10000

10000 + V̂ar{ĉh(i)}
,
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V̂ar{ĉh(i)} =

∑
k∈h(i)g(x⊤k 𝜷

(0)
)(1 − g(x⊤k 𝜷

(0)
))
(

𝜎2
ek

g(x⊤k 𝜷
(0)

)(1−g(x⊤k 𝜷
(0)

)
− ĉh(i)

)2

(|h(i)| − 1)(
∑

k∈h(i)g(x⊤k 𝜷
(0)
)(1 − g(x⊤k 𝜷

(0)
)))

,

and n−1
i 𝜎2

ei is the direct estimator of the variance of ei. Berg & Fuller (2012) provides further
detail on the sampling variances for the simulation. The choice of 𝛿i is motivated by a Bayes
estimator, where the mean of ĉh(i) has a prior distribution that is normal with a prior mean of 1
and a prior variance of 10,000. If 𝜎2

ek = 0 for all k ∈ h(i), then ĉh(i) = 1.
Let the predictor be of the form (3), replace yi with p̂i, and use the working model estimator

of 𝛾 i to obtain

𝜃i = p̂i − (1 − 𝛾̂i)[p̂i − g(x⊤i 𝜷)],

where 𝛾̂i = (n−1
i 𝜎2

ei,w + 𝜎2
ui)

−1𝜎2
ui, and 𝜷 is defined by (2) with 𝜎2

ui obtained by application of the
procedure described in Section 1 of the Supporting Information.

The proportions have a structure of four 2 × 10 tables with row 1 of table k containing {p̂i ∶
i mod 4 = k} and the column for element i containing (p̂i, 1 − p̂i)⊤. We consider a multivariate
benchmarking restriction that preserves row and column margins of each two-way table. A
predictor 𝜃w

i is benchmarked if

40∑
i=1

wi𝜃
w
i 𝛿ki =

40∑
i=1

wip̂i𝛿ki,

where 𝛿ki = I(i mod 4 = k) for k = 0, 1, 2, 3. In this notation, wi and
∑40

i=1 wip̂i𝛿ki are, respectively,
column and row margins of the two-way table. We consider three benchmarked estimators
that guarantee 0 ≤ 𝜃w

i ≤ 1. The first two benchmarking procedures use the augmented model
benchmarking method defined in (22)–(23) of Section 3.2 with

zi =
𝜓i(1 − 𝛾i)wi(𝛿1i,… , 𝛿4i)⊤

g(x⊤i 𝜷)(1 − g(x⊤i 𝜷))
,

and two different values for 𝜓 i defined by

𝜓i = (1 − 𝛾̂i)−2(n−1
i 𝜎2

ei + 𝜎2
ui)

−1n−1
i 𝜎2

ei𝜎
2
ui (26)

and

𝜓i = (1 − 𝛾̂i)−2w−1
i , (27)

where n−1
i 𝜎2

ei is a design-consistent estimator of the variance of ei. The 𝜓 i in (26) is that proposed
by Battese, Harter, & Fuller (1988), and we refer to the 𝜓 i in (26) as ‘‘Aug BHF.’’ We refer
to 𝜓 i in (27) as ‘‘Aug w−1.’’ We compare the augmented model procedures of Section 3.2
to benchmarking based on iterative proportional fitting (raking). As discussed in Berg (2010,
p. 58), the raked predictor 𝜃w

i wi for a single table of proportions with indexes i, i + 4,… , i + 9 is
approximately a linear additive predictor with

𝜷
rak
𝓁a = (X⊤D𝜃X)−X⊤ (̃y − 𝜽̂), (28)
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TABLE 2: Simulation MSE for predictions.

