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Abstract: Small area estimation often involves constructing predictions with an estimated model followed
by a benchmarking step. In the benchmarking operation, the predictions are modified so that weighted sums
satisfy constraints. The most common constraint is the constraint that a weighted sum of predictions is
equal to the same weighted sum of the original observations. Two benchmarking procedures for nonlinear
models are proposed: a linear additive adjustment and a method based on an augmented model for the
expectation function. Variance estimators for benchmarked predictors are presented and vetted through
simulation studies. The benchmarking procedures are applied to county estimates of the proportion of area
in cropland using data from the National Resources Inventory. The Canadian Journal of Statistics 46:
482-500; 2018 © 2018 Statistical Society of Canada

Résumé: L’estimation pour des petits domaines comporte souvent des prévisions formulées a partir d’un
modele estimé, suivi d’une étape d’ajustement. Dans cette derniere, les prévisions sont modifiées afin que
leur somme pondérée réponde a des contraintes. La plus commune consiste a exiger que le résultat d’une
somme pondérée des prévisions soit identique au meme calcul effectué sur les données originales. Les
auteurs proposent deux méthodes d’ajustement pour les modeles non linéaires : un ajustement linéaire
additif et une méthode basée sur un modele augmenté pour la fonction d’espérance. Les auteurs présentent
les estimateurs de la variance des prévisions ajustées et les évaluent avec des études de simulation.
Ils utilisent des données du National Resources Inventory pour illustrer les procédures d’évaluation en
estimant la proportion des superficies en culture au niveau des comtés. La revue canadienne de statistique
46: 482-500; 2018 © 2018 Société statistique du Canada

1. INTRODUCTION

Small area predictors based on random models are used to improve the mean squared error (MSE)
when direct estimators are judged unreliable for domains of interest. Random model predictors
are often constrained so that the weighted sum of the predictions is equal to the same weighted
sum of the direct estimates. In the context of small area estimation, the operation of imposing
the constraint is called benchmarking. Bell, Datta, & Ghosh (2012) and Pfeffermann, Sikov, &
Tiller (2014) review constrained estimation procedures for small area estimation.

Imposing a benchmarking constraint on small area predictors typically reduces the model
efficiency of the predictors relative to predictors constructed under a model-based optimality
criterion. An important reason to impose the constraint is that forcing the small area estimates
to sum to previously released estimates prevents users from obtaining inconsistent results.
Statistical reasons to impose the constraint relate to robustness and design-consistency. Imposing
the constraint may reduce the bias associated with an imperfect model (Pfeffermann & Barnard,
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1991). Benchmarking can also lead to design-consistent estimators for aggregations of small
areas. Our procedures are motivated primarily by situations in which benchmarking is an
operational requirement to ensure consistency with published estimates.

Wang, Fuller, & Qu (2008) define a class of benchmarking procedures that minimize
a criterion. The class encompasses the benchmarking used in Pfeffermann & Barnard (1991),
Battese, Harter, & Fuller (1988), and Isaki, Tsay, & Fuller (2000). You, Rao, & Hidiroglou (2013)
derive a second-order unbiased estimator of the MSE of the You & Rao (2002) self-benchmarked
predictor. Bell, Datta, & Ghosh (2012) discuss theoretical properties of a class of benchmarked
predictors for the linear model with known variances. They extend the Wang, Fuller, & Qu
(2008) estimators to enforce a vector of restrictions (instead of a single restriction) and derive
optimal benchmarked estimators using a quadratic loss function. Steorts & Ghosh (2013) derive a
second-order approximation to the MSE of the benchmarked empirical Bayes (EB) predictor in the
Fay & Herriot (1979) model and show that the increase in MSE due to benchmarking is the same
order as the estimation error. Ugarte, Militino, & Goicoa (2009) benchmark small area estimates
to a synthetic estimator. Datta et al. (2011) and Ghosh & Steorts (2013) develop a benchmarking
procedure for a general hierarchical Bayesian model. Pfeffermann, Sikov, & Tiller (2014)
develop a hierarchical benchmarking procedure for linear, cross-sectional time series models.

In linear benchmarking procedures, predictors may fall outside of the bounds of a restricted
parameter space (Ghosh, Kubokawa, & Kawakubo, 2015). A common approach to ensure
that the benchmarked predictors remain in the parameter space is to use raking (Pfeffermann,
Sikov, & Tiller, 2014). In the context of a lognormal area-level model, Ghosh, Kubokawa, &
Kawakubo (2015) specify a Kulback-Leibler loss function that leads to a raking adjustment. Berg
(2010) and Berg & Fuller (2009) consider multiple benchmarking restrictions in the context of
a nonlinear model. Nandram & Sayit (2011) incorporate the constraint in a Bayesian analysis
of a beta-binomial model. Montanari, Ranalli, & Vicarelli (2010) impose the benchmarking
restriction by adding the constraint to a penalized quasi-likelihood for a logistic mixed model.

We develop benchmarking procedures for a general class of nonlinear models. We consider
benchmarking procedures that are simple to implement, allow MSE estimation, and provide
predictions in the parameter space. In Section 2, we introduce the context, defining two classes of
nonlinear models. In Section 3, we present two benchmarking procedures for nonlinear models:
an additive adjustment and a procedure based on an augmented model. Section 4 contains
simulations for models in which the response variable is a proportion. In Section 5, we illustrate
the procedures using the proportion of cropland in Minnesota counties. Section 6 concludes with
issues to consider in application.

