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ON LANDIS’ CONJECTURE IN THE PLANE WHEN THE
POTENTIAL HAS AN EXPONENTIALLY DECAYING
NEGATIVE PART

© B. DAVEY, C. KENIG, J.-N. WANG

In this article, we continue our investigation into the unique continuation
properties of real-valued solutions to elliptic equations in the plane. More
precisely, we make another step towards proving a quantitative version of
Landis’ conjecture by establishing unique continuation at infinity estimates
for solutions to equations of the form —Au + Vu = 0 in R?, where V =
Vi—V_, Vi € L, and V_ is a nontrivial function that exhibits exponential
decay at infinity. The main tool in the proof of this theorem is an order of
vanishing estimate in combination with an iteration scheme. To prove the
order of vanishing estimate, we establish a similarity principle for vector-
valued Beltrami systems.

§1. Introduction

In this paper, we consider the unique continuation properties of real-valued
solutions to equations of the form

—Au+Vu=0 (1)

in R%. We assume that V =V, — V_ where Vi > 0 satisfies
IVl oo 2y < 1, (2)
V_ (2) < exp (—co |z|1+8°) , z€R? (3)

for some gp > 0. The main result of this article is the following quantitative
form of Landis’ conjecture for solutions to (1).

Key words: Landis’ conjecture, quantitative unique continuation, order of vanishing,
vector-valued Beltrami system.
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Theorem 1. Assume that V: R? — R satisfies (2) and (3). Let u: R? - R
be a solution to (1) for which

lu(z)| < exp(Colz]), (4
lu(0)] =1 (5)

Then for any € > 0 and any R > Ry (Cy, co,€0,€), we have
|z<i)]\a:fR ull Lo (5 (20)) = exP (—R7). (6)

This theorem improves upon the work in [8] (see also the subsequent results
in [4] and [5]) since we now allow for V_ to be a nontrivial function.

To prove Theorem 1, we follow the usual approach and prove an order of
vanishing estimate for a scaled version of equation (1). Since the potential func-
tion exhibits decay at infinity, we combine the scaling argument first developed
in [2] with an iteration scheme similar to the one presented in [3] (and further
developed in [9]) to prove Theorem 1.

The notation B, (zp) is used to denote the ball of radius r centered at
2o € R2. The abbreviated notation B, will be used when the centre is under-
stood from the context. We also use the notation @, (zp) to denote the cube of
sidelength 27 centered at zg € R?, and we may abbreviate the notation when
it is clear from the context. For the order of vanishing estimate, we consider
solutions to (1) in Q) for some b > 1.

Theorem 2. Let F be a function for which 1 < F(\) < X for all A > 1.
For some A\ > 1, setb =1+ ﬁ Assume that [|Vi||lpe(q,) < A2 and that
<

82, where

IVl oo (@)
B eV
~ log A
for some ¢ > 0 and a constant m > 0 to be specified below. Let u be a real-valued
solution to (1) in Qp that satisfies, for some p > 0,

il oy < exP (CLA) (8)
lll o) = exP (—1NP) (9)

exp (—mA) (7)

Then for any r sufficiently small,

lull oo,y = rXF, (10)

where ¢ = max {1,p} and C depends on C1, ¢1, and c.

Since we are working with real-valued solutions and equations in the plane,
we follow an approach that is based on the ideas first developed in [8].
In particular, we rely on tools from complex analysis to prove our theorem.
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In [4,5, 8], the first step in the proof of the order of vanishing estimate is
to show the existence of a positive multiplier and establish good bounds for
it. Since the negative part of V is now assumed to be nontrivial, our usual
approach to establishing the existence of a positive multiplier breaks down.
Thus, we introduce a positive solution to an associated equation with a shifted
potential function. This positive function allows us to transform the PDE for
u into a divergence-form equation. The resulting equation is not divergence-
free, but it resembles a higher-dimensional divergence-free equation. Therefore,
we mimic ideas from the 3-dimensional setting, and introduce a vector-valued
stream function that gives rise to a vector-valued Beltrami system.

The main challenge that we overcome is understanding the quantitative be-
havior of solutions to vector-valued Beltrami equations. In the scalar setting,
an application of the similarity principle in combination with the Hadamard
three-circle theorem allowed us to quantify all solutions to the resulting Bel-
trami system. As a similarity principle with bounds was not available to us
in the vector-valued setting, we prove one here using Cartan’s Lemma, the
Wiener-Masani Theorem, and the ideas from [1]. With this new similarity
principle, we can prove our three-ball inequalities by applying the Hadamard
three-circle theorem component-wise.

Each section in this article describes an important proof. Section 2 gives the
proof of Theorem 2 where each major step is presented in a subsection. The
four steps in this proof are: the introduction of a positive multiplier and its
properties, the reduction from the PDE to a vector-valued Beltrami system,
the quantitative properties of solutions to vector-valued Beltrami systems, and
the three-ball inequality. The proof of Theorem 1 is presented in Section 3. We
first present the proposition behind the iteration scheme, whose proof relies
on the order of vanishing estimate given in Theorem 2. Then we repeatedly
apply the proposition to prove Theorem 1. Finally, Section 4 presents the proof
of an important proposition in the quantification of solutions to vector-valued
Beltrami systems.

