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Abstract

Mitochondrial genomes can provide valuable information on the biology and evolutionary
histories of their host organisms. Here, we present and characterize the complete coding regions
of 107 mitochondrial genomes (mitogenomes) of cicadas (Insecta: Hemiptera: Auchenorrhyncha:
Cicadoidea), representing 31 genera, 61 species, and 83 populations. We show that all cicada
mitogenomes retain the organization and gene contents thought to be ancestral in insects, with
some variability among cicada clades in the length of a region between the genes nad2 and cox1,
which encodes 3 tRNAs. Phylogenetic analyses using these mitogenomes recapitulate a recent
5-gene classification of cicadas into families and subfamilies, but also identify a species that falls
outside of the established taxonomic framework. While protein-coding genes are under strong
purifying selection, tests of relative evolutionary rates reveal significant variation in evolutionary
rates across taxa, highlighting the dynamic nature of mitochondrial genome evolution in cicadas.
These data will serve as a useful reference for future research into the systematics, ecology, and
evolution of the superfamily Cicadoidea.
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While mitochondrial function is primarily controlled by genes en-
coded on the host nucleus, most mitochondria and mitochondria-
related organelles retain their own compact genomes that are
faithfully passed down in the host matriline (Rand et al. 2004;
Embley and Martin 2006; Gray 2012). Analyses of the organiza-
tion and contents of these genomes can provide valuable insights

into the biology of the hosts, including phylogenetic inferences of
relationships among groups of organisms (Simon et al. 1994, 2006;
Boore and Brown 1998; Cameron 2014b; Lavrov 2014; Smith and
Keeling 2015). Mitochondrial genome comparisons can also help
to identify hybridization events (e.g., Good et al. 2008; Marshall
et al. 2011; Toews and Brelsford 2012) infer evolutionary processes
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that vary among host clades (Woolfit and Bromham 2005; Thomas
et al. 2010; Li et al. 2017), and reconstruct biogeographic histories
of species (e.g., Marshall et al. 2011; Ma et al. 2012). With DNA
sequencing becoming cheaper and easier, the numbers of mitochon-
drial genomes deposited in public databases have rapidly increased
in the last decade (Cameron 2014b). However, these mitochondrial
genomic data are not always carefully curated and characterized,
and some groups of eukaryotes lack representation in databases of
mitochondrial sequences. This lack of representation is true of some
groups of Hemiptera, including the superfamily Cicadoidea com-
prising cicadas and hairy cicadas.

Cicadas (Insecta: Hemiptera: Cicadidae) are a widely distributed
family of large sap-feeding insects, known for their loud songs and mas-
sive, synchronized emergences in some species (Williams and Simon 1995;
Moulds 2005; Marshall et al. 2018). Hairy cicadas (Tettigarctidae) are
a primitive family well-represented in Mesozoic fossil records (Moulds
2018) but with only 2 extant species recognized (Moulds 2005). During
a decade of work studying microbial symbioses in Cicadoidea, we have
generated metagenomic datasets from more than 60 species. Assemblies of
these genomic data typically contained large mitochondrial genomic con-
tigs that encompassed the entire gene-encoding region. While these mitog-
enomic sequences have provided an essential phylogenetic framework for
our ongoing research on cicada endosymbiont evolution (Van Leuven
et al. 2014; Campbell et al. 2017; Lukasik et al. 2018; Matsuura et al.
2018), they were never the focus of our analyses per se. We reasoned that
a curated mitochondrial genome collection could provide a valuable ref-
erence for researchers investigating the systematics, ecology, and evolution
of various members of the superfamily Cicadoidea, but also for broader
studies of mitochondrial genome evolution. Here, we present the complete
sequences of the gene-encoding region of the mitochondrial genomes of
107 specimens of Cicadoidea representing 83 populations of 61 species, as
well as molecular evolutionary analyses of cicada mitogenomes.

