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Scattering profile for global solutions
of the energy-critical wave equation
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Abstract. Consider the focusing energy-critical wave equation in space dimension 3, 4 or 5. We
prove that any global solution which is bounded in the energy space converges in the exterior of
wave cones to a radiation term which is a solution of the linear wave equation.
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1. Introduction

In this note we consider the energy-critical nonlinear wave equation on RV, N € {3, 4, 5}:

(1.1)

8,2u — Au — |u|YN=2y =0,
(, du) =0 = (uo, u1) € H' x L?,

where H! = H'(RY), L? = L*(RN), and u is real-valued. If f is a function of space
and time, we will denote f = (f, 9, f). It is known that the equation (1.1) is locally well
posed in H' x L? and that the energy

- 1 2 l 2 N — 2 2N
= - — i — N-2
E(u(t)) 2/qu(t,)c)| dx+2/|8,u(t,x)| dx N /lu(l,x)| dx

is conserved.

All solutions of the defocusing equation ((1.1) with a 4 instead of a — sign in front of
the nonlinearity) are global and scatter to a solution of the linear equation (see e.g. [26, 16,
14, 17, 24, 19, 25, 3, 23]). The dynamics of the focusing equation (1.1) are richer: small
data solutions are global and scatter, but blow-up in finite time may occur [22]. Global,
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nonscattering solutions also exist. Examples of such solutions are given by solutions of
the elliptic equation
—AQ=01Y¥P0, QeH' (1.2)

(see [6] for the existence of such solutions) and their Lorentz transforms

t 1 1
, — _ +— ——1)l-x )+ = 0, x—tl 1.3
Qe(t, x) Q(( e |£|2< T ) x) x) Q¢(0, x—1£) (1.3)

where £ € RY, |¢| < 1. Note that

Qu(t,x) = Q¢(0, x —10),

so that Qy is a solitary wave travelling at speed |£|. The energy of Qy is given by

E(Qu(0) = E(Q(0)) e (1.4)

1
J1— 102

It is conjectured that any bounded, global solution of (1.1) is a sum of modulated, de-
coupled travelling waves and a scattering part. More precisely:

Conjecture 1 (Soliton resolution). Let u be a solution of (1.1) on [0, +00) x RN such

that

sup |1 (t) || g1y 12 < 00. (1.5)
t>0

Then there exist a solution vy, of the linear wave equation

32 — A)yv, =0,
G = M 0 (1.6)
ULpe=0 = (vo, V1) € H™ X L*,

an integer J > 0, and for j € {1,...,J}, a (nonzero) travelling wave Qe (Where

[£;] < 1and Q/ is a solution of (1.2)), andparameters xj(t) € RV, Aj) eR such that
lim [ﬁ(t) —u.(1)
>t

— c—xj(1) 1 j < '—x]'(t))):| B
Z(x (tH(N=2)/2 Qe < ) (D) ) )\,j([)N/zathj 0, —Aj(t) =0 (1.7

in H' x L? and

i(f At
Vie(l,...,J}, lim xf—()=zj, fim D _o,
t—+4oc0 t t—+4o00 f
. ) . |xj (1) —x (@] A1) A(D)
Vike{l,....J} — 1 _
Jhel A HT«( 50 ORET0)



Scattering profile for the energy-critical wave equation 3

This conjecture was proved by the authors in [10] for radial solutions in space dimension
N = 3. In this case x;(t) = 0 and the only stationary solutions in the expansion (1.7) are
W and —W, where

1
AP/

In this article we extract the linear profile v, (#) which appears in the expansion (1.7).
More precisely, we prove:

Wi(x)

Theorem 2. Let u be a solution of (1.1) on [0, +00) x RN that satisfies (1.5). Then there
exists a solution vy, of the linear wave equation (1.6) such that, for all A € R,

lim <|V(u—vL)<t,x>|2+|at(u—vL)<r,x)|2+i2|u<t, x>|2+|u<t,x>|~”2) dx

1>+00 J |51 44 x|

=0. (1.8

We see Theorem 2 as a first step toward the proof of Conjecture 1. It is used in an article
by Hao Jia and the authors to prove a weak form of the conjecture, that the expansion
(1.7) holds for a sequence of times t, — 400 (see [7]). Note that Theorem 2 implies that
the following limit exists:

N -2
2N

lim lim §|Vu(t,x)| +§(8tu(t,x)) —

A——00t—>+00 |x|>t+A

|u(t,x)|ﬂ3—NZ) dx
= EL(U()7 v])a

where
= 1 2 2
E (v (2)) = 5/[IVUL(t,x)I + Qv (t, x))*] dx

is the conserved energy for the linear wave equation. One can also prove (using for ex-
ample the profile decomposition of [2] recalled in §2.4), as a consequence of Theorem 2,

SL(—1)i(t) ——— (. ), (1.9)

where S'L denotes the linear evolution (see §2.1 below).

We next mention a few related works. Theorem 2 is proved in [8, Subsection 3.3]
in the radial case in dimension 3 (where it is significantly simpler). A very close proof
yields Theorem 2 for radial solutions of (1.1) in higher dimensions (see e.g. [S]) and of the
defocusing analogue of (1.1) with an additional linear potential [18]. We refer to [5] for
an analogue of Theorem 2 for equivariant wave maps. The spherically symmetric setting
is much easier since any solution can only propagate in two directions, outward (x/|x|)
or inward (—x/|x]), a fact that is crucially used in the previous proofs. Related results for
energy-subcritical, mass-supercritical Schrodinger equations were proved by T. Tao [27,
28, 29].

Let us give a short outline of the paper. We first prove (Section 3), as a consequence of
small data theory and finite speed of propagation, that (1.8) holds for large positive A. We
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then argue by contradiction, assuming that (1.8) does not hold for all A € R, and defin-
ing A as the largest real number such that (1.8) does not hold. We divide (see Section 4)
the elements of the sphere S ~! between regular directions (in an angular neighbourhood
of which (1.8) holds locally, for some A < A), and singular directions (other elements
of S¥~1), and prove, using geometrical considerations and again small data theory and
finite speed of propagation, that the set of singular directions is finite. To conclude the
proof, we show in Sections 5-7 that the set of singular directions is empty, which will
contradict the definition of A. More precisely, in Section 5, we prove that there exists a
nonzero profile which concentrates close to the wave cone {t = |x| + A}, along an ar-
bitrary singular direction. The core of the proof is in Section 6, where we prove, using a
local version of virial-type identities, that there are no nonlinear profiles remaining close
to the wave cone {t = |x| + A}. This is coherent with the intuition that nonlinear objects
with finite energy travel at a speed strictly slower than 1, as the travelling waves (1.3) and
their energies (1.4) suggest. Finally, Section 7 collects the results of the preceding two
sections to prove by contradiction the emptiness of the set of singular directions. Let us
mention that we never need to know, in all this proof, what happens inside the wave cone
(that is, for (¢, x) such that |[¢| — |x| > 1). This is of course made possible by finite speed
of propagation.

In Section 2, we give some preliminary results on linear and nonlinear wave equations.
We introduce in particular an isometry between the initial data and the asymptotic profile
of a solution of the linear wave equation that is known (see e.g. the work of Friedlan-
der [13]) but seems to have been somehow forgotten. We construct this isometry (which
we use many times in the article) in Appendices A and B for the sake of completeness.

2. Preliminaries and notations
2.1. Linear wave equation
If (v, v1) € H' x L%, we let

SL(t)(vg, v1) :=cos(tv/ —A)vg + ——— 1,

sin(fv/—A) y
J-A

let v, be the solution of (1.6), and

- - ]
Sp(1)(vo, v1) = (F) = (SL(I)(vo, v1), E(SL(I)(UOs v1))>-
The linear energy
E (v (1)) = 3 VoL (2, x)|" dx + 3 (OrvL (1, x))" dx
is conserved. We will often use radial coordinates, denoting, for x € R¥\ {0}, = |x| > 0

and w = x/|x| € S¥~!. We also denote

0 X 1 X
Op=—=—-V, -V,=V-—-—0,.
or [x] r x|
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We will often use the following asymptotic property.

Theorem 2.1. Assume N > 3 and let v, be a solution of the linear wave equation (1.6).

Then . .
lim <H—vaL(t) + H—vL(t) ) =0 2.1
t—+00 r 12 r 12
and there exists a unique G4 € L>(R x SN~ such that
: +oo N1 2
lim |F T ot rw) — Go(r —t, )| dwdr =0, (2.2)
t—=+00 Jo SN-1
. oo N1 2
lim f |r' 7 0u(t, ro) + G4 (r — 1, ®)| dwdr =0. (2.3)
t—>+400 Jgo SN-1
Furthermore,
Ev(uo. v1) = / G+ (n, )P dndeo = G112, 2.4)
RxSN-1
and the map

(H' x L)Y@®Y) > L>®R x SV Y, (v, v1) = V2G4,
is a bijective isometry.

Remark 2.2. Applying Theorem 2.1 to the solution (¢, x) — v (—t, x) of (1.6), we find

1
lim ( ) =0,
t——00 L2

‘_VwUL(t)

,

. +00 Nol s

lim Ir "z gLt rw) = G_(t +r,w)| dodr =0,
0 SN-1

1
+ H —v (1)
.

L2
there exists G_ € L2(R x S¥~1) such that

—>—00

. +oo N1 2
lim |F 7 vt ro) — G_(t + r, w)| " dwdr = 0,
0 SN—I

—>—00

and the map (vg,vi;) +> V2G_ is a bijective isometry from (I-.I1 x LY (RN) to
L2(R x SN-1y,

We will call G (respectively G_) the outgoing radiation field (respectively the incoming
radiation field) associated to vy .

Theorem 2.1 is known (see in particular the works of Friedlander [12, 13]). We give
a proof in Appendices A and B for the sake of completeness. Let us mention that the
following identity for the conserved momentum is also available (but will not be used in
this article):

/Vvovl = —/ |G+, w)|*dndw.
RxSN-1
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2.2. Strichartz estimates

If Q is a measurable subset of R, x RY, of the form Q@ = J, gt} x Q, @ c RY
measurable, and u a measurable function defined on 2, we denote

1 N=2
too 2N+ 2 N+2
s = ( / ( (e, )| 57 dx) dz) . 2.5)
—0o0 Q

If I C R is measurable, we will abuse notation, writing S(/) for S(I x RV).
The spaces S(I) appear in the following Strichartz estimate (see [15]): Let f €
LY(R, L2 (RM)) and (ug, u1) € (H' x L?)(RV), and let
'

u(o) =SL(r>(uo,u1>+/0 SL(t — )0, f(s))ds

be the solution of
(02 = Nu=f, iiy=o= (uo,u1) € H x L*. (2.6)
Then u is well defined, i € CO(R, H! x L?), u € S(R) and

lulls) + sup @@l g1, 2 < CUF L 2y + 1 @o, u)ll gy 2)-
teR

We will occasionally use other Strichartz estimates: in the preceding inequality, one can

2(N+1) . i, A
replace S(R) by L ~—2 (RN*1), and also by L*R, L'?) (if N = 3) or LX(R, LV-3) (if
N > 4).