§2. The proof of Theorem 2

2.1. The positive multiplier. In [8] and [4], the first step in the proofs
of the order of vanishing estimates is to establish that a positive multiplier
associated with the operator (or its adjoint) exists and has suitable bounds.
Since we are no longer working with a zeroth order term that is assumed to be
nonnegative, we take a somewhat different approach here.

Define

Vs (z,y) =V (z,y) + 6.
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From the assumptions [[V_|| «(q,) < 52, Vil ooy < ANoand A =126

(choosing A sufficiently large), it follows that 0 < Vs < 2A? a.e. in Qp. There-
fore, we may mimic the techniques from [8] and [4] to construct a positive
multiplier associated with the equation

Ap—Vsp=0 inQp (11)
Set ¢1 (z,y) = exp (\/5)\3:) Since
Ay — Vspr = (2X% = Vs) ¢1 > 0,
we see that ¢ is a subsolution. Set ¢o = exp (\/g)\) and notice that
Apy — Vsgo = —Vsp2 < 0,

SO ¢9 i a supersolution. Since ¢9 = ¢1 in @y, there exists a positive solution
¢ to (11) for which

exp (—\/g)\) < ¢ < exp <\/§)\) (12)

in Q. By the gradient estimate for Poisson’s equation (as in [7] for example),
we have

Co\?
r

IVl oo,y < 19l oo (B (13)

whenever a > 1, ar < b. Note that C;y ~ (o — 1), A similar estimate is true
for u as well.

We present an estimate similar to one in [8] that will be instrumental below.
Lemma 1. Recall that b =1+ ﬁ, where 1 < F(A) < A. Ford=1+ %(A),
there is an absolute constant Cy for which

IV (10g @)l oo () < C2A,

where ¢ is a positive solution to (11).

Proof. We begin with an L? estimate for ® := log¢. Let 6 € C5° (Qp) be a

smooth cutoff function with § = 1 in Q3, where d=1+ %(A). The assumption

on b implies that b — d > =+ and therefore VO o,y < CF(A) and

IF(N)
1A oo ) < C [F ()2 From (11) it follows that in Qs
AD + |V = V;. (14)

Multiplying both sides of this equation by 6% and integrating by parts, we see
that

1
/|v<1>|292:/v;;92+/v(92) Vo </%92+§/|vq>|292+2/|ve|2.
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Therefore,
/\vq>|2 < /\V(I)\2«92 < 2/1/;;92 +4/ Vo> < C ()\2 +[F ()\)]2) ,
o

where we have used the bound on Vj and the inequality d< %. Since F' (\) < A,
we have ||V<I>||L2(Q~) < C\, where C is an absolute constant.
d

We rescale equation (14). Set ¢ = % for some C' > 0. Then (14) is equivalent
to

pAp +|Ve? =V in Q, (15)
where pu = % and V = % Now choose C sufficiently large so that

HT/HLOO(Qb) <1, /\w\? <1. (16)

Claim 1. For any z € Qua, if p < cr, 1 < gppry, and conditions (15) and (16)
are fulfilled, then

/ Vol < Cr.

B, (z)

Proof of Claim 1. We use the abbreviated notation B, to denote B, (z) for
some z € Qg. Let n € C§° (Ba,) be a cutoff function such that n =1 in B,. By
the divergence theorem,

0 :u/div (Ven?) = ,u/Agonz +2u/77Vs0‘V77. (17)

Now we estimate each term. By (15) and (16),

/uAsonQZ_/IWI /V” /‘W|2"2+HVHLM (B) /1

Bar  (18)
—/|Vg0|2772—|—0r2.

By Cauchy—Schwarz and Young’s inequality,

‘m/nw-w' <2 </|W|2772>1/2 (/'vmz)l/z (19)

1
< 5/\V¢\2n2+0u2-
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Combining (17)-(19) and using that pu < ¢r, we see that

/ Vol / Vol n? < Cp? + Cr < O, (20)

proving the clalm. (]

We now use Claim 1 to give a pointwise bound for Vi in Q4. Define

on (2) = %w(uZ)-

Then
Vo (2) =Ve(uz),  Apu(z) = ple (pz).
From (15) it follows that

Apy + [Voul* =V (n2) =V, (2), H‘N/Hm(&)

/vauz Z—/\V\ C(2u)* =C,

where we have used Claim 1. From Theorem 2.3 and Proposition 2.1 in Chapter
V of [6], it follows that there exists p > 2 such that

IVeull oy < C. (21)

Pu(2) = / ¥
M |B | e
Since Vg, = Vg, we obtain
Ap, = — |v<5“|2 + ‘7# :=( in Bj.
Clearly, [|C|| zr/2(p,) < C- Moreover, by Holder, Poincaré, and (21),

< 1.