Methods

The specimens included in this study were collected between 1997
and 2017 at multiple locations in North America, South America,
Asia, and Oceania (Supplementary Table S1). Cicadas were identi-
fied based on morphology and, in some cases, molecular markers.
The specimens for sequencing were selected to address specific bio-
logical questions related to endosymbiosis in cicadas, resulting in
sampling bias toward certain genera (Tettigades and Magicicada)
and geographic areas (southwestern South America and Japan).
Some cicada clades and regions are underrepresented or miss-
ing entirely from our sample set (Marshall et al. 2018). We also
updated 3 cicada mitochondrial genome sequences published by
our laboratory previously (Van Leuven et al. 2014), and included
7 other partial cicada mitochondrial genomes that were available
from GenBank (Li et al. 2017; Song et al. 2017). These genomes are
shaded in Supplementary Table S1. Finally, we included sequences
from 4 divergent species from the superfamily Cercopoidea and 3
from the superfamily Membracoidea (Song et al. 2017) to serve as
outgroups (Supplementary Table S1).

Whole specimens or dissected tissues were stored in ethanol,
RNAlater, or acetone at -20 or -80 °C. Dissected cicada tissues (bac-
teriomes, fat bodies, or legs; Supplementary Table S1), were used for
genomic library preparation using Illumina or NEB kits, or following
previously published protocols (Meyer and Kircher 2010; Kircher et al.
2012). The libraries were sequenced using various Illumina technologies
(Supplementary Table S1). Genomic reads were quality-trimmed using
Trim Galore! (https://github.com/FelixKrueger/TrimGalore), merged into
contigs using PEAR (Zhang et al. 2014) and used for assemblies using

SPAdes v. 3.7.0. (Bankevich et al. 2012). Mitogenomic contigs were iden-
tified in the assemblies using blastn, with previously published cicada
mitogenomes as references.

None of the mitogenomic contigs were completely closed into circu-
lar-mapping genomes. In all cases, the gene-encoding region was flanked
by long stretches of extremely AT-rich, repetitive sequence, for which the
read coverage was low. PCR reactions using outward-facing primers tar-
geted to the gene-encoding region for several distantly related cicadas
(Supplementary Table S2) and a highly processive polymerase KAPA HiFi
HotStart ReadyMix (Kapa Biosystems) resulted in products that were
several kilobases (kb) long (Supplementary Figure S1), and these PCR
products were consistently accompanied by shorter fragments. Our re-
peated attempts to Sanger-sequence some of these products confirmed
the assembled sequence near the ends of the gene-encoding regions,
but the Sanger read quality rapidly decreased beyond these regions. We
concluded that while cicada mitogenomes are almost certainly circular-
mapping, obtaining the sequences of these AT-rich regions would be pro-
hibitively complicated. Therefore, all mitogenomic contigs were trimmed
immediately outside of the outermost genes (see below).

The mitogenome contigs were initially annotated with the MITOS2
on-line server, http://mitos2.bioinf.uni-leipzig.de (Bernt et al. 2013b),
using the Metazoan RefSeq 81 set and default settings. The annota-
tions were compared with each other and with the previously annotated
mitogenomes of cicadas, the pea aphid Acyrthosiphon pisum (accession:
FJ411411.1), and the fruit fly Drosophila melanogaster (U37541.1).
Using blastn searches, we located and manually annotated a small number
of tRNA genes that were missed by MITOS2. Because of the variable
start and end positions of protein-coding and rRNA genes in the MITOS2
annotations, even among species within a genus, we implemented an add-
itional annotation strategy. We aligned open reading frames and genome
regions corresponding to MITOS2-annotated genes and then searched for
conserved start-stop positions in the alignments. This included incomplete
stop codons (T or TA) that are known to be frequent in mitogenomes of
other insects (e.g., Sheffield et al. 2008; Du et al. 2017) and thought to be
extended into complete stop codon (TAA) through post-transcriptional
polyadenylation (Ojala et al. 1981; Stewart and Beckenbach 2009). Data
on intergenic distances in pea aphid and fruit fly mitogenomes were used
as a guide. We verified stop codon positions of some protein-coding genes
using data on mitogenome transcript coverage for one specimen for which
such data were available, Tettigades chilensis PL470 (P. Lukasik, unpub-
lished). The data were visualized using Python and Processing scripts.