Increase in MSE

Set ni gi wi Var{ei} MSE(𝜃i) Raking Aug BHF Aug w−1

1 16 0.01 0.20 100 18 −0.1 −0.0 −0.1

1 16 0.01 0.50 265 21 −0.1 −0.0 −0.2

1 204 0.25 0.20 8 6 0.1 0.1 0.2

1 204 0.25 0.50 21 12 0.3 0.5 0.2

2 16 0.25 0.20 100 18 19 27 28

2 16 0.25 0.50 265 21 46 68 29

2 204 0.01 0.20 8 6 18 0.0 28

2 204 0.01 0.50 21 12 42 0.0 24

For set 1, wi increases as ni increases. For set 2, wi decreases as ni increases. All MSEs and variances have been
multiplied by 10,000.

where X = (J10 ⊗ I2, I10 ⊗ J2), D𝜃 = diag(wi𝜃i,wi(1 − 𝜃i),… ,wi+9𝜃i+9,wi+9(1 − 𝜃i+9)), Dw =
diag(wiI2,… ,wi+9I2), ỹ = (p̂iwi, (1 − p̂i)wi,… , p̂i+9wi+9, (1 − p̂i+9)wi+9)⊤, 𝜽̂ = (𝜃iwi, (1 − 𝜃i)
wi,… , 𝜃i+9wi+9, (1 − 𝜃i+9)wi+9)⊤, Ir is the identity matrix of dimension r, and Jr is the
r−dimensional vector of ones.

4.1.2. Comparison of efficiencies of benchmarked predictors
We evaluate the performance of estimators constructed under the three benchmarking methods
for two simulation sets. In one set, wi increases as ni increases and in the other wi decreases as
ni increases.

The results for the set of parameters where the weights wi increase as the sample size
increases are given in the rows of Table 2 corresponding to set 1. The wi are 0.01 for areas
with sample size 16 and wi are 0.25 for areas of sample size 204. The direct estimators with
large sample size have more weight in the restriction. Also, for areas with large sample sizes
(and large weights), 𝛾̂i is close to one, so 𝜃i is close to the direct estimator. As a consequence,
the variance of the difference between the weighted sum of the direct estimators (the restriction)
and the weighted sum of the {𝜃i ∶ i = 1,… ,m} is relatively small. For the set where the weight
increases with the sample size, benchmarking has a small effect on MSE; the amount added to
the MSE of the EBLUP is less than 5% of the original MSE.

The results for the simulation where the weights decrease as the sample size increases are
given in the rows of Table 2 corresponding to set 2. In this set, the amount added to the
MSE due to benchmarking is large. For raking, the increase in MSE is about equal to the
original MSE for ni = 16 and more than twice the original MSE for ni = 204. For set 2, the
increase in MSE due to raking is approximately proportional to gi (20∕0.2 ≈ 45∕0.5 ≈ 100).
The approximation for the raked predictor is in the scale of totals. For proportions, the
increase in MSE due to raking is approximately LpD𝜃X𝜷

rak
𝓁a (𝜷

rak
𝓁a )

⊤X⊤D𝜃L⊤
p , where Lp is the

block-diagonal matrix defining the linear approximation that converts totals to proportions and
has w−1

k ((1 − p̂i,−(1 − p̂i))⊤, (−p̂i, p̂i)⊤)⊤ as block i. For the augmented model with the weights
proposed by BHF, the increase in MSE is associated with the weight, and the method gives the
smallest average increase in MSE. The amount added to the MSE using the third augmented
model is roughly constant, and approximately equal to the variance of the estimated coefficient.
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TABLE 3: Empirical coverages of normal theory 95% confidence intervals.

Method Set ni = 16 ni = 30 ni = 60 ni = 204

Aug BHF 1 0.95 0.94 0.95 0.96

Aug BHF 2 0.95 0.95 0.95 0.96

Aug w−1 1 0.95 0.95 0.95 0.96

Aug w−1 2 0.96 0.95 0.96 0.95

Raking 1 0.95 0.95 0.95 0.96

Raking 2 0.97 0.96 0.97 0.98

Simulation set 1: wi increases as ni increases. Simulation set 2: wi decreases as ni increases.

The results in Table 2 illustrate that the nature of the added variance can be determined by the
choice of 𝜓 i.

To examine the effect of the size of 𝜎2
u on MSE, we conducted simulations with 𝜎2

u = 0.06
as well as 𝜎2

u = 0.005. For both values of 𝜎2
u , the impact of benchmarking on the MSE is greater

for the wi inversely related to ni than for wi directly related to ni. For large ni and the wi used
for set 2, the raking and Aug w−1 benchmarking procedures substantially increase the MSE
relative to the MSE of 𝜃i, while the BHF benchmarking procedure has negligible impact on the
MSE, regardless of the size of 𝜎2

u . The change in MSE due to benchmarking is typically smaller
for 𝜎2

u = 0.06 than for 𝜎2
u = 0.005, which is expected because the values of 𝜃i are closer to the

direct estimators for 𝜎2
u = 0.06 than for 𝜎2

u = 0.005. The full simulation output is provided in the
Supporting Information.