Moreover,

Define

H&uHLpﬂ(Bl) <C HGMHLP(BI) <C HVGMHLP(Bl) < C.
By Theorem 9.9 from |7], for example,
”@u”w2,p/2(3r) <G,
for any r < 1. If p > 4, then it follows that
1980l e 5, < C.
Otherwise, assuming that p < 4, a Sobolev embedding shows that

o p <O
V8, o, < C
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Since 42Tpp > p, we may repeat these arguments to show that for some r’ < 1

we have
HVSDHLOO(BM/) = HVSOMHLOO(BT,) = HVQZ#HLOO(BT,) < C.

This derivation works for any z € Qg and any p < pg. Since ¢ = %, the
conclusion of the lemma follows. O

2.2. Reduction to a vector-valued Beltrami equation. Now we use the
positive multiplier ¢ from above to reduce the PDE to a first-order Beltrami
equation. The novelty here is that the resulting equation is a vector equation
instead of a scalar equation as it was in [8]. With u and ¢ satisfying (1) and (11),
respectively, we define

and a computation shows that
V- (¢*Vv) +6%¢*v =0 in Qy. (22)

Definition 1. For any 0 € R, define the operator Vs = (9;,0y,6), where ¢
denotes multiplication by . That is, if f is an arbitrary scalar function and
F = (Fy, F,, F3) is an arbitrary vector function, then

v&f = (8wf) 8yf’ 5f)
Vs-F =divs F = 0, Fy + 0, Fy + 6 F3
V5 xF = Curl(;F = (8yF3 — (5F2,(5F1 — 8IF3,8IF2 — 8yF1)

With this new notation, (22) may be rewritten as
Vs (¢°Vsv) =0  in Q. (23)

Therefore, the positive multiplier ¢ for the related equation (1) has been used
to transform the PDE (1) into a d-divergence-free equation.

If we take the standard gradient, divergence, and curl in R3, and replace 0,
with multiplication by the constant d, we get the operators Vg, Vs- and Vgx. A
number of the relationships between gradient, divergence, and curl are inherited
for these new operators. For example, V5 - (Vs x F) =0, Vs x Vsf = 0, and
Vsx (Vs xF)=—(A+6)F+Vs(Vs-F).

The next step is to generalize the definition of the stream function given
in [8]. Since we have a d-divergence-free vector field, ¢?Vsv, the idea (that
comes from the 3-dimensional setting) is to define a vector-valued function G
that satisfies

Vs x G = ¢?Vsuv. (24)
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That is, if G = (v1,v9,v3), then

Oyvs — dvy = H20,v
—0pv3 4+ 6v1 = 20 v . (25)
Opv2 — Oyv1 = §p3v

Note that when § = 0, this system reduces to the defining equations for the
scalar stream function v3. When & # 0, one possible solution to this system is
obtained by setting vs = 0. That is,

vy =6 1¢%90
{ vy = —01¢0v - (26)
Define
wy = ¢%v
{ wy = vy ++v/—1v; (27)

With 8= £ = 3 (£ +v=15),

Owy =0 (¢*) v+ ¢"0v = 20 (log ¢) ¢*v + % [¢2§—Z + \/_—mfg_ﬂ

and

a'ZU2:8'U2+\/_18'01:%|:%_%:|+ V_1|:

8'02 i 8'1)1
ox y 2

oy | Ox
) _
= §w1 + 0 (log ¢) wa — 0 (log @) wa.

Set a = 0 (log ¢) so that @ = 0 (log ¢) = 0 (log ¢), since ¢ is real. We define

o= Eg—; if wy #0 5— (53—3 if wy #0
10 otherwise ’ 10 otherwise

We use the notation T' = T, to denote the Cauchy-Pompeiu operator on Q).
More details can be found in the next subsection, but for now we rely on the
property that d7q, f = fxq,. It follows that

d (e—T(2a)wl) _ e—T(2a)5w1 _ 2046_T(2a)’w1 — _ge—T(2a)w2’

5 (e_T(a_a)w2) = e T B Gy — (o — a) e T D)y, — ge—T(a—&)wl'
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If we set W1 = e Ty, @y = e T(@=8) 4y and introduce the vector notation
L [ B 0 _ge—T(a—i-a)
then we have
oG —Gw =0 in Qq. (28)

2.3. Solutions to Beltrami matrix equations. Towards understanding
the behavior of solutions to (28), we study the behavior of matrix solutions to
the equation

OP—AP=0 in R:=[0,1] x[0,1]. (29)
For a 2 x 2 matrix A, recall that
|A]? = tr (A*A),
where A* is the Hermitian adjoint of A. We use the notation [|-| to denote
the operator norm of a matrix. Observe that for 2 x 2 matrices A and B,
|AB| < |A[||B]]

IA] < JAl < V2] 4]
11l = V2.
For a 2 x 2 matrix function A, we write

[Allo = sup laijll oo -
4,7=1,2

The goal is to solve the equation OP = AP in R and show that both P and P!
have good control in terms of M = ||A]| .
We first need some notation. For some § > 0, set

= [ 3]

Then V;_1NV; = [z’é, 10 + %5 and V;NV; # @ if and only if j = i+ 1. Assuming
that ¢ is chosen so that ig := % - % € N, we have

i0
[07 1] = U Vi.
=0
Define
UZ' = VZ X [0, 1] .

