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Abstract. Consider the focusing energy-critical wave equation in space dimension 3, 4 or 5. We
prove that any global solution which is bounded in the energy space converges in the exterior of
wave cones to a radiation term which is a solution of the linear wave equation.
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1. Introduction

In this note we consider the energy-critical nonlinear wave equation on RN ,N ∈ {3, 4, 5}:
{

∂2
t u−1u− |u|4/(N−2)u = 0,

(u, ∂tu)↾t=0 = (u0, u1) ∈ Ḣ 1 × L2,
(1.1)

where Ḣ 1 = Ḣ 1(RN ), L2 = L2(RN ), and u is real-valued. If f is a function of space

and time, we will denote Ef = (f, ∂tf ). It is known that the equation (1.1) is locally well

posed in Ḣ 1 × L2 and that the energy

E(Eu(t)) = 1

2

∫

|∇u(t, x)|2 dx + 1

2

∫

|∂tu(t, x)|2 dx − N − 2

2N

∫

|u(t, x)| 2N
N−2 dx

is conserved.

All solutions of the defocusing equation ((1.1) with a + instead of a − sign in front of

the nonlinearity) are global and scatter to a solution of the linear equation (see e.g. [26, 16,

14, 17, 24, 19, 25, 3, 23]). The dynamics of the focusing equation (1.1) are richer: small

data solutions are global and scatter, but blow-up in finite time may occur [22]. Global,
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nonscattering solutions also exist. Examples of such solutions are given by solutions of

the elliptic equation

−1Q = |Q|4/(N−2)Q, Q ∈ Ḣ 1, (1.2)

(see [6] for the existence of such solutions) and their Lorentz transforms

Qℓ(t, x) = Q

((

− t
√

1 − |ℓ|2
+ 1

|ℓ|2
(

1
√

1 − |ℓ|2
−1

)

ℓ·x
)

ℓ+x
)

= Qℓ(0, x−tℓ) (1.3)

where ℓ ∈ RN , |ℓ| < 1. Note that

Qℓ(t, x) = Qℓ(0, x − tℓ),

so that Qℓ is a solitary wave travelling at speed |ℓ|. The energy of Qℓ is given by

E( EQℓ(0)) = 1
√

1 − |ℓ|2
E( EQ(0)) −→

|ℓ|→1
+∞. (1.4)

It is conjectured that any bounded, global solution of (1.1) is a sum of modulated, de-

coupled travelling waves and a scattering part. More precisely:

Conjecture 1 (Soliton resolution). Let u be a solution of (1.1) on [0,+∞) × RN such

that

sup
t≥0

‖Eu(t)‖Ḣ 1×L2 < ∞. (1.5)

Then there exist a solution vL of the linear wave equation

{

(∂2
t −1)vL = 0,

EvL↾t=0 = (v0, v1) ∈ Ḣ 1 × L2,
(1.6)

an integer J ≥ 0, and for j ∈ {1, . . . , J }, a (nonzero) travelling wave Q
j

ℓj
(where

|ℓj | < 1 and Qj is a solution of (1.2)), and parameters xj (t) ∈ RN , λj (t) ∈ R such that

lim
t→+∞

[

Eu(t)− EvL(t)

−
J

∑

j=1

(

1

λj (t)(N−2)/2
Q
j

ℓj

(

0,
· − xj (t)

λj (t)

)

,
1

λj (t)N/2
∂tQ

j

ℓj

(

0,
· − xj (t)

λj (t)

))]

= 0 (1.7)

in Ḣ 1 × L2 and

∀j ∈ {1, . . . , J }, lim
t→+∞

xj (t)

t
= ℓj , lim

t→+∞
λj (t)

t
= 0,

∀j, k ∈ {1, . . . , J }, j 6= k =⇒ lim
t→+∞

( |xj (t)− xk(t)|
λj (t)

+ λj (t)

λk(t)
+ λk(t)

λj (t)

)

= +∞.



Scattering profile for the energy-critical wave equation 3

This conjecture was proved by the authors in [10] for radial solutions in space dimension

N = 3. In this case xj (t) ≡ 0 and the only stationary solutions in the expansion (1.7) are

W and −W , where

W(x) = 1

(1 + |x|2/3)1/2 .

In this article we extract the linear profile vL(t) which appears in the expansion (1.7).

More precisely, we prove:

Theorem 2. Let u be a solution of (1.1) on [0,+∞)×RN that satisfies (1.5). Then there

exists a solution vL of the linear wave equation (1.6) such that, for all A ∈ R,

lim
t→+∞

∫

|x|≥t+A

(

|∇(u−vL)(t, x)|2+|∂t (u−vL)(t, x)|2+
1

|x|2 |u(t, x)|2+|u(t, x)| 2N
N−2

)

dx

= 0. (1.8)

We see Theorem 2 as a first step toward the proof of Conjecture 1. It is used in an article

by Hao Jia and the authors to prove a weak form of the conjecture, that the expansion

(1.7) holds for a sequence of times tn → +∞ (see [7]). Note that Theorem 2 implies that

the following limit exists:

lim
A→−∞

lim
t→+∞

∫

|x|≥t+A

(

1

2
|∇u(t, x)|2 + 1

2
(∂tu(t, x))

2 − N − 2

2N
|u(t, x)| 2N

N−2

)

dx

= EL(v0, v1),

where

EL(EvL(t)) = 1

2

∫

[

|∇vL(t, x)|2 + (∂tvL(t, x))
2
]

dx

is the conserved energy for the linear wave equation. One can also prove (using for ex-

ample the profile decomposition of [2] recalled in §2.4), as a consequence of Theorem 2,

ESL(−t)Eu(t) −−−−⇀
t→+∞

(v0, v1), (1.9)

where ESL denotes the linear evolution (see §2.1 below).

We next mention a few related works. Theorem 2 is proved in [8, Subsection 3.3]

in the radial case in dimension 3 (where it is significantly simpler). A very close proof

yields Theorem 2 for radial solutions of (1.1) in higher dimensions (see e.g. [5]) and of the

defocusing analogue of (1.1) with an additional linear potential [18]. We refer to [5] for

an analogue of Theorem 2 for equivariant wave maps. The spherically symmetric setting

is much easier since any solution can only propagate in two directions, outward (x/|x|)
or inward (−x/|x|), a fact that is crucially used in the previous proofs. Related results for

energy-subcritical, mass-supercritical Schrödinger equations were proved by T. Tao [27,

28, 29].

Let us give a short outline of the paper. We first prove (Section 3), as a consequence of

small data theory and finite speed of propagation, that (1.8) holds for large positive A. We
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then argue by contradiction, assuming that (1.8) does not hold for all A ∈ R, and defin-

ing A as the largest real number such that (1.8) does not hold. We divide (see Section 4)

the elements of the sphere SN−1 between regular directions (in an angular neighbourhood

of which (1.8) holds locally, for some A < A), and singular directions (other elements

of SN−1), and prove, using geometrical considerations and again small data theory and

finite speed of propagation, that the set of singular directions is finite. To conclude the

proof, we show in Sections 5–7 that the set of singular directions is empty, which will

contradict the definition of A. More precisely, in Section 5, we prove that there exists a

nonzero profile which concentrates close to the wave cone {t = |x| + A}, along an ar-

bitrary singular direction. The core of the proof is in Section 6, where we prove, using a

local version of virial-type identities, that there are no nonlinear profiles remaining close

to the wave cone {t = |x| + A}. This is coherent with the intuition that nonlinear objects

with finite energy travel at a speed strictly slower than 1, as the travelling waves (1.3) and

their energies (1.4) suggest. Finally, Section 7 collects the results of the preceding two

sections to prove by contradiction the emptiness of the set of singular directions. Let us

mention that we never need to know, in all this proof, what happens inside the wave cone

(that is, for (t, x) such that |t | − |x| ≫ 1). This is of course made possible by finite speed

of propagation.

In Section 2, we give some preliminary results on linear and nonlinear wave equations.

We introduce in particular an isometry between the initial data and the asymptotic profile

of a solution of the linear wave equation that is known (see e.g. the work of Friedlan-

der [13]) but seems to have been somehow forgotten. We construct this isometry (which

we use many times in the article) in Appendices A and B for the sake of completeness.

2. Preliminaries and notations

2.1. Linear wave equation

If (v0, v1) ∈ Ḣ 1 × L2, we let

SL(t)(v0, v1) := cos(t
√

−1)v0 + sin(t
√

−1)√
−1

v1,

let vL be the solution of (1.6), and

ESL(t)(v0, v1) := EvL(t) =
(

SL(t)(v0, v1),
∂

∂t
(SL(t)(v0, v1))

)

.

The linear energy

EL(EvL(t)) = 1

2

∫

|∇vL(t, x)|2 dx + 1

2

∫

(∂tvL(t, x))
2 dx

is conserved. We will often use radial coordinates, denoting, for x ∈ RN \{0}, r = |x| > 0

and ω = x/|x| ∈ SN−1. We also denote

∂r = ∂

∂r
= x

|x| · ∇, 1

r
∇ω = ∇ − x

|x|∂r .
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We will often use the following asymptotic property.

Theorem 2.1. Assume N ≥ 3 and let vL be a solution of the linear wave equation (1.6).

Then

lim
t→+∞

(∥

∥

∥

∥

1

r
∇ωvL(t)

∥

∥

∥

∥

L2

+
∥

∥

∥

∥

1

r
vL(t)

∥

∥

∥

∥

L2

)

= 0 (2.1)

and there exists a unique G+ ∈ L2(R × SN−1) such that

lim
t→+∞

∫ +∞

0

∫

SN−1

∣

∣r
N−1

2 ∂tvL(t, rω)−G+(r − t, ω)
∣

∣

2
dω dr = 0, (2.2)

lim
t→+∞

∫ +∞

0

∫

SN−1

∣

∣r
N−1

2 ∂rvL(t, rω)+G+(r − t, ω)
∣

∣

2
dω dr = 0. (2.3)

Furthermore,

EL(v0, v1) =
∫

R×SN−1
|G+(η, ω)|2 dη dω = ‖G+‖2

L2 , (2.4)

and the map

(Ḣ 1 × L2)(RN ) → L2(R × SN−1), (v0, v1) 7→
√

2G+,

is a bijective isometry.

Remark 2.2. Applying Theorem 2.1 to the solution (t, x) 7→ vL(−t, x) of (1.6), we find

that

lim
t→−∞

(
∥

∥

∥

∥

1

r
∇ωvL(t)

∥

∥

∥

∥

L2

+
∥

∥

∥

∥

1

r
vL(t)

∥

∥

∥

∥

L2

)

= 0,

there exists G− ∈ L2(R × SN−1) such that

lim
t→−∞

∫ +∞

0

∫

SN−1

∣

∣r
N−1

2 ∂tvL(t, rω)−G−(t + r, ω)
∣

∣

2
dω dr = 0,

lim
t→−∞

∫ +∞

0

∫

SN−1

∣

∣r
N−1

2 ∂rvL(t, rω)−G−(t + r, ω)
∣

∣

2
dω dr = 0,

and the map (v0, v1) 7→
√

2G− is a bijective isometry from (Ḣ 1 × L2)(RN ) to

L2(R × SN−1).

We will callG+ (respectivelyG−) the outgoing radiation field (respectively the incoming

radiation field) associated to vL.

Theorem 2.1 is known (see in particular the works of Friedlander [12, 13]). We give

a proof in Appendices A and B for the sake of completeness. Let us mention that the

following identity for the conserved momentum is also available (but will not be used in

this article):
∫

∇v0v1 = −
∫

R×SN−1
ω|G+(η, ω)|2 dη dω.
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2.2. Strichartz estimates

If � is a measurable subset of Rt × RNx , of the form � = ⋃

t∈R{t} × �t , �t ⊂ RN

measurable, and u a measurable function defined on �, we denote

‖u‖S(�) :=
(∫ +∞

−∞

(∫

�t

|u(t, x)| 2(N+2)
N−2 dx

)
1
2

dt

)
N−2
N+2

. (2.5)

If I ⊂ R is measurable, we will abuse notation, writing S(I) for S(I × RN ).

The spaces S(I) appear in the following Strichartz estimate (see [15]): Let f ∈
L1(R, L2(RN )) and (u0, u1) ∈ (Ḣ 1 × L2)(RN ), and let

u(t) = SL(t)(u0, u1)+
∫ t

0

SL(t − s)(0, f (s)) ds

be the solution of

(∂2
t −1)u = f, Eu↾t=0 = (u0, u1) ∈ Ḣ 1 × L2. (2.6)

Then u is well defined, Eu ∈ C0(R, Ḣ 1 × L2), u ∈ S(R) and

‖u‖S(R) + sup
t∈R

‖Eu(t)‖Ḣ 1×L2 ≤ C(‖f ‖L1(R,L2) + ‖(u0, u1)‖Ḣ 1×L2).

