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Dedi
ated to Vladimir Maz'ya on the o

asion of his 80th birthdayON LANDIS' CONJECTURE IN THE PLANE WHEN THEPOTENTIAL HAS AN EXPONENTIALLY DECAYINGNEGATIVE PART© B. DAVEY, C. KENIG, J.-N. WANGIn this arti
le, we 
ontinue our investigation into the unique 
ontinuationproperties of real-valued solutions to ellipti
 equations in the plane. Morepre
isely, we make another step towards proving a quantitative version ofLandis' 
onje
ture by establishing unique 
ontinuation at in�nity estimatesfor solutions to equations of the form −∆u + V u = 0 in R

2, where V =

V+−V−, V+ ∈ L
∞, and V− is a nontrivial fun
tion that exhibits exponentialde
ay at in�nity. The main tool in the proof of this theorem is an order ofvanishing estimate in 
ombination with an iteration s
heme. To prove theorder of vanishing estimate, we establish a similarity prin
iple for ve
tor-valued Beltrami systems. �1. Introdu
tionIn this paper, we 
onsider the unique 
ontinuation properties of real-valuedsolutions to equations of the form

−∆u+ V u = 0 (1)in R
2. We assume that V = V+ − V− where V± > 0 satis�es

‖V+‖L∞(R2) 6 1, (2)
V− (z) 6 exp

(
−c0 |z|1+ε0

)
, z ∈ R

2, (3)for some ε0 > 0. The main result of this arti
le is the following quantitativeform of Landis' 
onje
ture for solutions to (1).Key words: Landis' 
onje
ture, quantitative unique 
ontinuation, order of vanishing,ve
tor-valued Beltrami system.Davey is supported in part by the Simons Foundation Grant 430198. Kenig is supported inpart by NSF DMS-1265249. Wang is supported in part by MOST 105-2115-M-002-014-MY3.204



ON LANDIS' CONJECTURE 205Theorem 1. Assume that V : R2 → R satis�es (2) and (3). Let u : R2 → Rbe a solution to (1) for whi
h
|u (z)| 6 exp (C0 |z|) , (4)
|u (0)| > 1. (5)Then for any ε > 0 and any R > R0 (C0, c0, ε0, ε), we have

inf
|z0|=R

‖u‖L∞(B1(z0))
> exp

(
−R1+ε

)
. (6)This theorem improves upon the work in [8℄ (see also the subsequent resultsin [4℄ and [5℄) sin
e we now allow for V− to be a nontrivial fun
tion.To prove Theorem 1, we follow the usual approa
h and prove an order ofvanishing estimate for a s
aled version of equation (1). Sin
e the potential fun
-tion exhibits de
ay at in�nity, we 
ombine the s
aling argument �rst developedin [2℄ with an iteration s
heme similar to the one presented in [3℄ (and furtherdeveloped in [9℄) to prove Theorem 1.The notation Br (z0) is used to denote the ball of radius r 
entered at

z0 ∈ R
2. The abbreviated notation Br will be used when the 
entre is under-stood from the 
ontext. We also use the notation Qr (z0) to denote the 
ube ofsidelength 2r 
entered at z0 ∈ R

2, and we may abbreviate the notation whenit is 
lear from the 
ontext. For the order of vanishing estimate, we 
onsidersolutions to (1) in Qb for some b > 1.Theorem 2. Let F be a fun
tion for whi
h 1 6 F (λ) 6 λ for all λ > 1.For some λ > 1, set b = 1 + 1
F (λ) . Assume that ‖V+‖L∞(Qb)

6 λ2 and that
‖V−‖L∞(Qb)

6 δ2, where
δ =

c
√
λ

log λ
exp (−mλ) (7)for some c > 0 and a 
onstant m > 0 to be spe
i�ed below. Let u be a real-valuedsolution to (1) in Qb that satis�es, for some p > 0,

‖u‖L∞(Bb)
6 exp (C1λ) (8)

‖u‖L∞(B1)
> exp (−c1λ

p) . (9)Then for any r su�
iently small,
‖u‖L∞(Br)

> rCλqF (λ), (10)where q = max {1, p} and C depends on C1, c1, and c.Sin
e we are working with real-valued solutions and equations in the plane,we follow an approa
h that is based on the ideas �rst developed in [8℄.In parti
ular, we rely on tools from 
omplex analysis to prove our theorem.



206 B. DAVEY, C. KENIG, J.-N. WANGIn [4, 5, 8℄, the �rst step in the proof of the order of vanishing estimate isto show the existen
e of a positive multiplier and establish good bounds forit. Sin
e the negative part of V is now assumed to be nontrivial, our usualapproa
h to establishing the existen
e of a positive multiplier breaks down.Thus, we introdu
e a positive solution to an asso
iated equation with a shiftedpotential fun
tion. This positive fun
tion allows us to transform the PDE for
u into a divergen
e-form equation. The resulting equation is not divergen
e-free, but it resembles a higher-dimensional divergen
e-free equation. Therefore,we mimi
 ideas from the 3-dimensional setting, and introdu
e a ve
tor-valuedstream fun
tion that gives rise to a ve
tor-valued Beltrami system.The main 
hallenge that we over
ome is understanding the quantitative be-havior of solutions to ve
tor-valued Beltrami equations. In the s
alar setting,an appli
ation of the similarity prin
iple in 
ombination with the Hadamardthree-
ir
le theorem allowed us to quantify all solutions to the resulting Bel-trami system. As a similarity prin
iple with bounds was not available to usin the ve
tor-valued setting, we prove one here using Cartan's Lemma, theWiener�Masani Theorem, and the ideas from [1℄. With this new similarityprin
iple, we 
an prove our three-ball inequalities by applying the Hadamardthree-
ir
le theorem 
omponent-wise.Ea
h se
tion in this arti
le des
ribes an important proof. Se
tion 2 gives theproof of Theorem 2 where ea
h major step is presented in a subse
tion. Thefour steps in this proof are: the introdu
tion of a positive multiplier and itsproperties, the redu
tion from the PDE to a ve
tor-valued Beltrami system,the quantitative properties of solutions to ve
tor-valued Beltrami systems, andthe three-ball inequality. The proof of Theorem 1 is presented in Se
tion 3. We�rst present the proposition behind the iteration s
heme, whose proof relieson the order of vanishing estimate given in Theorem 2. Then we repeatedlyapply the proposition to prove Theorem 1. Finally, Se
tion 4 presents the proofof an important proposition in the quanti�
ation of solutions to ve
tor-valuedBeltrami systems. �2. The proof of Theorem 22.1. The positive multiplier. In [8℄ and [4℄, the �rst step in the proofsof the order of vanishing estimates is to establish that a positive multiplierasso
iated with the operator (or its adjoint) exists and has suitable bounds.Sin
e we are no longer working with a zeroth order term that is assumed to benonnegative, we take a somewhat di�erent approa
h here.De�ne

Vδ (x, y) = V (x, y) + δ2.