The first proposition serves as the main tool in the proof the second propo-
sition.
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Proposition 1. Let {Hz}zozl be a collection of 2 x 2 matrices such that each H;
is defined on U;—1 NU;, ||H;|| < 10, HHz_lH < 10, and both H; and HZ-_1 are
analytic on U;—1 NU;. Then there exists a collection of 2 X 2 matrices {gi}zozo,
where both g; and gi_l are defined and analytic on U;, with H; = gi_lgi_l on
U;_1 N U;. Moreover, there exists a constant C' > 0 so that

12 :
|gi|2+|gi 1‘ < CeCl” in U, (30)

The proof of Proposition 1 can be found in Section 4. Here we use the result
to prove the following proposition.

Proposition 2. Let A be a 2x2 matriz function defined on R with M = || A|| ..
There exists an invertible solution to OP = AP in R with the property that

HPH4-HP—H\gemp[CA42aogA4f . (31)

Proof. For some C7 > 0 to be specified below, define ¢ so that dlog (1/0) <
ﬁ. In particular, if M > My, then there exists ¢; depending on My and Cy

so that if
C1

i = ——-—
Mlog M’
then the bound above is satisfied and ig = % — % € N.

We first solve the equation OP = AP in Rs := U;. If P a solution and
P =1+ @, then

(32)

8Q = 9P = AP = A+ AQ.
Let
T, (F) () =+ [ O 40 e).

m) z—¢&
Rs
Note that

9 (Tr; (F)) = Fxg;,-

Since we need to solve the equation 0Q — AQ = A in Rs, we solve
9(Q — Tr, (AQ) — Tg, (A)] = 0.
Therefore, we seek solutions to
Q — Tr, (AQ) =Tk, (A) in Rs. (33)
Observation. There exists a C > 0 so that
sup / ! dw (&) < Cdlog(1/9).

zER§ |Z _£|
Rs
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Recall that Rs = U; = [2’5, 10 + %5] x [0, 1]. Partition [0, 1] into equal intervals I},
of length at most %(5 such that
[2/36] 3
vi= U [25, i6 + 55} x I
k=1
Assume first that z € [Z’é, 10 + %5] x I1. For k > 3,if £ € [2’5, 10 + %5] X I,
then |z — &| ~ kd, and

1 1, ¢
| paeo<Et=k

[i6,id+3 6] x I,
Moreover,
/ L dw(9) < / / dr ~ §.
|z —¢] \Z —¢ |
[i6,i6+3 6] x (11UI2) B(z,56)
Hence

[2/381
/|Z_£| dw (€) < z:: - =0 (log (1/9)) .

When z € [z’é, 10 + 5(5] x Iy, for kg > 1, the result follows similarly and we
have proved the observation.

Claim. There exists a C1 > 0 so that || TR, (F)HLOO(RE) < Cidlog (1/9) | F|| o
This claim follows directly from the observation above and the definition of
the operator Tg;.

By the definition of ¢ given in (32), we have C1dlog (1/6) M < 1/3. There-
fore, we can solve (33) via a Neumann series approach. Moreover, the resulting
solution @ has [|Q| < 2C16log (1/6) M < 1 and then P = I + Q satisfies
|P|| <3 and ||P7!| < 3.

Using the construction described above, for each ¢ = 0,... 4, define P; to
be the matrix solution to

OP, = AP, in U;
with |P;|| < 3 and |P!|| < 3. On Ui_y N U;, define H; = P} P;. Clearly,
|H;|| <10 and ||H; || < 10. As

OH; = —P 40P, \P_\P, + PZ}0P, = —P_Y AP, PZ\ P + PZYAP, =0,

each H; is analytic on U;_1 N U;. A similar argument shows that each HZ-_1
is also analytic on U;_1 N U;. Therefore, Proposition 1 is applicable. That is,
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there exist functions g; defined and analytic on U; such that H; = g;_1g; Lon
U;_1 NU; and |gz-|2 < CeCl% on Ui. 4
Now we use the collections {P;};2 and {g;};" to define a function P on
all of R. On Uj;, set P = P;g;. Since each g; is analytic, we have 0P = 0P;g; =
AP;g; = AP on each U;, as required. As H; = Pi__llPZ- = gi_lgi_l, we have
P,g; = P;_19;_1 on U;_1 NU;. Moreover,
— _ _ 2
IPI+ | PY) = 1 Bgill + (g7 P S €77
Referring to (32), the estimate (31) follows. O

Remark. Although this construction was done on the unit rectangle (for con-
venience), since d € [1,3/2], the result still holds with a modified constant
when R is replaced by Qg.