4.1.3. Evaluation of MSE estimators for benchmarked predictors
Table 3 contains the empirical coverages of nominal 95% prediction intervals for predictions for
the three benchmarking procedures. The results are averaged across areas with the same sample
size, for each set of parameters. The prediction intervals are constructed as 𝜃w

i ± tni
(0.975)M̂SE

0.5
i,w ,

where 𝜃w
i denotes a benchmarked predictor and M̂SEi,w the corresponding MSE estimator. The

MSE estimator M̂SEi,w is computed using (A3) for the augmented model procedures, with a
modification to account for the use of the working model for 𝜎2

ei. (Section 3 of the Supporting
Information outlines the modification to the variance estimator for the use of the working model.
Also see Berg & Fuller, 2012, 2014.) The MSE for raking is based on the approximation (28) for
the raked predictor as a linear additive predictor. The empirical coverages for set 1 are between
94% and 96%, slightly smaller than the empirical coverages for set 2, which range between 95%
and 98%. We consider the empirical coverages to be satisfactory.

4.2. Non-Additive Error Simulation Study
Assume a binomial random variable for area i,

yi ∼ Binomial(ni, 𝜃i),

where

𝜃i =
exp(𝛽 + ui)

1 + exp(𝛽 + ui)
, ui ∼ N(0, 𝜎2

u ),
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TABLE 4: MC MSEs of alternative predictors.

ni Bayes EB Lin. Add. Aug

2 1.490 1.587 1.587 1.585

6 1.115 1.187 1.187 1.184

18 0.644 0.679 0.679 0.681

Bayes=Bayes predictor constructed with true parameters; EB= empirical Bayes predictor constructed with estimated
parameters; Lin. Add.= benchmarked predictor based on the linear additive approach; Aug= benchmarked predictor
based on the augmented model approach.

and i = 1,… ,m. The simulation parameters are 𝛽 = −1.2, and 𝜎2
u = 0.8. The sample sizes ni are

2 for 20 areas, 6 for 20 areas, and 18 for the remaining 20 areas. An estimator of the minimum
MSE predictor is

𝜃i(𝛽, 𝜎2
u ) = E[𝜃i | yi; (𝛽, 𝜎2

u )],

where 𝛽 and 𝜎2
u are approximate MLEs obtained from Gauss-Hermite quadrature with 10 points

(nAGQ= 10 in the R function glmer), and E[𝜃i | yi; (𝛽, 𝜎2
u )] is evaluated using the numerical

approximation defined in (7) with R= 500. We use a lower bound of 0.006 for the estimator of
𝜎2

u , as proposed in Erciulescu (2015).
The benchmarking restriction is

m∑
i=1

ni𝜃
w
i =

m∑
i=1

niyi.

We benchmark the 𝜃i using the linear additive approach of (13) and the augmented model
approach of (18). For the linear additive approach, we use

𝜙−1
i,1 = R−1

R∑
r=1

𝜃(r)i (1 − 𝜃(r)i )n−1
i + (R − 1)−1

R∑
r=1

(𝜃(r)i − 𝜃
(⋅)
)2,

where 𝜃(r)i = (1 + exp (𝛽 + u(r)i )−1 exp(𝛽 + u(r)i ), u(r)i ∼ N(0, 𝜎2
u ), 𝜃

(⋅)
= R−1 ∑R

r=1 𝜃
(r)
i , and

R= 500. For the augmented model approach, we use zi = 𝜙−1
i,1 in (21). To ensure that the

benchmarking restriction holds, the same random numbers used to evaluate the conditional
means in the estimating equation 19 are used to compute the augmented model predictor (18).

4.2.1. Comparison of MC MSEs of predictors for logistic-normal simulation
Table 4 contains the MC MSEs of the alternative predictors. The Bayes predictor, which is the
conditional expectation constructed with the true parameter values, is included to demonstrate
the impact of estimating the parameters on the MSE. Benchmarking has little effect on the MSE,
and because the parameters 𝛽 and 𝜎2

u are estimated, benchmarking can decrease the MSE relative
to the MSE of the EB predictor.