2.3. Miscellaneous properties of the critical nonlinear wave equation
We recall the Cauchy theory for equation (1.1):

Theorem 3 (see [20]). (a) (Small data theory) There exists 5o > 0 such that if I is an
interval containing 0 and (ug, u1) € H! x L? 1? such that || Sy, () (uo, u1) sy < do,
then there exists a unique solution ii € CO(I, H! x L2) of (1.1). Furthermore

5 N+2
sup [l () — Su(6) (o, u) || g1 5 g2 + llu = SL() (o, un) sy < CISLC) (o, un)llg -
tel

®) If (uo,uy) € H' x L2 there exists a unique maximal solution u of (1.1). Letting
(T—, Ty) be the maximal interval of existence of u, we have the following blow-up
criterion:
Ty <00 = |lullso,1,)) = +00.

(¢) Ifu is a solution of (1.1) such that u € S((0, T)), then T = +o00 and u scatters
for positive times: there exists a solution uy, of (1.6) such that

dim () = i (Ol g2 = 0. @.7)
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In the theorem, a solution of (1.1) on I is by definition a solution in the Duhamel sense
which is in S(J) for all J/ & I. Point (c) can be seen as a consequence of the following
result on the nonhomogeneous linear wave equation, which we will use repeatedly:

Claim 2.3. Let f € L'(R, L2(RN)Y) and u the solution of (2.6) (in the Duhamel sense).
Then there exists a solution vy, of (1.6) such that

dimi(0) = B0l 12 = 0. 2.8)

Proof. The existence of v, follows from the formula

t
Su(=0ii(t) = (o, ur) + /0 SL(=5)(0, £(s))ds

and energy estimates. O

We recall the finite speed of propagation property: if R > 0, xo € RY and u is a solution
of (2.6) such that (ug, u1)(x) = 0 for |[x —xo| < R, and f(¢,x) = 0for |[x —xo| < R—1,
t € [0, R],thenu(t, x) = Ofor |[x—x9| < R—t,t € [0, R]. As a consequence, if the initial
data of two solutions of (1.1) coincide for |x — xg| < R, then the two solutions coincide
fort € [0, R], [x — xg|] < R —t, if ¢ is in the domains of existence of both solutions.
A consequence of finite speed of propagation and small data theory is the following claim:

Claim 2.4. There exists 61 > 0 with the following property. Let u be a solution of (1.1)
such that T+ (u) = +oo. Let T > T—_(u) and A > —T.

@ If lullsqxi=atr, =1y =8 < 81 then | SL(- — TYu(T) || s((ix|=A+1,1=T}) < 26.
®) If ISLC = T)u(T)IsqxizA+s, 1=y = 8" < 81 then |ulls((|x|=a+1, =T} < 28"

Proof. Let i be the solution of

. - _4
3,2u — Au = |u|V2ul{y > A,
(it, 3it) =1 = u(T).

By Strichartz estimates, for all 71 > T,

il sz A+, T<t=mp) — 1SLC = DU I s((1x1=A4e, T<t<T1) |
N2

N-=-2
= Cllullsqiei=ate, 7<e<mip-
By finite speed of propagation, u(t, x) = u(t, x) ift > T, |x| > A + t, and thus

[l sz a4, T<t=mp) — 1SLC = DU I s((x1=A+e, T<t<T1p |
N+2

N—2
= C||u||5({|x|ZA+t, T<t<Ti})

For §; small, point (a) follows immediately. An easy bootstrap argument yields (b). O
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2.4. Profile decomposition

We finally recall that any sequence {(uq,,u1.,)}» bounded in H' x L? has a
subsequence (still denoted by {(u0n,u1..)}s) that admits a profile decomposition
(U{  Atjn, Xjn, %jntn)j=1, where for all j, U/ is a solution of the linear wave equation
(1.6)and forall j,n,A;, >0, x;, € RY and tin € R, have the following properties:

)\,‘ Xi — X ti —t
j#k = lim L |, kol + #jn — tienl — 100
n—00\ Ak )Vj,n )"j,n

(pseudo-orthogonality) and

. . J
lim limsup ||w;, [|s®) = 0,
J—>00 p—soo

where

J .
wy) () = S.() (o, urn) — Y U, (1), (2.9)
Jj=1

and

i 1 (t—ti, X —Xj
Ul ,(t,x) = U’ Lo 22,
L,n( ) )\](.1\’1;2)/2 < )\j,n )\j,n

The existence of the profile decomposition was established in [2] for N = 3 (see [4] for

higher dimensions). We refer to [2] for the properties of this profile decomposition (see
also [11, Section 3] for a review).

3. Scattering to a linear solution outside a large wave cone

We let 1, — +o0 and (after extraction),

(v, v1) = wlim S.(—tp)ii(z,) in H' x L2, 3.1
v (f) = SL(@) (vo, v1), (3.2)

where wlim stands for weak limit.

Proposition 3.1. Let u be as in Theorem 2, and assume that the conclusion of Theorem 2
does not hold. Then there exists A € R with the following properties, for all A > A:

lullsce=0, jx|>r+4)) < 00, (3.3)
. —1 .

Mo ([t e ] 2 gy + Ol 2 ) =0, 3.4

tiigrﬂoo IVex(u — v )OIl L2(1x)>1+4) = 0, (3.5)

”u”S({t>0, Ix|>t+A}) — O©- (3.6)
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Proof. Step 1. We note that ||u|| s{jx|>|¢|+4) is finite for large A > 0. Indeed, since

I1SL () (uo, u)llsw) < o0,
we have, for large A,
[1SLC) (o, uDls(ix|=1e1+4)) < d1,
where &1 is given by Claim 2.4. The conclusion follows from Claim 2.4.

Step 2. Welet A € R U {—o00} be defined by
A :=inf{A € R: ulsqr>0, |x|>r+4}) < 0O} 3.7

In particular (3.3) holds. We prove that (3.4) and (3.5) holds. Let A > A. Let v be the
solution of

_4
{B,Zv—sz || ¥ 2ul|x|>144, (3.8)

V=0 = (uo, U1).

By the definition of A, we see that the right-hand side of the first equation in (3.8) is in
L'([0, +00), L>(R")). By Claim 2.3, there exists a solution v/ of (1.6) such that

lim [ [V, — v, x)?dx = 0. (3.9)

t—>—+00

By finite speed of propagation, u(¢, x) = v(t, x) for (¢, x) such that? > 0, [x| > A + ¢,
and thus

lim Vi — v, )P dx =0 (3.10)
t——+o00 lx|>t4+A
and
. 1 5 2N
lim —2|u(t, X"+ lut,x)|¥-2 Jdx =0.
15400 Jixj>r44 \ [ X]

It remains to prove

. A

im 1V @0 = v )l 2qxg14.4) = O-

We let G4, G_A|r € L>(R x SV~1) be the outgoing radiation fields associated to v; and vf
respectively (see Theorem 2.1). We will prove

Voe S" 1 v > A, Gy, 0) =G0, w), (3.11)

which, in view of (3.10) and Theorem 2.1, will yield the conclusion of Step 2.

Fix e > 0and ® € L2(R x S¥~!) such that ®(n,w) = 0if n < A + €. Let
wy () = SL(¢)(wo, wi) be the solution of the linear wave equation (1.6) whose associated
outgoing radiation field is ® (see Theorem 2.1). In other words,

. oo N-1 2
Jim / T down (1, rw) — O — 1, )| dwdr =0, (3.12)
o Jsn-

t—>—+00

. e Nt 2
lim / ‘r T 0wy (t, rw) + P(r — ¢, a))} dodr =0. (3.13)
0 Jen

t—>—+00
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On the one hand, we have
(ﬁ(fn)v SL(tn)(w()v wl))Hle2 = (SL(_Tn)ﬁ(Tn), (w()’ wl))Hl x L2
m ((UOa vl)v (U)(), wl))[:IIXLZa (314)

by the definition (3.1) of (vg, v1), and thus, using the isometry property of radiation fields,
we get

400
Tim (i (5). Su(o) w0, w) 12 = 2 f / G0 ) dody. (15)

On the other hand,
(ﬁ(fn)» S (Tn) (wo, wl))Hlez = / Vixu(tn, x) - Vi ywi(Ty, x) dx
+00 N1
:/ / rT(B,u(tn,ra)) —3ru(tn,ra)))cl>(r—rn,a))da)dr+0n(l)
0 SN-1

+oo
:2/ / GA(r — 1y, )@ (r — Ty, w) dwdr + 0,(1),
0 SN-1

where at the last line we have used ®(r — 7,, w) = 0if r — 7, < A, (3.10), and the
definition of G/ Hence

(@Cn). Su. (o) (wo, wD) 1, 2 = 2/ /Nfl G4 (n, @)D (1, @) dody.

lim
n—>oo
Combining this with (3.15), we see that for all ® € L?(R x S¥~1) such that ®(5) = 0 if
n<A+se,
+o00 A
/ (G —GpP=0.

—00

Using this equality with
D(n, ®) = (GL(, ©) — G(n, ) Ly=ae
yields (3.11) (since € > O can be taken arbitrarily small), which concludes Step 2.

Step 3. By Step 2, and since we are assuming that the conclusion of Theorem 2 does not
hold, A € R. In this step we prove

lull g(r>0, 1x|>A+ep) = OO (3.16)

which will conclude the proof of Proposition 3.1. We argue by contradiction, assuming

Il s (>0, 1x1= A4y < OO (3.17)

Let &1 be given by Claim 2.4 and T >> 1 such that

letll 57, 1x1z A4y < 81/4-
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Then by Claim 2.4,

1SL( = TYET) syt e ey < 51/2-

Let & > 0 be such that

ISL(t = DA g(yo 7. 1x|=Fea)) < O1- (3.18)

Then, again by Claim 2.4,

||M||S({1>T, Ix|>A—g+t}) = 281,

which contradicts the definition of A, concluding the proof. O

4. Singular and regular directions

In this section, we still assume that 1 is a sohltion of (1.1) that satisfies the assumptions
of Theorem 2 and not its conclusion. We let A € R be defined by Proposition 3.1.