Lemma 2. Let
Coo = SUpP {HTSH - - }
T ella Qs Lo (Qs)—L>(Qs)
Let

C3= sup {C2(s)},
s€[1,3/2]

where Cy (s) is the constant given in Lemma 1 on Qs. If we set m = 2¢5,Cs,
then the matriz G belongs to L™ (Qq) and satisfies

CVA
1Gll Loy < g\’

Proof. Recall that
0 _g o—T(a+3)

G = % oT(atd) 0

Since o = 9 (log ¢), @ = 9 (log ¢), |&| = |a|, and d € [1,3/2], from Lemma 1 it
follows that
ledl oo (@) < C3A and  |d][ oo,y < O3

Therefore, ||T' (o + )| foc(g,) < 2€00C3A and then

VA CvVA
5Tog A exp (—mA) exp (2¢50,C3\) = Tog X’

where we have used (7). O

)
||G||Loo(Qd) < 5 eXP (2¢50C3A) <

By combining the previous two results, we reach the following observation.
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Corollary 1. There exists an invertible matriz solution P to
OP =GP in Qg (34)
with the property that
1Pl (@) + 1P Ml o gy < exP (CN).
Lemma 3. If W is a solution to (2§), then W = Pl_i, where P is the invertible
matriz given in Corollary (1) and h is a 2-vector with holomorphic entries.

Proof. Since P is invertible, it suffices to show that P! is a holomorphic
vector. Using equations (28) and (34), we compute:

9 (P~ 'w) =P loPP "5+ P10 = —P'GPP 'w+ PTG = 0,
as required. O

2.4. Three-ball inequality. We now come to the three-ball inequality. Al-
though we have used cubes for the construction of the matrix solution P, we
now work over balls and use that P and w are solutions in By C (4. Using
that @ = Ph and [Pl 00 (p,) < exp (CA), we have

@1 oo 5y = IP11R1+ Pr2h2|l oo ()
<exp (CN) [ o)+ 12 o)
<exp (ON) [0 (5, ) 11 52 12 e 5,y 212

where we have applied the Hadamard 3-circle theorem to h; and he with
0<r<1<dand

T logr — log =

_1_log(h) _ >+ 7iv) > CF (\)logr- (35)
0 logd log (1 + 2F )

Now, using that & = P& and HP 1HL°° By S X p(C)), we get

exp (CA)||w1 [ oo () < || Py w1 +p1 @2“@0(3 [P @1+py w2HLoo (By)

T/2

+|pa @ +p2—21@2Hi°°(BT/2 P2 @1+ w2HL°° (By)

_ 4 6
< (Ip5 @[l (5, ) + 1922 B e 5, )
_ e 1-6
% (P51 o ) + 1953 el o)

_ 4 7]
4 (163 e, ) + 952 e, )
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L . 1-0
X (szl leLOO(Bd) + [|p2s w2HL°°(Bd))
6
<2exp (ON) (112, ) + 12l e (5, )
N B 1-0
% (11 gy + N2ll i) -
Recall that @7 = e T ¢y and since v = E, we have

Wy = 6 Le T~ ¢ (—D,u + i0yu) + u (8, — 1Dy0)] .

From Lemma 1 it follows that [|a[| e p,) < CoA and [[a]| e (p,) < C2A. There-
fore, ||T (o — @)oo (p,) < 2¢C2A and [T (2a)||poo(p,) < 2¢00C2A as well.
Using (12), we see that

||w1||Loo(BT/2) <exp (CA) ||U||LOO(BT/2)
and a similar estimate holds in B,. Using estimate (13), we have
~ -1
12l oo (5, ) < 07 exp (CA) 19l] oo (5, ) IVUll oo (5, )
-1
+6 " exp (CA) ||u||Loo(Br/2) HVQSHLOO(BT/Q)

) CA2
<0 exp (CN) [1¢ll o (5, ) ( [l oo 5, >>

_ C\2
+67 exp (Ol 5,) (- 16115,
<0 exp (CA) [|ull oo 3,
and
[ @l oo () < 07 (b—d) " exp (CN) HUHLOO(Bb <8 exp (ON) [[ull oo,
where we have used that b —d = 2F1()\) . Observe also that

Il sy < [|F 007 | < o @) 1] s

Combining our observations, we have

0
||u||[oo B < exp (C)\) ||u||Loo B +4 Lp—=1 ||u||Loo B,
( ) ( 7‘/2) ( )

x [l e ) + 07 Nl e sy

<6 exp (ON) (1 [l ) Tl
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0
<ot exp (€ + C) A (r ull (s,
where we have applied (8). By using (7), (9), and (35), it follows that

lul >Tc\/X g | N+ (C+ Co+m) A
L=(By) Z Mo x P 6
xp [C

F (A) Mlogr] > rO ),

as required.

§3. The proof of Theorem 1

We begin with a proposition that serves as the main tool in the iteration
scheme.

Proposition 3. Assume that V : R? — R satisfies (2) and (3). Letu : R? - R
be a solution to (1) for which (4) holds. Let € € (0, S

any S > 5(00,00,50,5), there exists an o € (1,2] so that

). Suppose that for

|Z%)I‘1£SHU’”L°°(31(20)) 2 exp (—59). (36)

1
SetR:S—F(g)“8 -1
(1) If a > 1—16, then with = o — O‘T_le, we have

: _pB
it ol oy 2 o0 (R7). (37)

2) Ifae (1, 1%] then

|zilr\1:fR ||u||L°°(Bl(z1)) 2 exp (_CRH_E log R) ) (38)

where C' depends on Cy.