4.2.2. Evaluation of MSE estimators for logistic-normal simulation
We construct MSE estimators and confidence intervals for each predictor. The MSE estimators
for the EB predictor are defined in (8) and (10). The MSE estimators for the benchmarked
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TABLE 5: MC means of estimated MSEs and empirical coverages of symmetric 95% confidence intervals.

Area sample size

MC Means of

MSE Estimators

Empirical Coverages

of 95% CI’s

Predictor ni Mult. Inversion Mult. Inversion

EB 2 1.610 2.633 92.5 95.3

EB 6 1.198 1.768 93.5 95.2

EB 18 0.675 1.054 94.6 96.1

Lin. Add. 2 1.700 2.093 93.0 96.0

Lin. Add. 6 1.323 1.484 94.0 96.6

Lin. Add. 18 0.747 0.850 94.6 97.3

Aug. 2 1.699 2.091 93.0 96.2

Aug. 6 1.321 1.484 93.9 96.5

Aug. 18 0.746 0.850 94.6 97.3

Definitions of EB, Lin. Add., and Aug. are as in Table 4. Mult. and Inversion, respectively, are MSE estimators defined
in (8) and (10) for the EB predictor and in (A4) and (A5) for the benchmarked predictors.

predictors are defined in (A4) and (A5). In defining the inversion MSE estimator (10 or A5),
we let D(i) be the collection of areas with the same ni. In the tables below, the label ‘‘Mult.’’
refers to the MSE estimators (8) and (A4). The label ‘‘CI’’ refers to the MSE estimators (10)
and (A5).

Table 5 contains MC means of estimated MSEs and empirical coverages of 95% confidence
intervals. The confidence intervals based on the inversion MSE estimators, (10) and (A5), have
empirical coverages that are greater than or equal to the nominal level. The coverages of the
confidence intervals based on the multiplicative MSE estimators, (8) and (A4), are between
92.5% and 94.6%. The positive bias of the inversion MSE estimator is due to a few extreme
MSE estimates.

5. COUNTY ESTIMATION IN THE NATIONAL RESOURCES INVENTORY

We apply the benchmarking methods to data from the National Resources Inventory, a longi-
tudinal survey that monitors status and trends in land cover and land use in the United States
(Nusser & Goebel, 1997). One of the parameters of interest in the NRI is the proportion of area
devoted to cropland. Interest in sub-state estimates motivated this work. Because the state-level
estimates have been published, benchmarking to the state-level estimates is important.

We consider estimating the proportion of cropped acres in each county in Minnesota in 2010.
We choose Minnesota because it has a high proportion of cultivated land and also a wide range
in the proportions. The estimated proportion of cropland in Minnesota based on the 2010 NRI is
0.389 with an estimated CV of 2.3%.

As a first step, we compute NRI estimators of the proportion of each county in cropland and
corresponding estimators of variances. To define the direct estimators at the county level, we use
i to index counties (i = 1,… , 87) and j to index sampled locations within counties (j = 1,… , ni).
The NRI estimator of the proportion is

p̂i =

∑ni
j=1 wij𝛿ji∑ni

j=1 wij

,
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FIGURE 1: 2010 NRI estimates of the proportion of Minnesota counties in cropland in 2010 plotted against
the corresponding CDL proportions.

where 𝛿ij = I( location j is classified as cropland in 2010), and wij is the weight associated with
location j in county i. The estimated coefficients of variation for the estimated proportion of the
county classified as cropland range from 3% to 50%, with a mean of 14%.

We obtain auxiliary information from the United States Department of Agriculture National
Agricultural Statistics Service geospatial Cropland Data Layer (CDL). The CDL is a classification
of 30 × 30 meter pixels into land cover categories based on satellite data. The covariate is the
proportion of CDL pixels in a county classified as cropland. Because many of the CDL
proportions are near zero, we define the covariate by

pc,i =
p̃c,ini + 0.5

ni + 1
,

where ni is the number of NRI primary sampling units in county i, and p̃c,i is the proportion of
CDL pixels in a county classified in categories that are cropland according to the NRI definition
of cropland. In Figure 1, the NRI estimates of the county-level proportions in cropland are
plotted against the corresponding CDL proportions. The correlation between the NRI and CDL
proportions is 0.98.