2. NONLINEAR AREA-LEVEL MODELS

We introduce two classes of nonlinear models that encompass many models used for small area
estimation. Examples of additive error models, the type of model defined in Section 2.1, include
the natural exponential quadratic variance function models of Ghosh & Maiti (2004) and models
satisfying the posterior linearity condition of Lahiri (1990). Generalized linear mixed models
(GLMMs) are in the class of non-additive error models, defined in Section 2.2. For the additive
error models, estimators are defined by first and second moments of the observations, while the
estimation procedures for the non-additive error models use full distributional assumptions.

2.1. Additive Error Model

We define an additive-error area-level model as one in which the observed direct estimator, y;,
satisfies

Ely;|0;] = 0;, Var{y;|0;} =v,(6;, @),

i
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0, = gx/ p) +u,, (1)

fori=1,...,m, where m is the number of small areas, 6, is the small area mean, x; is a known
vector, u; is a random effect, v(-) and g(xl.T B) are known functions, f is an unknown parameter
to estimate, and «; is known. Additive error models can be expressed as

yi= g(x,-Tﬂ) tu;te,

where e¢; = y; — 6,. Assume E[(e;,u;)"] = 0, and

2

Cov{(u;, e;)} = diag{o;,,

2
O-Ei}’

where ail. =V, (x;, B, 63), v, is a known function, and o-lf is an unknown parameter to estimate.

To define the estimators of f and 63, we treat o-ezi as known. In practice, aezi may be obtained
by smoothing a direct estimator of the design-variance of y; — ;, such as a jackknife estimator,
using a generalized variance function (Rao & Molina 2015, p 77, Wolter, 2007).

Define an estimator of § for an additive error model by f, the solution of

Z, 03] B) R
> 55— Gt o) b= sl Bl = 0. )

i=1
where ()g(x;-ﬁ) /0P is the partial derivative of g(xlT ) with respect to f evaluated at ﬁ,
6:;3[ = VZ(xi’ ﬁ7 85)’

and 83 is a method of moments estimator of ¢ defined in the Supporting Information. (Also see
Berg & Fuller, 2012, 2014 for estimation of ¢7.) Under standard regularity conditions,

~ _1
B-B=H'SH'H'S 'a+0,m™?)
1
=:! Ma +o0,(m"2),

where H is the matrix with h; = dg(xiTﬂ)/aﬁT as the i" row, X, is a diagonal matrix with
651. + 0'621. as the i diagonal element, and the i element of @ is a; = y; — g(xl.T B). The variance of
the limiting distribution of f is

Var{B) = H = 'H)™".

The minimum MSE convex combination of y; and g(xl.T,B) is 0;(y) =y; — (1 =)0, —
g(x] B)), where y; = 62 /(c2, + 62)~". An estimator of 6,(,) is

0, =y, — (1 =7)0; — 8] B)), 3)

where 7; = 62,62, + ¢2)~!. Under regularity conditions and using approximation methods such
ut ut el

as Rao (2003, p. 103), the variance of the approximate distribution of the prediction error is
Var(8, = 6,) = 7o, + (1= 7)°h] Var(Bih; + (o)) (1 = 7, Var(8}) /() + o2).  (4)
where v,,(c2) is the derivative of v,(x;, B, o2) with respect to 62.
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2.2. Non-Additive Error Models
We use the term non-additive error model for a model in which

b, = gz(x;rﬁ +u;)

and g,(-) is nonlinear. We assume the distribution functions for u; and y;|(6;, ;) are F (u,-|03) and
F(y;16;,w;), respectively. A classical non-additive error model is the area-level GLMM in which
the conditional distribution for y;|(6;, ;) is in the exponential family, and u; ~ N(0, ‘75)-

An EB predictor of 6, is

~

0, = 6B, 52, )
where
0B, 0>) = El6;y;; (B, o2,

which denotes the conditional expectation of 6; given y; under the distribution defined by the
true parameter values, and (S, 35) is the maximum likelihood estimator of (f, ai). The MSE of
9, of (5) is

MSE(®,) = E[Var{8;ly;; (B, c2)}] + E[(6; — 6B, 52))],

where Var{6;ly; (B,62)} = O(1), and E[(9; — 8;(,2))*] = O(n™") (Lahiri et al., 2007).
An estimator of the leading term in the MSE of é\l is

Var{8,ly;: (B.62)} = E[62|y;; (B.6)] - 62, ©)

where numerical approximations may be needed to compute the integrals defining (6). In the
approximations below, we evaluate the conditional expectations at the parameter estimators
and 62. For replicates r = 1,...,R, generate ul(.’) ~ F(u;|6%) and let Gl@ =g/ p+ u?’)). An
approximation for E[6;|y;; (B,672)] is

R R —l Z (”)f(y 9(")’W
B10 1y (B.52) = ~— 2t O o ) ™
R_l Zr:]f(yilgi 7Wi

where f(y;|0;,y;) is the probability density or mass function corresponding to F(y;|0;, ;).
Likewise, an approximation for the conditional variance of 6, given y;, is

R
Var(0,ly; (.8} = )’ w{(07) - EI6,]y;: (B. 621},
r=1

where w(” = fOi 107 W) (ZL fOil0 W
We use the parametric bootstrap to estimate E[(6; — 6,(p, 0'5))2] and to estimate the bias
of Var{0, |y, (B, 33)}. For the bootstrap, the ", ... ,9,(,7)) and (y(r), ,yf,:)) are generated for

. S A . ~(r)
r=1,...,R using (B, 63) as the generating vector. Let f  and az(r) denote the parameter
estimates based on the " bootstrap sample. An MSE estimator that uses a multiplicative bias
correction is
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R -1
_——EB ~ _ NGRS
MSE, ., = [Varw,-ly,-;w,aﬁ)}]z[ze LY varto " (B, 627))

r=1

R
+RY @OB”,620) - 07 B.6) )

r=1

where 8 (8, 62) = EI6;]y"; (B, 62)].
A symmetric bootstrap confidence interval is