ON LANDIS' CONJECTURE 207From the assumptions ‖V−‖L∞(Qb)
6 δ2, ‖V+‖L∞(Qb)

6 λ2, and λ > 1 > δ(
hoosing λ su�
iently large), it follows that 0 6 Vδ 6 2λ2 a.e. in Qb. There-fore, we may mimi
 the te
hniques from [8℄ and [4℄ to 
onstru
t a positivemultiplier asso
iated with the equation
∆φ− Vδφ = 0 in Qb. (11)Set φ1 (x, y) = exp

(√
2λx

). Sin
e
∆φ1 − Vδφ1 =

(
2λ2 − Vδ

)
φ1 > 0,we see that φ1 is a subsolution. Set φ2 = exp

(√
8λ

) and noti
e that
∆φ2 − Vδφ2 = −Vδφ2 6 0,so φ2 is a supersolution. Sin
e φ2 > φ1 in Qb, there exists a positive solution

φ to (11) for whi
h
exp

(
−
√
8λ

)
6 φ 6 exp

(√
8λ

) (12)in Qb. By the gradient estimate for Poisson's equation (as in [7℄ for example),we have
‖∇φ‖L∞(Br)

6
Cαλ

2

r
‖φ‖L∞(Bαr)

, (13)whenever α > 1, αr < b. Note that Cα ∼ (α− 1)−1. A similar estimate is truefor u as well.We present an estimate similar to one in [8℄ that will be instrumental below.Lemma 1. Re
all that b = 1 + 1
F (λ) , where 1 6 F (λ) 6 λ. For d = 1 + 1

2F (λ) ,there is an absolute 
onstant C2 for whi
h
‖∇ (log φ)‖L∞(Qd)

6 C2λ,where φ is a positive solution to (11).Proof. We begin with an L2 estimate for Φ := log φ. Let θ ∈ C∞
0 (Qb) be asmooth 
uto� fun
tion with θ ≡ 1 in Q

d̃
, where d̃ = 1+ 3

4F (λ) . The assumptionon b implies that b − d̃ > 1
4F (λ) and therefore ‖∇θ‖L∞(Qb)

6 CF (λ) and
‖∆θ‖L∞(Qb)

6 C [F (λ)]2. From (11) it follows that in Qb

∆Φ+ |∇Φ|2 = Vδ. (14)Multiplying both sides of this equation by θ2 and integrating by parts, we seethat∫
|∇Φ|2 θ2 =

∫
Vδθ

2 +

∫
∇

(
θ2
)
· ∇Φ 6

∫
Vδθ

2 +
1

2

∫
|∇Φ|2 θ2 + 2

∫
|∇θ|2.



208 B. DAVEY, C. KENIG, J.-N. WANGTherefore,
∫

Q
d̃

|∇Φ|2 6
∫

|∇Φ|2 θ2 6 2

∫
Vδθ

2 + 4

∫
|∇θ|2 6 C

(
λ2 + [F (λ)]2

)
,where we have used the bound on Vδ and the inequality d̃ 6 7

4 . Sin
e F (λ) 6 λ,we have ‖∇Φ‖L2(Qd̃)
6 Cλ, where C is an absolute 
onstant.We res
ale equation (14). Set ϕ = Φ

Cλ for some C > 0. Then (14) is equivalentto
µ∆ϕ+ |∇ϕ|2 = Ṽ in Qd, (15)where µ = 1

Cλ and Ṽ = Vδ
C2λ2 . Now 
hoose C su�
iently large so that

∥∥∥Ṽ
∥∥∥
L∞(Qb)

6 1,

∫

Q
d̃

|∇ϕ|2 6 1. (16)Claim 1. For any z ∈ Qd, if µ 6 cr, r < 1
8F (λ) , and 
onditions (15) and (16)are ful�lled, then ∫

Br(z)

|∇ϕ|2 6 Cr2.Proof of Claim 1. We use the abbreviated notation Br to denote Br (z) forsome z ∈ Qd. Let η ∈ C∞
0 (B2r) be a 
uto� fun
tion su
h that η ≡ 1 in Br. Bythe divergen
e theorem,

0 = µ

∫
div

(
∇ϕη2

)
= µ

∫
∆ϕη2 + 2µ

∫
η∇ϕ · ∇η. (17)Now we estimate ea
h term. By (15) and (16),

∫
µ∆ϕη2 = −

∫
|∇ϕ|2 η2 +

∫
Ṽ η2 6 −

∫
|∇ϕ|2 η2 +

∥∥∥Ṽ
∥∥∥
L∞(Bd)

∫

B2r

1

6 −
∫

|∇ϕ|2 η2 + Cr2.

(18)By Cau
hy�S
hwarz and Young's inequality,
∣∣∣∣2µ

∫
η∇ϕ · ∇η

∣∣∣∣ 6 2µ

(∫
|∇ϕ|2 η2

)1/2 (∫
|∇η|2

)1/2

6
1

2

∫
|∇ϕ|2 η2 +Cµ2.

(19)



ON LANDIS' CONJECTURE 209Combining (17)-(19) and using that µ 6 cr, we see that
∫

Br

|∇ϕ|2 6
∫

|∇ϕ|2 η2 6 Cµ2 + Cr2 6 Cr2, (20)proving the 
laim. �We now use Claim 1 to give a pointwise bound for ∇ϕ in Qd. De�ne
ϕµ (z) =

1

µ
ϕ (µz) .Then

∇ϕµ (z) = ∇ϕ (µz) , ∆ϕµ (z) = µ∆ϕ (µz) .From (15) it follows that
∆ϕµ + |∇ϕµ|2 = Ṽ (µz) := Ṽµ (z) ,

∥∥∥Ṽµ

∥∥∥
L∞(B1)

6 1.Moreover, ∫

B2

|∇ϕ (µz)|2 = 1

µ2

∫

B2µ

|∇ϕ|2 6 1

µ2
C (2µ)2 = C,where we have used Claim 1. From Theorem 2.3 and Proposition 2.1 in ChapterV of [6℄, it follows that there exists p > 2 su
h that

‖∇ϕµ‖Lp(B1)
6 C. (21)De�ne

ϕ̃µ (z) = ϕµ (z)−
1

|B1|

∫

B1

ϕµ.Sin
e ∇ϕ̃µ = ∇ϕµ, we obtain
∆ϕ̃µ = − |∇ϕ̃µ|2 + Ṽµ := ζ in B1.Clearly, ‖ζ‖Lp/2(B1)
6 C. Moreover, by H�older, Poin
ar�e, and (21),

‖ϕ̃µ‖Lp/2(B1)
6 C ‖ϕ̃µ‖Lp(B1)

6 C ‖∇ϕ̃µ‖Lp(B1)
6 C.By Theorem 9.9 from [7℄, for example,

‖ϕ̃µ‖W 2,p/2(Br)
6 C,for any r < 1. If p > 4, then it follows that

‖∇ϕ̃µ‖L∞(Br′)
6 C.Otherwise, assuming that p < 4, a Sobolev embedding shows that

‖∇ϕ̃µ‖
L

2p
4−p (Br)