We will occasionally use other Strichartz estimates: in the preceding inequality, one can

replace S(R) by L
2(N+1)
N−2 (RN+1), and also by L4(R, L12) (if N = 3) or L2(R, L

2N
N−3 ) (if

N ≥ 4).

2.3. Miscellaneous properties of the critical nonlinear wave equation

We recall the Cauchy theory for equation (1.1):

Theorem 3 (see [20]). (a) (Small data theory) There exists δ0 > 0 such that if I is an

interval containing 0 and (u0, u1) ∈ Ḣ 1 × L2 is such that ‖SL(t)(u0, u1)‖S(I) < δ0,

then there exists a unique solution Eu ∈ C0(I, Ḣ 1 × L2) of (1.1). Furthermore

sup
t∈I

‖Eu(t)− ESL(t)(u0, u1)‖Ḣ 1×L2 + ‖u− SL(·)(u0, u1)‖S(I) ≤ C‖SL(·)(u0, u1)‖
N+2
N−2

S(I) .

(b) If (u0, u1) ∈ Ḣ 1 × L2, there exists a unique maximal solution u of (1.1). Letting

(T−, T+) be the maximal interval of existence of u, we have the following blow-up

criterion:

T+ < ∞ =⇒ ‖u‖S((0,T+)) = +∞.

(c) If u is a solution of (1.1) such that u ∈ S((0, T+)), then T+ = +∞ and u scatters

for positive times: there exists a solution uL of (1.6) such that

lim
t→+∞

‖Eu(t)− EuL(t)‖Ḣ 1×L2 = 0. (2.7)
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In the theorem, a solution of (1.1) on I is by definition a solution in the Duhamel sense

which is in S(J ) for all J ⋐ I . Point (c) can be seen as a consequence of the following

result on the nonhomogeneous linear wave equation, which we will use repeatedly:

Claim 2.3. Let f ∈ L1(R, L2(RN )) and u the solution of (2.6) (in the Duhamel sense).

Then there exists a solution vL of (1.6) such that

lim
t→+∞

‖Eu(t)− EvL(t)‖Ḣ 1×L2 = 0. (2.8)

Proof. The existence of vL follows from the formula

ESL(−t)Eu(t) = (u0, u1)+
∫ t

0

ESL(−s)(0, f (s)) ds

and energy estimates. ⊓⊔
We recall the finite speed of propagation property: if R > 0, x0 ∈ RN and u is a solution

of (2.6) such that (u0, u1)(x) = 0 for |x−x0| ≤ R, and f (t, x) = 0 for |x−x0| ≤ R− t ,
t ∈ [0, R], then u(t, x) = 0 for |x−x0| ≤ R−t , t ∈ [0, R]. As a consequence, if the initial

data of two solutions of (1.1) coincide for |x − x0| ≤ R, then the two solutions coincide

for t ∈ [0, R], |x − x0| < R − t , if t is in the domains of existence of both solutions.

A consequence of finite speed of propagation and small data theory is the following claim:

Claim 2.4. There exists δ1 > 0 with the following property. Let u be a solution of (1.1)

such that T+(u) = +∞. Let T > T−(u) and A > −T .

(a) If ‖u‖S({|x|≥A+t, t≥T }) = δ < δ1 then ‖SL(· − T )Eu(T )‖S({|x|≥A+t, t≥T }) ≤ 2δ.

(b) If ‖SL(· − T )Eu(T )‖S({|x|≥A+t, t≥T }) = δ′ < δ1 then ‖u‖S({|x|≥A+t, t≥T }) ≤ 2δ′.

Proof. Let ũ be the solution of

{

∂2
t ũ−1ũ = |u| 4

N−2 u✶{|x|≥A+t},
(ũ, ∂t ũ)↾t=T = Eu(T ).

By Strichartz estimates, for all T1 > T ,

∣

∣‖ũ‖S({|x|≥A+t, T≤t≤T1}) − ‖SL(· − T )Eu(T )‖S({|x|≥A+t, T≤t≤T1})
∣

∣

≤ C‖u‖
N+2
N−2

S({|x|≥A+t, T≤t≤T1}).

By finite speed of propagation, u(t, x) = ũ(t, x) if t ≥ T , |x| > A+ t , and thus

∣

∣‖u‖S({|x|≥A+t, T≤t≤T1}) − ‖SL(· − T )Eu(T )‖S({|x|≥A+t, T≤t≤T1})
∣

∣

≤ C‖u‖
N+2
N−2

S({|x|≥A+t, T≤t≤T1}).

For δ1 small, point (a) follows immediately. An easy bootstrap argument yields (b). ⊓⊔
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2.4. Profile decomposition

We finally recall that any sequence {(u0,n, u1,n)}n bounded in Ḣ 1 × L2 has a

subsequence (still denoted by {(u0,n, u1,n)}n) that admits a profile decomposition

(U
j
L , {tj,n, xj,n, λj,n}n)j≥1, where for all j , U

j
L is a solution of the linear wave equation

(1.6) and for all j, n, λj,n > 0, xj,n ∈ RN and tj,n ∈ R, have the following properties:

j 6= k =⇒ lim
n→∞

(

λj,n

λk,n
+ |xj,n − xk,n|

λj,n
+ |tj,n − tk,n|

λj,n

)

= +∞

(pseudo-orthogonality) and

lim
J→∞

lim sup
n→∞

‖wJn ‖S(R) = 0,

where

wJn (t) = SL(t)(u0,n, u1,n)−
J

∑

j=1

U
j
L,n(t), (2.9)

and

U
j
L,n(t, x) = 1

λ
(N−2)/2
j,n

U j
(

t − tj,n

λj,n
,
x − xj,n

λj,n

)

.

The existence of the profile decomposition was established in [2] for N = 3 (see [4] for

higher dimensions). We refer to [2] for the properties of this profile decomposition (see

also [11, Section 3] for a review).

3. Scattering to a linear solution outside a large wave cone

We let τn → +∞ and (after extraction),

(v0, v1) = wlim
n→∞

ESL(−τn)Eu(τn) in Ḣ 1 × L2, (3.1)

vL(t) = SL(t)(v0, v1), (3.2)

where wlim stands for weak limit.

Proposition 3.1. Let u be as in Theorem 2, and assume that the conclusion of Theorem 2

does not hold. Then there exists A ∈ R with the following properties, for all A > A:

‖u‖S({t>0, |x|>t+A}) < ∞, (3.3)

lim
t→∞

(∥

∥|x|−1u(t)
∥

∥

L2({|x|>t+A}) + ‖u(t)‖
L

2N
N−2 ({|x|>t+A})

)

= 0, (3.4)

lim
t→+∞

‖∇t,x(u− vL)(t)‖L2({|x|>t+A}) = 0, (3.5)

‖u‖S({t>0, |x|>t+A}) = ∞. (3.6)
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Proof. Step 1. We note that ‖u‖S{|x|>|t |+A} is finite for large A > 0. Indeed, since

‖SL(·)(u0, u1)‖S(R) < ∞,

we have, for large A,

‖SL(·)(u0, u1)‖S({|x|≥|t |+A}) < δ1,

where δ1 is given by Claim 2.4. The conclusion follows from Claim 2.4.

Step 2. We let A ∈ R ∪ {−∞} be defined by

A := inf {A ∈ R : ‖u‖S({t>0, |x|>t+A}) < ∞}. (3.7)

In particular (3.3) holds. We prove that (3.4) and (3.5) holds. Let A > A. Let v be the

solution of
{

∂2
t v −1v = |u| 4

N−2 u✶|x|>t+A,
Ev↾t=0 = (u0, u1).

(3.8)

By the definition of A, we see that the right-hand side of the first equation in (3.8) is in

L1([0,+∞), L2(RN )). By Claim 2.3, there exists a solution vAL of (1.6) such that

lim
t→+∞

∫

|∇t,x(v − vAL )(t, x)|2 dx = 0. (3.9)

By finite speed of propagation, u(t, x) = v(t, x) for (t, x) such that t > 0, |x| > A + t ,

and thus

lim
t→+∞

∫

|x|>t+A
|∇t,x(u− vAL )(t, x)|2 dx = 0 (3.10)

and

lim
t→+∞

∫

|x|>t+A

(

1

|x|2 |u(t, x)|2 + |u(t, x)| 2N
N−2

)

dx = 0.

It remains to prove

lim
t→+∞

‖∇t,x(vAL (t)− vL(t))‖L2(|x|>t+A) = 0.

We letG+, GA+ ∈ L2(R×SN−1) be the outgoing radiation fields associated to vL and vAL
respectively (see Theorem 2.1). We will prove

∀ω ∈ SN−1, ∀η > A, G+(η, ω) = GA+(η, ω), (3.11)

which, in view of (3.10) and Theorem 2.1, will yield the conclusion of Step 2.

Fix ε > 0 and 8 ∈ L2(R × SN−1) such that 8(η, ω) = 0 if η ≤ A + ε. Let

wL(t) = SL(t)(w0, w1) be the solution of the linear wave equation (1.6) whose associated

outgoing radiation field is 8 (see Theorem 2.1). In other words,

lim
t→+∞

∫ +∞

0

∫

SN−1

∣

∣r
N−1

2 ∂twL(t, rω)−8(r − t, ω)
∣

∣

2
dω dr = 0, (3.12)

lim
t→+∞

∫ +∞

0

∫

SN−1

∣

∣r
N−1

2 ∂rwL(t, rω)+8(r − t, ω)
∣

∣

2
dω dr = 0. (3.13)
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On the one hand, we have

(

Eu(τn), SL(τn)(w0, w1)
)

Ḣ 1×L2 =
(

SL(−τn)Eu(τn), (w0, w1)
)

Ḣ 1×L2

−−−→
n→∞

((v0, v1), (w0, w1))Ḣ 1×L2 , (3.14)

by the definition (3.1) of (v0, v1), and thus, using the isometry property of radiation fields,

we get

lim
n→∞

(

Eu(τn), SL(τn)(w0, w1)
)

Ḣ 1×L2 = 2

∫ +∞

−∞

∫

SN−1
G+(η, ω)8(η, ω) dω dη. (3.15)

On the other hand,

(

Eu(τn), SL(τn)(w0, w1)
)

Ḣ 1×L2 =
∫

∇t,xu(τn, x) · ∇t,xwL(τn, x) dx

=
∫ +∞

0

∫

SN−1
r
N−1

2
(

∂tu(τn, rω)− ∂ru(τn, rω)
)

8(r − τn, ω) dω dr + on(1)

= 2

∫ +∞

0

∫

SN−1
GA+(r − τn, ω)8(r − τn, ω) dω dr + on(1),

where at the last line we have used 8(r − τn, ω) = 0 if r − τn ≤ A, (3.10), and the

definition of GA+. Hence

lim
n→∞

(

Eu(τn), ESL(τn)(w0, w1)
)

Ḣ 1×L2 = 2

∫ +∞

−∞

∫

SN−1
GA+(η, ω)8(η, ω) dω dη.

Combining this with (3.15), we see that for all 8 ∈ L2(R× SN−1) such that 8(η) = 0 if

η ≤ A+ ε,
∫ +∞

−∞
(GA+ −G+)8 = 0.

Using this equality with

8(η, ω) = (GA+(η, ω)−G+(η, ω))✶η≥A+ε

yields (3.11) (since ε > 0 can be taken arbitrarily small), which concludes Step 2.

Step 3. By Step 2, and since we are assuming that the conclusion of Theorem 2 does not

hold, A ∈ R. In this step we prove

‖u‖S({t>0, |x|>A+t}) = ∞, (3.16)

which will conclude the proof of Proposition 3.1. We argue by contradiction, assuming

‖u‖S({t>0, |x|≥A+t}) < ∞. (3.17)

Let δ1 be given by Claim 2.4 and T ≫ 1 such that

‖u‖S({t>T , |x|≥A+t}) < δ1/4.
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Then by Claim 2.4,

‖SL(t − T )Eu(T )‖S({t>T , |x|>A+t}) < δ1/2.

Let ε > 0 be such that

‖SL(t − T )Eu(T )‖S({t>T , |x|>A−ε+t}) < δ1. (3.18)

Then, again by Claim 2.4,

‖u‖S({t>T , |x|>A−ε+t}) < 2δ1,

which contradicts the definition of A, concluding the proof. ⊓⊔

4. Singular and regular directions

In this section, we still assume that u is a solution of (1.1) that satisfies the assumptions

of Theorem 2 and not its conclusion. We let A ∈ R be defined by Proposition 3.1.