Definition 4.1. The set R of regular directions is the set of o € S¥~! such that there
exists ¢ > 0 with

[Juel oo, “.1)

S({t>0, |x|>A—e+t and |{@,0)|<e})

where m € [—m, ) is the angle between w and x. The set S of singular directions is
defined as S := SV ~1\ R.

In this section we prove:
Proposition 4.2. Under the above assumptions, the set S is finite and nonempty.

SN—l

Proposition 4.3. There exists §, > 0 such that if w € satisfies, for some ¢ > 0,

pminfISuC = DU g o, Toesisixi<Tae s, [@nistvy <02 @2

then w € R.

We first prove Proposition 4.2 assuming Proposition 4.3.

4.1. Finiteness of the set of singular directions

We first prove that S is nonempty. Assume otherwise. Thus R = S¥~! and for all @
belonging to SV~!, there exists &(w) such that

1l 5020, 1x15A—e @4, @I <e @ < O 4.3)
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By the compactness of SN-1 we can find wy, .. ., wy in SN¥=1 guch that
J —_—
SV =i e S (0, o)) < e())). (4.4)
j=1

Letting £ = minj—; .. s £(w;), we see that

Nl g(r>0, jx|>A—etey) < O

contradicting the definition of A.
We next prove that S is finite. Let wy, ..., ws be pairwise distinct elements of S.
Then for any fixed ¢ > 0 and large T, the sets

Q‘/:{(t,x):t>T,X—s—}-tf|x|§X+s+tand|(jj})|§4/ﬁ}

are pairwise disjoint. As a consequence, for large T,

J 2N+ 2AN+1)
DUISLC =DM Yy S USLC—=DEM Sy NG
j=1 L N-2 (Q)) L N=2 ([A—g+T,+00)xRN)

Since #(T') is bounded in H' x L2, the right-hand side of (4.5) is bounded independently
of T > 0.

We will prove that S is finite, distinguishing between N =3 and N =4,5.If N = 3,
we have

2/5

IS¢ = DA sy < 1.6 = DA, g IS1C = DD g -

L{L2(Q) (4.6)

Since w; € S, the left-hand side of (4.6) is, according to Proposition 4.3, bqunded from
below by 6, /2 for large 7. Combining this with the boundedness of i(¢) in H' x L? and
Strichartz estimates, we deduce that for large 7',

2/5

Hence by (4.5),

J83° < CIIS.(- — TYa(T)|| C,

8
L8([A—e+T,4+00)xRN) =
where the right inequality is a consequence of the Strichartz inequality and the bounded-
ness of i in H' x L?. This proves that S is finite.

If N =4 or N =5, the proof is very close, using

IS¢ = Dilisey < CUSLC =D 5y 1Su¢ = Da(T) | v 4.7
L2LN-3(Q)) L N-2(Q))

with 6 = % instead of (4.6). We omit the details. The proof of Proposition 4.2

is complete. O



Scattering profile for the energy-critical wave equation 13

4.2. A geometrical lemma
We now turn to some elementary geometrical properties that will be useful in the proof
of Proposition 4.3. Without loss of generality, we will assume w = ¢1 := (1,0, ..., 0).
For 0 € (0, /2), we let
T := {x € RV \ {0} : |(er. )| = /2 + 6} U {0},
where as before (eq/—,7) is the angle between e and x. If T > 0, we define

D:pg={xe RN : d(x,Ty) > 1},

where d(x, I'g) = inf{|y — x| : y € '} is the distance between x and 'y (see Figure 1).

Fig. 1

Lemma4.4. (a) Do C {|x| > t}.

(b) (x| > 7 and |(x, e1)| < 0) = x € Dy
(¢) If£ >0, x € Drgand |x| <t + £, then

— ¢
N <0+, ——.
l(x, e =6+ —

Proof. (a) Since 0 € I'y, we have |x| > d(x, T'p) and (a) follows from the definition
of D¢ g.

(b) Let x be such that |[x| > 7 and |(x,/Z)| < 0. Rotating around the axis Oeq, we
can assume x = (xq, x2, 0, ..., 0). But then (b) is clear from Figure 1.
(c) We will use the elementary inequality

Vs € [0,7/2], 1—coss > s>/4. (4.8)
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B
/ Dy
A C(t+0)
f
|
C(t)
Fig. 2
Let x € D. g be such that [x| < t + £. As before, we can assume x = (x1, x2,0,...,0).
Denote by C(R) the circle of radius R > 0 centred at the origin.
Let A = (rcos, tsinb,0,...,0). The tangent at A to the circle C(t) intersects the

circle C(t + £) at a point B. Let ¢ be the angle (0?4, 073).
From the conditions |x| < 7 4+ £ and x € Dy g, we get |(x, e1)| < & + 6. Indeed, in
Figure 2, x must be in the dark region.
We have cos ¢ = 7/(t + £) and hence, by (4.8),
)

<1-—,
T+~ 4

ie. 82/4 < £/(t + £), which yields the conclusion of (c).

4.3. Sufficient condition to be a regular direction

In this subsection we prove Proposition 4.3. We assume that (4.2) holds with @ = ej.
Thus there exist ¢ > 0 and a sequence {f,}, — o0 such that

im S = U g, Toepo<ix|<Apete, (@ mDI<d/a < 02 (4.9)

We denote
D, = U{t} X Dg_gii1) i (4.10)

t>t,

where ¢ > 0 is as in (4.9). We claim that D,, has the following causality property:

Claim 4.5. Let (t,x) € Dy, and (', x') € RxRN witht, <t' < tand |x' —x| < |t —1'|.
Then (t', x") € D,.

Proof. Indeed, we must check that x’ € Di_eir 1)y i@ d(x', Ty, /i) > A—c+1t.
By the triangle inequality,

d(x',Fl/ﬁ) >d(x,F1/\/,—n)—|x—x/| >d(x,F1/\/§)—|t—t/|.



Scattering profile for the energy-critical wave equation 15

Since x € Dxfgﬂ’]/m, we obtain

/

dx'\Ty, ) >A—e+t—(t—t)=A—e+1. o
We divide the proof of Proposition 4.3 into two steps.
Step 1. We prove
limsup [[S,.(- — )ii (1) l5(D,) < 262 @.11)

n—o00

Indeed, we first note that by the definition of A,

Nl g(r>0, 1> Atetr) < OO

Thus
nli>nolo el et ez At o4y = O- (4.12)
By Claim 2.4,
ngn;o ”SL(' - tn)u(tn)llg({twn, |x|>A+e+t1}) = 0. (4-13)
We are thus reduced to proving
limsup ||SL.(- — t")ﬁ(t”)”S({(t,x)eDn: x| <Atets) < 202. 4.14)

n— oo

By Lemma 4.4(c), if t > ¢, and x € DK—s+t,l/ﬁ satisfies [x| < A + ¢ + 1, then

1 2¢e
+2

x.e1)| < -
G- ev)] Vi A+e+t

so that, if & > 0 is small enough and r large,

[(x, e1)| < 2//1,.
As a consequence,
((t,x) € D, and |x| <Z—|—8+I)
= (t>t,, A—e+1<|x| <X+8+tand|(x,/2)| <2/Jt),
and (4.14) follows from (4.9).

Step 2. We prove that for large n, ||u| s(p,) is finite, more precisely,
limsup ||ullsp,) < 36. (4.15)
n—oo
Since, by Lemma 4.4(b),
(t >t lx| > A—e+rand |(x,en)| < 1/y/in) = (1.%) €D,

we see that (4.15) implies e; € R as desired (see Definition 4.1).
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Forany T > t,, welet D, = {(t,x) € D, : t € [t,,T]}. We will prove by
a bootstrap argument that |ul|sp, ;) < 362 for large n. By finite speed of propagation,
Claim 4.5 and Strichartz estimates,

N2
VT > ty,  |ullso, ) < ISLC = t)u(t)llsp, 1) + Cllullg(i_ﬁnﬁ-
Thus for large n, in view of Step 1,
5 N+2
s, r) < 582+ Cllullgp, ,,
and the result follows if §, is small enough. O

5. Conditions on the profiles

In this section we consider again a solution u as in Proposition 3.1, i.e. one that satisfies
the assumptions of Theorem 2 but not its conclusion. We let A be given by Proposition
3.1, and consider profile decompositions for sequences {i(t,,)}, where t, — +00. Lemma
5.1 excludes concentrating profiles in the region {|x| > A + t}. Lemma 5.2 means that
for any singular direction @ € SV, one can find a nonzero profile concentrating close
to {x = (A + f)w}. This profile will be used, together with the main result of Section 7,
to prove by contradiction that the set S is empty.

Lemma 5.1. Let {t,}, — +00 be such that u(t,) has a profile decomposition. Then there
is no profile such that U{ # 0 and the following three conditions hold:

lim (|x4] — ta) > A, 5.1
n—oo
lim (1xj,4] — ta — |tj.0]) > A, (5.2)
n—oo
lim A;, =0. 5.3)
n—00

Lemma 5.2. There exists 53 > 0 with the following property. Let {t,}, — 400 and
w € 8. Then there exists a subsequence of {ty}, (still denoted by {tn},) such that {u(ty)}n

has a profile decomposition (UI{, {(tjns Xjns Mjnn)j=1 such that

lim (x1., — (A + t,)w) =0, (5.4)
n—oo
lim A, =0, (5.5)
n—oo
lim 7, =0, (5.6)
n—oo
U sy > 83 (5.7)

Proof of Lemma 5.1. We argue by contradiction. Let j > 1 be such that ULj # 0, and
(5.1)—(5.3) hold. Using the implications

j#k = lim /vt,xU{,n(o,x).v,,fon(o,x)dx =0,
n— oo ’

j<J = lim /vt,xug',n(o,x).v,,xw,{(o, x)dx =0,
n—>0oo
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we obtain

lim [V, culty, x) - Vi UL, (0, x) dx = f IV, Ui (0, x)]2dx > 0. (5.8)

n—oo

We will deduce a contradiction from (5.8), using the localization properties of U'L/,,,.