The annotated gene sequences were aligned using mafft v. 7.2.2.1
(Katoh and Standley 2013), in nucleotide space for tRNA and rRNA
genes and in amino acid space for protein-coding genes. The alignments
were verified manually using CodonCode Aligner v. 7.1.2 (CodonCode
Corporation), and ends with <20% coverage trimmed. For the maximum
likelihood phylogenetic analysis, we used the concatenated alignment of
all genes, divided into 5 partitions: one for each of the 3 codon positions
of protein-coding sequences, and one each for rRNA and tRNA genes; this
partitioning scheme was based on our prior work using PartitionFinder2
(Lanfear et al. 2012; Fukasik et al. 2018). We used RAxML v. 8.2.10
(Stamatakis 2014), specifying GTR model with the gamma distribution
of rates (among the best models for different partitions based on jmodel-
test2—Darriba et al. 2012), and one hundred rapid bootstraps.

A Bayesian phylogenetic tree was also estimated using a concaten-
ated dataset of all genes, divided into 3 partitions: one for the first codon
position of all protein-coding sequences combined with all rRNA and
tRNA genes, and one each for the second and third codon positions of
protein-coding sequences (Nylander 2004; Brandley et al. 2005). Data
partitions and the best-fitting nucleotide substitution model for each par-
tition were determined using PartitionFinder2 and BIC model selection
(Supplementary Table S3). We obtained posterior distributions of trees
and parameters using Markov chain Monte Carlo (MCMC) sampling
procedure implemented in MrBayes v. 3.2.6. (Ronquist et al. 2012) with

6102 A 1 uo Jasn 1noosuu0d Jo Aysieniun Aq 626.52S/L2/2/0 1 LA0BISqe-a[oILE/paIay (/00 dno-olwapeoe//:Sdny WOl papeojumoq



Journal of Heredity, 2019, Vol. 110, No. 2

249

the selected best-fitting substitution models and default priors. We used
2 independent runs (each with 4 chains) with 10 million generations,
sampling every 1000 generations, and discarded the first 25% of sam-
ples as burnin. We checked for convergence of continuous parameters
using Tracer v. 1.6.1 (Rambaut et al. 2014) and considered a run to be
converged when parameter had effective sample size values well over
200. Convergence of tree topology was assessed using the RWTY v. 1.0.1
package (Warren et al. 2017) implemented in R v. 3.4.4 (R Core Team
2018).

To examine relative rates of evolution across the cicada phylogeny, we
used a Bayesian approach to reconstruct phylogenetic trees with BEAST2
v. 2.4.8 (Bouckaert et al. 2014). We examined relative rates of evolution
for 3 different datasets representing (1) all cicada genera, (2) Magicicada
species, and (3) Tettigades species, with the latter 2 datasets representing
clades with denser taxonomic sampling. The cicada genera dataset in-
cluded one individual for each genus while the other 2 datasets included
only one representative for each species, and outgroup taxa were ex-
cluded from all datasets. Using methods described above, we determined
the best-fitting substitution model for the concatenated dataset of all 13
mitochondrial coding sequences partitioned by codon position for each
of the 3 datasets (Supplementary Table S3). Substitution models were
unlinked between partitions but shared a clock model and tree model,
and applied an uncorrelated lognormal clock model to each dataset. For
the cicada genera dataset, we ran 4 independent MCMC analyses with
75 million generations each, sampling every 5000 generations, while the
Magicicada and Tettigades datasets were run for 50 million generations
each and sampled every 5000 generations. The first 25% of trees were
discarded as burnin and convergence was assessed as described above.

The strength and direction of selection (w, the ratio of nonsynony-
mous to synonymous substitutions, or dN/dS) for mitochondrial genes
was computed using codeml implemented in PAML v. 4.8 (Yang 2007).
Analyses were performed for the same 3 datasets used in the BEAST2
analyses (i.e., all cicada genera, Magicicada species, and Tettigades spe-
cies). We calculated o for individual mitochondrial protein-coding genes
as well as the concatenated data of all 13 coding sequences for each of the
3 datasets. Specifically, we generated maximum likelihood phylogenies
for each gene and the concatenated data partitioned by codon position
for all 3 datasets using RAxML v. 8.2.10, and estimated nonsynonymous
and synonymous substitution rates along each phylogeny.