6 C.



210 B. DAVEY, C. KENIG, J.-N. WANGSin
e 2p
4−p > p, we may repeat these arguments to show that for some r′ < 1we have

‖∇ϕ‖L∞(Bµr′)
= ‖∇ϕµ‖L∞(Br′)

= ‖∇ϕ̃µ‖L∞(Br′ )
6 C.This derivation works for any z ∈ Qd and any µ < µ0. Sin
e ϕ = Φ

Cλ , the
on
lusion of the lemma follows. �2.2. Redu
tion to a ve
tor-valued Beltrami equation. Now we use thepositive multiplier φ from above to redu
e the PDE to a �rst-order Beltramiequation. The novelty here is that the resulting equation is a ve
tor equationinstead of a s
alar equation as it was in [8℄. With u and φ satisfying (1) and (11),respe
tively, we de�ne
v =

u

φ
,and a 
omputation shows that

∇ ·
(
φ2∇v

)
+ δ2φ2v = 0 in Qb. (22)De�nition 1. For any δ ∈ R, de�ne the operator ∇δ = (∂x, ∂y, δ), where δdenotes multipli
ation by δ. That is, if f is an arbitrary s
alar fun
tion and

F = (F1, F2, F3) is an arbitrary ve
tor fun
tion, then
∇δf = (∂xf, ∂yf, δf)

∇δ · F = divδ F = ∂xF1 + ∂yF2 + δF3

∇δ × F = curlδ F = (∂yF3 − δF2, δF1 − ∂xF3, ∂xF2 − ∂yF1)With this new notation, (22) may be rewritten as
∇δ ·

(
φ2∇δv

)
= 0 in Qb. (23)Therefore, the positive multiplier φ for the related equation (1) has been usedto transform the PDE (1) into a δ-divergen
e-free equation.If we take the standard gradient, divergen
e, and 
url in R

3, and repla
e ∂zwith multipli
ation by the 
onstant δ, we get the operators∇δ,∇δ· and ∇δ×. Anumber of the relationships between gradient, divergen
e, and 
url are inheritedfor these new operators. For example, ∇δ · (∇δ × F) = 0, ∇δ ×∇δf = 0, and
∇δ × (∇δ ×F) = −

(
∆+ δ2

)
F+∇δ (∇δ · F) .The next step is to generalize the de�nition of the stream fun
tion givenin [8℄. Sin
e we have a δ-divergen
e-free ve
tor �eld, φ2∇δv, the idea (that
omes from the 3-dimensional setting) is to de�ne a ve
tor-valued fun
tion Gthat satis�es
∇δ ×G = φ2∇δv. (24)



ON LANDIS' CONJECTURE 211That is, if G = (v1, v2, v3), then




∂yv3 − δv2 = φ2∂xv
−∂xv3 + δv1 = φ2∂yv
∂xv2 − ∂yv1 = δφ2v

. (25)Note that when δ = 0, this system redu
es to the de�ning equations for thes
alar stream fun
tion v3. When δ 6= 0, one possible solution to this system isobtained by setting v3 = 0. That is,
{

v1 := δ−1φ2∂yv
v2 := −δ−1φ2∂xv

. (26)De�ne
{

w1 := φ2v
w2 := v2 +

√
−1v1

. (27)With ∂̄ = ∂
∂z̄ = 1

2

(
∂
∂x +

√
−1 ∂

∂y

),
∂̄w1 = ∂̄

(
φ2

)
v + φ2∂̄v = 2∂̄ (log φ)φ2v +

1

2

[
φ2 ∂v

∂x
+

√
−1φ2∂v

∂y

]

= 2∂̄ (log φ)w1 −
δ

2
w2,and

∂̄w2 = ∂̄v2 +
√
−1∂̄v1 =

1

2

[
∂v2
∂x

− ∂v1
∂y

]
+

√
−1

2

[
∂v2
∂y

+
∂v1
∂x

]

=
δ

2
w1 + ∂̄ (log φ)w2 − ∂ (log φ)w2.Set α = ∂̄ (log φ) so that α = ∂̄ (log φ) = ∂ (log φ), sin
e φ is real. We de�ne

α̃ =

{
αw2

w2
if w2 6= 0

0 otherwise , δ̃ =

{
δw2
w2

if w2 6= 0

0 otherwise .We use the notation T = TQb
to denote the Cau
hy�Pompeiu operator on Qb.More details 
an be found in the next subse
tion, but for now we rely on theproperty that ∂̄TQb

f = fχQb
. It follows that

∂̄
(
e−T (2α)w1

)
= e−T (2α)∂̄w1 − 2αe−T (2α)w1 = − δ̃

2
e−T (2α)w2,

∂̄
(
e−T (α−α̃)w2

)
= e−T (α−α̃)∂̄w2 − (α− α̃) e−T (α−α̃)w2 =

δ

2
e−T (α−α̃)w1.



212 B. DAVEY, C. KENIG, J.-N. WANGIf we set w̃1 = e−T (2α)w1, w̃2 = e−T (α−α̃)w2, and introdu
e the ve
tor notation
~w =

[
w̃1

w̃2

] and G =

[
0 − δ̃

2e
−T (α+α̃)

δ
2e

T (α+α̃) 0

]
,then we have

∂̄ ~w −G~w = ~0 in Qd. (28)2.3. Solutions to Beltrami matrix equations. Towards understandingthe behavior of solutions to (28), we study the behavior of matrix solutions tothe equation
∂̄P −AP = 0 in R := [0, 1] × [0, 1] . (29)For a 2× 2 matrix A, re
all that

|A|2 = tr (A∗A) ,where A∗ is the Hermitian adjoint of A. We use the notation ‖ · ‖ to denotethe operator norm of a matrix. Observe that for 2× 2 matri
es A and B,
|AB| 6 |A| ‖B‖
‖A‖ 6 |A| 6

√
2 ‖A‖

|I| =
√
2.For a 2× 2 matrix fun
tion A, we write

‖A‖∞ = sup
i,j=1,2

‖aij‖L∞ .The goal is to solve the equation ∂̄P = AP inR and show that both P and P−1have good 
ontrol in terms of M = ‖A‖∞.We �rst need some notation. For some δ > 0, set
Vi =

[
iδ, iδ +

3

2
δ

]
.Then Vi−1∩Vi =

[
iδ, iδ + 1

2δ
] and Vi∩Vj 6= ∅ if and only if j = i±1. Assumingthat δ is 
hosen so that i0 := 1

δ − 3
2 ∈ N, we have

[0, 1] =

i0⋃

i=0

Vi.De�ne
Ui = Vi × [0, 1] .The �rst proposition serves as the main tool in the proof the se
ond propo-sition.