Case 1. Assume that {—?; ,,/A;j n}n is bounded. Extracting subsequences and time trans-

lating ULj if necessary, we can assume ¢#; , = 0 for all n. By (5.1), there exists ¢ > 0 such
that

jnl = tn = A+ 2¢ (5.9)
for large n. Since
. 1 4 X — x:
Vt,xUI{,n(Ov x) = T/zvt,xULj (07 Nl), (5.10)
Aj " Ajn

we obtain, using also assumption (5.3),
/ Vixt(ty, x) - Vt,xUI{,n(O, x)dx
:/ _ Vi xu(ty, X)'Vt,xU]{‘n(O,x)dx—i—o(l)
|x|>A4e+t,
= / _ Vix ULy, X) ~V,,fo,n(0,x) dx +o(1)
|x|>A4e+t,
= /Vt,xUL(tn’ x)- Vr,xU]{,n(O, x)dx + o(1)

as n — o00. We have used (3.5) and, at the last line, (5.3), (5.9) and (5.10). As a con-
sequence, using the asymptotic behavior of v () as ¢ — +o00o (see Theorem 2.1), we
obtain

lim [ Vi xu(ty, x) - Vi 2 UL, (0, x) dx =0,

n—oo

contradicting (5.8).

Case 2. We assume (after extracting a subsequence),

. —ljn
lim —~
n—00 )\j,n

= —00 (.11

(the proof in the case where this limit is 400 is the same). Let G’ be the incoming
radiation field associated to U} (¢) (see Theorem 2.1 and Remark 2.2). Then

+o00 . X
lim f PNV UL (2 ro) P = 221G (r + 1, 0) Pl dwdr = 0. (5.12)
0 sN-1

t——00
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Subcase 2a. We assume, in addition to (5.11),
im (x| =t — [tja]) > A, (5.13)
n—oo

i.e. (5.2) holds with strict inequality. Fix a small ¢ > 0 and an R >> 1 such that

/ R/SN 1|G{(n,w)|2a'wdn <. (5.14)
n= -

Using (5.12) and (5.14), we see that for large n,
/ Vi U (0, 0> dx < Ce. (5.15)
ij,n_xl_‘tj,n HZR}‘j.n

Hence for large n,

/ Viatt(tn) - Via Ui (0, 2) dx

< f Victt(tn) - Vi Uj (0, 1) dx + CVE  (5.16)
||xj.n7x‘7|[j,n||§R)‘j,n

(where the constant C > 0 might depend on U/ and on sup,>q [l Vexttll g1, 2 but is of
course independent of n). By the triangle inequality, (5.3) and (5.13), there exists &’ > 0
such that for large n,

1Xjn—X|=|tjnl < RAjn = x| > |xjal—tjn]|—RAjn = |x| > ty+A+e’.  (5.17)

Using (3.5) and (5.16), we find that for large n,

f Viatt (i, ) - Vyx Ud 0 (0, x) dx

=< / Vt,xUL(l‘nv X) 'VI,XU]{,n(O’ x)dx—i—C\/E
||xj.n_x‘_|tj.n||§R)Lj,n

< f Vo0 (. ) - Via UL (0, %) dx + C /.

Since
lim [V, vty x) - Vi U0, x) dx =0,

n—oo

we deduce (as ¢ > 0 is arbitrarily small)

lim sup f Vi 2ttt X) - Vi UL, (0, x) dx <0, (5.18)

n—o00

which contradicts (5.8).
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Subcase 2b. We assume, in addition to (5.11),
im (|xj.0] — tn — |tj.0]) = A, (5.19)
n—o0
i.e. (5.2) holds with equality. In view of (5.1), we must have

lim |£j.,| > 0. (5.20)
n—oo

Extracting subsequences, we can assume

T g e SV (5.21)
Let & > 0. Choose R > 1 such that (5.14) holds, and o > 0 such that

/ / w1 1GLL o) dodn <e. (522)
R J we

|w+wo|<a

In view of (5.14) and (5.22) we have, for large n,

/ Vi U7 1 (0, )17 dx + fx,x_ |Vt,xULj,n(0,X)|2dx < Ce,
||x_xj,n|_|tj,n||ZR)\j,n j’Zr’-(Oo‘fD{

=7
be=x;,

(5.23)
and thus, for large n again,

/ Vi xtt(t, ) - Vi UL 40, x) dx < / Vit (tn, ) - Vi 2 U0, x) dx 4+ Co/z,
Zy
where

X — Xj
Z, = {x e RV ¢ [|x — xjul — ltjnl| < RAj, and L1

We next prove that there exists ¢’ > 0 such that for large n,
XE€Zy, = |x|>A+e+1,. (5.24)

Assuming (5.24), we can prove (5.18) exactly as in Subcase 2a, obtaining again a contra-
diction.
We have x = x; , +x — xj , and

Xj.n
|xj,n|
(x — xj,n) *Xjn
lx — xj,n||xj,n|

Xj.n

|xj,n|

X - = [xjul + (x —xj5) -

= |xj,n| +|x - xj,n|

X — Xj
j.n
= [xjnl + |x — X} 4l (—wo + 0,,(1)).
|x _xj,n|
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Taking the square of the inequality } \i:?, :I + a)0| > « and expanding, we deduce that

YN o

wo - 1 for x € Z,. Hence for large n, if x € Z,,,

[x=xjnl = 2
ez s (S0, |
x| >x- Xj — —1)x —x;
7 el T4 -
_ a? _ a2
> A+ th + |tj,n| + <Z - 1>(|tj,n| + R)Lj,n + On(l)) >t + A+ ?|tj,n|,
by (5.3) and (5.20). In view of (5.20), the desired conclusion (5.24) follows. This con-
cludes the proof of Lemma 5.1. O

Proof of Lemma 5.2. Assume without loss of generality that w = ey.

Let (after extraction) (ULj, {tin,Xjns Ajnln)j=1 be a profile decomposition of
{tt(ty)}n. Let 83 > 0, to be specified later, and let J; be such that ||ULj||5(R) > §3 for
1<j<J,and ||ULj||5(R) < 83 for j > Ji. Since

77 2
Y IUL O3, < oo,
j=1

it is easy to see, using Strichartz estimates, that such a (finite) J; exists. Note that if
83 is small enough, then J; > 1, because otherwise u scatters, which contradicts our
assumption that A is finite.

Note that (U‘L/, {tjns Xjns Ajnn)j=1+4, is a profile decomposition for the sequence of
remainders {w,{ 11,.. By Claim C.1 in Appendix C, there exists & > 0 such that

lim sup [|w;! || s®) < €55, (5.25)

n—o0

where C depends only on the bound

M = limsup || (t) || g1y 2-
t—>—+00

We choose 83 such that Cég < 62/2, where 8, is given by Proposition 4.3. Extracting

subsequences, we can assume that the following limits exist for all j € {1, ..., Ji}:
lim A;, € [0, +o0], (5.26)
n—>oo
lim #;, € RU {£o0}, (5.27)
n—>oo
lim |x;, — (A + ty)e1] € [0, +00]. (5.28)
n—>oo
We argue by contradiction, assuming that for all j € {1, ..., J;}, one of the above limits
is not 0.
By Proposition 4.3 and Claim C.1, it is sufficient to prove that for all j € {1, ..., Ji}

there exists ¢ > 0 such that 5
limsup |I}¢| < 2 Jy, (5.29)

n—o0 4’
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where
2

N—
j +00 j 2AN+2) 172 N+2
— 7 _ — N—2
Lie: t Aot <|x|<Atetir] |UL (= ty, X)) dx dt .
n

|1, 51 <4/
This would imply, by the triangle inequality, (5.25) and the bound C (Sg < 82/2,

lim sup || Sy (- < 82,

'm Su| = WU (7 < 3 <], 1o D) <4/ D

and thus, by Proposition 4.3, that e; is a regular point, a contradiction.
By the change of variables

t—1t, —tin X — Xjn
s = —Ja y = / )
Ajn Ajn

+o0 j 2N+2) 1/2
Iy =/ / U/ (s, y)| -2 dy ds, (5.30)
*lfj.n/)\j,n One(s)

where O, .(s) is the setof y € R¥ such that the absolute value of the angle between
Ajny +xjnand ey is < 4//t, and

we obtain

A—e+Ajns+ta+tial <|Xjn+Ajay| < A+ e+ Ajas +ty +tjal

If lim,, 00 =2 n/Ajn = +00, then we see that lim,, . » I, = 0 and (5.29) follows.
‘We are thus reduced to the case

_t.
lim —" = —00 or Vn,tj, =0. (5.31)
n—o00 )\j,n ’
We note that if for almost every s € R,
1g,.0(y) ——> 0 foraa.y, (5.32)
o n—>oo

then lim, 1, . = 0 by dominated convergence and we are done.

Case 1. Iflim, o Aj , = +00, then Oy - (s) is for all s included in an annulus of width
< C/Aj n, which proves that (5.32) holds.

Case 2. If lim, A, = 0, we distinguish three subcases according to the limit
€= lim (|xj,| — (A +1,)). (5.33)
n—o0
e If £ > 0, then by Lemma 5.1 we must have
m (1xj| = tn — i) < A (5.34)
n—>0oo

and we see, fixing ¢ small enough, that for any s, O, ((s) is empty for large n, yielding
(5.32).
o If £ < 0, then since #; , > 0 for large n, we again obtain (5.34) and thus (5.32).
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o In the case £ = 0 and lim,, |#; ,| > 0, we again obtain (5.34) and (5.32). Finally, we
assume ¢ = 0 and

lim ¢, = 0.
n—oo

Letting, after extraction, woe = limy, x; ,/|x;j x|, We see, fixing y, and using the fact that
|xj,»| goes to infinity, that

nlglgo [((Ajny + Xjn, 1) = (0o, €1)]. (5.35)
Since lim,, ¢ , = lim, A; , = 0, we must have

lim |xj, — (A +ty)er] > 0

n— o0
and thus (using £ = 0), wso # e1. By (5.35), we see that (5.32) holds again.

Case 3. Suppose
lim A, = Ao € (0, +00). (5.36)
n—0o0

In this case we cannot prove (5.32) for a fixed e. We prove (5.29) by contradiction, as-
suming that for all & > 0,
8
limsup | I, | > —

. 5.37
n—oo 4-]1 ( )

Then we can find a sequence {e;}; — O of positive numbers and a sequence {nj};y —

400 of integers such that
)

Vk’ Inkﬁk = 8_.]1

(5.38)
As a consequence, we see that Qp, ¢, (s) is included in an annulus of width < g4 (using
(5.36)) and thus ]lan’ak (s)(¥) goes to O for almost every y, which contradicts (5.37) and
concludes the proof. |

6. Concentration in a direction and a virial-type identity

In this part we prove the following:

Proposition 6.1. Let u be as in Theorem 2, and assume that the conclusion of Theorem 2
does not hold. Let A be given by Proposition 3.1. Then for any ¢ > 0, there exists a
sequence {t)}, — +00 such that, for some o > 0,

N
limsupf B (laxlu(t,/,)+8,u(tr’l)|2+2|3xju(t’/1)|2) dx < e. 6.1)
n—00 Jx—(t,+Aey)|<a =2

Note that 0y, u — ;u = O, u = --- = Oxyu = 0 implies that u(z, x) is of the form
o(t — x1), i.e. travels at speed 1 in the direction e. Proposition 6.1 says heuristically that
for a sequence of times #;,, there is no component of ft(t,’,) that concentrates close to the
direction (¢!, t/ + Ae;) and travels at speed 1 in the direction e;.
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Remark 6.2. We will use Proposition 6.1 to prove that e; ¢ S. Of course one could write
an analogue of Proposition 6.1 adapted to another direction than e;. However, since we
will use the rotation invariance of equation (1.1) to reduce to the direction e, Proposi-
tion 6.1 will be sufficient for our purpose.