Results and Discussion

Cicada Mitogenomes Retain the Canonical

Arthropod Organization, with Some Intergenic

Length Variation

We find that all 117 mitochondrial genomes of cicadas analyzed here
retain the conserved set of metazoan mitochondrial genes, comprising
13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes (Boore
1999). The gene order and orientation within the gene-encoding region
is identical to the reconstructed ancestral insect mitogenome (Cameron
2014b) (Figure 1A). The length of the gene-encoding region ranges
from 14 350 basepairs (bp) in Vagitanus terminalis to 14 740 bp in
Magicicada tredecassini. Most of the length variation is contained
within the region between genes nad2 and cox1, which encodes 3
tRNA genes, for tryptophan (W), cysteine (C), and tyrosine (Y) (Figure
1B). This region ranges from 183 bp (Tettigarcta crinita) to 552 bp (M.
tredecassini) (Figure 1B). This variation seems to result from intergenic
spacer expansions that have happened independently in different ci-
cada clades, as indicated by differences in relative length of spacers
and varying, sometimes extreme, nucleotide composition (Figure 1B).
In species or species groups where intergenic spacer expansion has oc-
curred (Magicicada cassinilM. tredecassini, Hyalessa maculaticollis),

individuals can differ substantially, suggesting that the onset of spacer
expansion may be associated with broader genomic instability (Burger
et al. 2003). The length of other spacer regions was less variable and
larger expansions only occurred in isolated cicada clades (Figure 1C).
Intergenic spacers in mitochondrial genomes are variable among and
within animal species. In vertebrates, the W-A-N-C-Y tRNA region
(corresponding to the cicada variable-length W-C-Y region) is the site
of the origin of light-strand replication but in insects both strands have
their origin of replication in the A+T-rich control region (Saito et al.
2005), so the expansion of the W-C-Y region must have some other ex-
planation. Some turtles and snakes have a lengthy noncoding sequence
between trnN and #1nC genes whereas crocodilians, sphenodon, and
birds lack this sequence (Seutin et al. 1994). Blackspot seabream (fish)
have high levels of length heteroplasmy in the W-A-N-C-Y region
within and among individuals (Ponce et al. 2008). Differences in other
intergenic region lengths have also been reported. For example, the
mitogenome of honeybee is characterized by a spacer (250-650 bp)
between the COI and COII genes, the length of which varies within
and between subspecies (Cornuet et al. 1991). However, changes in
the gene order and genome organization have received more attention.
Departures from the ancestral insect gene order have been reported
in at least 13 insect orders, with some orders, such as Hymenoptera,
clearly more variable than others (Dowton et al. 2009; Simon and
Hadrys 2013; Cameron 2014b). The instability of the W-C-Y region
is evident in cicadellid planthoppers, where Japananus hyalinus ex-
hibits the only gene rearrangement so far known in Auchenorrhyncha;
W-C-Y becomes Y-W-C (Du et al. 2017). A different transposition in
this region can be seen in some whiteflies (Hemiptera: Sternorrhyncha:
Aleyrodidae) where W-C-Y changes to W-Y-C (Thao et al. 2004) and
in Neuroptera where it changes to C-W-Y (Negrisolo et al. 2011). In
many cases, changes to the mitogenome organization were much more
dramatic (Smith and Keeling 2015). Among the best-known examples
is the fragmentation of the mitochondrial genome into 18 mini-circles
encoding 1-3 genes each in the human body louse (Shao et al. 2009).
Thus, in comparison to mitogenomes of many other animals, those of
cicadas can be regarded as stable.