Definition 4.1. The set R of regular directions is the set of ω ∈ SN−1 such that there

exists ε > 0 with

‖u‖
S({t>0, |x|>A−ε+t and |(̂ω,x)|<ε}) < ∞, (4.1)

where (̂ω, x) ∈ [−π, π) is the angle between ω and x. The set S of singular directions is

defined as S := SN−1 \ R.

In this section we prove:

Proposition 4.2. Under the above assumptions, the set S is finite and nonempty.

Proposition 4.3. There exists δ2 > 0 such that if ω ∈ SN−1 satisfies, for some ε > 0,

lim inf
T→+∞

‖SL(· − T )Eu(T )‖
S({t>T ,A−ε+t≤|x|≤A+ε+t, |(̂ω,x)|≤4/

√
T }) < δ2, (4.2)

then ω ∈ R.

We first prove Proposition 4.2 assuming Proposition 4.3.

4.1. Finiteness of the set of singular directions

We first prove that S is nonempty. Assume otherwise. Thus R = SN−1 and for all ω

belonging to SN−1, there exists ε(ω) such that

‖u‖
S({t>0, |x|>A−ε(ω)+t, |(̂ω,x)|<ε(ω)}) < ∞. (4.3)
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By the compactness of SN−1, we can find ω1, . . . , ωJ in SN−1 such that

SN−1 =
J

⋃

j=1

{ω ∈ SN−1 : | ̂(ω, ωj )| < ε(ωj )}. (4.4)

Letting ε = minj=1,...,J ε(ωj ), we see that

‖u‖S({t>0, |x|>A−ε+t}) < ∞,

contradicting the definition of A.

We next prove that S is finite. Let ω1, . . . , ωJ be pairwise distinct elements of S .

Then for any fixed ε > 0 and large T , the sets

�j = {(t, x) : t > T , A− ε + t ≤ |x| ≤ A+ ε + t and |(̂ωj , x)| ≤ 4/
√
T }

are pairwise disjoint. As a consequence, for large T ,

J
∑

j=1

‖SL(· − T )Eu(T )‖
2(N+1)
N−2

L
2(N+1)
N−2 (�j )

≤ ‖SL(· − T )Eu(T )‖
2(N+1)
N−2

L
2(N+1)
N−2 ([A−ε+T ,+∞)×RN )

. (4.5)

Since u(T ) is bounded in Ḣ 1 ×L2, the right-hand side of (4.5) is bounded independently

of T > 0.

We will prove that S is finite, distinguishing between N = 3 and N = 4, 5. If N = 3,

we have

‖SL(· − T )Eu(T )‖S(�j ) ≤ ‖SL(· − T )Eu(T )‖3/5

L4
t L

12
x (�j )

‖SL(· − T )Eu(T )‖2/5

L8(�j )
. (4.6)

Since ωj ∈ S , the left-hand side of (4.6) is, according to Proposition 4.3, bounded from

below by δ2/2 for large T . Combining this with the boundedness of Eu(t) in Ḣ 1 ×L2 and

Strichartz estimates, we deduce that for large T ,

δ2 ≤ C‖SL(· − T )Eu(T )‖2/5

L8(�j )
.

Hence by (4.5),

Jδ20
2 ≤ C‖SL(· − T )Eu(T )‖8

L8([A−ε+T ,+∞)×RN )
≤ C,

where the right inequality is a consequence of the Strichartz inequality and the bounded-

ness of Eu in Ḣ 1 × L2. This proves that S is finite.

If N = 4 or N = 5, the proof is very close, using

‖SL(· − T )‖S(�j ) ≤ C‖SL(· − T )‖1−θ
L2
t L

2N
N−3 (�j )

‖SL(· − T )Eu(T )‖θ
L

2(N+1
N−2 (�j )

(4.7)

with θ = (N+1)(6−N)
3(N+2)

instead of (4.6). We omit the details. The proof of Proposition 4.2

is complete. ⊓⊔
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Since x ∈ DA−ε+t,1/√tn , we obtain

d(x′, Ŵ1/
√
tn
) > A− ε + t − (t − t ′) = A− ε + t ′. ⊓⊔

We divide the proof of Proposition 4.3 into two steps.

Step 1. We prove

lim sup
n→∞

‖SL(· − tn)Eu(tn)‖S(Dn) < 2δ2. (4.11)

Indeed, we first note that by the definition of A,

‖u‖S({t≥0, |x|≥A+ε+t}) < ∞.

Thus

lim
n→∞

‖u‖S({t>tn, |x|≥A+ε+t}) = 0. (4.12)

By Claim 2.4,

lim
n→∞

‖SL(· − tn)Eu(tn)‖S({t>tn, |x|≥A+ε+t}) = 0. (4.13)

We are thus reduced to proving

lim sup
n→∞

‖SL(· − tn)Eu(tn)‖S({(t,x)∈Dn: |x|<A+ε+t}) < 2δ2. (4.14)

By Lemma 4.4(c), if t > tn and x ∈ DA−ε+t,1/√tn satisfies |x| < A+ ε + t , then

|(̂x, e1)| ≤ 1√
tn

+ 2

√

2ε

A+ ε + t
,

so that, if ε > 0 is small enough and n large,

|(̂x, e1)| ≤ 2/
√
tn.

As a consequence,

(

(t, x) ∈ Dn and |x| < A+ ε + t
)

=⇒
(

t > tn, A− ε + t < |x| < A+ ε + t and |(̂x, e1)| ≤ 2/
√
tn

)

,

and (4.14) follows from (4.9).

Step 2. We prove that for large n, ‖u‖S(Dn) is finite, more precisely,

lim sup
n→∞

‖u‖S(Dn) ≤ 3δ2. (4.15)

Since, by Lemma 4.4(b),

(

t > tn, |x| > A− ε + t and |(̂x, e1)| ≤ 1/
√
tn

)

=⇒ (t, x) ∈ Dn,

we see that (4.15) implies e1 ∈ R as desired (see Definition 4.1).
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For any T > tn, we let Dn,T = {(t, x) ∈ Dn : t ∈ [tn, T ]}. We will prove by

a bootstrap argument that ‖u‖S(Dn,T ) ≤ 3δ2 for large n. By finite speed of propagation,

Claim 4.5 and Strichartz estimates,

∀T > tn, ‖u‖S(Dn,T ) ≤ ‖SL(· − tn)Eu(tn)‖S(Dn,T ) + C‖u‖
N+2
N−2

S(Dn,T )
.

Thus for large n, in view of Step 1,

‖u‖S(Dn,T ) ≤ 5

2
δ2 + C‖u‖

N+2
N−2

S(Dn,T )
,

and the result follows if δ2 is small enough. ⊓⊔

5. Conditions on the profiles

In this section we consider again a solution u as in Proposition 3.1, i.e. one that satisfies

the assumptions of Theorem 2 but not its conclusion. We let A be given by Proposition

3.1, and consider profile decompositions for sequences {Eu(tn)}, where tn → +∞. Lemma

5.1 excludes concentrating profiles in the region {|x| > A + t}. Lemma 5.2 means that

for any singular direction ω ∈ SN−1, one can find a nonzero profile concentrating close

to {x = (A + t)ω}. This profile will be used, together with the main result of Section 7,

to prove by contradiction that the set S is empty.

Lemma 5.1. Let {tn}n → +∞ be such that Eu(tn) has a profile decomposition. Then there

is no profile such that U
j
L 6≡ 0 and the following three conditions hold:

lim
n→∞

(|xj,n| − tn) > A, (5.1)

lim
n→∞

(|xj,n| − tn − |tj,n|) ≥ A, (5.2)

lim
n→∞

λj,n = 0. (5.3)

Lemma 5.2. There exists δ3 > 0 with the following property. Let {tn}n → +∞ and

ω ∈ S . Then there exists a subsequence of {tn}n (still denoted by {tn}n) such that {u(tn)}n
has a profile decomposition (U

j
L , {tj,n, xj,n, λj,n}n)j≥1 such that

lim
n→∞

(x1,n − (A+ tn)ω) = 0, (5.4)

lim
n→∞

λ1,n = 0, (5.5)

lim
n→∞

t1,n = 0, (5.6)

‖U1
L ‖S(R) ≥ δ3. (5.7)

Proof of Lemma 5.1. We argue by contradiction. Let j ≥ 1 be such that U
j
L 6≡ 0, and

(5.1)–(5.3) hold. Using the implications

j 6= k =⇒ lim
n→∞

∫

∇t,xU jL,n(0, x) · ∇t,xU kL,n(0, x) dx = 0,

j ≤ J =⇒ lim
n→∞

∫

∇t,xU jL,n(0, x) · ∇t,xwJn (0, x) dx = 0,
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we obtain

lim
n→∞

∫

∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx =
∫

|∇t,xU jL (0, x)|2 dx > 0. (5.8)

We will deduce a contradiction from (5.8), using the localization properties of U
j
L,n.

Case 1. Assume that {−tj,n/λj,n}n is bounded. Extracting subsequences and time trans-

lating U
j
L if necessary, we can assume tj,n = 0 for all n. By (5.1), there exists ε > 0 such

that

|xj,n| − tn ≥ A+ 2ε (5.9)

for large n. Since

∇t,xU jL,n(0, x) = 1

λ
N/2
j,n

∇t,xU jL
(

0,
x − xj,n

λj,n

)

, (5.10)

we obtain, using also assumption (5.3),

∫

∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx

=
∫

|x|>A+ε+tn
∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx + o(1)

=
∫

|x|>A+ε+tn
∇t,xvL(tn, x) · ∇t,xU jL,n(0, x) dx + o(1)

=
∫

∇t,xvL(tn, x) · ∇t,xU jL,n(0, x) dx + o(1)

as n → ∞. We have used (3.5) and, at the last line, (5.3), (5.9) and (5.10). As a con-

sequence, using the asymptotic behavior of vL(t) as t → +∞ (see Theorem 2.1), we

obtain

lim
n→∞

∫

∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx = 0,

contradicting (5.8).

Case 2. We assume (after extracting a subsequence),

lim
n→∞

−tj,n
λj,n

= −∞ (5.11)

(the proof in the case where this limit is +∞ is the same). Let G
j
− be the incoming

radiation field associated to U
j
L (t) (see Theorem 2.1 and Remark 2.2). Then

lim
t→−∞

∫ +∞

0

∫

SN−1

∣

∣rN−1|∇t,xU jL (t, rω)|2 − 2|Gj−(r + t, ω)|2
∣

∣ dω dr = 0. (5.12)
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Subcase 2a. We assume, in addition to (5.11),

lim
n→∞

(|xj,n| − tn − |tj,n|) > A, (5.13)

i.e. (5.2) holds with strict inequality. Fix a small ε > 0 and an R ≫ 1 such that

∫

|η|≥R

∫

SN−1
|Gj−(η, ω)|2 dω dη < ε. (5.14)

Using (5.12) and (5.14), we see that for large n,

∫

||xj,n−x|−|tj,n||≥Rλj,n
|∇t,xU jL,n(0, x)|2 dx < Cε. (5.15)

Hence for large n,

∫

∇t,xu(tn) · ∇t,xU jL,n(0, x) dx

≤
∫

||xj,n−x|−|tj,n||≤Rλj,n
∇t,xu(tn) · ∇t,xU jL,n(0, x) dx + C

√
ε (5.16)

(where the constant C > 0 might depend on U j and on supt≥0 ‖∇t,xu‖Ḣ 1×L2 but is of

course independent of n). By the triangle inequality, (5.3) and (5.13), there exists ε′ > 0

such that for large n,

|xj,n−x|−|tj,n| ≤ Rλj,n =⇒ |x| ≥ |xj,n|−|tj,n|−Rλj,n =⇒ |x| ≥ tn+A+ε′. (5.17)

Using (3.5) and (5.16), we find that for large n,

∫

∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx

≤
∫

||xj,n−x|−|tj,n||≤Rλj,n
∇t,xvL(tn, x) · ∇t,xU jL,n(0, x) dx + C

√
ε

≤
∫

∇t,xvL(tn, x) · ∇t,xU jL,n(0, x) dx + C
√
ε.