We use the model and estimation procedure from Section 2.1. The model for the
direct estimator is p̂i = pF,i + ui + ei, where pF,i = exp(𝛽0 + 𝛽1xi)(1 + exp(𝛽0 + 𝛽1xi))−1, xi =
logit(pc,i) − logit(pc,1), and (ui, ei) ∼ diag(𝜎2

upF,i(1 − pF,i), 𝜎2
ei). This definition of xi is a special

case of the definition from Berg & Fuller (2012) for a situation in which the response is binary.
We use a generalized variance function for 𝜎2

ei (Wolter, 2007). An analysis of the relationship
between the direct estimates of the variances and preliminary estimates of pF,i suggests a variance
model of the form 𝜎2

ei = 0.0001 + cn−1
i pF,i(1 − pF,i), where ni is the number of primary sampling

units in county i. We treat the estimate of 𝜎2
ei as the true variance for this analysis. We estimate

c by the ordinary least squares regression of the variance estimate 𝜎2
ei on n−1

i p̂(0)F,i(1 − p̂(0)F,i),
holding the intercept fixed at 0.0001. Zero variance estimates are replaced with 0.5n−2

i , which
is the method used by Berg & Fuller (2012) for the binary case. The initial estimate p̂(0)F,i
is an estimator for a model with 𝛽1 = 1 and Var{ei} = n−1

i pF,i(1 − pF,i). The estimate of c
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FIGURE 2: Standardized residuals (p̂i − p̂F,i)∕
√

𝜎2
ui + 𝜎2

ei,w plotted against xik.

TABLE 6: Ratios of estimated MSEs of benchmarked predictors to estimated MSEs of initial predictors.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Linear 1.00 1.01 1.02 1.03 1.03 1.25

Raking 1.00 1.04 1.06 1.05 1.07 1.09

Augmented 1.00 1.01 1.02 1.03 1.03 1.24

for the Minnesota data is 1.7. The estimates (and standard errors) of these model parameters
are 𝛽0 = −2.790(0.086), 𝛽1 = 0.806 (0.022), and 𝜎2

u = 0.00084 (0.00180). The plot of the
standardized residuals against xi is given in Figure 2.

We define initial predictors of the form p̂pred
i = 𝛾̂ip̂i + (1 − 𝛾̂i)p̂F,i, where p̂F,i =

[1 + exp(𝛽0 + 𝛽1xi)]−1 exp(𝛽0 + 𝛽1xi), and 𝛾̂i = [0.001 + ĉn−1
i p̂F,i(1 − p̂F,i) + 𝜎2

u p̂F,i(1 − p̂F,i)]−1

𝜎2
u p̂F,i(1 − p̂F,i). The estimate of the state-level proportion in cropland based on the initial

predictors is 0.386. Although the difference between the state-level proportion based on the
predictors (0.386) and the state-level proportion based on the NRI estimates (0.389) is small,
the difference is noticeable for an analyst comparing aggregated county-level predictors to the
published estimate.

We compare three benchmarking procedures: the augmented model with the BHF value
for 𝜓 i, raking, and the linear additive adjustment with 𝜙−1

i = 𝛾i𝜎
2
ei, which corresponds to the

BHF 𝜓 i. Table 6 summarizes the distributions of the ratios of the estimated MSEs of the
benchmarked predictors to the estimated MSEs of the initial predictors. The estimated MSEs
for raking, the linear additive adjustment, and the augmented model are defined in (17), (A1),
and (A3), respectively. Although benchmarking increases the estimated MSE of the predictors,
the estimated MSEs for the benchmarked predictors are typically smaller than the estimated
MSEs for the direct estimators. For the augmented model and raking procedures, the estimated
MSEs of the benchmarked predictors are uniformly smaller than the estimated variances of the
direct estimators. For the linear additive procedure, seven estimated MSEs exceed the estimated
variances of the corresponding direct estimators.

6. SUMMARY AND RECOMMENDATIONS

We propose two classes of benchmarking procedures for nonlinear small area models: a linear
additive adjustment and an augmented model predictor. In application, the analyst can choose
a benchmarking procedure within a class on the basis of a weight function. We recommend
the linear additive approach. The linear additive approach is computationally simple and widely
applicable. Raking can be viewed as a member of the linear additive class and, in our experience,
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performs well for situations in which the sampling variance of the proportion is inversely related
to the weight defining the restriction.