Cicada Mitogenomes Have Large Control Regions

As explained in the Methods section, we were not able to reconstruct
the sequence of the AT-rich control region for any of the mitogenomes,
but for several cicadas we obtained PCR products that appeared to
span that region. The products typically consisted of multiple bands,
the longest of which was often the most intensely stained in ethidium
bromide agarose gels (Supplementary Figure S1). This suggests that ci-
cada mitochondrial genomes map as circular molecules, but also that
the control regions likely contain large tandem low-complexity repeats,
as seen in some other Auchenorrhyncha (Du et al. 2017) and many
other organisms (Zhang and Hewitt 1997). An alternative explanation
for these banding patterns can be heteroplasmy—the presence of more
than one variant of a mitochondrial genome in the studied specimens
(Ramos et al. 2013; Rebolledo-Jaramillo et al. 2014), as reported in
some weevils (Boyce et al. 1989). The approximate length of the longest
and strongest PCR band for T. crinita (the sole member of the family
Tettigarctidae) was 1.7 kb, and for diverse Cicadidae the longest
bands ranged from approximately 3-5 kb (Supplementary Figure S1).
Assuming that these products represented the complete control region
plus approximately 300 bp of the flanking sequence, we estimate the
complete mitochondrial genome size of cicadas to be approximately
15.7 kb in T. crinita, and 17-19.5 kb for the majority of Cicadidae.
These estimates are consistent with the results of a restriction digest
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Figure 1. (A) The organization and orientation of genes within the gene-encoding portion of the mitochondrial genome of Tettigades chilensis specimen PL470,
representative for the 117 studied cicadas. The genomes are circular, but the reliable sequences of the AT-rich control regions could not be obtained. (B) The
visualization of the variable-length region between genes nad2 and cox1 in selected cicada specimens, including all those with the most extreme intergenic
interval lengths. The nucleotide sequences of the region demonstrate the repetitive nature and base composition bias in some of the expanded intergenic
regions. For maximum likelihood phylogeny reconstruction, see Figure 2; all nodes have 290% bootstrap support. (C) The range of lengths of intergenic spacer
regions in 71 studied cicadas (one from each Tettigades sp., one Magicicada tredecim, and all specimens from other species). The variable region corresponding
to panel B is shaded. Negative spacer length indicates an overlap among adjacent genes. Spacers around rRNA genes are not shown, since their lengths were
used for rRNA gene delimitation.
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study of mitogenomes from the Magicicada “decim” clade: the esti-
mated sizes of the 2 genome “types” were 19.6 = 0.5 kb and 20.0 = 0.5
kb (Martin and Simon 1990). This range is well above the typical size
of an insect mitogenome reported as complete (NCBI, accessed on 31
May 2018), but it is by no means exceptional. For example, the com-
plete mitogenome of D. melanogaster (Genbank accession U37541) is
19 517 bp, and in some weevils, mitochondrial genomes were reported
to be over 30 kb (Boyce et al. 1989). The 33 mitochondrial genomes of
Auchenorrhyncha that have been deposited in NCBI databases as com-
plete (and this is not obviously incorrect) range in size from 15 131 to
16 626 bp, with the exception of Nilaparvata lugens (JX880069) at 17
619 bp. However, sequencing of the control regions is often challenging,
and in a large proportion of insect mitogenomes in public databases
the region is missing or only partial (Cameron 2014a), sometimes even
when the genomes are annotated as complete and circular.

Cicada Mitogenomes Have Relatively High AT

Content

We find the AT contents of the gene-encoding region of cicada
mitogenomes ranges from 72.3% in Mendozana platypleura to
80.5% in Terpnosia vacua and shows some phylogenetic signal
(Supplementary Table S1; Figure 2). Mitochondrial genomes of
other organisms are known to vary considerably in nucleotide con-
tent (Smith 2012). Typically, the value is substantially higher than
50% AT, but there are significant differences among animal clades
with deuterostomes (chordates and echinoderms) typically less
AT-biased than protostomes (e.g., the AT% of fish mitogenomes is
consistently low) (Smith 2012). In insect mitogenomes annotated as
complete, AT % ranges from high 80s in Hymenoptera to mid- and
lower 60s in termites, stoneflies, and isolated species from other
groups (although the absence of the control region in many NCBI
records complicates comparisons). From early sequences of selected
insect mitochondrial genes, it was suggested that there was a trend
toward increasing AT bias from basal nodes to shallower nodes in
the insect phylogeny (Simon et al. 1994). However, whole mitog-
enomes that have accumulated since that time suggest that this gen-
eralization does not hold up due to large variation in AT-content
within and among orders and families (NCBI). For example, in bee-
tles, AT-contents of the coding region ranges from 66% to 80%
(Sheffield et al. 2008). Substanial variability in AT content is also
true of the family Cicadidae. With the overall AT content of about
83% (conservatively assuming that the trimmed control region is 3
kb long and contains 95% A+T), T. vacua may be among the top
few percent of all insects, while M. platypleura at about 75% A+T
would be close to the median.