Since

lim
n→∞

∫

∇t,xvL(tn, x) · ∇t,xU jL,n(0, x) dx = 0,

we deduce (as ε > 0 is arbitrarily small)

lim sup
n→∞

∫

∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx ≤ 0, (5.18)

which contradicts (5.8).
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Subcase 2b. We assume, in addition to (5.11),

lim
n→∞

(|xj,n| − tn − |tj,n|) = A, (5.19)

i.e. (5.2) holds with equality. In view of (5.1), we must have

lim
n→∞

|tj,n| > 0. (5.20)

Extracting subsequences, we can assume

lim
n→∞

xj,n

|xj,n|
= ω0 ∈ SN−1. (5.21)

Let ε > 0. Choose R ≫ 1 such that (5.14) holds, and α > 0 such that

∫

R

∫

ω∈SN−1

|ω+ω0|≤α
|Gj−(η, ω)|2 dω dη < ε. (5.22)

In view of (5.14) and (5.22) we have, for large n,

∫

||x−xj,n|−|tj,n||≥Rλj,n
|∇t,xU jL,n(0, x)|2 dx +

∫

| x−xj,n|x−xj,n| +ω0|≤α
|∇t,xU jL,n(0, x)|2 dx ≤ Cε,

(5.23)

and thus, for large n again,

∫

∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx ≤
∫

Zn

∇t,xu(tn, x) · ∇t,xU jL,n(0, x) dx + C
√
ε,

where

Zn :=
{

x ∈ R
N :

∣

∣|x − xj,n| − |tj,n|
∣

∣ ≤ Rλj,n and

∣

∣

∣

∣

x − xj,n

|x − xj,n|
+ ω0

∣

∣

∣

∣

≥ α

}

.

We next prove that there exists ε′ > 0 such that for large n,

x ∈ Zn =⇒ |x| ≥ A+ ε + tn. (5.24)

Assuming (5.24), we can prove (5.18) exactly as in Subcase 2a, obtaining again a contra-

diction.

We have x = xj,n + x − xj,n and

x · xj,n|xj,n|
= |xj,n| + (x − xj,n) · xj,n|xj,n|

= |xj,n| + |x − xj,n|
(x − xj,n) · xj,n
|x − xj,n||xj,n|

= |xj,n| + |x − xj,n|
(

x − xj,n

|x − xj,n|
ω0 + on(1)

)

.
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Taking the square of the inequality
∣

∣

x−xj,n
|x−xj,n| + ω0

∣

∣ ≥ α and expanding, we deduce that

ω0 · x−xj,n
|x−xj,n| ≥ α2

2
− 1 for x ∈ Zn. Hence for large n, if x ∈ Zn,

|x| ≥ x · xj,n|xj,n|
≥ |xj,n| +

(

α2

4
− 1

)

|x − xj,n|

≥ A+ tn + |tj,n| +
(

α2

4
− 1

)

(|tj,n| + Rλj,n + on(1)) ≥ tn + A+ α2

8
|tj,n|,

by (5.3) and (5.20). In view of (5.20), the desired conclusion (5.24) follows. This con-

cludes the proof of Lemma 5.1. ⊓⊔
Proof of Lemma 5.2. Assume without loss of generality that ω = e1.

Let (after extraction) (U
j
L , {tj,n, xj,n, λj,n}n)j≥1 be a profile decomposition of

{Eu(tn)}n. Let δ3 > 0, to be specified later, and let J1 be such that ‖U jL ‖S(R) ≥ δ3 for

1 ≤ j ≤ J1, and ‖U jL ‖S(R) < δ3 for j > J1. Since

∑

j≥1

‖ EU jL (0)‖2
Ḣ 1×L2 < ∞,

it is easy to see, using Strichartz estimates, that such a (finite) J1 exists. Note that if

δ3 is small enough, then J1 ≥ 1, because otherwise u scatters, which contradicts our

assumption that A is finite.

Note that (U
j
L , {tj,n, xj,n, λj,n}n)j≥1+J1

is a profile decomposition for the sequence of

remainders {wJ1
n }n. By Claim C.1 in Appendix C, there exists θ > 0 such that

lim sup
n→∞

‖wJ1
n ‖S(R) ≤ Cδθ3 , (5.25)

where C depends only on the bound

M := lim sup
t→+∞

‖Eu(t)‖Ḣ 1×L2 .

We choose δ3 such that Cδθ3 < δ2/2, where δ2 is given by Proposition 4.3. Extracting

subsequences, we can assume that the following limits exist for all j ∈ {1, . . . , J1}:
lim
n→∞

λj,n ∈ [0,+∞], (5.26)

lim
n→∞

tj,n ∈ R ∪ {±∞}, (5.27)

lim
n→∞

|xj,n − (A+ tn)e1| ∈ [0,+∞]. (5.28)

We argue by contradiction, assuming that for all j ∈ {1, . . . , J1}, one of the above limits

is not 0.

By Proposition 4.3 and Claim C.1, it is sufficient to prove that for all j ∈ {1, . . . , J1}
there exists ε > 0 such that

lim sup
n→∞

|I jn,ε| <
δ2

4
J1, (5.29)
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where

I
j
n,ε :=

(∫ +∞

tn

(∫

A−ε+|t |≤|x|≤A+ε+|t |
|(̂e1,x)|≤4/

√
tn

|U jL,n(t − tn, x)|
2(N+2)
N−2 dx

)1/2

dt

)
N−2
N+2

.

This would imply, by the triangle inequality, (5.25) and the bound Cδθ3 < δ2/2,

lim sup
n→∞

‖SL(· − tn)Eu(tn)‖S({A−ε+|t |≤|x|≤A+ε+|t |, |(̂e1,x)|≤4/
√
tn}) < δ2,

and thus, by Proposition 4.3, that e1 is a regular point, a contradiction.

By the change of variables

s = t − tn − tj,n

λj,n
, y = x − xj,n

λj,n
,

we obtain

In,ε =
∫ +∞

−tj,n/λj,n

(∫

Qn,ε(s)

|U jL (s, y)|
2(N+2)
N−2 dy

)1/2

ds, (5.30)

where Qn,ε(s) is the set of y ∈ RN such that the absolute value of the angle between

λj,ny + xj,n and e1 is ≤ 4/
√
tn and

A− ε + |λj,ns + tn + tj,n| < |xj,n + λj,ny| < A+ ε + |λj,ns + tn + tj,n|.
If limn→∞ −tj,n/λj,n = +∞, then we see that limn→∞ In,ε = 0 and (5.29) follows.

We are thus reduced to the case

lim
n→∞

−tj,n
λj,n

= −∞ or ∀n, tj,n = 0. (5.31)

We note that if for almost every s ∈ R,

✶Qn,ε(s)(y) −−−→
n→∞

0 for a.a. y, (5.32)

then limn In,ε = 0 by dominated convergence and we are done.

Case 1. If limn→∞ λj,n = +∞, then Qn,ε(s) is for all s included in an annulus of width

≤ C/λj,n, which proves that (5.32) holds.

Case 2. If limn→∞ λj,n = 0, we distinguish three subcases according to the limit

ℓ = lim
n→∞

(|xj,n| − (A+ tn)). (5.33)

• If ℓ > 0, then by Lemma 5.1 we must have

lim
n→∞

(|xj,n| − tn − tj,n) < A (5.34)

and we see, fixing ε small enough, that for any s, Qn,ε(s) is empty for large n, yielding

(5.32).

• If ℓ < 0, then since tj,n ≥ 0 for large n, we again obtain (5.34) and thus (5.32).
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• In the case ℓ = 0 and limn |tj,n| > 0, we again obtain (5.34) and (5.32). Finally, we

assume ℓ = 0 and

lim
n→∞

|tj,n| = 0.

Letting, after extraction, ω∞ = limn xj,n/|xj,n|, we see, fixing y, and using the fact that

|xj,n| goes to infinity, that

lim
n→∞

| ̂(λj,ny + xj,n, e1)| = | ̂(ω∞, e1)|. (5.35)

Since limn tj,n = limn λj,n = 0, we must have

lim
n→∞

|xj,n − (A+ tn)e1| > 0

and thus (using ℓ = 0), ω∞ 6= e1. By (5.35), we see that (5.32) holds again.

Case 3. Suppose

lim
n→∞

λj,n = λ∞ ∈ (0,+∞). (5.36)

In this case we cannot prove (5.32) for a fixed ε. We prove (5.29) by contradiction, as-

suming that for all ε > 0,

lim sup
n→∞

|In,ε| ≥ δ2

4J1
. (5.37)

Then we can find a sequence {εk}k → 0 of positive numbers and a sequence {nk}k →
+∞ of integers such that

∀k, Ink,εk ≥ δ2

8J1
. (5.38)

As a consequence, we see that Qnk,εk (s) is included in an annulus of width . εk (using

(5.36)) and thus ✶Qnk,εk (s)(y) goes to 0 for almost every y, which contradicts (5.37) and

concludes the proof. ⊓⊔

6. Concentration in a direction and a virial-type identity

In this part we prove the following:

Proposition 6.1. Let u be as in Theorem 2, and assume that the conclusion of Theorem 2

does not hold. Let A be given by Proposition 3.1. Then for any ε > 0, there exists a

sequence {t ′n}n → +∞ such that, for some α > 0,

lim sup
n→∞

∫

|x−(t ′n+Ae1)|<α

(

|∂x1
u(t ′n)+ ∂tu(t

′
n)|2 +

N
∑

j=2

|∂xj u(t ′n)|2
)

dx < ε. (6.1)

Note that ∂x1
u − ∂tu = ∂x2

u = · · · = ∂xNu = 0 implies that u(t, x) is of the form

ϕ(t − x1), i.e. travels at speed 1 in the direction e1. Proposition 6.1 says heuristically that

for a sequence of times t ′n, there is no component of Eu(t ′n) that concentrates close to the

direction (t ′n, t
′
n + Ae1) and travels at speed 1 in the direction e1.
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Remark 6.2. We will use Proposition 6.1 to prove that e1 /∈ S . Of course one could write

an analogue of Proposition 6.1 adapted to another direction than e1. However, since we

will use the rotation invariance of equation (1.1) to reduce to the direction e1, Proposi-

tion 6.1 will be sufficient for our purpose.

We start with a few lemmas.

Lemma 6.3. Let u be as in Proposition 6.1. Let {τn}n → +∞ be any sequence. Denote

ρ(t, x) = |u(t, (t+A)e1+x)| 2N
N−2 +|∇t,xu(t, (t+A)e1+x)|2+ 1

|x|2 |u(t, (t+A)e1+x)|2.
(6.2)

Then, after extraction of a subsequence, there exists a nonnegative Radon measure µ̃

on RN such that

ρ(τn, ·) −−−⇀
n→∞

µ̃, (6.3)

supp µ̃ ⊂ {x1 ≤ 0}. (6.4)

Proof. Since the sequence {ρ(τn, ·)}n is bounded in L1(RN ), one can always extract a

subsequence such that (6.3) holds for some positive finite Radon measure µ̃ on RN . We

just need to prove (6.4). Let ε > 0. By Proposition 3.1,

lim
n→∞

∫

x1≥ε

∣

∣∇t,xu(tn, x + (tn + A)e1)− ∇t,xvL(tn, x + (tn + A)e1)
∣

∣

2
dx = 0, (6.5)

and

lim
n→∞

∫

x1≥ε

(

1

|x|2 |u(tn, x+ (tn+A)e1)|2 +|u(tn, x+ (tn+A)e1)|
2N
N−2

)

dx = 0. (6.6)

We are thus reduced to proving that for all ϕ ∈ C∞
0 (R

N ),

lim
n→∞

∫

|∇t,xvL(tn, x + (tn + A)e1)|2ϕ(x) dx = 0. (6.7)

Consider the outgoing radiation field G+ ∈ L2(R × SN−1) associated to vL (see Theo-

rem 2.1). We have

∫

|∇t,xvL(tn, x + (tn + A)e1)|2ϕ(x) dx

=
∫

|∇t,xvL(tn, x)|2ϕ(x − (tn + A)e1)| dx

= 2

∫ +∞

0

∫

SN−1
|G+(r − tn, ω)|2ϕ(rω − (tn + A)e1) dω dr + o(1)

= 2

∫ +∞

−tn

∫

SN−1
|G+(η, ω)|2ϕ

(

(tn + η)ω − (tn + A)e1

)

dω dη + o(1).
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Next, notice that ϕ((tn + η)ω− (tn +A)e1) goes to 0 for all (η, ω) ∈ R× (SN−1 \ {e1}).
This proves (6.7), and thus (6.4), in view of (6.5) and (6.6) and since ε can be taken

arbitrarily small. ⊓⊔
In the following, we will decompose µ̃ as

µ̃ = c0δ{x=0} + µ, (6.8)

where δ{x=0} is the Dirac measure at x = 0, c0 = µ̃({0}) ≥ 0, and µ is a nonnegative

Radon measure such that µ({0}) = 0. If e1 is a singular direction, we can prove, using

Lemma 5.2, that c0 > 0, but this will not be used.