We start with a few lemmas.

Lemma 6.3. Let u be as in Proposition 6.1. Let {t,}, — +00 be any sequence. Denote

_ N _ 1 _
p(t, x) = |u(t, (t+A)e1 +x)| V=2 +|V; cu(t, (t+A)er +x)|*+ — |u(t, (t+A)e; +x)|*.

x|
(6.2)

Then, after extraction of a subsequence, there exists a nonnegative Radon measure i
on RN such that

IO(Tnv ) — /17 (63)
n— o0
supp o C {x1 < 0O} (6.4)

Proof. Since the sequence {p(7,, -)}, is bounded in LYRY), one can always extract a
subsequence such that (6.3) holds for some positive finite Radon measure i on RY. We
just need to prove (6.4). Let ¢ > 0. By Proposition 3.1,

lim |Vttt X + (1 + AVer) = Ve vy (tn, X + (1y + Aen) [ dx =0, (6.5)
n—>00 Jy >p
and
1 — — 2N
lim (—2|u<rn, X+ G+ A)en) P+ lultn. x -+ (1 +A>e1)|m> dx=0.  (66)
n—=>00 Jy >\ |X]

We are thus reduced to proving that for all ¢ € C§° ®RY),
lim [VixvL(tn, x + (t, + Z)el)|2g0(x) dx = 0. 6.7)

n—00

Consider the outgoing radiation field G € L2(R x SN—1) associated to v, (see Theo-
rem 2.1). We have

/ |VI,XUL(tl’ls x+ +Z)61)|2§0()€) dx
= / V120 (s 0)P@(x — (tg + A)er)| dx

+00 .
=2/ / |G+(r—ln,a))|2(p(ra)—(tn—i—A)el)da)dr—}—o(l)
0 SN—I

+00 B
2/ /N—l |G+(nv Cl))|2§0((tn + 77)0) - (tn + A)el) da)dn + 0(1)

In
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Next, notice that ¢((f, + n)w — (t, + A)e;) goes to 0 for all (n, w) € R x (S¥~1\ {e1}).
This proves (6.7), and thus (6.4), in view of (6.5) and (6.6) and since ¢ can be taken
arbitrarily small. O

In the following, we will decompose & as
i = cobx=0) + 1, (6.8)

where §{,—q) is the Dirac measure at x = 0, co = f1({0}) > 0, and p is a nonnegative
Radon measure such that u({0}) = 0. If ¢; is a singular direction, we can prove, using
Lemma 5.2, that ¢ > 0, but this will not be used.

Lemma 6.4. Let u be as in Proposition 6.1. Let {t, }, be a sequence of times going to +00
asn — oo, and ¢ > 0. Then (after extraction of a subsequence from {t,},), there exists
a > 0 and nonnegative Radon measures o and v on RN and nonnegative real numbers
co and cy such that

ro({0}) = n1({0h) =0, (6.9)
o(tns*) — Mot €08{x=0} (6.10)
p(tn — /10, ) —— o M1t erdp=0), (6.11)
suppu; C {x1 <0}, j=0,1, (6.12)
mo({lx] < a}) <e, (6.13)
u1({lx] < 7a/10}) < e. (6.14)

Proof. By Lemma 6.3, there exist a subsequence of {#,,},, and a nonnegative measure (i
that satisfies (6.9), (6.10) and (6.12). Since w is outer regular, we have

0= no({0}) = inf uo(B(0, R)),
R>0
and we can find @ > 0 such that

mo(flx| < a}) <&/Co (6.15)

for some large constant Cy > 0 to be specified. By Lemma 6.3 again, with t, = t, —ot/10,
there exists (after extracting subsequences) a measure 1 that satisfies (6.9), (6.11) and
(6.12). It remains to check that (6.14) holds.

Let § > 0. Since puo({|x| < a}) < ¢/Cp, we have

n—o00

lim sup/ p(ty, x)dx < ¢/Cp. (6.16)
8<|x|<19a/20

As a consequence, if ¢ is a C* function equal to 1 for |x| > 2 and to O for |x| < 1, and
Y is a C* function equal to 1 for |x| < 9 and to O for |x| > 9.5, we have
X X — 2
lim sup/’V,,x (gp(—)l/f(—)u(tn, (A+ty)e; —|—x)> dx < Ce/Cy.
n—o00 (S o
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Using finite speed of propagation and small data theory, we deduce (choosing Cy large
enough)

lim sup sup / p(t, ty,x)dx <, 6.17)
n—>00 t,—a/10<t<t, Ja/104+38<|x|<da/5
where
— 2N J—
Pt tn, x) = |u(t, (ty + Aer + x)| V2 + |V, 4u(t, (8, + Aer + x)|?
1 —
+W|u(t, (ta + Ay + X)) (6.18)

This proves, since ,o(t,, — 100 tns X — f’—oel) = ,o(tn - I‘X—O,x), that

o 4o
— ) — . 6.19
([ e | ) o

o
X — —e
10

X2

Fig. 3
The distance £(§) in Figure 3 is equal to
0o Y 435 AR
— _ — | — —
10 10/ s5—0
Hence, from the figure,
T o o 4o
{x:0< x| < Eandxl 50} CSLJ{38+E < x—ﬁel <?}
>0
Thus by (6.19), (6.9) and (6.12),
p1({lx] < 7a/10}) < e. (6.20)
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Remark 6.5. Let
R,(¢) :==  sup / p(t, ty, x)dx, (6.21)
tn—a/10<t<t, Ja/5<|x|<da/5

where p(t, t,, x) is defined in (6.18). It follows from the proof of Lemma 6.4 that for
large n,

R, (e) < 2e. (6.22)
(See inequality (6.17) with § = «/30.)
Proof of Proposition 6.1. Let {t,}, — —oo. Let o, up, u1 be given by Lemma 6.4,
corresponding to &. Let ¢ € C{° (R™) be such that

px)=0if x| > 1/2, px) =1if |x| < 1/4. (6.23)
Let
un(t,x) =u(t,x + (tn + Aer), @a(x) = @x/a),
1 1 N -2 N
eu)(t, x) = 5|wn|2 + 5<atun>2 -yl
an(t) = / Oun)0a.  ba(t) = / RS
2N
Cn(t)=/|un|N_2(Pa’ dn(t)Z/axlunatun¢a-
Observe that
2 1 2 2N
|Vt,xun(tn, x)|7+ _zlun(tn, X7+ up(ty, )| V-2 —— COS{x=0} + Ko, (6.24)
|x| n—00
o o 2 1 o o 2
Vi xtn fn—E,X—Eel +W'4n l‘n—E,X—Eel
2N
o o N-2
+ |uy (ln “105 1—061> — c18(x=0) + 1.  (6.25)

We d_enote the average values of a,,, b,,, ¢, and d, between t,, — «/10 and t,, by a,,, b, Tn
and d,, respectively:
_ 10 In

@ Ji,—a/10

ay (1) dt,

a, :

and similarly for b, ¢, and d,,.

Step 1. By explicit computations using (6.21) we obtain, for ¢t € [t, — /10, 1,,],

% /unatun(poz =a,(t) — by(t) + c, (1) + O(e), (6.26)

d N N N
Z/x - Vu, o, = _Ea"(t) + (; — 1>bn(t) — <3 — 1>c,,(t) + O(e), (6.27)

% / x1e(n)ga = —dy + O), 628)
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d

5 / Oy, UnOrttnpy = d,, (1) = O(e), (6.29)

N -2
2N

d 1 , 1 , , _
‘. / lun)pe = 50,0+ 3K, ~ a0 =06, (630

where O(¢) is uniform with respect to ¢ € [f, — «/10, t,,].

These computations are classical. The only thing to check is the bound on the remain-
der. For example, we have (using Einstein’s summation convention)

d N N N
E /xkaxkunatun‘/’a = _Ean + (E - 1>bn - (E - l)cn
1 2 1 2
+ 5 xkaxkﬁﬂa(ax]- Up)™ — 5 xkaxkﬁoa (0run)
N -2 2N
_[akaaxjaxjunaxkun - W/Xjaxj(PaWW’Z,

and (6.27) follows from (6.22) and the bound |x;0y, ¢« | = 3oy 0(£)] S 1.

Step 2. Approximate conservation laws. We prove that for large n,

sup dn (1) — En| < ea, (6.31)
t—a/10<t<t,
1 1 N-=-2 1_ 1— N-2_
sup Ean(t)+§bn(t)_—2N Ci1(t)_§an_§bn+ N cnl| < ea. (6.32)

th—a/10<t<t,

Indeed, by (6.29), there exists a constant C > 0 such that for all 71, 7o with ¢, — «/10 <
71, T2 < In,

|dn(T1) — dn(2)| < Cea, (6.33)
and (6.31) follows. The proof of (6.32) is similar, using (6.30) instead of (6.29).

Step 3. We prove that for large n,

_ 1 1- N -2

—dp = __n ~0Pn — _n s 34
d 5a +2b N ¢ + O(e) (6.34)

Gn — by +¢, = O(e), (6.35)
N_ N -

—Ean + (3 — 1)(b,, —cp) =d, +O(e). (6.36)

Proof of (6.34). Integrate (6.28) between ¢, — «/10 and ¢, to obtain

—d, = E/‘Pu(x)xle(un)(lm x)dx — 10 / wa(x)xle(un)<tn - i,x> dx + O(e).
o o

10
(6.37)
We have, for large n,

/(p(x)x1e(un)(tn, x)dx = O(ae). (6.38)
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Indeed, by the definition of g (see (6.24)),

1

. 2N
nlingof(/)a(x)|xl|<|vt,xun|(tn9 x) + WW(% x)|2 + u(ty, X)|N2> dx

= f |x1 Qo (x) d o (x),

and | [ |x1|@a (x) dpo(x)| S e by Lemma 6.4 and the bound ||x1|<pa(x)| <a.
Furthermore, by the change of variable x = y — %e 1

/wa(x)xle(un)(tn - 106_0’ x) dx
o o o o
= /‘Pa()’ - Efﬂ)()’l - E)dw)(% 100 Eﬁ) dy
o o o
e /ylf/’a ()’ — 1—061)8(%)<ln BT 1—0€1> dy
o o o o
10 / o <y - 1—061>€(Mn)<tn “ 10~ Eﬂ) dy.