ON LANDIS' CONJECTURE 213Proposition 1. Let {Hi}i0i=1 be a 
olle
tion of 2×2 matri
es su
h that ea
h Hiis de�ned on Ui−1 ∩ Ui, ‖Hi‖ 6 10, ∥∥H−1
i

∥∥ 6 10, and both Hi and H−1
i areanalyti
 on Ui−1 ∩Ui. Then there exists a 
olle
tion of 2× 2 matri
es {gi}i0i=0,where both gi and g−1

i are de�ned and analyti
 on Ui, with Hi = gi−1g
−1
i on

Ui−1 ∩ Ui. Moreover, there exists a 
onstant C > 0 so that
|gi|2 +

∣∣g−1
i

∣∣2 6 CeC/δ2 in Ui. (30)The proof of Proposition 1 
an be found in Se
tion 4. Here we use the resultto prove the following proposition.Proposition 2. Let A be a 2×2 matrix fun
tion de�ned on R with M = ‖A‖∞.There exists an invertible solution to ∂̄P = AP in R with the property that
‖P‖+

∥∥P−1
∥∥ 6 exp

[
CM2 (logM)2

]
. (31)Proof. For some C1 > 0 to be spe
i�ed below, de�ne δ so that δ log (1/δ) 6

1
3C1M

. In parti
ular, if M > M0, then there exists c1 depending on M0 and C1so that if
δ :=

c1
M logM

, (32)then the bound above is satis�ed and i0 =
1
δ − 3

2 ∈ N.We �rst solve the equation ∂̄P = AP in Rδ := Ui. If P a solution and
P = I +Q, then

∂̄Q = ∂̄P = AP = A+AQ.Let
TRδ

(F ) (z) =
1

π

∫

Rδ

F (ξ)

z − ξ
dω (ξ) .Note that

∂̄ (TRδ
(F )) = FχRδ

.Sin
e we need to solve the equation ∂̄Q−AQ = A in Rδ, we solve
∂̄ [Q− TRδ

(AQ)− TRδ
(A)] = 0.Therefore, we seek solutions to

Q− TRδ
(AQ) = TRδ

(A) in Rδ. (33)Observation. There exists a C > 0 so that
sup
z∈Rδ

∫

Rδ

1

|z − ξ| dω (ξ) 6 Cδ log (1/δ) .



214 B. DAVEY, C. KENIG, J.-N. WANGRe
all that Rδ = Ui =
[
iδ, iδ + 3

2δ
]
×[0, 1]. Partition [0, 1] into equal intervals Ikof length at most 3

2δ su
h that
Ui =

⌈2/3δ⌉⋃

k=1

[
iδ, iδ +

3

2
δ

]
× Ik.Assume �rst that z ∈

[
iδ, iδ + 3

2δ
]
× I1. For k > 3, if ξ ∈

[
iδ, iδ + 3

2δ
]
× Ik,then |z − ξ| ≃ kδ, and

∫

[iδ,iδ+ 3
2
δ]×Ik

1

|z − ξ| dω (ξ) 6
1

kδ
δ2 =

δ

k
.Moreover,

∫

[iδ,iδ+ 3
2
δ]×(I1∪I2)

1

|z − ξ| dω (ξ) .

∫

B(z,5δ)

1

|z − ξ| dω (ξ) ≃
5δ∫

0

r

r
dr ≃ δ.Hen
e

∫

Rδ

1

|z − ξ| dω (ξ) .

⌈2/3δ⌉∑

k=1

δ

k
≃ δ (log (1/δ)) .When z ∈

[
iδ, iδ + 3

2δ
]
× Ik0 for k0 > 1, the result follows similarly and wehave proved the observation.Claim. There exists a C1 > 0 so that ‖TRδ

(F )‖L∞(Rδ)
6 C1δ log (1/δ) ‖F‖∞.This 
laim follows dire
tly from the observation above and the de�nition ofthe operator TRδ

.By the de�nition of δ given in (32), we have C1δ log (1/δ)M 6 1/3. There-fore, we 
an solve (33) via a Neumann series approa
h. Moreover, the resultingsolution Q has ‖Q‖∞ 6 3
2C1δ log (1/δ)M 6 1

2 and then P = I + Q satis�es
‖P‖ < 3 and ∥∥P−1

∥∥ < 3.Using the 
onstru
tion des
ribed above, for ea
h i = 0, . . . , i0, de�ne Pi tobe the matrix solution to
∂̄Pi = APi in Uiwith ‖Pi‖ < 3 and ∥∥P−1

i

∥∥ < 3. On Ui−1 ∩ Ui, de�ne Hi = P−1
i−1Pi. Clearly,

‖Hi‖ 6 10 and ∥∥H−1
i

∥∥ 6 10. As
∂̄Hi = −P−1

i−1∂̄Pi−1P
−1
i−1Pi + P−1

i−1∂̄Pi = −P−1
i−1APi−1P

−1
i−1Pi + P−1

i−1APi = 0,ea
h Hi is analyti
 on Ui−1 ∩ Ui. A similar argument shows that ea
h H−1
iis also analyti
 on Ui−1 ∩ Ui. Therefore, Proposition 1 is appli
able. That is,
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tions gi de�ned and analyti
 on Ui su
h that Hi = gi−1g
−1
i on

Ui−1 ∩ Ui and |gi|2 6 CeC/δ2 on Ui.Now we use the 
olle
tions {Pi}i0i=0 and {gi}i0i=0 to de�ne a fun
tion P onall of R. On Ui, set P = Pigi. Sin
e ea
h gi is analyti
, we have ∂̄P = ∂̄Pigi =
APigi = AP on ea
h Ui, as required. As Hi = P−1

i−1Pi = gi−1g
−1
i , we have

Pigi = Pi−1gi−1 on Ui−1 ∩ Ui. Moreover,
‖P‖+

∥∥P−1
∥∥ = ‖Pigi‖+

∥∥g−1
i P−1

i

∥∥ . eC/δ2 .Referring to (32), the estimate (31) follows. �Remark. Although this 
onstru
tion was done on the unit re
tangle (for 
on-venien
e), sin
e d ∈ [1, 3/2], the result still holds with a modi�ed 
onstantwhen R is repla
ed by Qd.Lemma 2. Let
c∞ = sup

s∈[1,3/2]

{
‖TQs‖L∞(Qs)→L∞(Qs)

}
.Let

C3 = sup
s∈[1,3/2]

{C2 (s)} ,where C2 (s) is the 
onstant given in Lemma 1 on Qs. If we set m = 2c∞C3,then the matrix G belongs to L∞ (Qd) and satis�es
‖G‖L∞(Qd)

6
C
√
λ

log λ
.Proof. Re
all that

G =

[
0 − δ̃

2e
−T (α+α̃)

δ
2e

T (α+α̃) 0

]
.Sin
e α = ∂̄ (log φ), α = ∂ (log φ), |α̃| = |ᾱ|, and d ∈ [1, 3/2], from Lemma 1 itfollows that

‖α‖L∞(Qd)
6 C3λ and ‖α̃‖L∞(Qd)

6 C3λ.Therefore, ‖T (α+ α̃)‖L∞(Qd)
6 2c∞C3λ and then

‖G‖L∞(Qd)
6

δ

2
exp (2c∞C3λ) 6

c
√
λ

2 log λ
exp (−mλ) exp (2c∞C3λ) =

C
√
λ

log λ
,where we have used (7). �By 
ombining the previous two results, we rea
h the following observation.