Lemma 6.4. Let u be as in Proposition 6.1. Let {tn}n be a sequence of times going to +∞
as n → ∞, and ε > 0. Then (after extraction of a subsequence from {tn}n), there exists

α > 0 and nonnegative Radon measures µ0 and µ1 on RN and nonnegative real numbers

c0 and c1 such that

µ0({0}) = µ1({0}) = 0, (6.9)

ρ(tn, ·) −−−⇀
n→∞

µ0 + c0δ{x=0}, (6.10)

ρ(tn − α/10, ·) −−−⇀
n→∞

µ1 + c1δ{x=0}, (6.11)

suppµj ⊂ {x1 ≤ 0}, j = 0, 1, (6.12)

µ0({|x| ≤ α}) < ε, (6.13)

µ1({|x| ≤ 7α/10}) < ε. (6.14)

Proof. By Lemma 6.3, there exist a subsequence of {tn}n and a nonnegative measure µ0

that satisfies (6.9), (6.10) and (6.12). Since µ0 is outer regular, we have

0 = µ0({0}) = inf
R>0

µ0(B(0, R)),

and we can find α > 0 such that

µ0({|x| < α}) < ε/C0 (6.15)

for some large constantC0 > 0 to be specified. By Lemma 6.3 again, with τn = tn−α/10,

there exists (after extracting subsequences) a measure µ1 that satisfies (6.9), (6.11) and

(6.12). It remains to check that (6.14) holds.

Let δ > 0. Since µ0({|x| < α}) < ε/C0, we have

lim sup
n→∞

∫

δ≤|x|≤19α/20

ρ(tn, x) dx < ε/C0. (6.16)

As a consequence, if ϕ is a C∞ function equal to 1 for |x| ≥ 2 and to 0 for |x| ≤ 1, and

ψ is a C∞ function equal to 1 for |x| ≤ 9 and to 0 for |x| ≥ 9.5, we have

lim sup
n→∞

∫
∣

∣

∣

∣

∇t,x
(

ϕ

(

x

δ

)

ψ

(

x

α

)

u(tn, (A+ tn)e1 + x)

)∣

∣

∣

∣

2

dx < Cε/C0.
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Remark 6.5. Let

Rn(ε) := sup
tn−α/10≤t≤tn

∫

α/5≤|x|≤4α/5

ρ(t, tn, x) dx, (6.21)

where ρ(t, tn, x) is defined in (6.18). It follows from the proof of Lemma 6.4 that for

large n,

Rn(ε) < 2ε. (6.22)

(See inequality (6.17) with δ = α/30.)

Proof of Proposition 6.1. Let {tn}n → +∞. Let α, µ0, µ1 be given by Lemma 6.4,

corresponding to ε. Let ϕ ∈ C∞
0 (R

N ) be such that

ϕ(x) = 0 if |x| ≥ 1/2, ϕ(x) = 1 if |x| ≤ 1/4. (6.23)

Let

un(t, x) = u(t, x + (tn + A)e1), ϕα(x) = ϕ(x/α),

e(un)(t, x) = 1

2
|∇un|2 + 1

2
(∂tun)

2 − N − 2

2N
|un|

2N
N−2 ,

an(t) =
∫

(∂tun)
2ϕα, bn(t) =

∫

|∇un|2ϕα,

cn(t) =
∫

|un|
2N
N−2 ϕα, dn(t) =

∫

∂x1
un∂tunϕα.

Observe that

|∇t,xun(tn, x)|2 + 1

|x|2 |un(tn, x)|2 + |un(tn, x)|
2N
N−2 −−−⇀

n→∞
c0δ{x=0} + µ0, (6.24)

∣

∣

∣

∣

∇t,xun
(

tn − α

10
, x − α

10
e1

)∣

∣

∣

∣

2

+ 1

|x|2
∣

∣

∣

∣

un

(

tn − α

10
, x − α

10
e1

)∣

∣

∣

∣

2

+
∣

∣

∣

∣

un

(

tn − α

10
, x − α

10
e1

)∣

∣

∣

∣

2N
N−2

−−−⇀
n→∞

c1δ{x=0} + µ1. (6.25)

We denote the average values of an, bn, cn and dn between tn − α/10 and tn by an, bn, cn
and dn respectively:

an := 10

α

∫ tn

tn−α/10

an(t) dt,

and similarly for bn, cn and dn.

Step 1. By explicit computations using (6.21) we obtain, for t ∈ [tn − α/10, tn],
d

dt

∫

un∂tunϕα = an(t)− bn(t)+ cn(t)+ O(ε), (6.26)

d

dt

∫

x · ∇un∂tun = −N
2
an(t)+

(

N

2
− 1

)

bn(t)−
(

N

2
− 1

)

cn(t)+ O(ε), (6.27)

d

dt

∫

x1e(un)ϕα = −dn + O(ε), (6.28)
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d

dt

∫

∂x1
un∂tunϕα = d ′

n(t) = O(ε), (6.29)

d

dt

∫

e(un)ϕα = 1

2
a′
n(t)+ 1

2
b′
n(t)− N − 2

2N
c′n(t) = O(ε), (6.30)

where O(ε) is uniform with respect to t ∈ [tn − α/10, tn].
These computations are classical. The only thing to check is the bound on the remain-

der. For example, we have (using Einstein’s summation convention)

d

dt

∫

xk∂xkun∂tunϕα = −N
2
an +

(

N

2
− 1

)

bn −
(

N

2
− 1

)

cn

+ 1

2

∫

xk∂xkϕα(∂xj un)
2 − 1

2

∫

xk∂xkϕα(∂tun)
2

−
∫

∂xkϕαxj∂xj un∂xkun − N − 2

2N

∫

xj∂xjϕα|u|
2N
N−2 ,

and (6.27) follows from (6.22) and the bound
∣

∣xj∂xkϕα
∣

∣ =
∣

∣

xj
α
∂xkϕ

(

x
α

)
∣

∣ . 1.

Step 2. Approximate conservation laws. We prove that for large n,

sup
tn−α/10≤t≤tn

|dn(t)− dn| . εα, (6.31)

sup
tn−α/10≤t≤tn

∣

∣

∣

∣

1

2
an(t)+

1

2
bn(t)−

N−2

2N
cn(t)−

1

2
an− 1

2
bn+ N−2

2N
cn

∣

∣

∣

∣

. εα. (6.32)

Indeed, by (6.29), there exists a constant C > 0 such that for all τ1, τ2 with tn − α/10 ≤
τ1, τ2 ≤ tn,

|dn(τ1)− dn(τ2)| ≤ Cεα, (6.33)

and (6.31) follows. The proof of (6.32) is similar, using (6.30) instead of (6.29).

Step 3. We prove that for large n,

−dn = 1

2
an + 1

2
bn − N − 2

2N
cn + O(ε), (6.34)

an − bn + cn = O(ε), (6.35)

−N
2
an +

(

N

2
− 1

)

(bn − cn) = dn + O(ε). (6.36)

Proof of (6.34). Integrate (6.28) between tn − α/10 and tn to obtain

−dn = 10

α

∫

ϕα(x)x1e(un)(tn, x) dx − 10

α

∫

ϕα(x)x1e(un)

(

tn − α

10
, x

)

dx + O(ε).

(6.37)

We have, for large n,

∫

ϕ(x)x1e(un)(tn, x) dx = O(αε). (6.38)



28 Thomas Duyckaerts et al.

Indeed, by the definition of µ0 (see (6.24)),

lim
n→∞

∫

ϕα(x)|x1|
(

|∇t,xun|(tn, x)+ 1

|x|2 |u(tn, x)|2 + |u(tn, x)|
2N
N−2

)

dx

=
∫

|x1|ϕα(x) dµ0(x),

and |
∫

|x1|ϕα(x) dµ0(x)| . εα by Lemma 6.4 and the bound
∣

∣|x1|ϕα(x)
∣

∣ . α.

Furthermore, by the change of variable x = y − α
10
e1,

∫

ϕα(x)x1e(un)

(

tn − α

10
, x

)

dx

=
∫

ϕα

(

y − α

10
e1

)(

y1 − α

10

)

e(un)

(

tn − α

10
, y − α

10
e1

)

dy

=
∫

y1ϕα

(

y − α

10
e1

)

e(un)

(

tn − α

10
, y − α

10
e1

)

dy

− α

10

∫

ϕα

(

y − α

10
e1

)

e(un)

(

tn − α

10
, y − α

10
e1

)

dy.

By (6.25) and Lemma 6.4, the limit of the first term on the right-hand side is bounded (up

to a multiplicative constant) by
∣

∣

∣

∣

∫

|y1|ϕα(y − (α/10)e1) dµ1(y)

∣

∣

∣

∣

. εα.

The second term can be rewritten as

− α

10

∫

ϕα

(

y − α

10
e1

)

e(un)

(

tn − α

10
, y − α

10
e1

)

dy

= − α

10

∫

ϕα

(

x

)

e(un)

(

tn − α

10
, x

)

dx

= − α

10

(

1

2
an

(

tn − α

10

)

+ 1

2
bn

(

tn − α

10

)

− N − 2

2N
cn

(

tn − α

10

))

.

Going back to (6.37), we obtain

−dn = 1

2
an

(

tn − α

10

)

+ 1

2
bn

(

tn − α

10

)

− N − 2

2N
cn

(

tn − α

10

)

+ O(ε),

which yields (6.34) in view of the approximate conservation of energy (6.32) proved in

Step 2.

Proof of (6.35). Integrating (6.26) between tn − α/10 and tn, we are reduced to proving
∣

∣

∣

∣

∫

ϕα(x)un(tn, x)∂tun(tn, x) dx−
∫

ϕα(x)un

(

tn− α

10
, x

)

∂tun

(

tn− α

10
, x

)

dx

∣

∣

∣

∣

. εα

(6.39)
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for large n. This follows easily from Lemma 6.4. For example

∣

∣

∣

∣

∫

ϕα(x)un

(

tn − α

10
, x

)

∂tun

(

tn − α

10
, x

)

dx

∣

∣

∣

∣

≤
(∫

ϕα(x)
1

∣

∣x + α
10
e1

∣

∣

|un|2
(

tn − α

10
, x

)

dx

)1/2

×
(∫

ϕα(x)

∣

∣

∣

∣

x + α

10
e1

∣

∣

∣

∣

|∂tun|2
(

tn − α

10
, x

)

dx

)1/2

and

∫

ϕα(x)
1

∣

∣x + α
10
e1

∣

∣

|un|2
(

tn − α

10
, x

)

dx

=
∫

ϕα

(

y − α

10
e1

)

|y| 1

|y|2 |un|2
(

tn − α

10
, y − α

10
e1

)

dy

.

∣

∣

∣

∣

∫

|y|ϕα
(

y − α

10
e1

)

dµ1(y)

∣

∣

∣

∣

. αε

by (6.25) and Lemma 6.4. The estimates of the other terms are similar.

Proof of (6.36). We integrate (6.27) between tn − α/10 and tn, obtaining

− N

2
an +

(

N

2
− 1

)

(bn − cn)

= O(ε)+ 10

α

(

−
∫

ϕαx ·∇un
(

tn−
α

10

)

∂tun

(

tn−
α

10

)

+
∫

ϕαx ·∇un(tn)∂tun(tn)
)

.

(6.40)

By computations similar to the ones above, the right-hand side of (6.40) is given by

O(ε)+
∫

ϕα(x)∂x1
un

(

tn−
α

10
, x

)

∂tun

(

tn−
α

10
, x

)

= O(ε)+dn
(

tn−
α

10

)

= O(ε)+dn.

At the last line we have used Step 2 to replace dn(tn − α/10) by dn + O(ε).

Step 4. End of the proof. Subtracting (6.34) and (6.36), we obtain
(

N

2
− 1

2

)

(bn − an)−
(

N

2
− 1

2
− 1

N

)

cn = O(ε)

for large n. Adding (N/2 − 1/2)(6.35) we deduce

cn = O(ε). (6.41)

Combining this with (6.34), we obtain

1

2
an + 1

2
bn + dn = O(ε). (6.42)
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Hence, for large n,

1

α

∫ tn

tn−α/10

∫

((∂tun(t, x)+ ∂x1
un(t, x))

2 +|∇x′un(t, x)|2)ϕα(x) dx dt = O(ε), (6.43)

where ∇x′ = (∂x2
, . . . , ∂xN ).