1
Proof. Define T' = ( )1 cand set b = 1+ ﬁ Let z; € R? be such that
|21/ =95+ T — 1 = R. Define

u(z)=u(z1+7Tz)
V(2) =TV (21 +T%).

< T?
L (Qp)

< T?exp [—co (g - 1)1+£0]. Moreover,

Then A — Vi = 0 in Qp. Assumption (2) implies that H‘N/Jr

while condition (3) gives HV H
L>(Qy)
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[0l oo (B,) < €xP [Co (35S + 2T)] < exp (5CyT) and from (36) we see that with
Z0 = 5%7 ||17||Loo(31) = ||u||L°°(B1(zO)) > exp (—5%).
With A = T', we see that b = 1+17° and H‘7+HL ) < A%, Furthermore, if S
(@b

1+e

is sufficiently large in the sense that w > ?;—’;1 (which is always possible
(5/2)1=¢

because of the relationship between e and (), then we have Hf/_ H < 62

Lo (Qp)
where ¢ is given by (7) with ¢ depending only on m. With Cy = 5Cp, we see

that ||l oo (p,) < exp (C1A). Finally, setting ¢; = 4 > 2% and p = a (1 —¢),
we have [|t| oo g,y = exp (—c1AP). Now we may apply Theorem 2 to conclude
that
[l oo 3,y = 7
for r < 1, where ¢ = max {p,1} + ¢ and C depends on Cy and m. Choosing
r=T7"1= X1 we see that
[ull oo By (1)) = €xP (=CA?log A) = exp (=CT?logT).

Ifa> theng=p+e=a—(a—1)c € (1+¢a). If S is sufficiently

large in the sense that
2

(/2% _ ¢
log (S/2) ~ 1—¢’
then R®? > CT%log T and it follows that

[ull oo By (20)) = €XP (—R’B) -

Since z; € R? with |2;| = R was arbitrary, (37) has been proved.
On the other hand, if o € (1, 1715], then p < 1 so that ¢ = 1 + . Since
R > T, it follows that

[ull oo (By (1)) = €xP (-CR'"*1ogR).

Again, since z; € R? with |z;| = R was arbitrary, (38) follows. O
Now we present the proof of the main theorem.

Proof of Theorem 1. Let ¢ > 0 be given; put &1 = 5 and suppose that
e1 € (0, 5%;). Since HV”Lw(R% < 1, we apply, for example, Lemma 3.10 in |2]
conclude that if |zp| > 1, then

|z0]=S0
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where ¢ depends on Cp. We choose ap € (4/3,2] so that cS4310g S < S0,
where S (Cy, co, €0, 1) is the lower bound on S given in Proposition 3. For any
So = S we see that

\zoi|n=f HUHLOO(Bl(Zo)) 2 €xp (_5810) )

Assume that «g , 1, , define aj, 41

Qyy — ""2_161 and

T

observe that as long as oy > 1 —, we have % < 1 — 2. Therefore, there
exists N € N such that o, > —— for allm=0,1,...,N—1, while ay < ﬁ
1
For each n=0,1,2,...N, we also define S,41 = S, + ( )1 1 — 1. Since
ap > 1 for each n =1,2,..., N — 1, application of the first case of Propo-
sition 3 w1th £E=¢€1, @ = Qp, and S =5, gives
. Qi
\Zn+1l\rifSn+1 ||u||L°°(Bl(Zn+1)) Z exp (_Sn—i-*l—l) :
That is, Proposition 3 holds true with § = a,+1 and R = S,,41. In particular,

|ZN1|Hf ull oo (B (27 = €xP (—SFY) -

ﬁ, another application of Proposition 3 (this time using the
second case) shows that

Since ay <

inf |ull ooy 2y yy)) = €XP <—0511fo log SN+1> > exp (=S\H) -
leN+1|=SN+1
completing the proof. O

§4. The proof of Proposition 1

We now prove Proposition 1 by following the argument in [1]. We start from
Cartan’s Lemma, as given by Malgrange.

Theorem 3 (Theorem 2 from Chapter 9 of [10]). Let K be a rectangle in C, and
let L, M be compact sets in C¢, C™, respectively. Let H = K N {Rz = 0}. Let
C (z,\, 1) be a C= function in a neighborhood of H x L x M that is holomorphic
in z and X with values in GL (m,C). Let K1 = KN{z € C: Rz > 0} and K2 =
KNn{zeC:Rz<0}. Then there exist functions Cy (z, A\, u) and Cs (2, \, j1)
in neighborhoods of K1 x L x M and Ko x L X M, respectively, satisfying the
same reqularity conditions as C' and such that C = 0102_1 in a neighborhood
of Hx L x M.

Repeated applications of this theorem (with L, M = @) produce a collection
of analytic functions {~;};2,, where each ; is defined on U; and satisfies H; =
Yi-17; Lon U;_1NU;. As given, there are no explicit bounds for these functions
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s, 80 our goal is to produce such estimates. To do this, we find an invertible
analytic function h defined on R and then set

Then gi_lgi_l = fyi_lhh_lfyi_l = 'yi_l'yi_l = H; on U;_1 NU;, as desired.