(6 : 8, — [Var{6;1y;: (B, DN Vapg < 6 < 6; + [Var(6; |y B. ) 1Gp) )

where Gp,;, satisfies

A~ A
g1 18738 -0

1 1 i > i ~
DR 2 2| <lpp |=1-a ©
ieD(i) r=1 \% 0. (r). A ’\Z(V)
ar(0,ly"; B, 520

the nominal confidence level is (1 — a)100%, and D(i) is a group of areas containing area i. For
instance, D(i) may be a single area or a collection of areas with the same sample size as area i.
We invert the confidence interval (9) and define the MSE estimator,

MSE,, = Var(6;y: (B.62)ah, (@7 (1 - /212, (10)

where ®~!(-) is the quantile function of a standard normal distribution. We call the MSE
estimator (10) the inversion MSE estimator.

3. BENCHMARKING PROCEDURES FOR NONLINEAR MODELS

We propose two benchmarking procedures for the models defined in Section 2: a linear additive
adjustment and a method based on an augmented model. The benchmarking procedures are
applicable to both the additive error and non-additive error models of Section 2. In defining the
benchmarking procedures, we use 6, to denote a predictor of €; such as (3) or (5), based on an
optimality criterion. When it is necessary to emphasize the dependence of 5, on the parameter
estimators, we will write

0. = 6.p.52), (11)

where @(ﬁ, ag) is the optimal estimator constructed with the true parameters. Let the bench-
marking restriction be

wo" =wTy, (12)

where y = (yy, ... ,ym)’, W=w,,... ,wm)T has full column rank, w; = (wy;, ... ,w”-)T, and the
7™ row of W' defines the j restriction of a set of r restrictions.

3.1. Linear Additive Benchmarking

Wang, Fuller, & Qu (2008) show that the linear predictor for the linear model that satisfies (12)
and minimizes

Q)= Y GEIt;—0)"] with £=(t,....1,)"
i=1
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can be expressed as

0" =0+ ¢~'w] Bras (13)
where
~ -1m
ﬂfa=<2¢ wi(e'w) ) Zw¢ b, — ), (14)
{¢, 1 i=1,...,m} is a set of constants specified by the investigator and @, is the best linear

unbiased predlctor (BLUP) of 0 for the linear model. Although qﬁ ¢ in (14) may seem awkward
because cj) d) is clearly 1, the express10n (14) illustrates that ﬂ ¢q €an be viewed as a generalized
least squares coefficient, where d) w; is the explanatory variable, ¢; is the weight, and y; — 9 is

the dependent variable. An equlvalent expression for ﬁfa is

1 m

Bro = (Zw{‘z?) > 2w - x] B, (15)
i=1 i=1

where w; = o711 — )% z; = yi(1 — y)w,, f=X"='X)"'X"5 ly, and X = (x;,...,x,)".
The predlctor (13) applies immediately to the nonlinear models of Section 2 with §; = 0, (ﬁ o 2),
where (B, 02) is defined following (11).

In practice, an estimated predictor can be benchmarked using the procedures defined
previously with aii evaluated at an estimate and permitting ¢; to depend on an estimate 851.. We
let $I~, é\fa,i’ and 3fa denote ¢;, 5;”, and ﬁia, respectively, evaluated at 33”..

The predictor (13) is not constrained to fall in the parameter space for models with restricted
parameter space, but in situations we have studied, benchmarked predictors outside the parameter
space are rare. Should such a situation occur, one can choose ¢, to place predictions in the
parameter space. Assume all of the original predictions are in the interior of the parameter space.
One can fix the benchmarked prediction for area i equal to the initial prediction for area i by
setting $I.‘1 = 0and $i_l$i = 1 in the adjustment expressions. A possible new (,51.‘1 for elements
with initial predictions close to the boundary is

¢, =0.50w] By |K; — 0]

where K; is the boundary closest to [9\1 The new benchmarked predictor will fall between the
prediction and the boundary unless observation i is extremely important in ﬁia.

To estimate the variance of é}a’i, we use a linearization approximation for the additive error
models and the bootstrap for non-additive error models. The MSE estimator for the additive error
model is defined in (A1) and (A2) of the appendix. For non-additive error models, we apply (8)
or (10) with the benchmarked predictor in place of the EB predictor. See (A4) and (AS5) of the
Appendix for details of how we apply the bootstrap procedure to the benchmarked predictors.

Remark 1. A ratio adjustment is a common way to benchmark predictors with a restricted
parameter space. Simple ratio adjustment (raking) is not a linear predictor but can be written as
predictor (13), where (l)_ = 9 w_l nd

m -1 m
Efa = <Z é\iwi> Zwi(yi - é:) (16)

i=1 i=1
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An estimator of the variance of the predictor obtained from the ratio benchmarking adjustment
is

Var{0,,. — 0.} = Var{0, — 0,} + (0,3,,)%. (17)
fa,i i i i iFta

where ﬁ;a is defined in (16). Variance estimation for the ratio adjustment is discussed in more
detail in the Supporting Information.