As a consequence, we obtain a sequence {t ′n} → ∞ such that for all n, tn − α
10

≤
t ′n ≤ tn and

∫ (

(

(∂tu+ ∂x1
u)2(t ′n, x)+ |∇x′u|2(t ′n, x)

)

ϕ

(

x − (A+ tn)e1

α

))

dx ≤ Cε. (6.44)

Since

|x − (t ′n + A)e1| ≤ α

10
=⇒ |x − (A+ tn)e1| ≤ α

5
=⇒ ϕ

(

x − (A+ tn)e1

α

)

= 1,

we obtain (6.1) (renormalizing α and ε). The proof of Proposition 6.1 is complete. ⊓⊔

7. Elimination of singular points and end of the proof

We are now ready to conclude the proof of Theorem 2. We will prove that S is empty,

contradicting Proposition 4.2.

We argue by contradiction assuming (after a rotation in the space variable) e1 ∈ S .

We let, for (f, g) ∈ (Ḣ 1 × L2)(RN ),

‖(f, g)‖2
e1

= ‖g + ∂x1
f ‖2

L2 +
N

∑

j=2

‖∂xj f ‖2
L2 . (7.1)

Remark 7.1. If uL is a solution to the linear wave equation with initial data in Ḣ 1 × L2,

then ‖(uL(t), ∂tuL(t)‖e1
is independent of t . Indeed,

‖(uL(t), ∂tuL(t))‖2
e1

= ‖∂x1
uL(t)‖2

L2 + ‖∂tuL(t)‖2
L2

+ 2

∫

RN
∂x1
uL(t)∂tuL(t)+

N
∑

k=2

‖∂xkuL(t)‖2
L2 , (7.2)

and the conservation of ‖(uL(t), ∂tuL(t)‖e1
follows from energy and momentum conser-

vation.

Remark 7.2. Denote by (·, ·)e1
the scalar product associated to the norm ‖ · ‖e1

.

Let {(vn0 , vn1 )}n be a sequence bounded in Ḣ 1 × L2 that has a profile decomposition

(U
j
L , {tj,n, xj,n, λj,n}n)j≥1. Then

j 6= k =⇒ lim
n→∞

( EU kL,n(0), EU jL,n(0)
)

e1
= 0,

1 ≤ j ≤ J =⇒ lim
n→∞

( EU jL,n(0), EwJn (0)
)

e1
= 0,
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where wJn is the remainder of the profile decomposition (see (2.9)). This follows from

Remark 7.1 and the same argument as the one used to prove the orthogonality of the

energy of the profiles (see [7, Lemma 2.3] for a proof).

As a consequence, the following Pythagorean expansion holds: for all J ≥ 1,

‖(vn0 , vn1 )‖2
e1

=
J

∑

j=1

‖U jL (0)‖2
e1

+ ‖wJn (0)‖2
e1

+ o(1) as n → ∞. (7.3)

We will use the following claim, proved in Appendix D:

Claim 7.3. Let β,M > 0. Then there exists ε = ε(M, β) > 0 such that if (v0, v1) ∈
Ḣ 1 × L2 satisfies

‖(v0, v1)‖e1
≤ ε and ‖(v0, v1)‖Ḣ 1×L2 ≤ M, (7.4)

then

‖SL(t)(v0, v1)‖S(R) ≤ β. (7.5)

Let ε > 0 be given by Claim 7.3 with β = δ3/2, δ3 be given by Lemma 5.2 and

M = sup
t≥0

‖Eu(t)‖Ḣ 1×L2 .

By Proposition 6.1, there exists a sequence {t ′n}n → +∞ and α > 0 such that

lim sup
n→∞

∫

|x−(t ′n+A)e1|<α

(

(

∂x1
u(t ′n)+ ∂tu(t

′
n)

)2 +
N

∑

j=2

|∂xj u(t ′n)|2
)

dx ≤ ε. (7.6)

By Lemma 5.2, there exists a subsequence of {t ′n}n, still denoted by {t ′n}n, such that

{u(t ′n)}n has a profile decomposition (U
j
L , {tj,n, xj,n, λj,n}n)j≥1with the following proper-

ties:

lim
n→∞

(x1,n − (A+ t ′n)e1) = 0, (7.7)

lim
n→∞

λ1,n = lim
n→∞

t1,n = 0, (7.8)

‖U1
L ‖S(R) ≥ δ3. (7.9)

By Remark 7.2,

lim
n→∞

(

Eu(t ′n), EU1
L,n(0)

)

e1
= ‖ EU1

L (0)‖2
e1
. (7.10)

Next, notice that it follows from (7.7) and (7.8) that

lim
n→∞

∫

|x−(t ′n+A)e1|≥α
|∇t,xU1

L,n(0)|2 dx = 0. (7.11)

Indeed, this integral can be rewritten as

∫

|λ1,ny+o(1)|≥α

∣

∣

∣

∣

∇t,xU1
L,n

(−t1,n
λ1,n

, y

)∣

∣

∣

∣

2

dy, (7.12)
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where o(1) = x1,n − (A + t ′n)e1 goes to 0 as n → ∞ by (7.7). The desired limit (7.11)

follows immediately if −t1,n/λ1,n is bounded. If not, say if limn→∞ −t1,n/λ1,n = −∞
after extraction of a subsequence, we can rewrite (7.12) as

2

∫

|λ1,nr+o(1)|≥α

∫

SN−1

∣

∣

∣

∣

G−

(

r + t1,n

λ1,n
, ω

)∣

∣

∣

∣

2

dω dr

whereG− ∈ L2(R×SN−1) is the incoming radiation field associated toU1
L (see Theorem

2.1 and Remark 2.2). This integral goes to 0 as n → ∞ since

∣

∣

∣

∣

r + t1,n

λ1,n

∣

∣

∣

∣

≥ α + o(1)

λ1,n
−−−→
n→∞

+∞

on the domain of integration (using limn t1,n = 0). This proves (7.11).

By (7.11), as n → ∞,

(

Eu(t ′n), EU1
L (0)

)

e1

≤ ‖ EU1
L (0)‖e1

√

√

√

√

∫

|x−(t ′n+A)e1|≤α

(

|∂x1
u(t ′n)+ ∂tu(t ′n)|2 +

N
∑

k=2

|∂xku(t ′n)|2
)

+ o(1).

Combining with (7.6), we obtain

(Eu(t ′n), EU1
L,n(0))e1

≤ ε‖U1
L (0)‖e1

+ o(1) as n → ∞.

Hence by (7.10),

‖ EU1
L (0)‖e1

≤ ε. (7.13)

But then by the definition of ε (from Claim 7.3 with β = δ3/2 and M =
supt≥0 ‖Eu(t)‖Ḣ 1×L2 ),

‖U1
L ‖S(R) ≤ δ3/2,

contradicting (7.9). The proof is complete. ⊓⊔

Appendix A. Radiation field for linear wave equations

In this appendix we prove Theorem 2.1.

A.1. Introduction of a function space

We start by reformulating this theorem in terms of a space of functions on R× SN−1 that

we will define now. Let

Ḣ 1
η (R × SN−1) =

{

g ∈ C0(R, L2(SN−1)) :
∫

R×SN−1
|∂ηg(η, ω)|2 dη dω < ∞

}

.
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Let g ∈ Ḣ 1
η . We note that ‖∂ηg‖L2(R×SN−1) = 0 if and only if there exists a ∈ L2(SN−1)

such that g(η, ω) = a(ω) for all η ∈ R and almost all ω ∈ SN−1. We define Ḣ1
η as the

quotient space of Ḣ 1
η by the equivalence relation

g ∼ g̃ ⇐⇒ ∃a ∈ L2(SN−1), ∀η ∈ R, g(η, ω)− g̃(η, ω) = a(ω) for a.a. ω ∈ SN−1.

We denote by g ∈ Ḣ1
η the equivalence class of g ∈ Ḣ 1

η , and we define the following norm

on Ḣ1
η:

‖g‖
Ḣ1
η

= ‖∂ηg‖L2(R×SN−1).

Then:

Proposition A.1. The normed space Ḣ1
η is a Hilbert space, and C∞

0 (R×SN−1) is dense

in Ḣ1
η. The map g 7→ ∂ηg is a bijective isometry from H1

η to L2(R × SN−1).

We note that the proposition implies that Ḣ1
η is the closure of C∞

0 (R×SN−1) for the norm

‖∂η · ‖L2(R×SN−1). In view of Proposition A.1, the following is equivalent to Theorem 2.1:

Theorem A.2. Assume N ≥ 3 and let v be a solution of the linear wave equation (1.6)

with initial data (v0, v1) ∈ Ḣ 1 × L2. Then

lim
t→+∞

(∥

∥

∥

∥

1

r
∇ωv(t)

∥

∥

∥

∥

L2

+
∥

∥

∥

∥

1

r
v(t)

∥

∥

∥

∥

L2

)

= 0 (A.1)

and there exists a unique g ∈ Ḣ1
η such that

lim
t→+∞

∫ +∞

0

∫

SN−1

∣

∣∂r,t
(

r
N−1

2 v(t, rω)− g(r − t, ω)
)∣

∣

2
dω dr = 0. (A.2)

Furthermore,

EL(v0, v1) =
∫

R×SN−1
|∂ηg(η, ω)|2 dη dω = ‖g‖2

Ḣ1
η

(A.3)

and the map

Ḣ 1 × L2 → Ḣ
1
η, (v0, v1) 7→

√
2 g,

is a bijective isometry.

In this Appendix A we prove Theorem A.2 assuming Proposition A.1. We postpone the

proof of Proposition A.1 to Appendix B.

A.2. The case of smooth, compactly supported functions

Lemma A.3. Assume (v0, v1) ∈ (C∞
0 (R

N ))2 and let v be the corresponding solution of

(1.6). Then there exists F ∈ C∞(R × SN−1 × [0,+∞)) such that

∀r > 0, ∀ω ∈ SN−1, v(t, rω) = 1

r(N−1)/2
F

(

r − t, ω,
1

r

)

.
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Proof. This is classical (see [12], [21], and also [1] for this exact statement), and can

be proved using the explicit form of the solution of (1.6), distinguishing between even

and odd dimensions. We give a proof relying on the conformal transformation which is

independent of the dimension.

For ρ ∈ R, ω ∈ SN−1, σ ∈ (0,+∞) we let

F(ρ, ω, σ ) = 1

σ (N−1)/2
v

(

1

σ
− ρ,

ω

σ

)

.

Since v is smooth, F is smooth on R × SN−1 × (0,+∞). We must prove that F can be

extended to a smooth function on R × SN−1 × [0,+∞).

Let t0 > 0. We claim that there exists a C∞ solution w of the linear wave equation

(1.6), depending on t0, such that, for all x, t with |x| > t − t0 and t > t0,

v(t, x) = 1

(|x|2 − (t − t0)2)(N−1)/2
w

(

t − t0

|x|2 − (t − t0)2
,

x

|x|2 − (t − t0)2

)

. (A.4)

Indeed, let w be the solution of (1.6) with C∞ initial data (w0, w1) at t = 0 given by

w0(y) = 1

|y|N−1
v

(

t0,
y

|y|2
)

w1(y) = 1

|y|N+1
∂tv

(

t0,
y

|y|2
)















if y 6= 0

andw0(0) = w1(0) = 0. Notice that since, by finite speed of propagation, (v(t0), ∂tv(t0))

is compactly supported, the above definition yields C∞ functions on RN which are con-

stant, equal to 0, in a neighbourhood of the origin.

We note that

w̃(τ, y) = 1

(|y|2 − τ 2)(N−1)/2
v

(

t0 + τ

|y|2 − τ 2
,

y

|y|2 − τ 2

)

defines, for |y| > τ , a C∞ solution of the linear wave equation whose initial data at τ = 0

equals (w0, w1) (at least for |y| 6= 0). Hence, by finite speed of propagation,

|y| > τ =⇒ w(τ, y) = w̃(τ, y).

It remains to check that for |x| > t − t0, t > t0,

v(t, x) = 1

(|x|2 − |t − t0|2)(N−1)/2
w̃

(

t − t0

|x|2 − (t − t0)2
,

x

|x|2 − (t − t0)2

)

.