By (6.25) and Lemma 6.4, the limit of the first term on the right-hand side is bounded (up
to a multiplicative constant) by

V Iy1l@a(y — (Ot/10)61)du1(y)' S ea.

The second term can be rewritten as
o o o o
- — - — th——,y — — d
10/%1()’ loel>e(un)<n 10 y 1061> y
o o
= T Cu (x)e(un)<tn 10 x) dx
a (1 , o n 1b . o N -2 . o
=——|=a - — — - - —— - —).
o\2"\" 10/) 27"\" 10 2N "\ 10
Going back to (6.37), we obtain

do=alo =Y Lo (0 -V N =2 (0~ %) o
— = — _ — — —_ — _—— _— E
n =24\ 10 ) T2\ T 10 v " 70 :

which yields (6.34) in view of the approximate conservation of energy (6.32) proved in
Step 2.

Proof of (6.35). Integrating (6.26) between t, — /10 and ¢,,, we are reduced to proving

o o
‘ / 0 (V) tt (s )yt (1, ) d — f 0 (X)ity (tn - x)a,un (rn - x) dx

< exa

(6.39)
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for large n. This follows easily from Lemma 6.4. For example

‘/ (pa(x)un <tn - %, x>a[un <fn — la—o, x) dx
1/2
< </ goa(x);mﬁ(tn -2, x) dx)
|x + %eﬂ 10
X (/ @Yo (X)

1 2 o
/wa(x)mlunl <fn - EJ) dx
o 1 2 o o
= /‘Pa(y - E£1>|Y|w|un| (fn 10 y—- Eel) dy

o
S ‘/ Iylcpa<y — mel) dm(y)‘ Sae

by (6.25) and Lemma 6.4. The estimates of the other terms are similar.

o
x +

and

Proof of (6.36). We integrate (6.27) between t, — /10 and #,,, obtaining

Nt (Y 1 )by —Tn)
) dp ) n — Cn

10 o o
=0(e)+ _/(Pocx'vun (tn__)atun (tn__>+/‘Pax'vun(tn)atun(tn))-
o < 10 10

(6.40)

By computations similar to the ones above, the right-hand side of (6.40) is given by
a o a —
0(8)"‘/ (Pa(x)axlun (tn_ma x)atun <tn_E7 x) = O(¢e)+d, (tn_ﬁ) = 0(e)+d,.

At the last line we have used Step 2 to replace d,, (t, — «/10) by dy + O().
Step 4. End of the proof. Subtracting (6.34) and (6.36), we obtain

N 1\ - _ N 1 1\_
(5 - §>(bn —a) - (3 —5- N)cn = O(e)
for large n. Adding (N /2 — 1/2)(6.35) we deduce
¢ = O(e). (6.41)

Combining this with (6.34), we obtain

1 1- -
Ean + Eb" +d, = O(e). (6.42)
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Hence, for large n,

tll
E / / (Byttn (1, %) + Oy n (2, X)) + |Vorttn (£, X)) e (x) dx dt = O(e),  (6.43)
a Ji,—a/10

where Vo = (0x,, ..., Oxy).
As a consequence, we obtain a sequence {t,’l} — 00 such that for all n, ¢, — f‘—o <
t) <t, and

/(((a,u + 00,2t x) + |Vl (1, x))(p(%» dx < Ce.  (6.44)

Since

o o x—(A+1ty)e
Ix—(f,/HrA)elISE - Ix—(A+tn)e1|§§ == §0<%>=1,

we obtain (6.1) (renormalizing « and ¢). The proof of Proposition 6.1 is complete. O

7. Elimination of singular points and end of the proof

We are now ready to conclude the proof of Theorem 2. We will prove that S is empty,
contradicting Proposition 4.2.

We argue by contradiction assuming (after a rotation in the space variable) e; € S.
We let, for (f, g) € (H! x L2)(RY),

N
ICE N2, = llg + 3, £1I72 + D N1y 1175 (7.1)
j=2

Remark 7.1. If u; is a solution to the linear wave equation with initial data in H! x Lz,
then || (uy.(¢), d;uy(¢)]l¢, is independent of . Indeed,

e (8), du )12, = 105, u (132 + 19 (®)]13,

N
+2 /R O3+ Y g O, (72)
k=2

and the conservation of || (u(t), 0;ur(¢)|l¢, follows from energy and momentum conser-
vation.

Remark 7.2. Denote by (-, )., the scalar ‘product associated to the norm | - ||,.
Let {(vg, v{)}, be a sequence bounded in H 1'% L? that has a profile decomposition

WY Atjun. Xjns Ajndn)j=1. Then
. 1 _»k -)j
j 7& k — nlll’lolo(UL’n(O)y ULJI (O))el = 09

l<j<J = lim (U/,0,%0), =0,
n— 00 > 1
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where w,{ is the remainder of the profile decomposition (see (2.9)). This follows from
Remark 7.1 and the same argument as the one used to prove the orthogonality of the
energy of the profiles (see [7, Lemma 2.3] for a proof).

As a consequence, the following Pythagorean expansion holds: for all J > 1,

J .
g vHIZ, = DI O, + Ilw] O, +o(1)  asn — oo. (1.3)
Jj=1

We will use the following claim, proved in Appendix D:

Claim 7.3. Let B, M > 0. Then there exists ¢ = ¢(M, 8) > 0 such that if (vo, v1) €
H' x L? satisfies

[(wo, vi)lley <& and [[(vo, vl g1 2 =M, (1.4)

then
1S () (vo, v llsr) < B. (7.5)

Let ¢ > 0 be given by Claim 7.3 with 8 = §3/2, §3 be given by Lemma 5.2 and

M = sup [l 1 p2-

t>0

By Proposition 6.1, there exists a sequence {7, }, — 400 and « > 0 such that

n—o0

N
lim sup/ — (wua + du) + Y laguGp ) dx s e (16)
lx—(t;,+A)er | <a j=2

By Lemma 5.2, there exists a subsequence of {z)},, still denoted by {¢/},, such that
{u(t))}, has a profile decomposition (ULJ, {tj.ns Xjns Ajn}n)j=1with the following proper-
ties:

lim (x1, — (A +1))er) =0, (1.7
n—oo
lim A, = lim 7, =0, (7.8)
n—>oo n— o0
1U s = 8. (7.9)
By Remark 7.2,
: = rrl 7l 2
Jim (ii(t,). UL ,(0),, = IUL O], (7.10)

Next, notice that it follows from (7.7) and (7.8) that
lim |V,,XUL1n(0)|2dx =0. (7.11)
=00 Jix—(t)+A)e |2 '
Indeed, this integral can be rewritten as

N
/ ViU, (— y)
Aay+o(D]za An

dy, (7.12)
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where o(1) = x1,, — (A + t))e; goes to 0 as n — oo by (7.7). The desired limit (7.11)
follows immediately if —#; , /A1, is bounded. If not, say if lim,_, oo —#1 n/A1n = —00
after extraction of a subsequence, we can rewrite (7.12) as

t
2/ / G_(r + L ,a))
[ ar+o()]za JsN-1 An

where G_ € L2(Rx SV—1) is the incoming radiation field associated to UL1 (see Theorem
2.1 and Remark 2.2). This integral goes to 0 as n — 00 since

2
dwdr

tl,n

o+ o(l)
22— ——> +
)Ll,n

- )\1 n n— 00

r—+

on the domain of integration (using lim, #; , = 0). This proves (7.11).
By (7.11), as n — o0,

(@), UL ),

< 10O le, /

[x—(t)+A)e;|<a

N
(1003 + B + Y 105 u) ) + (D).
k=2

Combining with (7.6), we obtain
(1), U, (0)e, < e|U} O)]le, +0(1) asn — oo.

Hence by (7.10),
1o, <e. (7.13)

But then by the definition of ¢ (from Claim 7.3 with 8 = §3/2 and M =
sup;>o ||ﬁ(t)||1:11><L2)’
10U sw) < 83/2,

contradicting (7.9). The proof is complete. O

Appendix A. Radiation field for linear wave equations
In this appendix we prove Theorem 2.1.

A.l. Introduction of a function space

We start by reformulating this theorem in terms of a space of functions on R x S¥~! that
we will define now. Let

H) R x sN1) = {g e COR, L3SV 1) : /R . 19,8 (n, w)|*dndw < oo}.
N~
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Letg € H,’1 We note that [|9, gl 2« sv-1y = 0 if and only if there exists a € L2(SN-1
such that g(n, w) = a(w) for all € R and almost all v € S¥~1. We define 7—[,17 as the
quotient space of Hnl by the equivalence relation

g~% & JaecL’S" N, VneR, g, ») — g1, w) = a(w) foraa. o € SN
We denote by g € 7—[}] the equivalence class of g € H!, and we define the following norm
on 7—[,17
1Bl = 13081l 251
Then:
Proposition A.1. The normed space 7—[}7 is a Hilbert space, and C°(R x § N=1yis dense
in 7-[,17 The map g +— 0,8 is a bijective isometry from H}) to L2 (R x SN,

‘We note that the proposition implies that 7-{,,17 is the closure of C§° (IR x SN=1y for the norm
10y - | 2@ x s¥~—1)- In view of Proposition A.1, the following is equivalent to Theorem 2.1:

Theorem A.2. Assume N > 3 and let v be a solution of the linear wave equation (1.6)
with initial data (vo, v1) € H' x L2. Then

1
lim (H —Vuu(t)
r

f—+00

1
+ H—v(t)
r

2) =0 (A1)
L

L2

and there exists a unique g € 7—[,17 such that

—>+00

. +oo NoL 2
lim 0,0 (r 2 vt rw) — g(r — t, 0))|" dwdr = 0. (A.2)
0 SN—I
Furthermore,
Ev(vo, v1) = f 13,8, > dnde = 11215, (A3)
RxSN-1 n
and the map
H' x L? > 7—[,1, (vo, v1) > V2,

is a bijective isometry.

In this Appendix A we prove Theorem A.2 assuming Proposition A.1. We postpone the
proof of Proposition A.1 to Appendix B.