3.2. Augmented Model Benchmarking Procedure

If the mean function and @ satisfy parameter restrictions for all i, an alternative benchmarking
procedure begins with the augmented model, xl.T p+ le B ug» Where z; is a specified vector with
the same dimension as the vector w; defining the restrictions (12) such that Z:’il z,(1 = yl-)wl.T is
invertible. We define the benchmarked predictor §l_“”g by

6 = 9B . By, 52) (18)

>u

AT AT
which is (11) evaluated at g = (8 , ,Baug)T. The benchmarking restriction is achieved provided

2\3aug satisfies Sw(ﬁaug) = 0, where

Sw(ﬂaug) = 2 wi[yi - b\;((ﬁv ﬁaug)T, /0-\3)] (19)
i=1

We may take z; = ¢,~_1Wi- The root of the estimating equation 19 can be obtained using
Newton-type methods. For the additive error model predictors defined in (3), the estimating
equation 19 simplifies to

S Buig) = 2 Wil =)0 — 8] B+12] Buug))- (20)
i=1

For non-additive error models in which @, is an estimator of the conditional mean (5), the
estimating equation 19 takes the form

Su(Buug) = . Wi, = E6,1y;: (B Buye)T- 52D @1
i=1

The form of z; in (15) motivates alternative choices of z; for additive error models. By
analogy with (15), one choice of z; is

2, =dy O yi(1—yw], (22)

where d, ;(0) is the derivative of g(x| §) with respect to x]  evaluated at B.y, = 71—y
and ¢, is specified. For the choice of z; in (22), the root of the estimating equation can be obtained

(0

by the following iterative sequence. Let ﬂ;u)g be a specified initial value. Forj = 1,2, ..., define
~0) ~0=1
‘B aug = ﬂ aug +

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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(ZTD ' D)2 Y zidy (O 0 — 8T B+ By . (23)
i=1

where Z = (zy, ... ,zm)T, Dg(O) is the diagonal matrix with the derivative of g(xl.T ) with respect

to x| B evaluated at B on the diagonal, and ¥ is a diagonal matrix with v, = ¢7'(1—y)~2 on

~0) ~(=1)

the diagonal. The iteration is terminated when || 8 | is less than a specified tolerance.

© aug - ‘Baug I
In our experience, ﬁaug = 0 can be used as a starting value. By the definition of z; in (22), an
equivalent form for the iterative sequence (23) is

~G) A(j=1) ~T  ~ = ~ A ~(=1)
ﬁaug = ﬂaug +((Z YZ) IZzi(y,- - g(xl.Tﬂ +ziTﬁaug )), (24)

i=1

where Z = I-DW,Z, = —y)w,;, W is defined in (12), and I = diag(y,, ... ,7,,)- A related

. ) . . . Al S
approach is to define z; in two steps. First, define ﬂaug to minimize Q ), where

aug(ﬂzmg
Qaug(ﬂaug) = Z w[_l [yl - g(x;rﬁ + (zl('O))Tﬂaug)]za
i=1

A1
through the iteration (23) with B as a

aug aug

and 2" = d, ,(0)"'w;(1 — y,w]. Then, define B
starting value.

We use Taylor approximations to obtain an estimator of the MSE of the augmented model
predictors for the additive error models and use the bootstrap for the non-additive error models.
The MSE estimator for the additive error model is defined in (A3) of the Appendix. For the
non-additive error model, we apply (8) or (10) with the benchmarked predictor in place of the
EB predictor, as described in (A4) and (AS5) of the Appendix.

4. SIMULATIONS

We evaluate the properties of the estimators using two simulation models. The simulation study
of Section 4.1 uses an additive error model and is designed to demonstrate the impacts of different
choices of z; in the augmented model approach. In Section 4.2, we compare the augmented
benchmarking approach to the linear additive approach using the binomial-logistic model.

4.1. Additive Error Simulation Study

Our example is a simplification of the small area model that motivated the research on bench-
marking. The model was initially developed to obtain predictors of proportions using direct
estimators from the Canadian Labour Force Survey (LFS) and covariates from the previous
Canadian Census of Population. See Hidiroglou & Patak (2009), Berg & Fuller (2012, 2014) for
details about the data and the model.

Letting p;, p..;» and n; be the direct estimator, Census proportion, and number of primary
sampling units, respectively, for area i, we consider the model

pi=0;+e,
0, = g(x/ B) +u;,
g(x] B) = [1 +exp(fy + A1x)] ™" exp(By + B1x)).
x; =log[(p. )1 = p.)~' 1+ 1ogl(p. )1 = p.)7'], (25)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



490 BERG AND FULLER Vol. 46, No. 3

TaBLE 1: Parameters for simulation areas.

Area -4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40
X; 0 -248 -1.39 0 -248 248 -1.39 0 -248 -1.39
8 02 075 0.5 0.2 0.75 0.75 0.5 0.2 0.75 0.5
Sample size 16 16 16 30 30 60 60 204 204 204
1052 0.1 0.15 0.26 0.07 0.11 0.04 0.07 0.01 0.01 0.02

ei

B =(Pp. BT, x; = (1,x)T, and (u;, ¢;) ~ (0, diag(c?, n; ' 62)). The model for the variance of the
random effects is

o2 = o2g(x] B)(1 - g(x] B)).

where the definition of x; is the interaction in a saturated loglinear model fit to the Census counts,
as in Berg & Fuller (2012), and o-i is a parameter to be estimated. The simulation is built to
reflect the LFS cluster sampling design, so ni_lafl. is the variance of a 2-stage cluster sample
of size n;. To generate variables that remain in the natural parameter space for proportions, we
generate 0; from a beta distribution and generate p; from a mixture of beta-binomial distributions
with parameters chosen to give the specified first and second moments. Berg & Fuller (2012)
describes the simulation procedure in detail.