To find h and establish that both h and g; have good bounds, we rely on the
Wiener-Masani Theorem. The following statement is from [1], see also [11].
We use this theorem over a rectangle instead of a ball.

Theorem 4 (|1, Theorem 2.1|). Let Ay be a positive definite (N x N )-matriz of
smooth functions defined on the circle. Then there exists an (N x N)-matriz h
of holomorphic functions in the disk extending smoothly to the boundary such
that
Ag=h*h

on the circle, and such that ¢ = h™' is also holomorphic in the disk and
extends smoothly to the boundary. The matriz h is uniquely determined up
to multiplication from the left by a constant unitary matriz.

Thus, we need to prescribe the values of (h_l)>k h~! on OR. Define the sets

Ui\ (Ui N Uit1) if i =0,
Wi= Ui\ (Ui NU)U(U;NUi1)]  ifi=1,...,90—1,  (40)
UZ\ (Ui—l ﬂUZ) if ¢ = ig.

First define h on each OR N W; so that (h_l)* h~! = ~¥~; there. This implies
that g/ g; = I on this part of the boundary. Then on each ORN (U;—1 N U;), the
function (h_l)* h~lis defined as a convex combination of v} ;y;—1 and 7.
Once this process has been carried out, we see that (h_l)* h~! is defined un-
ambiguously on R and an application of the Weiner—-Masani Theorem implies
that there exists an analytic function function ="' defined in R. In conclusion,
the required analytic function h exists.

Once we have established (30), the proof of Proposition 1 is complete. Now
we work to establish bounds for v; and g; through a series of technical results.

Lemma 4. On U;_1 NU;,

—1
1 i 1 ,
L bl g L« |%:11 <10,
10 |yl 10 7 |y
Proof. Since H; = ’yi_lfyi_l on U;_1NU; and we can write vy;,_1 = ’yi_lfyi_lfyi =
H;;, we see that

[vie1| < [Hill [ < 10 |yl
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from the assumed bound on H;. Similarly,

il < vl ieal = JH | 1ieal < 10 |3ia] -

Combining these two bounds leads to the first stated estimate. The same ar-
gument for the inverses gives the second estimate. O

Lemma 5. On U;_1 NU;, we have

|gz 1‘ 1
<10 and — <
10 lgi 10 ‘g,_l

Proof. We have
\gi—1 1 =tr (g7 _19i-1) =tr (gim19]_1) =tr (yim1hh*7}_ ;)
=tr (19" (WA ) ) = o ik <o | bl
1 [gi? < 102 il
Similarly,
g% = tr (yihh*y}) = tr (v (it ) A8) < i | bl
= HHZ-_1H2 lgi—1]® < 10% [gia |-

Combining these two observations leads to the first bound on U;—; N U;, and
the same bounds hold for the inverses. O

Lemma 6. On OR NU;, we have

2 2 —-1)2 2
1—02<\gi| <2-10 andl—o2 < gt <2-10%

Proof. Since g'g; = I on OR N'W; by construction, it follows that |gi|2 =2

there. On OR N (U;—1 NU;), we define (h_l)* h 1= Oy 1vi-1+ (1 —0) v v
for some 0 < 6 < 1, from which it follows that

I = 0n"y; 1vi1h+ (1= 0) K™ vih.
Then
2 = tr (I) = tr (W77 1h) + (1 — 0) tr (h*yih)
<0107 tr (W*7i k) + (1 — 0) tr (W i)
where we have used the idea from the proof of Lemma 5. Therefore, —2 167 < < gl|
on OR N (U;—1 NU;). And since
2=tr(I) =0tr (K" y_17i—1h) + (1 — 0) tr (h*v/v;h)
> 01072 tr (R*yf7ih) + (1 = 0) tr (h*y; i) ,
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% < gil* < 2-102. On ORN(U; N Ui41), we can similarly show that
132 < |gz\2 < 2-10%. Combining these three bounds leads to the first estimate

we obtain

in the conclusion of the lemma. An analogous argument shows that each ‘ 9; |
satisfies the same bounds.

To get interior bounds for |gi|2 on U;, we define and use a subharmonic
function v.

Lemma 7. Fori=20,...,1, set
_ A
o =ci =5
_ i(i+1) .
bz _bz—l—l__ 2 A_ZB7

where A = 10.5log 10 and B = 3log 10. Then the function defined piecewise by
max{|gl 1|Pesi ot | g Peti § o] } on U;_1NU; for i=1,... 19,
V=
|g|20x+b+ on W; fOT’iZO,...,ZO

18 continuous and subharmonic on R.

(41)

Proof. Recall that if f = e?, where ¢ is continuous and subharmonic, then
so is f too. Since log |g| is subharmonic whenever g is analytic and the func-
tion ¢z + b is harmonic, then for any analytic g we see that log (|g|* e 1?) =
2log |g| + cx + b is continuous and subharmonic. Since each g; is analytic, ev-
ery function used to define v is subharmonic. In particular, v is continuous
and subharmonic on each W;. Moreover, since the maximum of two continuous
subharmonic functions remains continuous and subharmonic, v is also contin-
uous and subharmonic on each U,_1 N U;. It remains to show that we have
compatibility along the boundaries of each W; and U;_1 N U;.