216 B. DAVEY, C. KENIG, J.-N. WANGCorollary 1. There exists an invertible matrix solution P to
∂̄P = GP in Qd (34)with the property that

‖P‖L∞(Qd)
+
∥∥P−1

∥∥
L∞(Qd)

6 exp (Cλ) .Lemma 3. If ~w is a solution to (28), then ~w = P~h, where P is the invertiblematrix given in Corollary (1) and ~h is a 2-ve
tor with holomorphi
 entries.Proof. Sin
e P is invertible, it su�
es to show that P−1 ~w is a holomorphi
ve
tor. Using equations (28) and (34), we 
ompute:
∂̄
(
P−1 ~w

)
= −P−1∂̄PP−1 ~w + P−1∂̄ ~w = −P−1GPP−1 ~w + P−1G~w = 0,as required. �2.4. Three-ball inequality. We now 
ome to the three-ball inequality. Al-though we have used 
ubes for the 
onstru
tion of the matrix solution P , wenow work over balls and use that P and ~w are solutions in Bd ⊂ Qd. Usingthat ~w = P~h and ‖P‖L∞(Bd)

6 exp (Cλ), we have
‖w̃1‖L∞(B1)

=‖p11h1+ p12h2‖L∞(B1)

6exp (Cλ)
[
‖h1‖L∞(B1)

+ ‖h2‖L∞(B1)

]

6exp (Cλ)
[
‖h1‖θL∞(Br/2)

‖h1‖1−θ
L∞(Bd)

+ ‖h2‖θL∞(Br/2)
‖h2‖1−θ

L∞(Bd)

]
,where we have applied the Hadamard 3-
ir
le theorem to h1 and h2 with

0 < r < 1 < d and
−1

θ
=

log
(

r
2d

)

log d
=

log r − log
(
2 + 1

F (λ)

)

log
(
1 + 1

2F (λ)

) > CF (λ) log r. (35)Now, using that ~h = P−1 ~w and ∥∥P−1
∥∥
L∞(Bd)

6 exp (Cλ), we get
exp (−Cλ)‖w̃1‖L∞(B1)

6
∥∥p−1

11 w̃1+p−1
12 w̃2

∥∥θ
L∞(Br/2)

∥∥p−1
11 w̃1+p−1

12 w̃2

∥∥1−θ

L∞(Bd)

+
∥∥p−1

21 w̃1+p−1
22 w̃2

∥∥θ
L∞(Br/2)

∥∥p−1
21 w̃1+p−1

22 w̃2

∥∥1−θ

L∞(Bd)

6
(∥∥p−1

11 w̃1

∥∥
L∞(Br/2)

+
∥∥p−1

12 w̃2

∥∥
L∞(Br/2)

)θ

×
(∥∥p−1

11 w̃1

∥∥
L∞(Bd)

+
∥∥p−1

12 w̃2

∥∥
L∞(Bd)

)1−θ

+
(∥∥p−1

21 w̃1

∥∥
L∞(Br/2)

+
∥∥p−1

22 w̃2

∥∥
L∞(Br/2)

)θ
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×

(∥∥p−1
21 w̃1

∥∥
L∞(Bd)

+
∥∥p−1

22 w̃2

∥∥
L∞(Bd)

)1−θ

6 2 exp (Cλ)
(
‖w̃1‖L∞(Br/2) + ‖w̃2‖L∞(Br/2)

)θ

×
(
‖w̃1‖L∞(Bd)

+ ‖w̃2‖L∞(Bd)

)1−θ
.Re
all that w̃1 = e−T (2α)φu and sin
e v =

u

φ
, we have

w̃2 = δ−1e−T (α−α̃) [φ (−∂xu+ i∂yu) + u (∂xφ− i∂yφ)] .From Lemma 1 it follows that ‖α‖L∞(Bd)
6 C2λ and ‖α̃‖L∞(Bd)

6 C2λ. There-fore, ‖T (α− α̃)‖L∞(Bd)
6 2c∞C2λ and ‖T (2α)‖L∞(Bd)

6 2c∞C2λ as well.Using (12), we see that
‖w̃1‖L∞(Br/2) 6 exp (Cλ) ‖u‖L∞(Br/2)and a similar estimate holds in Bd. Using estimate (13), we have

‖w̃2‖L∞(Br/2) 6 δ−1 exp (Cλ) ‖φ‖L∞(Br/2) ‖∇u‖L∞(Br/2)

+ δ−1 exp (Cλ) ‖u‖L∞(Br/2) ‖∇φ‖L∞(Br/2)

6 δ−1 exp (Cλ) ‖φ‖L∞(Br/2)

(
Cλ2

r
‖u‖L∞(Br)

)

+ δ−1 exp (Cλ) ‖u‖L∞(Br/2)

(
Cλ2

r
‖φ‖L∞(Br)

)

6 δ−1r−1 exp (Cλ) ‖u‖L∞(Br)and
‖w̃2‖L∞(Bd)

6 δ−1 (b− d)−1 exp (Cλ) ‖u‖L∞(Bb)
6 δ−1 exp (Cλ) ‖u‖L∞(Bb)

,where we have used that b− d = 1
2F (λ) &

1
λ . Observe also that

‖u‖L∞(B1)
6

∥∥∥eT (2α)φ−1w̃1

∥∥∥
L∞(B1)

6 exp (Cλ) ‖w̃1‖L∞(B1)
.Combining our observations, we have

‖u‖L∞(B1)
6 exp (Cλ)

[
‖u‖L∞(Br/2) + δ−1r−1 ‖u‖L∞(Br)

]θ

×
[
‖u‖L∞(Bd)

+ δ−1 ‖u‖L∞(Bb)

]1−θ

6 δ−1 exp (Cλ)
(
r−1 ‖u‖L∞(Br)

)θ
‖u‖1−θ

L∞(Bb)
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6 δ−1 exp [(C + C0)λ]

(
r−1 ‖u‖L∞(Br)

)θ
,where we have applied (8). By using (7), (9), and (35), it follows that

‖u‖L∞(Br)
> r

c
√
λ

log λ
exp

[
−c1λ

p + (C + C0 +m)λ

θ

]

> r exp [CF (λ)λq log r] > rCλqF (λ),as required. �3. The proof of Theorem 1We begin with a proposition that serves as the main tool in the iterations
heme.Proposition 3. Assume that V : R2 → R satis�es (2) and (3). Let u : R2 → Rbe a solution to (1) for whi
h (4) holds. Let ε ∈
(
0, ε0

1+ε0

). Suppose that forany S > S̃ (C0, c0, ε0, ε), there exists an α ∈ (1, 2] so that
inf

|z0|=S
‖u‖L∞(B1(z0))

> exp (−Sα) . (36)Set R = S +
(
S
2

) 1
1−ε − 1.(1) If α > 1

1−ε , then with β = α− α−1
2 ε, we have

inf
|z1|=R

‖u‖L∞(B1(z1))
> exp

(
−Rβ

)
. (37)(2) If α ∈

(
1, 1

1−ε

], then
inf

|z1|=R
‖u‖L∞(B1(z1))