APPENDIX

SOFTWARE

https://github.com/emilyjb/benchmarked-sae-cjs-2018

MSE ESTIMATION FOR THE ADDITIVE ERROR MODEL

Linear Additive Benchmarking
For additive error models, an estimator of the MSE of 𝜃𝓁a,i is

V̂ar{𝜃𝓁a,i − 𝜃i} = V̂ar{𝜃i − 𝜃i} + 𝜙−2
i w⊤

i V̂ar{𝜷𝓁a}wi, (A1)

where V̂ar{𝜃i − 𝜃i} is an estimator of (4),

V̂ar{𝜷𝓁a} = M̂w(Σ̂aa − Ĥ(Ĥ
⊤
Σ̂−1

aa Ĥ)−1Ĥ
⊤
)M̂

⊤

w,

M̂w = (W⊤Φ̂−1W)−1W⊤(I − Γ̂), (A2)

Φ̂ = diag(𝜙1,… , 𝜙m), Γ̂ = diag(𝛾̂1,… , 𝛾̂m), Ĥ = (ĥ1,… , ĥm)⊤, ĥi = 𝜕g(x⊤i 𝜷)∕𝜕𝜷 is the vector
of partial derivatives of g(x⊤i 𝜷) with respect to 𝜷 evaluated at 𝜷, and Σ̂aa = diag(𝜎2

ui +
𝜎2

ei,… , 𝜎2
ui + 𝜎2

ei). We justify the variance estimator (A1) for the additive error model in
the Supporting Information.

Augmented Model Benchmarking
By the justification in (S19 - S24) of the Supporting Information, an estimator of the MSE of the
augmented model predictor for the additive error model is given by

V̂ar{𝜃aug
i − 𝜃i} = V̂ar{𝜃i − 𝜃i} + (1 − 𝛾̂i)2ĥ

⊤

i,augV̂ar{𝜷aug}ĥi,aug, (A3)

where ĥi,aug is the derivative of g(x⊤i 𝜷 + z⊤i 𝜷aug) with respect to 𝜷aug evaluated at (𝜷
⊤
, 𝜷

⊤

aug)
⊤.

MSE ESTIMATION FOR THE NON-ADDITIVE ERROR MODEL

Parametric Bootstrap MSE Estimators for Benchmarked Predictors
We provide details of the parametric bootstrap procedure used to estimate the MSE of the
benchmarked predictors under the non-additive error model. Let 𝜃w

i (𝜷, 𝜎
2
u ) denote a benchmarked

predictor constructed using either the linear additive or augmented model approach. We define
MSE estimators for the benchmarked predictors analogous to (8) and (10). An MSE estimator
that uses a multiplicative bias correction, as in (8), is

M̂SE
Bench

i,mult =[Var{𝜃i | yi, (𝜷, 𝜎2
u )}]

2
[

R−1
R∑

r=1

Var{𝜃i|y(r)i ; (𝜷
(r)
, 𝜎2(r)

u )}
]−1

+ R−1
R∑

r=1

(𝜃w
i (𝜷

(r)
, 𝜎2(r)

u ) − 𝜃(r)i (𝜷, 𝜎2
u ))

2, (A4)
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where 𝜃w
i (𝜷

(r)
, 𝜎2(r)

u ) is the benchmarked EB predictor for the rth bootstrap sample. The inversion
MSE estimator analogous to (10) for the benchmarked predictor is

M̂SE
Bench

i,c = Var{𝜃i | yi; (𝜷, 𝜎2
u )}q̂2

D(i)[Φ
−1(1 − 𝛼∕2)]−2, (A5)

where Φ−1(⋅) is the quantile function of a standard normal distribution, q̂D(i) satisfies

1|D(i)| 1
R

∑
i∈D(i)

R∑
r=1

I
[ |𝜃w

i (𝜷
(r)
, 𝜎2(r)

u ) − 𝜃(r)k |√
Var{𝜃k|y(r)k ; (𝜷

(r)
, 𝜎2(r)

u )}
≤ q̂D(i)

]
= 1 − 𝛼,

and D(i) is a group of areas containing area i.
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