A.2. The case of smooth, compactly supported functions

Lemma A.3. Assume (vo, v1) € (C3° (RVY)2 and let v be the corresponding solution of
(1.6). Then there exists F € C*®°(R x SN~ x [0, +00)) such that

1 1
N—1 _ _ -
Vr >0, Vwe S , v(t,ra))—r(N])/zF<r t,a),r).
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Proof. This is classical (see [12], [21], and also [1] for this exact statement), and can
be proved using the explicit form of the solution of (1.6), distinguishing between even
and odd dimensions. We give a proof relying on the conformal transformation which is
independent of the dimension.

Forp e R,w e SVN! o € (0, +00) we let

F( ) 1 1 w
,w,0)=————v|——p, — |.
P o2\ g TPy

Since v is smooth, F is smooth on R x SV—1 x (0, +00). We must prove that F can be
extended to a smooth function on R x S¥—1 x [0, 4+00).

Let tp > 0. We claim that there exists a C* solution w of the linear wave equation
(1.6), depending on #y, such that, for all x, # with |x| > ¢ — fg and ¢ > 1o,

u(t, x) = ! ( i a ) (A.4)

w k]
(Ix|? = (¢ = 1)) N=D2 7\ |x 2 — (t —10)* " |x|* — (t — 10)?

Indeed, let w be the solution of (1.6) with C* initial data (wg, wy) at ¢t = 0 given by

1 y
wo(y) = WU to, W

1 y
wi(y) = mT—i—latU to, W

and w(0) = w1(0) = 0. Notice that since, by finite speed of propagation, (v(fy), d:v(fg))
is compactly supported, the above definition yields C* functions on R" which are con-
stant, equal to 0, in a neighbourhood of the origin.

We note that

5 1 T y
T, = v\ )
WY = SRS R (°+|y|2—r2 |y|2—r2>

defines, for |y| > t, a C* solution of the linear wave equation whose initial data at T = 0
equals (wg, wy) (at least for |y| # 0). Hence, by finite speed of propagation,

Iyl > 17 = w(z,y) =w(T,y).

It remains to check that for |x| >t — 1y, t > 1,

. %) 1 5 t—1p X

v(t, x) = w , .
(Ix12 = |t = 10HN=D/2 7\ [x|2 = (1t = 10)? " [x]> = ( — 10)?

This follows easily from the definition of w and the change of variables

Yy

t=tg+—5—>, x=-———.
ly|? — 12 ly|? — 12
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As a consequence of (A.4), going back to the definition of F, we obtain

(a>0,0<l—a(p+to)andp>—to) e

1
o = B+ -+ 0o 7"
( 1—0o(p+1to) 7 w ) (A5)
2(p + 1) — (p +10)>0 " 2(p +10) — (p + 10)%0

However, the right-hand side of the above formula for F can be extended to a C* function
in the open set

SNfl

{(p,w,0) e R x xR:0(p+1) <2and p > —1y}

which includes the set (—fy, +00) x SV~ x {0}. As a consequence, F can be extended
to a C* function in a neighbourhood of the set (1 — 7y, +00) X SN=1 % [0, +00) and,
since g is arbitrarily large, to a neighbourhood of R x S¥~! x [0, +00). O

Lemma A4. Let N > 3. Let (vo, v1) € (C°(RV))% Then

1 1
lim (H—va(t) + H—v(t) ) =0 (A.6)
I—=>+00\ | 7 L2 r L2
and there exists g € H,; such that
. N1
t~1>12100|| 8r,l‘(r 2 U(Z, }"(,()) - g(r -1, (,())) ||L2((O,+OO)><SN’1) =0. (A7)

Let us mention that Lemma A.4 follows quite easily from Lemma A.3 if N > 3 is odd (in
this case, g € Cgo(R x S¥=1Y) In the general case, we will need the following claim:

Claim A.5. Let (v, vy) € (C(‘)>o (RY)2, N > 3, and v the solution to the wave equation
(1.6). Then |[v(?)|| ;2 is bounded,

. 1 >
14132100/ W|v(l,x)| dx =0 (A.8)
and
lim lim sup/ [V, 0)1* + (Bv(t, x))*]dx = 0. (A.9)
R—00 t—>+o0 Jix|<r—R

This is classical. We postpone the proof after the proof of Lemma A.4 (see also [7,
Lemma 2.1]).

Proof of Lemma A.4. We let F be as in Lemma A.3 and g(n, w) = F(n, w, 0). Note that
g€ C®MR x SN,

Step 1. We prove that g € H! ie.

/R . 19,81 < oo. (A.10)
X
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We have F(r —t,w, 1/r) = r¥v(t, rw). As a consequence, F(n,w,0) =0ifn > M
by finite speed of propagation, where M > 0 is such that

supp(vo, v1) C {x € RV : |x| < M}. (A.11)

Let A > 0. We have
2 t+M
drdw = / / rN*l(i%v(t,ra)))2 drdw
SN-1 Jt—A

t+M 1
/ / 8,7F<r—t,a), —)
SN-1 Ji—A r
S 2EL(v05 vl)

Hence
1
onF|\n w, —
! (n n+t>

+o0 M
/ / 19,8 (n, ®)|* dndw = / / 19, F (0, », 0)]* dndw < 2E, (vo, v1).
SN-1J-a SN-1J-a

2
dndw < 2E; (vg, v1).

fo

Letting ¢t — +o00, we obtain

Since A can be taken arbitrarily large, we obtain (A.10).
Step 2. Proof of (A.6). By Claim A.5 and Step 1, it is sufficient to prove

1

S|Vl dx =0, (A.12)

VR > 0, lim

1=>400 Jix>—R |X]

t+M 1 1
YR>0, lim / / = VwF<r —to, —)
t—>+00 JgN-1 J;_p T r

which follows easily from the fact that F € C®(R x SV ~1 % [0, 400)) and the change
of variable n = r —t.

ie.
2

drdw =0,

Step 3. Proof of (A.7). By Claim A.5 and Step 1, it is sufficient to prove

t+M 9 1
VR > 0, lim / / —(F(r—t,a),—)—F(r—t,a),O))
t—>400 JgN-1 Ji_R or r
t+M 9 1 2
+/ / —<F<r—t,a),—>—F(r—t,w,0))
SN=1 Jr—R Jat r

drdo =0. (A.13)
As in Step 2, this follows from the change of variable n = r — ¢. O

2
drdw

Lemma A.6. Let (vo, v1) and g be as in Lemma A.4. Then

Ev(vo. v1) = [Ig11%,-
n
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Proof. We have
1 o

B =3 [ [ evidedr
2 Jo Jsn-1

1 [ 1 1 [
+ -/ / —|Voul?rV do dr + -/ / @) rN " ldwdr.
2 0 SN—-1 r 2 0 SN—l

Notice that

© 5 | 0 N-1 \\2
/ / (0,v) PN dwdr:/ f (ar(rTv)) dr +o(l)ast — +oo.
0 SN-1 0 SN-1

A.14

N-1 N-1 N—-1 N-3 . . ( . )

Indeed, 0, (r 2 v) =r"2 v+ “5-r 2 v, and (A.14) follows in view of (A.6). Using
(A.6) again, we see that

o0
Ey (v, 0;v) = %/0 /N 1(&(1’%1)))2 dwdr
GN-

l > 2 N—1
+ (Orv)°r dwdr 4+o0(1) ast — +oo.
2 0 SN-1

By (A.7),
o
EL(v, 8,1)):/ / 13,8(r — t, )|> dr dw + o(1)
0 SN-1
oo 2
2[ / 10,81, @)|“dndw + o(1)
—t SN—-1
OO 2
e /_OO fw] [0,8(n, )" dndw,
and we conclude using conservation of energy. O

It remains to prove Claim A.5. We use the identity

d N -1
o x - Vvov + — vo;v | = —E (vg, v1).

(In all the proof of the claim, | denotes the integral on RY). Integrating between 0 and
t > 0, we obtain

N—1 N -1
x-Vvov+ 5 vo;v = —tEy (v, v1)+ X'VU0U1+T VvoU]. (A.15)

Since N > 3, H! (]RA_[ ) is a Hilbert space, included in the space of tempered distri-
butions, and CS°(RY) ¢ H~'(R"). By conservation of the L*> x H~' norm of (v, 3;v),
we deduce that the L2 norm of v remains bounded. Using (A.15), we deduce

‘/x~Vv8,v

for some constant C > 0 depending on (v, v1).

>tE; (vg,v1) — C (A.16)
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Let M > 0 be such that |[x| < M on the support of (vg, vi). By finite speed of
propagation, |x| < M + |t| on the support of (v(¢), d;v(¢)). Let R > 0. By the Cauchy—
Schwarz inequality,

‘/X~VU3;U <+ M) |Vvo;v| 4+ (t — R) [Vvo,v|
[x[>t—R lx|<t—R
R 2
< tE (v, v1) + ME, (v, v1) — = [Vixv]”.
[x|<t—R

Combining this with (A.16), we obtain

R
C+ ME (v, v1) = X / LA (A17)

[x|<t—R

which yields as announced

lim hmsup/ |Vt,xv|2 = 0. (A.18)
|x|<t—R

R—00 1400

It remains to prove

. 1 2
lim —v]==0. (A.19)
X

Since

it is sufficient to prove

VA>0, lim — vl
1>+00 Jiy1<a |x]

Letg € C(‘)’O(RN) be such that ¢(x) = 1 if [x] < 1 and ¢(x) = 0if |x| > 2. Then

O ey E s O,

The first term on the right-hand side goes to 0 as  — oo since the L? norm of v is
bounded. The second one goes to 0 by (A.18). The proof is complete. O

A.3. General case

Here we prove Theorem A.2.