This follows easily from the definition of w̃ and the change of variables

t = t0 + τ

|y|2 − τ 2
, x = y

|y|2 − τ 2
.
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As a consequence of (A.4), going back to the definition of F , we obtain

(

σ > 0, 0 < 1 − σ(ρ + t0) and ρ > −t0
)

=⇒

F(ρ, ω, σ ) = 1

(2(ρ + t0)− (ρ + t0)2σ)(N−1)/2
w

×
(

1 − σ(ρ + t0)

2(ρ + t0)− (ρ + t0)2σ
,

ω

2(ρ + t0)− (ρ + t0)2σ

)

(A.5)

However, the right-hand side of the above formula for F can be extended to aC∞ function

in the open set

{(ρ, ω, σ ) ∈ R × SN−1 × R : σ(ρ + t0) < 2 and ρ > −t0}

which includes the set (−t0,+∞) × SN−1 × {0}. As a consequence, F can be extended

to a C∞ function in a neighbourhood of the set (1 − t0,+∞) × SN−1 × [0,+∞) and,

since t0 is arbitrarily large, to a neighbourhood of R × SN−1 × [0,+∞). ⊓⊔

Lemma A.4. Let N ≥ 3. Let (v0, v1) ∈ (C∞
0 (R

N ))2. Then

lim
t→+∞

(∥

∥

∥

∥

1

r
∇ωv(t)

∥

∥

∥

∥

L2

+
∥

∥

∥

∥

1

r
v(t)

∥

∥

∥

∥

L2

)

= 0 (A.6)

and there exists g ∈ Ḣ 1
η such that

lim
t→+∞

∥

∥∂r,t
(

r
N−1

2 v(t, rω)− g(r − t, ω)
)∥

∥

L2((0,+∞)×SN−1)
= 0. (A.7)

Let us mention that Lemma A.4 follows quite easily from Lemma A.3 if N ≥ 3 is odd (in

this case, g ∈ C∞
0 (R × SN−1)). In the general case, we will need the following claim:

Claim A.5. Let (v0, v1) ∈ (C∞
0 (R

N ))2, N ≥ 3, and v the solution to the wave equation

(1.6). Then ‖v(t)‖L2 is bounded,

lim
t→+∞

∫

1

|x|2 |v(t, x)|2 dx = 0 (A.8)

and

lim
R→∞

lim sup
t→+∞

∫

|x|≤t−R

[

|∇v(t, x)|2 + (∂tv(t, x))
2
]

dx = 0. (A.9)

This is classical. We postpone the proof after the proof of Lemma A.4 (see also [7,

Lemma 2.1]).

Proof of Lemma A.4. We let F be as in Lemma A.3 and g(η, ω) = F(η, ω, 0). Note that

g ∈ C∞(R × SN−1).

Step 1. We prove that g ∈ Ḣ 1
η , i.e.

∫

R×SN−1
|∂ηg|2 < ∞. (A.10)
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We have F(r − t, ω, 1/r) = r
N−1

2 v(t, rω). As a consequence, F(η, ω, σ ) = 0 if η ≥ M

by finite speed of propagation, where M > 0 is such that

supp(v0, v1) ⊂ {x ∈ R
N : |x| ≤ M}. (A.11)

Let A > 0. We have

∫

SN−1

∫ t+M

t−A

∣

∣

∣

∣

∂ηF

(

r − t, ω,
1

r

)
∣

∣

∣

∣

2

dr dω =
∫

SN−1

∫ t+M

t−A
rN−1(∂tv(t, rω))

2 dr dω

≤ 2EL(v0, v1).

Hence
∫

SN−1

∫ M

−A

∣

∣

∣

∣

∂ηF

(

η, ω,
1

η + t

)
∣

∣

∣

∣

2

dη dω ≤ 2EL(v0, v1).

Letting t → +∞, we obtain

∫

SN−1

∫ +∞

−A
|∂ηg(η, ω)|2 dη dω =

∫

SN−1

∫ M

−A
|∂ηF(η, ω, 0)|2 dη dω ≤ 2EL(v0, v1).

Since A can be taken arbitrarily large, we obtain (A.10).

Step 2. Proof of (A.6). By Claim A.5 and Step 1, it is sufficient to prove

∀R > 0, lim
t→+∞

∫

|x|≥t−R

1

|x|2 |∇ωv|2 dx = 0, (A.12)

i.e.

∀R > 0, lim
t→+∞

∫

SN−1

∫ t+M

t−R

1

r2

∣

∣

∣

∣

∇ωF
(

r − t, ω,
1

r

)∣

∣

∣

∣

2

dr dω = 0,

which follows easily from the fact that F ∈ C∞(R × SN−1 × [0,+∞)) and the change

of variable η = r − t .

Step 3. Proof of (A.7). By Claim A.5 and Step 1, it is sufficient to prove

∀R > 0, lim
t→+∞

∫

SN−1

∫ t+M

t−R

∣

∣

∣

∣

∂

∂r

(

F

(

r − t, ω,
1

r

)

− F(r − t, ω, 0)

)∣

∣

∣

∣

2

dr dω

+
∫

SN−1

∫ t+M

t−R

∣

∣

∣

∣

∂

∂t

(

F

(

r − t, ω,
1

r

)

− F(r − t, ω, 0)

)∣

∣

∣

∣

2

dr dω = 0. (A.13)

As in Step 2, this follows from the change of variable η = r − t . ⊓⊔

Lemma A.6. Let (v0, v1) and g be as in Lemma A.4. Then

EL(v0, v1) = ‖g‖2
Ḣ 1
η
.
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Proof. We have

EL(v, ∂tv) = 1

2

∫ ∞

0

∫

SN−1
(∂rv)

2 rN−1 dω dr

+ 1

2

∫ ∞

0

∫

SN−1

1

r2
|∇ωv|2rN−1 dω dr + 1

2

∫ ∞

0

∫

SN−1
(∂tv)

2 rN−1 dω dr.

Notice that
∫ ∞

0

∫

SN−1
(∂rv)

2rN−1 dω dr =
∫ +∞

0

∫

SN−1

(

∂r
(

r
N−1

2 v
))2
dr + o(1) as t → +∞.

(A.14)

Indeed, ∂r
(

r
N−1

2 v
)

= r
N−1

2 ∂rv + N−1
2
r
N−3

2 v, and (A.14) follows in view of (A.6). Using

(A.6) again, we see that

EL(v, ∂tv) = 1

2

∫ ∞

0

∫

SN−1

(

∂r
(

r
N−1

2 v
))2

dω dr

+ 1

2

∫ ∞

0

∫

SN−1
(∂tv)

2 rN−1 dω dr + o(1) as t → +∞.

By (A.7),

EL(v, ∂tv) =
∫ ∞

0

∫

SN−1
|∂ηg(r − t, ω)|2 dr dω + o(1)

=
∫ ∞

−t

∫

SN−1
|∂ηg(η, ω)|2 dη dω + o(1)

−→
t→+∞

∫ ∞

−∞

∫

SN−1
|∂ηg(η, ω)|2 dη dω,

and we conclude using conservation of energy. ⊓⊔
It remains to prove Claim A.5. We use the identity

d

dt

(∫

x · ∇v∂tv + N − 1

2

∫

v∂tv

)

= −EL(v0, v1).

(In all the proof of the claim,
∫

denotes the integral on RN ). Integrating between 0 and

t > 0, we obtain
∫

x ·∇v∂tv+
N − 1

2

∫

v∂tv = −tEL(v0, v1)+
∫

x ·∇v0v1+N − 1

2

∫

v0v1. (A.15)

Since N ≥ 3, Ḣ−1(RN ) is a Hilbert space, included in the space of tempered distri-

butions, and C∞
0 (R

N ) ⊂ Ḣ−1(RN ). By conservation of the L2 × Ḣ−1 norm of (v, ∂tv),

we deduce that the L2 norm of v remains bounded. Using (A.15), we deduce
∣

∣

∣

∣

∫

x · ∇v∂tv
∣

∣

∣

∣

≥ tEL(v0, v1)− C (A.16)

for some constant C > 0 depending on (v0, v1).
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Let M > 0 be such that |x| ≤ M on the support of (v0, v1). By finite speed of

propagation, |x| ≤ M + |t | on the support of (v(t), ∂tv(t)). Let R > 0. By the Cauchy–

Schwarz inequality,

∣

∣

∣

∣

∫

x · ∇v∂tv
∣

∣

∣

∣

≤ (t +M)

∫

|x|≥t−R
|∇v∂tv| + (t − R)

∫

|x|≤t−R
|∇v∂tv|

≤ tEL(v0, v1)+MEL(v0, v1)− R

2

∫

|x|≤t−R
|∇t,xv|2.

Combining this with (A.16), we obtain

C +MEL(v0, v1) ≥ R

2

∫

|x|≤t−R
|∇t,xv|2, (A.17)

which yields as announced

lim
R→∞

lim sup
t→+∞

∫

|x|≤t−R
|∇t,xv|2 = 0. (A.18)

It remains to prove

lim
t→+∞

∫

1

|x|2 |v|2 = 0. (A.19)

Since

sup
t≥0

∫

|v(t)|2 < ∞,

it is sufficient to prove

∀A > 0, lim
t→+∞

∫

|x|≤A

1

|x|2 |v|2 = 0.

Let ϕ ∈ C∞
0 (R

N ) be such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2. Then

∫

1

|x|2 ϕ
(

x√
t

)

|v|2 ≤
∫

∣

∣

∣

∣

∇
(

ϕ

(

x√
t

)

u

)
∣

∣

∣

∣

2

≤ C

t

∫

|v|2 + 2

∫
∣

∣

∣

∣

ϕ

(

x√
t

)

∇v
∣

∣

∣

∣

2

.

The first term on the right-hand side goes to 0 as t → ∞ since the L2 norm of v is

bounded. The second one goes to 0 by (A.18). The proof is complete. ⊓⊔

A.3. General case

Here we prove Theorem A.2.

A.3.1. Existence and uniqueness. Let (v0, v1) ∈ Ḣ 1 × L2. We argue by density, consid-

ering a sequence {(v0,n, v1,n)}n in (C∞
0 (R

N ))2 such that

lim
n→∞

‖(v0,n − v0, v1,n − v1)‖Ḣ 1×L2 = 0. (A.20)
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Let gn ∈ Ḣ1
η be given by Lemma A.4, corresponding to (v0,n, v1,n). By the energy iden-

tity in Lemma A.6, the sequence {gn}n is a Cauchy sequence in Ḣ1
η. Since, by Proposi-

tion A.1, Ḣ1
η is complete, the sequence has a limit g in Ḣ1

η.

Let ε > 0. Choose n such that

‖v0,n − v0‖2
Ḣ 1 + ‖v1,n − v1‖2

L2 < ε. (A.21)

By conservation of energy and (A.6) in Lemma A.4, we deduce

lim
t→+∞

(∥

∥

∥

∥

1

r
v(t)

∥

∥

∥

∥

2

L2

+
∥

∥

∥

∥

1

r
∇ωv(t)

∥

∥

∥

∥

2

L2

)

< Cε, (A.22)

which yields (A.1) by letting ε → 0.

Fixing again ε and n such that (A.21) holds and

‖gn − g‖2

Ḣ1
η

< ε, (A.23)

we obtain, by (A.21), conservation of energy and (A.1),

lim sup
t→+∞

∫

[0,+∞)×SN−1

(∣

∣

∣

∣

∂

∂r

(

r
N−1

2 vn − r
N−1

2 v
)

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∂

∂t

(

r
N−1

2 vn − r
N−1

2 v
)

∣

∣

∣

∣

2)

dr dω < ε.

(A.24)

Hence, by the definition of gn,

lim sup
t→+∞

∫

[0,+∞)×SN−1

∣

∣∂r,t
(

gn(r − t, ω)− r
N−1

2 v(t, rω)
)
∣

∣

2
dr dω < ε. (A.25)

By (A.23) we can replace gn by g in (A.25) (changing ε to 4ε on the right-hand side).

Letting ε → 0, we obtain (A.2).

Using

lim
n→∞

EL(v0,n, v1,n) = EL(v0, v1) and lim
n→∞

‖gn‖Ḣ1
η

= ‖g‖
Ḣ1
η

we see that Lemma A.6 implies the energy identity (A.3). Of course (A.3) implies the

uniqueness of g and that the map (v0, v1) 7→
√

2 g is an isometry from Ḣ 1 × L2 to H1
η.

A.3.2. Proof of surjectivity. We next let g ∈ Ḣ1
η and construct v satisfying (1.6) and such

that (A.2) holds. Since EL(v0, v1) = ‖g‖2

Ḣ1
η

, the image of the map (v0, v1) 7→ g is closed

in Ḣ1
η. Using the density of C∞

0 (R× SN−1) in Ḣ1
η, we see that it is sufficient to prove the

existence of v for g ∈ C∞
0 (R × SN−1).

We look for v of the form

v(t, x) = 1

r(N−1)/2
g(t − r, ω)+ ǫ(t, x) (A.26)
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for large t , with ω = x/|x|, and

lim
t→+∞

|(ǫ, ∂tǫ)(t)‖Ḣ 1×L2 = 0. (A.27)

Since

(∂2
t −1)

(

1

r(N−1)/2
g(t − r, ω)

)

= N2 − 4N + 3

4r(N+3)/2
g(t − r, ω)− 1

r(N+3)/2
1ωg(t − r, ω)

=: H(t, x),

equation (1.6) is equivalent to

(∂2
t −1)ǫ = −H.