Variation in mitochondrial AT content is thought to result from a var-
iety of processes, including an often strong bias toward “C” and “A” on
one DNA strand resulting from varying mutational pressures during repli-
cation and transcription (GC-skew and AT-skew; Perna and Kocher 1995;
Hassanin et al. 2005; Bernt et al. 2013a; Chong and Mueller 2013a), and
perhaps an overall mutational pressure towards A+T in bacterial genomes
(Hershberg and Petrov 2010; Hildebrand et al. 2010). Among factors
thought to drive the overall AT-GC% change in mitogenomes are the rate
of metabolism, generation time, and lifestyle (Martin 1995; Smith 2012).
In mammals, GC% is positively correlated with the generation time, sug-
gesting that increased levels of natural selection in long-lived species may
mitigate the mutational tendency of mitochondrial genomes to increase
the contents of A+T (Min and Hickey 2008). Cicada species vary con-
siderably in generation times but data is available for only a few spe-
cies in our set (Campbell et al. 2015). Also, genome rearrangements may

influence the nucleotide distribution within the genomes (Hassanin et al.
20035), but we have not observed rearrangements in cicadas.

No Clear Roles of tRNA Anticodon Sequence
Changes or Sequence Variants
An interesting observation was an anticodon sequence change within
a tRNA gene, which has happened at least 3 times in cicadas. In T.
crinita, the sole representative in our study of the family Tettigarctidae,
anticodon on the gene trnA changed from “TGC” to “CGC,” relative
to the ancestral state represented, for example, by D. melanogaster
and all Cicadidae. Also, in 2 Kikibhia species, anticodon on the gene
trnS1 changed from “GCT” to “TCT,” and in related Amphipsalta
zelandica, to “ACT.” These were all silent changes that did not affect
codon pairings: tRNAs with the modified anticodon encode the same
amino acid—alanine (codon: GCN) and serine (codon: AGN), re-
spectively. The #7181 anticodon changes from “GCT” to “TCT” have
been reported from several insect groups, including many beetles, hy-
menopterans, and lice (Cameron et al. 2007; Sheffield et al. 2008;
Kaltenpoth et al. 2012), while other anticodon sequence changes are
relatively less common. Their functional significance is unknown.
We looked for sequence variants (polymorphic sites and insertions/
deletions, or indels) by mapping reads to finished, consensus genomes.
We found that a substantial proportion of reads contained sequence vari-
ants, and that some of these changes disrupted open reading frames of
protein-coding genes. We compared read alignments against reference
genomic sequences for 2 populations for which 6 or more specimens were
sequenced, and had an average read coverage of at least 10x (Tettigades
undata and Magicicada tredecim; Supplementary Figure S2). We found
that within the majority of genomes, several nucleotide positions con-
tained substitutions or deletions in at least 10% of mapped reads. Many
of these sites were variable in multiple specimens. It is possible that
these patterns are due to heteroplasmy (Ramos et al. 2013; Rebolledo-
Jaramillo et al. 2014). However, the interpretation of these patterns is
challenging because of the possibility of mitochondrial genome introgres-
sion events into the nuclear genome, or numts (Bensasson et al. 2001;
Hazkani-Covo et al. 2010), as well as sequencing artifacts. We know that
numts are common in some species of Tettigades (Lukasik et al. 2018).

Phylogenies Confirm the Monophyly of Main Cicada
Subfamilies, and Suggest a New One

Our maximum likelihood (ML) phylogenetic tree (Figure 2) agrees
with phylogenies generated from broader samplings of species, based
on either morphology (Moulds 2005) or concatenations of mitochon-
drial and nuclear gene sequences obtained using the Sanger method
(Marshall et al. 2018). Our Bayesian phylogenetic tree is consistent
with our ML phylogeny (Figure 2, Supplementary Figure S3). Based
on these phylogenetic analyses, T. crinita (Tettigarctidae) represents
a clade that is sister to all Cicadidae. The sampled Cicadidae form
3 distinct, well-supported clades corresponding to the 3 recognized,
established subfamilies: Tibicininae, Cicadettinae, and Cicadinae. An
interesting exception is Derotettix mendosensis, which appears to
represent a clade within Cicadidae that is sister to the monophyletic
clade comprising these 3 subfamilies. While the genus Derotettix is
currently assigned, based on prior morphological comparisons, to
tribe Parnisini within Cicadettinae (Marshall et al. 2018), our data
suggest its taxonomic position may need to be revisited. At lower
taxonomic levels, our analyses agree with phylogenetic reconstruc-
tions that were based on other, partially overlapping sample sets and
various genes (Sota et al. 2013; Marshall et al. 2016; Lukasik et al.
2018). Phylogenetic analyses also reveal substantial genetic variation
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Figure 2. The maximum likelihood tree based on 37 concatenated mitochondrial genes for representative specimens from 93 cicada populations. Nodes with
bootstrap support <70% were collapsed. Nodes with bootstrap support values of 100%, as well as independently calculated Bayesian posterior probabilities
of 1.0, are represented by black dots. In cases when more than one specimen per population was sequenced, data for only one is shown. Symbols adjacent to
specimen names indicate the country of collection, as well as the AT contents of the gene-encoding region. Sequences from GenBank, for which read alignments
have not been inspected, are typed in blue font; for some of them the gene-encoding region was not complete, preventing us from calculating AT%, and in one
case the collection location was missing.
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among cicada specimens that were classified to a single species based
on morphology but were sampled at different locations, including
Tettigades lacertosa, T. undata, and T. ulnaria (Eukasik et al. 2018).
The relationships among these divergent populations and borders
among Tettigades species need to be systematically revisited. However,
our sampling bias toward certain cicada genera, the absence of many
important cicada clades in our dataset, and the known limitations of
relying solely on mitochondrial sequence data for phylogenetic infer-
ence prevent us from making definitive taxonomic conclusions.