We simulate proportions for 40 areas, with sample sizes and parameters as in LFS. The areas
are divided into 10 groups, each of size four, where each area in a group has the same value for
x;, n;, and ofl.. The proportions and sample sizes for the simulation are given in Table 1, where
g; denotes g(xiT,B) of (25). The MSE of the EBLUP depends on both the sample size and the
proportion. Comparing results from areas with the same sample size but different proportions
provides information about the effect of the mean parameters. On the other hand, comparing
results from areas with different sample sizes but the same proportion provides information
about the effect of sample sizes. The value of 05 for the simulation is 0.005, which is similar to

the estimate obtained from the LFS data.

4.1.1. Model estimation and benchmarking prediction

We use a working model for 531.. Under a working assumption that the sampling variance is
proportional to a multinomial variance, an estimator of the variance of 4/n;e; is

A A~ ~(0) ~(0)
Gezi,w =0hp8@] B (1 —gx[ B ),

~0) . . ~ . . . .
where f  is the MLE under an assumption that n;p; has a binomial distribution with 65 =0,
h(i) denotes the index set of the group of four containing area i,

+(1=6)1,

~2
~ = Zkeh(z’) O ok
Cipy = 6

~(0)

~(0)
Zkeh(i)g(x;(rﬂ )(1 = g(x:ﬁ ))
_ 10000
10000 + Var(Z,}

R
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Zkeh(i)g(x/;rﬁ(m)(l - g(xZB(O)))<% - /Eh(i)>2
g/ B (1-g] B )

(RG] = D(Egenn@T B 1 = 2T B )

Var{/C\'h(i)} =

b

and ni‘]Gezi is the direct estimator of the variance of ¢;. Berg & FullNer (2012) provides further
detail on the sampling variances for the simulation. The choice of o; is motivated by a Bayes
estimator, where the mean of ¢, has a prior distribution that is normal with a prior mean of 1
and a prior variance of 10,000. If 52, = 0 for all k € h(i), then ¢, = 1.

Let the predictor be of the form (3), replace y; with p;, and use the working model estimator
of y; to obtain

0,=p;— (1 =7)Ip; — gCx] P,

where 7; = (nl.‘lﬁfiyw +52)7'62, and B is defined by (2) with 62, obtained by application of the
procedure described in Section 1 of the Supporting Information.

The proportions have a structure of four 2 x 10 tables with row 1 of table k containing {p; :
imod 4 = k} and the column for element i containing (p;, 1 — p;)T. We consider a multivariate
benchmarking restriction that preserves row and column margins of each two-way table. A

predictor @;V is benchmarked if

40 40

e N
Z w;0;°6;; = Z WiDi0pi»
i=1 i=1

where 6;; = I(imod 4 = k)fork = 0, 1, 2, 3. In this notation, w; and 2?21 w;D;8y; are, respectively,
column and row margins of the two-way table. We consider three benchmarked estimators
that guarantee 0 < é\iw < 1. The first two benchmarking procedures use the augmented model
benchmarking method defined in (22)—(23) of Section 3.2 with

= wi(1 = y)wiSys -5 64)"
gl (1 — gx] B)

and two different values for y; defined by

2

el

62 (26)

ui

R S PV IS RS S PN
v;=0-y)"(n o, +0,) n o
and

w =1 =7)7w; !, 27

where ni_léfi is a design-consistent estimator of the variance of e;. The y; in (26) is that proposed
by Battese, Harter, & Fuller (1988), and we refer to the y; in (26) as ‘‘Aug BHF.”” We refer
to y; in (27) as ‘‘Aug w~'.”” We compare the augmented model procedures of Section 3.2
to benchmarking based on iterative proportional fitting (raking). As discussed in Berg (2010,
p- 58), the raked predictor é\l?”wl- for a single table of proportions with indexes i,i +4,...,i+91is

approximately a linear additive predictor with
~rak ~
B = XDX) X 5 -0), (28)
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TABLE 2: Simulation MSE for predictions.

Increase in MSE

Set n; g w; Var{e;} MSE(@) Raking Aug BHF Aug w!
1 16 0.01 0.20 100 18 -0.1 -0.0 -0.1
1 16 0.01 0.50 265 21 -0.1 -0.0 -0.2

1 204 0.25 0.20 8 6 0.1 0.1 0.2

1 204 0.25 0.50 21 12 0.3 0.5 0.2

2 16 0.25 0.20 100 18 19 27 28

2 16 0.25 0.50 265 21 46 68 29

2 204 0.01 0.20 8 6 18 0.0 28

2 204 0.01 0.50 21 12 42 0.0 24

For set 1, w; increases as n; increases. For set 2, w; decreases as n; increases. All MSEs and variances have been
multiplied by 10,000.

where X = (J,( ®1,,1,0 ®J,), Dy = diag(w;0;,,w;(1 = 6,), ..., wi+99i+9,wii9(l ~ 0i19)), DAW =
diagwlp, ..., Wiyoly), ¥ = Biwis (1 = P)Wys - DiyoWisos (1 = Pipo)Wio) T @ = (Ow;, (1 = 6))
Wi eevs 0ioWipg, (1 = 0,,0)W; )T, I, is the identity matrix of dimension r, and J, is the
r—dimensional vector of ones.

4.1.2. Comparison of efficiencies of benchmarked predictors

We evaluate the performance of estimators constructed under the three benchmarking methods
for two simulation sets. In one set, w; increases as n; increases and in the other w; decreases as
n; increases.

The results for the set of parameters where the weights w; increase as the sample size
increases are given in the rows of Table 2 corresponding to set 1. The w; are 0.01 for areas
with sample size 16 and w; are 0.25 for areas of sample size 204. The direct estimators with
large sample size have more weight in the restriction. Also, for areas with large sample sizes
(and large weights), 7; is close to one, so §; is close to the direct estimator. As a consequence,
the variance of the difference lletween the weighted sum of the direct estimators (the restriction)
and the weighted sum of the {60, : i = 1,...,m} is relatively small. For the set where the weight
increases with the sample size, benchmarking has a small effect on MSE; the amount added to
the MSE of the EBLUP is less than 5% of the original MSE.