For i = 1,. io, set x; = i + %5, x; = 10, and :E:r = i + %5. If we

additionally deﬁne .’L‘O =0and z; ., =1, note that

U,_1NU; = [.’L‘Z_,aj‘:_] X [0, 1]
and
Wi = [z, 2,] x [0,1].
If = is near z; , then x is near W;_1 N (U;—1 NU;) and since c;r_l = ¢; and

2 e x+b;

bl | =b;, we want v (z,y) = |gi—1] e in this region. Similarly, if z is

near z;, then we need to show that v (z,y) = |g; |? eci Fotb]

By Lemma 5

|gz| ec r—l—b < 102|gi—1| ec x—l—bl . |gz— | ec I—i—bl 102 (c —c; )x-i—(b;r—b;)'
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If v € [x;,2; +e0) for some € > 0, then

A A
57 <3 (i6+ed)—(B+iA)=Ae—B.
1

Assuming that ¢ < 05, We have 102¢4¢—B = 1(2¢(10-5c—3)log 10 < 1 and we
conclude that

(=) 2+ (b =b7) = Fz—(B+id)

|2 c; Fotof |2 ec;x—i-b;'

|gi i <|gi-

Therefore, when z € [z}, x; + 1559),

20w+b 2cw+b} ‘g |2cr+b
i—1

max {|g;1| ol

proving that v is continuous along W;_1 N (U;—1 N U;).
We repeat the argument near the boundary of W;N(U;—1 N U;). By Lemma 5,

|gz— |2 c; x+b; < 102 |g |2 c; +b; _ |g |2 e b 102 —[(c —c; )z—i—(b;r—b;)]'

If 2 € (z] — ed,2]] for some £ > 0, then

0
A

:E—AE—B.

A
Assuming that ¢ < %, we have 102e46TB=3 = 1(2¢(10-5e+3-10.5)1og 10 < | 554
we conclude that

(¢f — )t (b7 —b) :éaz—(B+iA)>?<i5+%5—55> (B +iA)

|2 c; Fot+bf |2 eci_w—l-bi_'

|gi i <|gi-
Therefore, when z € (2 — ﬁé, z], we have

2 c; o+b; 2 c; x+b+} ‘2 c; ac-i—b+

max{‘gz 1| |g ‘ |gz

proving that v is continuous along W; N (U;—; N U;) as well and completing the
proof. O

Now we use the maximum principle to estimate v in terms of maxv.
OR

Lemma 8. For the function v as defined in (41), there exists a universal
constant C' > 0 so that v < CeCl? in R.

Proof. We start with 9R N W;. Since v = |g;|* e Fo+5 on W; and lgi|> =2 on
OR N W;, we have

A i+ 4 CA— a(il) 4 i(it+1)
v =257 "2 ATIB 915 o ATIB — 90757 ATE o RN W
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Taking a supremum over i € {0,...,ig}, we see that
io(ig+1) 20
v< 2 5 AT0B o gR N (U W> (42)
i=0

Next we examine v on OR N (U;—1 NU;). There we have z; < = < z and

v = max{|gi_1|2 eCi T | gl e Foby } By Lemma 6, |g;_1|> < 2-10? and
|gi\2 <2-10%in U;_1 N U;. Examining the exponentials, we get

max {eci_ﬂb eCi Tty } < max {ecz af+b; ,eCit1%i +bz+1}
i2— i2 . 2 .
= max{e SHA-(i-1)B e 2A_ZB} = ez 478,
since A = 10.5log 10 and B = 3log 10. Therefore,

i2
v<2-10%2478 on ARN (Ui NT;).

Taking a supremum over ¢ € {1,...,ig}, we see that
& ‘o
v<2- 102€7A_7'0B on ORN |:U (Ui—l N UZ) :| . (43)
i=1

ig(ig+1) .
Combining (42) and (43) shows that v < 2e 3 4705 on IR. Since iy =
% — %, the conclusion of the lemma, follows from an application of the maximum

principle. U
Now we have all of the preliminary results required to prove Proposition 1.

Proof of Proposition 1. By Theorem 3, there exists a collection {%} 2y of
analytic functions, where each ~; is defined on U; and satisfies H; = v;_17, -1
on U,_1 NU;.

On each R N W;, define h so that (h_l)* h~=! = ~%v; there. Then on each
OR N (U;—1 NU;), define (h_l)* h~! to be a convex combination of v} ;v;_1
and 7 v;. Since (h_l)* h~! is defined unambiguously on R, an application of
Theorem 4 implies that there exists an analytic function function h=! defined
in R.

On each U;, define g; = v;h. Then each g; is defined and analytic on U; with
gi—19; " = yimahh ™yt =i 1%_ = H; on U;_1 NU;.

For any i € {0,1,...,40}, |gil* i 7o+t < v on U, and from Lemma 8 and
the definition of v as given in (41) it follows that

19i (2, 1) 2 < v (2,9) e "0 <o (a,y) e i < 09 in UL
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A similar argument may be made for g;- L completing the proof. O
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