Rates of Evolution Vary among the Cicada Clades
We find rapid changes in the relative rates of mitochondrial gene evolu-
tion across the cicada phylogeny (Figure 3A). We observed a substantial

A. All cicada genera

slow down at the base of Tibicininae (Figure 3A) with some lineages
maintaining slower rates (e.g., Platypedia putnami + Chilecicada sp.)
while the majority of the lineages return to an average level. We also ob-
served both slow-downs and accelerations within the clade consisting of
subfamilies Cicadinae and Cicadettinae (Figure 3A). Specifically, some
taxa maintain an accelerated rate (e.g., Mogannia minuta + V. termi-
nalis) while others decelerate (e.g., Diceroprocta semicincta).

To estimate rates of evolution within more densely sampled genera,
we reconstructed Bayesian phylogenies for the Magicicada and Tettigades
datasets. Within Magicicada, we observe a slight increase in rates at the
base of the “decim” species group, followed by a decrease in M. sep-
tendecim + M. neotredecim. We observe an overall rate increase in the
“cassini” species group compared with a deceleration in the “decula”
species group (Figure 3B). The genus Magicicada is known for massive,
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1
Tettigades undata TETUND
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Figure 3. Bayesian phylogenetic tree reconstruction of evolutionary rates using all 13 mitochondrial protein coding genes for (A) all cicada genera, (B) Magicicada
species, and (C) Tettigades species. Numbers represent node support (BPP). Colors reflect relative rates of evolution, where black represents a relative rate of
one and shades of red represent intermediate rate increases and shades of blue represent intermediate decreases in rates along branches.
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synchronized emergences that occur every 13 or 17 years, and that typic-
ally consist of several species from across the species groups (Williams and
Simon 1995). Whereas some ecological differences among the Magicicada
species groups are known, it is unclear how they may influence the evo-
lutionary rates. Within Tettigades, we observe more significant variation
in rates across lineages. Specifically, several species show increases in rela-
tive rates of evolution including Tettigades opaca, Tettigades lacertosa,
and Tettigades distanti, while other species, including Tettigades major,
Tettigades sp2, and Tettigades sarcinatrix, show decrease (Figure 3C).
There is little information on the general biology of the genus Tettigades,
but notably, T. lacertosa and T. distanti specimens represent popula-
tions where their specialized, maternally transmitted, nutritional endo-
symbiont Hodgkinia cicadicola have undergone substantial structural
changes (“splits”) relatively recently (Eukasik et al. 2018). Interestingly,
in the cicada genera comparison, the slowly evolving D. semicincta har-
bors Hodgkinia that has not undergone structural rearrangements (Van
Leuven et al. 2014), and 2 of the fastest-evolving clades in the all-cicada
comparison, V. terminalis and Kosemia yezoensis, harbor degenerated
Hodgkinia (Matsuura et al. 2018) (Figure 3A). On the other hand, the
genus Magicicada, hosting the most fragmented Hodgkinia genomes
known (Campbell et al. 2017), does not stand out from among other ci-
cadas in rates of evolution (Figure 3A). Also, the Japanese cicada clades
where Hodgkinia has been replaced by Ophiocordyceps fungi (Matsuura
et al. 2018) did not experience consistent rate of evolution changes: in
some cases it has accelerated (Mogannia), in other cases decelerated
(Amphipsalta), but often lineages maintained rates similar to the under-
lying rate across the cicada phylogeny. In most other cicada species in
our dataset, the content and structure of the symbioses await description.
However, taken together, these results suggest that there is significant vari-
ation in rates of evolution of mitochondrial genes across the cicada phyl-
ogeny, only some of which may correlate with endosymbiont complexity.
Similarly variable rates of mitochondrial gene evolution within insect taxa
have been reported in other insects (e.g., Pons et al. 2010). Future work
will reveal the likely causes, and how other maternally transmitted gen-
omes (nuclear and those of the endosymbionts) may have been affected.