LetL ≫ 1 be such that supp g ⊂ [−L,L]×SN−1. ThenH ∈ L1([L+1,+∞), L2(RN )).

Indeed, if t ≥ L+ 1, then

∥

∥

∥

∥

1

r(N+3)/2
g(t − r, ω)

∥

∥

∥

∥

2

L2(RN )

+
∥

∥

∥

∥

1

r(N+3)/2
1ωg(t − r, ω)

∥

∥

∥

∥

2

L2(RN )

.

∫ t+L

t−L

1

rN+3
rN−1 dr .

1

(t − L)3
− 1

(t + L)3
≈ 1

t4
as t → +∞.

Letting

ǫ(t, x) =
∫ +∞

t

sin((t − s)
√

−1)√
−1

H(s, x) ds,

we obtain ǫ satisfying (A.27) and such that v defined by (A.26) is a solution of (1.6).

By (A.26) and (A.27),

∥

∥∂r,t
(

r
N−1

2 v − g(t − r, ω)
)
∥

∥

L2 =
∥

∥∂t,r
(

r
N−1

2 ε
)
∥

∥

L2 −−−−→
t→+∞

0,

which concludes the proof. We have used the fact that

∫ +∞

0

(

∂r
(

r
N−1

2 ǫ
))2
dr =

∫ +∞

0

(∂rǫ)
2rN−1 dr

if ǫ ∈ Ḣ 1(RN ).

A.4. Radiation fields and channels of energy

We conclude this appendix with a remark on the relation between exterior energy es-

timates (see [9, Proposition 2.8]) and radiation fields. Assume that N is odd. It follows

from the explicit formula for the solution of the wave equation in terms of spherical means

that the outgoing radiation fieldG+ of a solution v of the linear wave equation with initial

data (v0, v1) ∈ Ḣ 1 × L2 has the following symmetry properties:

• if v1 = 0 then G+(η, ω) = (−1)(N+1)/2G+(−η,−ω),
• if v0 = 0 then G+(η, ω) = (−1)(N−1)/2G+(−η,−ω)
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(see for example the asymptotic formulas in [9, proof of Lemma 2.9]). In both cases, we

obtain

lim
t→+∞

∫

|x|≥|t |
|∇t,xv(t, x)|2 dx =

∫

R

∫

SN−1
|G+(η, ω)|2 dω dη

= 1

2

∫

[

|∇v0(x)|2 + |v1(x)|2
]

dx,

which yields the exterior energy estimate for the linear wave equation in odd space di-

mension (see [9, Proposition 2.8]).

Appendix B. Study of a function space

Here we prove Proposition A.1.

B.1. Completeness

Let {gn}n be a Cauchy sequence in Ḣ1
η. Replacing gn(η, ω) by gn(η, ω) − gn(0, ω) we

can always assume

∀ω ∈ SN−1, gn(0, ω) = 0.

As a consequence, if η ∈ R and n, p ∈ N, then

∫

SN−1
|gn(η, ω)− gp(η, ω)|2 dω =

∫

SN−1

∣

∣

∣

∣

∫ η

0

(

∂ηgn(η
′, ω)− ∂ηgp(η

′, ω)
)

dη′
∣

∣

∣

∣

2

dω

≤ |η|
∫

SN−1

∫ η

0

(

∂ηgn(η
′, ω)− ∂ηgp(η

′, ω)
)2
dη′ dω.

Thus, for all M > 0, {gn}n is a Cauchy sequence in C0([−M,M], L2(SN−1)). As a

consequence, there exists g ∈ C0(R, L2(SN−1)) such that {gn}n converges to g locally in

L∞(R, L2(SN−1)).

Since {∂ηgn}n is a Cauchy sequence in L2(R × SN−1), it converges to some h ∈
L2(R × SN−1) in this space. Letting n → ∞ in the equality

gn(η, ω) =
∫ η

0

∂ηgn(η
′, ω) dη′ for a.a. ω ∈ SN−1

at fixed η, and taking the limit in L2(SN−1), we see that

g(η, ω) =
∫ η

0

h(η′, ω) dη′ for a.a. ω ∈ SN−1.

Thus ∂ηg = h ∈ L2(R × SN−1) and, by the definition of h,

lim
n→∞

‖∂ηg − ∂ηgn‖L2(R×SN−1) = 0.
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B.2. Density of compactly supported, smooth functions

Step 1. We let ϕ ∈ C∞
0 (R) be such that ϕ(η) = 1 if |η| ≤ 1 and ϕ(η) = 0 if |η| ≥ 2. Let

g ∈ Ḣ 1
η . In this step we prove

lim
R→∞

∥

∥

∥

∥

∂

∂η

(

g − ϕ

( ·
R

)

g

)
∥

∥

∥

∥

L2(R×SN−1)

= 0.

Indeed,

∥

∥

∥

∥

∂

∂η

(

g − ϕ

( ·
R

)

g

)
∥

∥

∥

∥

L2(R×SN−1)

≤
∥

∥

∥

∥

(

1 − ϕ

( ·
R

))

∂ηg

∥

∥

∥

∥

L2(R×SN−1)

+ 1

R

∥

∥

∥

∥

ϕ′
( ·
R

)

g

∥

∥

∥

∥

L2(R×SN−1)

. (B.1)

The first term of the right-hand side goes to 0 as R → ∞ by dominated convergence. We

next treat the second term. We have

1

R2

∥

∥

∥

∥

ϕ′
( ·
R

)

g

∥

∥

∥

∥

2

L2

≤ C

R2

∫ 2R

R

∫

SN−1
|g(η, ω)|2 dω dη. (B.2)

Let A ≫ 1. Then, for η > A,

g(η, ω) = g(A,ω)+
∫ η

A

∂ηg(η
′, ω) dη′ for a.a. ω ∈ SN−1.

Hence,

|g(η, ω)|2 ≤ 2η

∫ +∞

A

|∂ηg(η′, ω)|2 dη′ + 2|g(A,ω)|2 for a.a. ω ∈ SN−1.

Integrating on SN−1, we obtain
∫

SN−1
|g(η, ω)|2 dω ≤ 2η‖∂ηg‖2

L2([A,+∞)×SN−1)
+ 2‖g(A, ·)‖2

L2(SN−1)
.

For R > A, we have

1

R2

∫ 2R

R

∫

SN−1
|g(η, ω)|2 dω dη ≤ 4‖∂ηg‖2

L2([A,+∞)×SN−1)
+ 2

R
‖g(A, ·)‖2

L2(SN−1)
.

Letting R → ∞, we obtain

lim sup
R→∞

1

R2

∫ 2R

R

∫

SN−1
|g(η, ω)|2 dω dη ≤ 4‖∂ηg‖2

L2([A,+∞)×SN−1)
,

and thus, since A is arbitrarily large,

lim
R→∞

1

R2

∫ 2R

R

∫

SN−1
|g(η, ω)|2 dω dη = 0.

In view of (B.1) and (B.2), this concludes Step 1.
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Step 2. It remains to prove that a compactly supported function g ∈ C0(R, L2(SN−1))

such that ∂ηg ∈ L2(R×SN−1) can be approximated in the Ḣ1
η norm by smooth functions.

This can be done using convolution with approximations of the identity (in the variable η)

and projecting on the n first eigenspaces of the Laplace–Beltrami operator 1ω on SN−1.

We leave the details to the reader.

B.3. Isometry with L2

Let8 : g 7→ ∂ηg. It follows obviously from the definition of Ḣ 1
η that8 is a well defined,

injective isometry. If G ∈ L2(R × SN−1), then

g(η, ω) =
∫ η

0

G(ω, η′) dω

is an element of Ḣ 1
η which satisfies 8(g) = G, which proves that the map is also surjec-

tive. The proof of Proposition A.1 is complete.

Appendix C. Profiles and estimates on Strichartz norms

Recall that S(R) = L
N+2
N−2 (R, L

2(N+2)
N−2 (RN )).

Claim C.1. Let {(u0,n, u1,n)}n be a sequence in Ḣ 1 × L2 such that

lim sup
n→∞

‖(u0,n, u1,n)‖Ḣ 1×L2 = M. (C.1)

Assume furthermore

∀j, ‖U jL ‖S(R) ≤ δ0. (C.2)

Then

lim sup
n→∞

‖SL(·)(u0,n, u1,n)‖S(R) ≤
{

CM3/4δ
1/4
0 if N = 3,

CM
2N−4
N+2 δ

6−N
N+2

0 if N = 4, 5.

Proof. We use the following Pythagorean expansion:

lim
n→∞

‖SL(·)(u0,n, u1,n)‖
2(N+1)
N−2

L
2(N+1)
N−2 (R×RN )

=
∑

j≥1

‖U jL ‖
2(N+1)
N−2

L
2(N+1)
N−2 (R×RN )

. (C.3)

Next, we notice that by the Hölder and Sobolev inequalities,

‖U jL ‖
2(N+1)
N−2

L
2(N+1)
N−2 (R×RN )

≤ ‖U jL ‖
N
N−2

L∞(R,L
2N
N−2 )

‖U jL ‖
N+2
N−2

S(R)
. (C.4)

If N = 3, we deduce

‖U jL ‖8

L8
t,x

≤ C‖ EU jL (0)‖2
Ḣ 1×L2Mδ

5
0 .

Hence, by the Pythagorean expansion (C.3),

lim sup
n→∞

‖SL(·)(u0,n, u1,n)‖8

L8
t,x

≤ CMδ5
0

∑

j≥1

‖ EU jL (0)‖2
Ḣ 1×L2 ≤ CM3δ5

0 .
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By Hölder’s inequality and the Strichartz inequality,

‖SL(·)(u0,n, u1,n)‖L5
t L

10
x

≤ ‖SL(·)(u0,n, u1,n)‖3/5

L4
t L

12
x

‖SL(·)(u0,n, u1,n)‖2/5

L8
t,x

,

lim sup
n→∞

‖SL(·)(u0,n, u1,n)‖L5
t L

10
x

≤ CM3/5M3/8×2/5δ
5/8×2/5
0 = CM3/4δ

1/4
0 .

If N ∈ {4, 5}, we combine (C.4) with the Strichartz and Sobolev inequalities to obtain

‖U jL ‖
2(N+1)
N−2

L

2(N+1)
N−2

t,x

≤ C‖ EU jL (0)‖2
Ḣ 1×L2‖U jL ‖

6
N−2

S(R)
≤ C‖ EU jL (0)‖2

Ḣ 1×L2δ
6

N−2

0 . (C.5)

Summing up, we deduce

∑

j≥1

‖U jL ‖
2(N+1)
N−2

L

2(N+1)
N−2

t,x

≤ CM2δ
6

N−2

0 . (C.6)

Hence

lim sup
n→∞

‖SL(·)(u0,n, u1,n)‖
2(N+1)
N−2

L

2(N+1)
N−2

t,x

≤ CM2δ
6

N−2

0 . (C.7)

By Hölder’s inequality,

‖SL(·)(u0,n, u1,n)‖S(R) ≤ ‖SL(·)(u0,n, u1,n)‖θ
L

2(N+1)
N−2

t,x

‖SL(·)(u0,n, u1,n)‖1−θ
L2(R,L

2N
N−3 )

,

(C.8)

where θ = (N+1)(6−N)
3(N+2)

, 1 − θ = N(N−2)
3(N+2)

.

Hence

‖SL(·)(u0,n, u1,n)‖S(R) ≤ Cδ
6−N
N+2

0 M
2N−4
N+2 . ⊓⊔

Appendix D. Dispersion for solutions with small e1-norm

In this appendix we prove Claim 7.3. We argue by contradiction. Assume that for all

n > 0, there exists (v0,n, v1,n) ∈ Ḣ 1 × L2 such that

‖(vn0 , vn1 )‖e1
≤ 1/n, ‖(v0,n, v1,n)‖Ḣ 1×L2 ≤ M (D.1)

and

‖vnL‖S(R) > β, (D.2)

where vnL (t) = SL(t)(v
n
0 , v

n
1 ). Extracting subsequences, we can assume that {(vn0 , vn1 )}

has a profile decomposition (U
j
L , {tj,n, xj,n, λj,n}n)j≥1. By the Pythagorean expansion of

the norm ‖ · ‖e1
(see Remark 7.2), for all J ≥ 1,

1

n
≥ ‖(vn0 , vn1 )‖2

e1
=

J
∑

j=1

‖ EU jL (0)‖2
e1

+ ‖wJn (0)‖2
e1

+ o(1)

as n → ∞. As a consequence, U
j
L = 0 for all j ≥ 1 and limn ‖vnL‖S(R) = 0, which

contradicts (D.2).
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