The results for the simulation where the weights decrease as the sample size increases are
given in the rows of Table 2 corresponding to set 2. In this set, the amount added to the
MSE due to benchmarking is large. For raking, the increase in MSE is about equal to the
original MSE for n; =16 and more than twice the original MSE for n; =204. For set 2, the
increase in MSE due to raking is approximately proportional to g; (20/0.2 ~ 45/0.5 =~ 100).

The approximation for the raked predictor is in the scale of totals. For proportions, the
~rak ~rak

increase in MSE due to raking is approximately L,DyXB,, (B,, )TXTDGL;, where L, is the
block-diagonal matrix defining the linear approximation that converts totals to proportions and
has w;l((l —Diu—(1 =P )", (=p;,p;)™)T as block i. For the augmented model with the weights
proposed by BHF, the increase in MSE is associated with the weight, and the method gives the
smallest average increase in MSE. The amount added to the MSE using the third augmented
model is roughly constant, and approximately equal to the variance of the estimated coefficient.
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TaBLE 3: Empirical coverages of normal theory 95% confidence intervals.

Method Set n,=16 n; =30 1= 60 n, =204
Aug BHF 1 0.95 0.94 0.95 0.96
Aug BHF 2 0.95 0.95 0.95 0.96
Aug w! 1 0.95 0.95 0.95 0.96
Aug w! 2 0.96 0.95 0.96 0.95
Raking 1 0.95 0.95 0.95 0.96
Raking 2 0.97 0.96 0.97 0.98

Simulation set 1: w; increases as n; increases. Simulation set 2: w; decreases as n; increases.

The results in Table 2 illustrate that the nature of the added variance can be determined by the
choice of y;.

To examine the effect of the size of 05 on MSE, we conducted simulations with 55 =0.06
as well as 0'3 = 0.005. For both values of 05, the impact of benchmarking on the MSE is greater
for the w; inversely related to n; than for w; directly related to n;. For large n; and the w; used
for set 2, the raking and Aug w~! benchmarking procedures substantially increase the MSE
relative to the MSE of 6;, while the BHF benchmarking procedure has negligible impact on the
MSE, regardless of the size of 0'5. The change in MSE due to benchmarking is typically smaller
for o-lf = 0.06 than for 63 = 0.005, which is expected because the values of (9\, are closer to the
direct estimators for o-lf = 0.06 than for 0'3 = 0.005. The full simulation output is provided in the
Supporting Information.

4.1.3. Evaluation of MSE estimators for benchmarked predictors

Table 3 contains the empirical coverages of nominal 95% prediction intervals for predictions for

the three benchmarking procedures. The results are averaged across areas with the same sample
5

iw?’

size, for each set of parameters. The prediction intervals are constructed as @l‘.” *1, (0.975)1\75??
where </9\IY” denotes a benchmarked predictor and AqS\Ei’W the corresponding MSE estimator. The

MSE estimator A/lS\El-M is computed using (A3) for the augmented model procedures, with a
modification to account for the use of the working model for agzi. (Section 3 of the Supporting
Information outlines the modification to the variance estimator for the use of the working model.
Also see Berg & Fuller, 2012, 2014.) The MSE for raking is based on the approximation (28) for
the raked predictor as a linear additive predictor. The empirical coverages for set 1 are between
94% and 96%, slightly smaller than the empirical coverages for set 2, which range between 95%
and 98%. We consider the empirical coverages to be satisfactory.

4.2. Non-Additive Error Simulation Study

Assume a binomial random variable for area i,
y; ~ Binomial(n;, 6,),

where

exp(f + u;)

=————"— u;~NO,0c2),
1+ exp(f + u;) u

i
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TaBLE 4: MC MSEs of alternative predictors.

n; Bayes EB Lin. Add. Aug
2 1.490 1.587 1.587 1.585
6 1.115 1.187 1.187 1.184
18 0.644 0.679 0.679 0.681

Bayes = Bayes predictor constructed with true parameters; EB = empirical Bayes predictor constructed with estimated
parameters; Lin. Add.=benchmarked predictor based on the linear additive approach; Aug=benchmarked predictor
based on the augmented model approach.

andi = 1, ..., m. The simulation parameters are f = —1.2, and 0'3 = 0.8. The sample sizes n; are
2 for 20 areas, 6 for 20 areas, and 18 for the remaining 20 areas. An estimator of the minimum
MSE predictor is

0.5.6> = E10, | y;; (. 521,

where ﬁ and 6'\2 are approximate MLEs obtained from Gauss-Hermite quadrature with 10 points
(nAGQ=10 in the R function glmer), and E[6; | y;; (ﬁ, 35)] is evaluated using the numerical
approximation defined in (7) with R=500. We use a lower bound of 0.006 for the estimator of
05, as proposed in Erciulescu (2015).

The benchmarking restriction is

m

m
i=1 i=1

We benchmark the §, using the linear additive approach of (13) and the augmented model
approach of (18). For the linear additive approach, we use

-1

X R
bl =R Y0000+ k=17 Y 0 -8
=l r=1

where 07 = (1 +exp (B + u™) T exp(F+ 1), u” ~N©0,62), 8 =R YR 00, and
R=500. For the augmented model approach, we use z; = 4)1_11 in (21). To ensure that the
benchmarking restriction holds, the same random numbers used to evaluate the conditional
means in the estimating equation 19 are used to compute the augmented model predictor (18).