Cicada Mitochondrial Genes Are under Strong
Purifying Selection

Estimates of  (the ratio of nonsynonymous and synonymous rates
of substitution, or dN/dS) were used to infer the strength and direc-
tion of selection across mitochondrial genes and reveal strong levels of
purifying selection (w << 1) across all of the datasets examined (Figure
4). We observe that the cox1 gene is consistently under the strong-
est level of purifying selection, which is consistent with results from
other studies of selection on mitochondrial genes (Simon et al. 1994;
Shen et al. 2009; Chong and Mueller 2013b). In contrast to cox1, we
find that mitochondrial genes azp8 and nad2 consistently show ele-
vated o values, suggesting that these 2 genes are under relaxed levels
of selection relative to other mitochondrial genes. Based on all pro-
tein coding genes, we observe higher o values in Tettigades compared
with the other 2 datasets suggesting that this group may experience
increased differences in substitution rates, which is congruent with re-
sults from the BEAST2 analysis examining relative rates of evolution.
Collectively, these results highlight the role of both gene specific and
lineage specific substitution rates in driving mitochondrial genome
evolution in cicadas. Changes in relative substitution rates may reflect
differences in population size or changes in biological factors related
to metabolic rate, generation time, or parasitic lifestyles (Dowton and
Austin 1995; Woolfit and Bromham 2005; Thomas et al. 2010; Chong
and Mueller 2013b), even between species within the same genus.
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Figure 4. Estimates of w (nonsynonymous and synonymous substitution rate
ratio, dN/dS), across all cicada species, Magicicada species, and Tettigades
species show strong levels of purifying selection on mitochondrial protein-
coding genes. Elevated o values for mitochondrial genes atp8 and nad2
reflect relaxed selection relative to other mitochondrial genes, while cox1
is consistently under the strongest level of purifying selection across all
datasets. White diamonds represents o values for the concatenated dataset
of all 13 mitochondrial coding-genes.

Conclusions

We show that cicada mitochondrial genomes are remarkably stable.
The 117 specimens in our study, representing much of the known
cicada diversity (Marshall et al. 2018), retain the ancestral genome
organization and gene set (Cameron 2014b). The patterns we ob-
serve in some species, such as substantial increases in the length
of trnC-trnY intergenic region in M. cassini and M. tredecassini
relative to their sister clade, might suggest an onset of genomic
instability or differences in selective constraints on mitochondrial
genomes. But unlike some other organisms whose mitogenomes
have fragmented into mini-circles or undergone other dramatic al-
terations (Smith and Keeling 2015), it is not clear whether these
changes will lead to dramatic genomic rearrangements. The mitog-
enomic stability we show here contrasts sharply with the patterns
reported in the genomes of the cicadas’ maternally transmitted,
rapidly evolving endosymbiont Hodgkinia, which in most cicada
clades studied to date has undergone major structural changes (Van
Leuven et al. 2014; Campbell et al. 2017; Lukasik et al. 2018) or
has been lost altogether and replaced by a fungus (Matsuura et al.
2018).

We also observe variation in the rate of mitogenome sequence evo-
lution across the entire cicada phylogeny. Overall, we find signatures
of strong purifying selection on mitochondrial genes, though some
genes show slightly relaxed levels of selection (e.g., atp8 and nad2).
These results suggest there is substantial variation in rate of evolu-
tion both across lineages and between genes, which highlight the dy-
namic nature of mitochondrial genome evolution across the cicada
phylogeny.
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Supplementary material is available at Journal of Heredity online.
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