> exp
(
−CR1+ε logR

)
, (38)where C depends on C0.Proof. De�ne T =

(
S
2

) 1
1−ε and set b = 1 + S

2T . Let z1 ∈ R
2 be su
h that

|z1| = S + T − 1 = R. De�nẽ
u (z) = u (z1 + Tz)

Ṽ (z) = T 2V (z1 + Tz) .Then ∆ũ − Ṽ ũ = 0 in Qb. Assumption (2) implies that ∥∥∥Ṽ+

∥∥∥
L∞(Qb)

6 T 2while 
ondition (3) gives ∥∥∥Ṽ−

∥∥∥
L∞(Qb)

6 T 2 exp
[
−c0

(
S
2 − 1

)1+ε0
]. Moreover,
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‖ũ‖L∞(Bb)

6 exp
[
C0

(
3
2S + 2T

)]
6 exp (5C0T ) and from (36) we see that with

z0 := S z1
|z1|

, ‖ũ‖L∞(B1)
> ‖u‖L∞(B1(z0))

> exp (−Sα).With λ = T , we see that b = 1+λ−ε and ∥∥∥Ṽ+

∥∥∥
L∞(Qb)

6 λ2. Furthermore, if Sis su�
iently large in the sense that (S/2−1)1+ε0

(S/2)
1

1−ε
> 3m

c0
(whi
h is always possiblebe
ause of the relationship between ε and ε0), then we have ∥∥∥Ṽ−

∥∥∥
L∞(Qb)

6 δ2where δ is given by (7) with c depending only on m. With C1 = 5C0, we seethat ‖ũ‖L∞(Bb)
6 exp (C1λ). Finally, setting c1 = 4 > 2α and p = α (1− ε),we have ‖ũ‖L∞(B1)

> exp (−c1λ
p). Now we may apply Theorem 2 to 
on
ludethat

‖ũ‖L∞(Br)
> rCλqfor r < 1, where q = max {p, 1} + ε and C depends on C0 and m. Choosing

r = T−1 = λ−1, we see that
‖u‖L∞(B1(z1))

> exp (−Cλq log λ) = exp (−CT q log T ) .If α > 1
1−ε , then q = p + ε = α − (α− 1) ε ∈ (1 + ε, α). If S is su�
ientlylarge in the sense that

(S/2)
ε2

2(1−ε)2

log (S/2)
>

C

1− ε
,then Rβ > CT q log T and it follows that

‖u‖L∞(B1(z1))
> exp

(
−Rβ

)
.Sin
e z1 ∈ R

2 with |z1| = R was arbitrary, (37) has been proved.On the other hand, if α ∈
(
1, 1

1−ε

], then p 6 1 so that q = 1 + ε. Sin
e
R > T , it follows that

‖u‖L∞(B1(z1))
> exp

(
−CR1+ε logR

)
.Again, sin
e z1 ∈ R

2 with |z1| = R was arbitrary, (38) follows. �Now we present the proof of the main theorem.Proof of Theorem 1. Let ε > 0 be given; put ε1 = ε
2 and suppose that

ε1 ∈ (0, ε0
1+ε0

). Sin
e ‖V ‖L∞(R2) 6 1, we apply, for example, Lemma 3.10 in [2℄
on
lude that if |z0| > 1, then
inf

|z0|=S0

‖u‖L∞(B1(z0))
> exp

(
−cS

4/3
0 log S0

)
,
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hoose α0 ∈ (4/3, 2] so that cS̃4/3 log S̃ 6 S̃α0 ,where S̃ (C0, c0, ε0, ε1) is the lower bound on S given in Proposition 3. For any
S0 > S̃, we see that

inf
|z0|=S0

‖u‖L∞(B1(z0))
> exp (−Sα0

0 ) .Assume that α0 > 1
1−ε1

. For n = 0, 1, 2, . . ., de�ne αn+1 = αn − αn−1
2 ε1 andobserve that as long as αn > 1

1−ε1
, we have αn+1

αn
< 1 − ε21

2 . Therefore, thereexists N ∈ N su
h that αn > 1
1−ε1

for all n = 0, 1, . . . , N −1, while αN 6 1
1−ε1

.For ea
h n = 0, 1, 2, . . . N , we also de�ne Sn+1 = Sn +
(
Sn
2

) 1
1−ε1 − 1. Sin
e

αn > 1
1−ε1

for ea
h n = 1, 2, . . . , N − 1, appli
ation of the �rst 
ase of Propo-sition 3 with ε = ε1, α = αn, and S = Sn gives
inf

|zn+1|=Sn+1

‖u‖L∞(B1(zn+1))
> exp

(
−S

αn+1

n+1

)
.That is, Proposition 3 holds true with β = αn+1 and R = Sn+1. In parti
ular,

inf
|zN |=SN

‖u‖L∞(B1(zN )) > exp
(
−SαN

N

)
.Sin
e αN 6 1

1−ε1
, another appli
ation of Proposition 3 (this time using these
ond 
ase) shows that

inf
|zN+1|=SN+1

‖u‖L∞(B1(zN+1))
> exp

(
−CS1+ε1

N+1 logSN+1

)
> exp

(
−S1+ε

N+1

)
,
ompleting the proof. ��4. The proof of Proposition 1We now prove Proposition 1 by following the argument in [1℄. We start fromCartan's Lemma, as given by Malgrange.Theorem 3 (Theorem 2 from Chapter 9 of [10℄). Let K be a re
tangle in C, andlet L,M be 
ompa
t sets in C

ℓ, Cm, respe
tively. Let H = K ∩ {ℜz = 0}. Let
C (z, λ, µ) be a C∞ fun
tion in a neighborhood of H×L×M that is holomorphi
in z and λ with values in GL (m,C). Let K1 = K∩{z ∈ C : ℜz > 0} and K2 =
K ∩ {z ∈ C : ℜz 6 0}. Then there exist fun
tions C1 (z, λ, µ) and C2 (z, λ, µ)in neighborhoods of K1 × L×M and K2 × L×M , respe
tively, satisfying thesame regularity 
onditions as C and su
h that C = C1C

−1
2 in a neighborhoodof H × L×M .Repeated appli
ations of this theorem (with L,M = ∅) produ
e a 
olle
tionof analyti
 fun
tions {γi}i0i=0, where ea
h γi is de�ned on Ui and satis�es Hi =

γi−1γ
−1
i on Ui−1∩Ui. As given, there are no expli
it bounds for these fun
tions



ON LANDIS' CONJECTURE 221
γi, so our goal is to produ
e su
h estimates. To do this, we �nd an invertibleanalyti
 fun
tion h de�ned on R and then set

gi = γih on Ui. (39)Then gi−1g
−1
i = γi−1hh

−1γ−1
i = γi−1γ

−1
i = Hi on Ui−1 ∩ Ui, as desired.To �nd h and establish that both h and gi have good bounds, we rely on theWiener�Masani Theorem. The following statement is from [1℄, see also [11℄.We use this theorem over a re
tangle instead of a ball.Theorem 4 ([1, Theorem 2.1℄). Let A0 be a positive de�nite (N×N)-matrix ofsmooth fun
tions de�ned on the 
ir
le. Then there exists an (N ×N)-matrix hof holomorphi
 fun
tions in the disk extending smoothly to the boundary su
hthat

A0 = h∗hon the 
ir
le, and su
h that g = h−1 is also holomorphi
 in the disk andextends smoothly to the boundary. The matrix h is uniquely determined upto multipli
ation from the left by a 
onstant unitary matrix.Thus, we need to pres
ribe the values of (h−1
)∗

h−1 on ∂R. De�ne the sets
Wi =





Ui \ (Ui ∩ Ui+1) if i = 0,

Ui \ [(Ui−1 ∩ Ui) ∪ (Ui ∩ Ui+1)] if i = 1, . . . , i0 − 1,

Ui \ (Ui−1 ∩ Ui) if i = i0.