4.2.1. Comparison of MC MSEs of predictors for logistic-normal simulation

Table 4 contains the MC MSE:s of the alternative predictors. The Bayes predictor, which is the
conditional expectation constructed with the true parameter values, is included to demonstrate
the impact of estimating the parameters on the MSE. Benchmarking has little effect on the MSE,
and because the parameters f and o-i are estimated, benchmarking can decrease the MSE relative
to the MSE of the EB predictor.

4.22. Evaluation of MSE estimators for logistic-normal simulation

We construct MSE estimators and confidence intervals for each predictor. The MSE estimators
for the EB predictor are defined in (8) and (10). The MSE estimators for the benchmarked
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TaBLE5: MC means of estimated MSEs and empirical coverages of symmetric 95% confidence intervals.

MC Means of Empirical Coverages
Area sample size MSE Estimators of 95% CI’s
Predictor n; Mult. Inversion Mult. Inversion
EB 2 1.610 2.633 92.5 95.3
EB 6 1.198 1.768 93.5 952
EB 18 0.675 1.054 94.6 96.1
Lin. Add. 2 1.700 2.093 93.0 96.0
Lin. Add. 6 1.323 1.484 94.0 96.6
Lin. Add. 18 0.747 0.850 94.6 97.3
Aug. 2 1.699 2.091 93.0 96.2
Aug. 6 1.321 1.484 93.9 96.5
Aug. 18 0.746 0.850 94.6 97.3

Definitions of EB, Lin. Add., and Aug. are as in Table 4. Mult. and Inversion, respectively, are MSE estimators defined
in (8) and (10) for the EB predictor and in (A4) and (AS) for the benchmarked predictors.

predictors are defined in (A4) and (AS5). In defining the inversion MSE estimator (10 or AS),
we let D(i) be the collection of areas with the same 7;. In the tables below, the label *‘Mult.””
refers to the MSE estimators (8) and (A4). The label ‘‘CI’’ refers to the MSE estimators (10)
and (AS).

Table 5 contains MC means of estimated MSEs and empirical coverages of 95% confidence
intervals. The confidence intervals based on the inversion MSE estimators, (10) and (AS5), have
empirical coverages that are greater than or equal to the nominal level. The coverages of the
confidence intervals based on the multiplicative MSE estimators, (8) and (A4), are between
92.5% and 94.6%. The positive bias of the inversion MSE estimator is due to a few extreme
MSE estimates.

5. COUNTY ESTIMATION IN THE NATIONAL RESOURCES INVENTORY

We apply the benchmarking methods to data from the National Resources Inventory, a longi-
tudinal survey that monitors status and trends in land cover and land use in the United States
(Nusser & Goebel, 1997). One of the parameters of interest in the NRI is the proportion of area
devoted to cropland. Interest in sub-state estimates motivated this work. Because the state-level
estimates have been published, benchmarking to the state-level estimates is important.

We consider estimating the proportion of cropped acres in each county in Minnesota in 2010.
We choose Minnesota because it has a high proportion of cultivated land and also a wide range
in the proportions. The estimated proportion of cropland in Minnesota based on the 2010 NRI is
0.389 with an estimated CV of 2.3%.

As a first step, we compute NRI estimators of the proportion of each county in cropland and
corresponding estimators of variances. To define the direct estimators at the county level, we use

i to index counties (i = 1, ..., 87) and j to index sampled locations within counties (j = 1, ..., n;).
The NRI estimator of the proportion is
n;
X Wil
iz T
XL Wi
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FiGure 1: 2010 NRI estimates of the proportion of Minnesota counties in cropland in 2010 plotted against
the corresponding CDL proportions.

where 6; = I(location j is classified as cropland in 2010), and wy; is the weight associated with
location j in county i. The estimated coefficients of variation for the estimated proportion of the
county classified as cropland range from 3% to 50%, with a mean of 14%.

We obtain auxiliary information from the United States Department of Agriculture National
Agricultural Statistics Service geospatial Cropland Data Layer (CDL). The CDL is a classification
of 30 x 30 meter pixels into land cover categories based on satellite data. The covariate is the
proportion of CDL pixels in a county classified as cropland. Because many of the CDL
proportions are near zero, we define the covariate by

Pein; +0.5
Pei = ——7—

m+1
where 7; is the number of NRI primary sampling units in county i, and p,; is the proportion of
CDL pixels in a county classified in categories that are cropland according to the NRI definition
of cropland. In Figure 1, the NRI estimates of the county-level proportions in cropland are
plotted against the corresponding CDL proportions. The correlation between the NRI and CDL
proportions is 0.98.

We use the model and estimation procedure from Section 2.1. The model for the
direct estimator is p; = py; + u; + ¢;, where pp; = exp(fy + p1x)(1 + exp(By + f1x) ", x; =
logit(p,.;) — logit(p, ;), and (u;, e;) ~ diag(o-lfppgi(l —Pri) 631.). This definition of x; is a special
case of the definition from Berg & Fuller (2012) for a situation in which the response is binary.