A.3.1. Existence and uniqueness. Let (v, v1) € H' x L. We argue by density, consid-
ering a sequence {(vo,,, V1,n)}n in (Cé>O (RM))2 such that

Tim (W0 — v0, V1.0 = 0D 1,2 = 0. (A.20)
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Letg, € H}, be given by Lemma A .4, corresponding to (v, vi,,). By the energy iden-
tity in Lemma A.6, the sequence {g,}, is a Cauchy sequence in ’H,l] Since, by Proposi-
tion A.1, 7—[,1] is complete, the sequence has a limit g in 7—[,1)

Let ¢ > 0. Choose n such that

2 2
lvo,n — voll 1 + llvie —villy2 <e. (A21)

By conservation of energy and (A.6) in Lemma A.4, we deduce

1 2 2
lim ( —v(t) + H—va(t) ) < Ce, (A.22)
t—+00 r 12 r L2
which yields (A.1) by letting ¢ — 0.
Fixing again € and n such that (A.21) holds and
12, — Bl <. (A.23)
we obtain, by (A.21), conservation of energy and (A.1),
imsup [ (25 st 4 25 =5 Yara
im su —(rzuv,—rzvu —(rzuv,—rzvu rdw < e.
H+o<r>) [0,-+00)x SV —1 \ | O " ot "
(A.24)
Hence, by the definition of g,,
. N-L 2
lim sup/ |8r,,(gn(r —t,w)—r 2 v(t, rco))\ drdw < e. (A.25)
t—+00 J[0,400)xSN—1

By (A.23) we can replace g, by g in (A.25) (changing ¢ to 4¢ on the right-hand side).
Letting ¢ — 0, we obtain (A.2).
Using

lim Ey (vo,n, vi,n) = Ev(vo,v1) and  lim [Ig, Il = Igll4
n—o00 n—o00 n n

we see that Lemma A.6 implies the energy identity (A.3). Of course (A.3) implies the
uniqueness of g and that the map (v, v1) — ﬁg is an isometry from H' x L? to 7—[,1]

A.3.2. Proof of surjectivity. Wenextletg € 7—[,1) and construct v satisfying (1.6) and such
that (A.2) holds. Since E| (vg, vi) = ||§||§_-l}7, the image of the map (vg, v1) > g is closed
in 7—[}7 Using the density of C§° (R x SN=1yin 7!, we see that it is sufficient to prove the
existence of v for g € C°(R x SV~1).

We look for v of the form

v(t,x) = —r,w)+ e, x) (A.26)

;728
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for large ¢, with w = x/|x|, and

dim | 9e) (D) 1,2 = 0. (A.27)
Since
1 N? —4N +3 1
2 —
9 — A)(mg(t - w)) = Wg(f —rw) - mAwg(f —r,)
= H(1, x),

equation (1.6) is equivalent to
(82 — A)e = —H.

Let L > 1 besuchthatsuppg C [—L, L1xSY~!1. Then H € L' ([L+1, +00), L>(RV)).
Indeed, if t > L + 1, then

2 2
———g(t —r, ) + | 7 A0g(t — 1, ®)

H F(N13)/2 L2RN) F(N+3)/2 2N

*Loq 1 1 1
< N ldr < — A~ —  ast — +oo.

~ /Z_L ri+3 Y@—-L} +LP

Letting
T sin((t — s)v/—A
€(t, x) :/ MH(S,X) ds,
' V=A

we obtain € satisfying (A.27) and such that v defined by (A.26) is a solution of (1.6).
By (A.26) and (A.27),
N-—1

Har,t(r¥v —gt—r, a)))HL2 = Hal’r(rTg)HLz t——+00 0,

which concludes the proof. We have used the fact that

+o00 N1 5 +o00 ) N_1
/ (Br(rTe)) dr:/ 0re)rdr
0 0

ife € HY(RN).

A.4. Radiation fields and channels of energy

We conclude this appendix with a remark on the relation between exterior energy es-
timates (see [9, Proposition 2.8]) and radiation fields. Assume that N is odd. It follows
from the explicit formula for the solution of the wave equation in terms of spherical means
that the outgoing radiation field G 1. of a solution v of the linear wave equation with initial
data (vo, v1) € H' x L? has the following symmetry properties:

e if vy = 0then G4 (1, w) = (—DHWVTD2G  (—p, —w),
e if g =0then G, (1, w) = ()N D2G (=, —w)
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(see for example the asymptotic formulas in [9, proof of Lemma 2.9]). In both cases, we
obtain

t——+00

lim VivtoPds= [ [ 1Gum.P dody
[x|=r] R JSN-1

1
=3 /[IVUO(X)I2 + o1 (0) ] dx,

which yields the exterior energy estimate for the linear wave equation in odd space di-
mension (see [9, Proposition 2.8]).

Appendix B. Study of a function space

Here we prove Proposition A.1.

B.1. Completeness

Let {g,}» be a Cauchy sequence in 7—[,1] Replacing g, (1, w) by g, (n, ®) — £,(0, w) we
can always assume
Vo e SN, gn(0,w) =0.

As a consequence, if n € Rand n, p € N, then

2

n

f 180 (1. @) — gp (0. @) > doo = / ' f (B (- @) — dygp (s ) dry| deo
SN—I SN—l 0
n

<ol [ [ @ ) = 045,00, )l do

Thus, for all M > 0, {g,}, is a Cauchy sequence in CO([—M, M], L2(SN_1)). As a
consequence, there exists g € C O(R, L2(SN¥—1)) such that {g,,}, converges to g locally in
L®(R, LE(SN-1).

Since {d,8n}x is a Cauchy sequence in L3R x SN=1y, it converges to some h €
L*(R x S¥~1) in this space. Letting n — oo in the equality

n
gn(n, w) =/ Ongn(n',w)ydn foraa we sN-1
0
at fixed 1, and taking the limit in LZ(SN _1), we see that
n
g(n, w) = / h(y',w)dny foraa we SV
0

Thus 8,g = h € L*>(R x SV¥~1) and, by the definition of A,

nlggo o8 — 3ngn||L2(Rstfl) =0.
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B.2. Density of compactly supported, smooth functions

Step 1. We let ¢ € C3°(R) be such that p(n) = 1if [n] < 1 and ¢(n) = 0if || > 2. Let
g € Hnl In this step we prove

9 .
li —|g—ol—=
RimooH an (g “’(R)g>
Indeed,

e (2)9)] e
<|(1-() s o(%)s

The first term of the right-hand side goes to 0 as R — oo by dominated convergence. We
next treat the second term. We have
e 2 C 2R ,
— — < — , dwdn. B.2
72 w(R>g LS /SIH lg(n, w)|”dwdn (B2)

R? Jp
Let A > 1. Then, forn > A,

=0.
L2(RxSN-1)

(B.1)

]

@xsv-ly R L2RxSN-1)

n
g(n, w) = g(A, w) —i—/ d,e(n’, w)ydn foraa we SV
A

Hence,

+o0
g, )2 < 20 / 9,2(7s )2 dn’ +21g(A, )P foraa e sV,
A

SN—l

Integrating on , we obtain

/S 180 @) P do < 20195817214 Locywsy-1) T+ 208(A N Taon)-

For R > A, we have

1

2R 2
z /. /S 1801, @) dewdn < 1081172 14 1ocywsv-1) + N8 M aisna)-

Letting R — 00, we obtain
hmsupL/”/ lg(n, )P dwdy < 43,817, N1y
Rooo R%2Jr  Jen—i NSNL2([A,+00)xSN-1)
and thus, since A is arbitrarily large,
1 2R
Rlimw 7). /SN?I lg(n, w)|>dwdn = 0.

In view of (B.1) and (B.2), this concludes Step 1.
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Step 2. Tt remains to prove that a compactly supported function g € CO(R, L2(SV~1))
such that 9, ¢ € L% (R x S¥~1) can be approximated in the ’H,,l] norm by smooth functions.
This can be done using convolution with approximations of the identity (in the variable 7)
and projecting on the n first eigenspaces of the Laplace-Beltrami operator A,, on SV~!
We leave the details to the reader.

B.3. Isometry with L?

Let @ : g > 0,g. It follows obviously from the definition of H,; that @ is a well defined,
injective isometry. If G € L2(R x S¥~1), then

n
gm@=AG@WMw

is an element of H,; which satisfies ®(g) = G, which proves that the map is also surjec-
tive. The proof of Proposition A.1 is complete.

Appendix C. Profiles and estimates on Strichartz norms

Recall that S(R) = L e (R,

Claim C.1. Let {(uo.n, 1,n)}n be a sequence in H' x L? such that

lim sup || (u0,n, Ul,n)”[-'[' <12 =M. (C.1)
n—oo
Assume furthermore '
Vi, U lIs@) < o (C.2)
Then
, cM3s)t if N =3,
lim sup || Sy, () (o, t1,2) | s®R) < a4 6=N
n—00 CMN ZSN” if N=4,5.

Proof. We use the following Pythagorean expansion:

2(N+1) . 2(N+1)

lim 1S, () o urm)| vy =Y U S . (C3)
L™N=2" RxRV) =] L N-2 (RxRV)

Next, we notice that by the Holder and Sobolev inequalities,

. 2(N+1) , % j N+2
1ol 5 2(N+l) <UL I . ||U ||S(R) (C4)
L N-2 (RxRNM) L®(R,L

If N = 3, we deduce

1071y = CITL O, M85,

Hence, by the Pythagorean expansion (C.3),
fim sup /S, () (a0, w1, = CM8) Y UL O, ,» < CM3S;.

n—o0 j>1
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By Holder’s inequality and the Strichartz inequality,

3/5

e ISL @0 w1

1/4

ISLCY@ons 1)l 510 < I1SLC) (0.0, w1 Ls ,

lim sup || S, () @00, w10l 5,10 < CMPPIMISABGBA = g

n—o00

If N € {4, 5}, we combine (C.4) with the Strichartz and Sobolev inequalities to obtain

i 2(N+1) 6
WU Sy < CITE O, LIUIIES < CITI O, .00 7. (©5)
L N-=2

t,x
Summing up, we deduce

. 2(N+I)

Z”Uj” ey < CMZSN i (C.6)
j>1 L, N7
Hence
2(N+1) 5 N 2
lim sup || Sy (- ) (o, u1, n)” 2(N+1) <CM 8 (C.7)
n—oo L, N—Z

By Holder’s inequality,

1SLC) @, wr ) llsay < ISLC) @ s ura) v+ 1S oy 1)1

L7 2(]R L¥3)
(C.8)
(N+1D(6—N) _ N(N-2)
where 6 = "=, 1 =0 = 355 -
Hence
I1SL() (o,n, ur,m)lls®) < C5N+ M O

Appendix D. Dispersion for solutions with small e¢;-norm

In this appendix we prove Claim 7.3. We argue by contradiction. Assume that for all
n > 0, there exists (vo n, V1,n) € H'! x L? such that

(g, v ley < 1/n, o, vid) iy <M (D.1)

and
lvf sy > B, (D.2)
where v (1) = S_(t)(vg, v}). Extracting subsequences, we can assume that {(vg, v})}

has a profile decomposition (U}, {tjns Xjns AjnJn)j=1. By the Pythagorean expansion of
the norm || - ||¢, (see Remark 7.2), forall J > 1,

1 Ny
= > [l(wg. VDI, = D IT O, + w112, + o(1)
j=1

n

as n — 00. As a consequence, U{ = Oforall j > 1 and lim, [|v]'|ls@®) = O, which
contradicts (D.2).
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