(40)First de�ne h on ea
h ∂R ∩Wi so that (h−1
)∗

h−1 = γ∗i γi there. This impliesthat g∗i gi = I on this part of the boundary. Then on ea
h ∂R∩(Ui−1 ∩ Ui), thefun
tion (
h−1

)∗
h−1is de�ned as a 
onvex 
ombination of γ∗i−1γi−1 and γ∗i γi.On
e this pro
ess has been 
arried out, we see that (h−1

)∗
h−1 is de�ned un-ambiguously on ∂R and an appli
ation of the Weiner�Masani Theorem impliesthat there exists an analyti
 fun
tion fun
tion h−1 de�ned in R. In 
on
lusion,the required analyti
 fun
tion h exists.On
e we have established (30), the proof of Proposition 1 is 
omplete. Nowwe work to establish bounds for γi and gi through a series of te
hni
al results.Lemma 4. On Ui−1 ∩ Ui,

1

10
6

|γi−1|
|γi|

6 10 and 1

10
6

∣∣γ−1
i−1

∣∣
∣∣γ−1

i

∣∣ 6 10.Proof. Sin
e Hi = γi−1γ
−1
i on Ui−1∩Ui and we 
an write γi−1 = γi−1γ

−1
i γi =

Hiγi, we see that
|γi−1| 6 ‖Hi‖ |γi| 6 10 |γi| ,
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|γi| 6

∥∥γiγ−1
i−1

∥∥ |γi−1| =
∥∥H−1

i

∥∥ |γi−1| 6 10 |γi−1| .Combining these two bounds leads to the �rst stated estimate. The same ar-gument for the inverses gives the se
ond estimate. �Lemma 5. On Ui−1 ∩ Ui, we have
1

10
6

|gi−1|
|gi|

6 10 and 1

10
6

∣∣g−1
i−1

∣∣
∣∣g−1

i

∣∣ 6 10.Proof. We have
|gi−1|2=tr

(
g∗i−1gi−1

)
=tr

(
gi−1g

∗
i−1

)
=tr

(
γi−1hh

∗γ∗i−1

)

=tr
(
γi−1γ

−1
i (γihh

∗γ∗i ) γ
−1∗
i γ∗i−1

)
=
∣∣γi−1γ

−1
i γih

∣∣26
∥∥γi−1γ

−1
i

∥∥2 |γih|2

=‖Hi‖2 |gi|2 6 102 |gi|2 .Similarly,
|gi|2 = tr (γihh

∗γ∗i ) = tr
(
γiγ

−1
i−1

(
γi−1hh

∗γ∗i−1

)
γ−1∗
i−1 γ

∗
i

)
6

∥∥γiγ−1
i−1

∥∥2 |γi−1h|2

=
∥∥H−1

i

∥∥2 |gi−1|2 6 102 |gi−1|2 .Combining these two observations leads to the �rst bound on Ui−1 ∩ Ui, andthe same bounds hold for the inverses. �Lemma 6. On ∂R ∩ Ui, we have
2

102
6 |gi|2 6 2 · 102 and 2

102
6

∣∣g−1
i

∣∣2 6 2 · 102.Proof. Sin
e g∗i gi = I on ∂R ∩Wi by 
onstru
tion, it follows that |gi|2 = 2there. On ∂R ∩ (Ui−1 ∩ Ui), we de�ne (
h−1

)∗
h−1 = θγ∗i−1γi−1 + (1− θ) γ∗i γifor some 0 6 θ 6 1, from whi
h it follows that

I = θh∗γ∗i−1γi−1h+ (1− θ)h∗γ∗i γih.Then
2 = tr (I) = θ tr

(
h∗γ∗i−1γi−1h

)
+ (1− θ) tr (h∗γ∗i γih)

6 θ102 tr (h∗γ∗i γih) + (1− θ) tr (h∗γ∗i γih) ,where we have used the idea from the proof of Lemma 5. Therefore, 2
102

6 |gi|2on ∂R ∩ (Ui−1 ∩ Ui). And sin
e
2 = tr (I) = θ tr

(
h∗γ∗i−1γi−1h

)
+ (1− θ) tr (h∗γ∗i γih)

> θ10−2 tr (h∗γ∗i γih) + (1− θ) tr (h∗γ∗i γih) ,



ON LANDIS' CONJECTURE 223we obtain 2
102

6 |gi|2 6 2·102. On ∂R∩(Ui ∩ Ui+1), we 
an similarly show that
2

102 6 |gi|2 6 2 · 102. Combining these three bounds leads to the �rst estimatein the 
on
lusion of the lemma. An analogous argument shows that ea
h ∣∣g−1
i

∣∣satis�es the same bounds. �To get interior bounds for |gi|2 on Ui, we de�ne and use a subharmoni
fun
tion v.Lemma 7. For i = 0, . . . , i0, set
c+i = c−i+1 = i

A

δ

b+i = b−i+1 = − i (i+ 1)

2
A− iB,where A = 10.5 log 10 and B = 3 log 10. Then the fun
tion de�ned pie
ewise by

v=

{
max

{
|gi−1|2ec

−

i x+b−i, |gi|2ec
+
i x+b+i

} on Ui−1∩ Ui for i=1, . . . , i0,

|gi|2 ec
+
i x+b+i on Wi for i = 0, . . . , i0

(41)is 
ontinuous and subharmoni
 on R.Proof. Re
all that if f = eφ, where φ is 
ontinuous and subharmoni
, thenso is f too. Sin
e log |g| is subharmoni
 whenever g is analyti
 and the fun
-tion cx + b is harmoni
, then for any analyti
 g we see that log (|g|2 ecx+b) =
2 log |g|+ cx+ b is 
ontinuous and subharmoni
. Sin
e ea
h gi is analyti
, ev-ery fun
tion used to de�ne v is subharmoni
. In parti
ular, v is 
ontinuousand subharmoni
 on ea
h Wi. Moreover, sin
e the maximum of two 
ontinuoussubharmoni
 fun
tions remains 
ontinuous and subharmoni
, v is also 
ontin-uous and subharmoni
 on ea
h Ui−1 ∩ Ui. It remains to show that we have
ompatibility along the boundaries of ea
h Wi and Ui−1 ∩ Ui.For i = 1, . . . , i0, set xi = iδ + 1