We use a generalized variance function for agi (Wolter, 2007). An analysis of the relationship
between the direct estimates of the variances and preliminary estimates of pj. ; suggests a variance
model of the form 62, = 0.0001 + ¢} ' py (1 — pg;), where n; is the number of primary sampling

units in county i. We treat the estimate of o-i. as the true variance for this analysis. We estimate
¢ by the ordinary least squares regression of the variance estimate 8621. on ni‘l’p\;oj.(l —ﬁg),
holding the intercept fixed at 0.0001. Zero variance estimates are replaced with O.Sni‘2, which
is the method used by Berg & Fuller (2012) for the binary case. The initial estimate f?}oz

is an estimator for a model with f; =1 and Var{e;} = nl.‘lpF’i(l —pr;)- The estimate of ¢
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FIGURE 2: Standardized residuals (5; — pr;)/ /6> + 62, plotted against x;,.

ei,w

TABLE 6: Ratios of estimated MSEs of benchmarked predictors to estimated MSEs of initial predictors.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Linear 1.00 1.01 1.02 1.03 1.03 1.25
Raking 1.00 1.04 1.06 1.05 1.07 1.09
Augmented 1.00 1.01 1.02 1.03 1.03 1.24

for the Minnesota data is 1.7. The estimates (and standard errors) of these model parameters
are //3:) = —2.790(0.086), [/3\1 = 0.806 (0.022), and 85 = 0.00084 (0.00180). The plot of the
standardized residuals against x; is given in Figure 2.

We define initial predictors of the form ﬁfmd =70+ (1 =7)Pr,;, where pp;=
[1 +exp(By + B1x)] ™" exp(By + Byx;). and 7; = [0.001 +Cn "By (1 = Pr) + 62Pp (1 = B!
62pp (1 = Pp,). The estimate of the state-level proportion in cropland based on the initial
predictors is 0.386. Although the difference between the state-level proportion based on the
predictors (0.386) and the state-level proportion based on the NRI estimates (0.389) is small,
the difference is noticeable for an analyst comparing aggregated county-level predictors to the
published estimate.

We compare three benchmarking procedures: the augmented model with the BHF value
for y;, raking, and the linear additive adjustment with (bi‘l = yl-aji, which corresponds to the
BHF ;. Table 6 summarizes the distributions of the ratios of the estimated MSEs of the
benchmarked predictors to the estimated MSEs of the initial predictors. The estimated MSEs
for raking, the linear additive adjustment, and the augmented model are defined in (17), (A1),
and (A3), respectively. Although benchmarking increases the estimated MSE of the predictors,
the estimated MSEs for the benchmarked predictors are typically smaller than the estimated
MSEs for the direct estimators. For the augmented model and raking procedures, the estimated
MSE:s of the benchmarked predictors are uniformly smaller than the estimated variances of the
direct estimators. For the linear additive procedure, seven estimated MSEs exceed the estimated
variances of the corresponding direct estimators.

6. SUMMARY AND RECOMMENDATIONS

We propose two classes of benchmarking procedures for nonlinear small area models: a linear
additive adjustment and an augmented model predictor. In application, the analyst can choose
a benchmarking procedure within a class on the basis of a weight function. We recommend
the linear additive approach. The linear additive approach is computationally simple and widely
applicable. Raking can be viewed as a member of the linear additive class and, in our experience,
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performs well for situations in which the sampling variance of the proportion is inversely related
to the weight defining the restriction.

APPENDIX
SOFTWARE
https://github.com/emilyjb/benchmarked-sae-cjs-2018

MSE ESTIMATION FOR THE ADDITIVE ERROR MODEL

Linear Additive Benchmarking
For additive error models, an estimator of the MSE of @mi is

Var{8,; = 0;} = Var(0, = 0;} + &> w] Var{ By, }w, (AD)
where Va\r{@ — 6} is an estimator of (4),
— A PPN NN NP RPN P
Var{Bs) =M, (&, ~HH £ \H™'H M,
M, =W o 'wy 'wTa -1, (A2)

® = diag(@). ..., b,). [ = diag, ....7,), H= (b, ....h,)", h; = 0g(x] B)/9p is the vector
of partial derivatives of g(xl,Tﬁ) with respect to B evaluated at ﬁ, and iaa = diag(35i+
Gezi, ,AZI. +o-e2i). We justify the variance estimator (Al) for the additive error model in
the Supporting Information.

Augmented Model Benchmarking

By the justification in (S19 - S24) of the Supporting Information, an estimator of the MSE of the
augmented model predictor for the additive error model is given by

e — A o n T~ A A
Var(8" = 0,} = Var(B, = 0,} + (1 = 7R, 1, Var{ B Vg (A3)

T)T

aug

~ AT o
where h; . is the derivative of g(xl.T B+ Z,Tﬂaug) with respect to g, evaluated at (B , B

MSE ESTIMATION FOR THE NON-ADDITIVE ERROR MODEL

Parametric Bootstrap MSE Estimators for Benchmarked Predictors

We provide details of the parametric bootstrap procedure used to estimate the MSE of the
benchmarked predictors under the non-additive error model. Let é\iw(ﬁ, 85) denote a benchmarked
predictor constructed using either the linear additive or augmented model approach. We define
MSE estimators for the benchmarked predictors analogous to (8) and (10). An MSE estimator
that uses a multiplicative bias correction, as in (8), is

R -1
_—Bench ~ _ A~ o
MSE, ... =[Var{6;|y;.(B.62)}1 [R Py Var{o, [y (B, 627))

r=1

R
_ ~v A(r) A I ), A
+RTY @B .62 - 07 (B.62)7, (A4)
r=l1
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where @.W(B(r), 85(”) is the benchmarked EB predictor for the " bootstrap sample. The inversion
MSE estimator analogous to (10) for the benchmarked predictor is

Benc

— h ~ ~ _ _
MSE,, = Var(6;|y;; (B, 5)}qp, (@' (1 — a/2)] 7, (AS5)
where ®~!(-) is the quantile function of a standard normal distribution, dp(; satisfies

A~ (1) 2
6B e -6

<qpy| =1-a,

R
1 1
—— I
IDO| R e;); [ . " ~20
! ! Var{eklyk 7()6 , Oy )}

and D(i) is a group of areas containing area i.
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