4δ, x−i = iδ, and x+i = iδ + 1
2δ. If weadditionally de�ne x+0 = 0 and x−i0+1 = 1, note that

Ui−1 ∩ Ui =
[
x−i , x

+
i

]
× [0, 1]and

Wi =
[
x+i , x

−
i+1

]
× [0, 1] .If x is near x−i , then x is near Wi−1 ∩ (Ui−1 ∩ Ui) and sin
e c+i−1 = c−i and

b+i−1 = b−i , we want v (x, y) = |gi−1|2 ec
−

i x+b−i in this region. Similarly, if x isnear x+i , then we need to show that v (x, y) = |gi|2 ec
+
i x+b+i .By Lemma 5

|gi|2 ec
+
i x+b+i 6 102 |gi−1|2 ec

+
i x+b+i = |gi−1|2 ec

−

i x+b−i 102e(c
+
i −c−i )x+(b

+
i −b−i ).



224 B. DAVEY, C. KENIG, J.-N. WANGIf x ∈ [x−i , x
−
i + εδ) for some ε > 0, then

(
c+i −c−i

)
x+

(
b+i −b−i

)
=

A

δ
x−(B+iA)<

A

δ
(iδ+εδ)−(B+iA)=Aε−B.Assuming that ε 6 1

10.5 , we have 102eAε−B = 102e(10.5ε−3) log 10 6 1 and we
on
lude that
|gi|2 ec

+
i x+b+i < |gi−1|2 ec

−

i x+b−i .Therefore, when x ∈ [x−i , x
−
i + 1

10.5δ),
max

{
|gi−1|2 ec

−

i x+b−i , |gi|2 ec
+
i x+b+i

}
= |gi−1|2 ec

−

i x+b−i ,proving that v is 
ontinuous along Wi−1 ∩ (Ui−1 ∩ Ui).We repeat the argument near the boundary ofWi∩(Ui−1 ∩ Ui). By Lemma 5,
|gi−1|2 ec

−

i x+b−i 6 102 |gi|2 ec
−

i x+b−i = |gi|2 ec
+
i x+b+i 102e−[(c

+
i −c−i )x+(b

+
i −b−i )].If x ∈ (x+i − εδ, x+i ] for some ε > 0, then

(
c+i − c−i

)
x+

(
b+i − b−i

)
=

A

δ
x− (B + iA) >

A

δ

(
iδ +

1

2
δ − εδ

)
− (B + iA)

=
A

2
−Aε−B.Assuming that ε 6 11

21 , we have 102eAε+B−A
2 = 102e(10.5ε+3−10.5) log 10 6 1 andwe 
on
lude that

|gi|2 ec
+
i x+b+i < |gi−1|2 ec

−

i x+b−i .Therefore, when x ∈ (x+i − 11
21δ, x

+
i ], we have

max
{
|gi−1|2 ec

−

i x+b−i , |gi|2 ec
+
i x+b+i

}
= |gi|2 ec

+
i x+b+i ,proving that v is 
ontinuous along Wi∩ (Ui−1 ∩ Ui) as well and 
ompleting theproof. �Now we use the maximum prin
iple to estimate v in terms of max

∂R
v.Lemma 8. For the fun
tion v as de�ned in (41), there exists a universal
onstant C > 0 so that v 6 CeC/δ2 in R.Proof. We start with ∂R∩Wi. Sin
e v = |gi|2 ec

+
i x+b+i on Wi and |gi|2 = 2 on

∂R∩Wi, we have
v = 2ei

A
δ
x−

i(i+1)
2

A−iB 6 2ei
A
δ
x−

i+1−
i(i+1)

2
A−iB = 2e

i(i+1)
2

A−iB on ∂R ∩Wi.



ON LANDIS' CONJECTURE 225Taking a supremum over i ∈ {0, . . . , i0}, we see that
v 6 2e

i0(i0+1)
2

A−i0B on ∂R ∩
( i0⋃

i=0

Wi

)
. (42)Next we examine v on ∂R ∩ (Ui−1 ∩ Ui). There we have x−i 6 x 6 x+i and

v = max
{
|gi−1|2 ec

−

i x+b−i , |gi|2 ec
+
i x+b+i

}. By Lemma 6, |gi−1|2 6 2 · 102 and
|gi|2 6 2 · 102 in Ui−1 ∩ Ui. Examining the exponentials, we get

max
{
ec

−

i x+b−i , ec
+
i x+b+i

}
6 max

{
ec

−

i x+
i +b−i , ec

−

i+1x
+
i +b−i+1

}

= max

{
e

i2−1
2

A−(i−1)B , e
i2

2
A−iB

}
= e

i2

2
A−iB,sin
e A = 10.5 log 10 and B = 3 log 10. Therefore,

v 6 2 · 102e i2

2
A−iB on ∂R ∩ (Ui−1 ∩ Ui) .Taking a supremum over i ∈ {1, . . . , i0}, we see that

v 6 2 · 102e
i20
2
A−i0B on ∂R∩

[ i0⋃

i=1

(Ui−1 ∩ Ui)

]
. (43)Combining (42) and (43) shows that v 6 2e

i0(i0+1)
2

A−i0B on ∂R. Sin
e i0 =
1
δ − 3

2 , the 
on
lusion of the lemma follows from an appli
ation of the maximumprin
iple. �Now we have all of the preliminary results required to prove Proposition 1.Proof of Proposition 1. By Theorem 3, there exists a 
olle
tion {γi}i0i=0 ofanalyti
 fun
tions, where ea
h γi is de�ned on Ui and satis�es Hi = γi−1γ
−1
ion Ui−1 ∩ Ui.On ea
h ∂R ∩Wi, de�ne h so that (h−1

)∗
h−1 = γ∗i γi there. Then on ea
h

∂R ∩ (Ui−1 ∩ Ui), de�ne (
h−1

)∗
h−1 to be a 
onvex 
ombination of γ∗i−1γi−1and γ∗i γi. Sin
e (

h−1
)∗

h−1 is de�ned unambiguously on ∂R, an appli
ation ofTheorem 4 implies that there exists an analyti
 fun
tion fun
tion h−1 de�nedin R.On ea
h Ui, de�ne gi = γih. Then ea
h gi is de�ned and analyti
 on Ui with
gi−1g

−1
i = γi−1hh

−1γ−1
i = γi−1γ

−1
i = Hi on Ui−1 ∩ Ui.For any i ∈ {0, 1, . . . , i0}, |gi|2 ec+i x+b+i 6 v on Ui, and from Lemma 8 andthe de�nition of v as given in (41) it follows that

|gi (x, y)|2 6 v (x, y) e−c+i x−b+i 6 v (x, y) e−c−i+1x−b−i+1 6 CeC/δ2 in Ui.
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i , 
ompleting the proof. �Referen
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