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Abstract— We study the multi-player stochastic multiarmed
bandit (MAB) problem in an abruptly changing environment.
We consider a collision model in which a player receives reward
at an arm if it is the only player to select the arm. We design
two novel algorithms, namely, Round-Robin Sliding-Window
Upper Confidence Bound# (RR-SW-UCB#), and the Sliding-
Window Distributed Learning with Prioritization (SW-DLP).
We rigorously analyze these algorithms and show that the
expected cumulative group regret for these algorithms is upper
bounded by sublinear functions of time, i.e., the time average
of the regret asymptotically converges to zero. We complement
our analytic results with numerical illustrations.

I. INTRODUCTION

Achieving coordinated behavior of multiple decision-
makers in unknown, uncertain, and non-stationary envi-
ronments without any explicit communication among them
is of immense interest in a variety of applications, in-
cluding robotic swarming, spectrum access, and Internet
of Things. Such decision-making problems often require
decision-makers to balance tradeoff between learning the
environment and the policies of other decision-makers, and
maximizing their own utility.

The distributed multi-player MAB problem embodies this
fundamental decision-making tradeoff. In these problems,
multiple decision-makers sequentially allocate a single re-
source each by repeatedly choosing one among a set of com-
peting alternative arms (options). The objective of decision-
makers is to maximize their total reward, while ensuring
that their allocation at each time is not coincident with any
other decision-maker. In a non-stationary version of these
problems, the utility (reward) of the arms varies with time.
These problems provide a rich modeling framework for a
variety of interesting settings, including, robotic foraging and
surveillance [1-3], acoustic relay positioning for underwater
communication [4], and channel allocation in communication
networks [5].

Most of the algorithmic solutions to the multi-player MAB
problem deal with a stationary environment. In [11, 12], a
lower bound on expected cumulative group regret for a cen-
tralized policy is derived and algorithms that asymptotically
achieve this lower bound are designed. Distributed multi-
player MAB problem with no communication among players
has been studied in [5, 13-16]. Distributed cooperative
multi-player MAB problem in which agents communicate to
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improve their estimates of mean rewards are studied in [17—
19].

In the context of the single player MAB problem, some
classes of non-stationary MAB problem have been studied
in the literature. In [6], authors study a non-stochastic
MAB problem in which the rewards are deterministic and
non-stationary. They propose algorithmic solutions to this
problem and study a weaker notion of the regret, wherein
the policy generated by the algorithm is compared against
the best policy within the policies that select the same arm
at each time. These algorithms are adapted to handle a
class of non-stationary environments and upper bounds on
the standard notion of the regret are derived in [7]. In [8],
authors study a class of non-stationary MAB problems in
which the mean rewards at arms may switch abruptly at
unknown times to unknown values. They design an upper
confidence bound (UCB) based algorithm that relies on
estimates of the mean rewards from a recent time-window
of observations. In [9], authors study the MAB problem in a
piecewise-stationary environment. They use active detection
algorithms to determine the change-points and restart the
UCB algorithm. Authors in [10] develop variants of the
algorithm in [8] for non-stationary MAB problems with
abruptly-changing and slowly-varying mean rewards. They
also develop deterministic sequencing of exploration and
exploitation type of algorithms for these environments.

In this paper, we build upon the literature on distributed
multi-player MAB problem with no communication among
players and design analogous algorithms for a class of
non-stationary environments. In particular, we extend ideas
in [10] to the multi-player setting and design two algorithms
to solve these problems. The major contributions of this
work are twofold. First, we design and rigorously analyze
two algorithms, namely, RR-SW-UCB# and SW-DLP for
the multi-player MAB problem in abruptly changing envi-
ronments. Second, we augment our analysis with numerical
illustrations.

The paper is organized as follows. In Section II, we discuss
preliminaries and introduce the problem. In Section III and
IV, we design and analyze the RR-SW-UCB# and SW-DLP
algorithms, respectively. We illustrate these algorithms with
some numerical examples in Section V. Finally, we conclude
in Section VL.

II. BACKGROUND & PROBLEM DESCRIPTION

In this section, we formulate the muti-player non-
stationary MAB problem, and introduce a class of non-
stationary environments: the abruptly-changing environment.



A. The non-stationary multi-player stochastic MAB problem

Consider an N-armed bandit problem, i.e., an MAB prob-
lem with N arms. Let the total number of players be M €
{1,..., N}. The reward associated with arm ¢ € {1,..., N}
is modeled as a random variable with bounded support [0, 1]
and an unknown time-varying mean p;(¢t) € [0,1]. Each
player j € {1,...,M} selects a particular arm s;(t) €
{1,...,N} at time ¢t € {1,...,T} and observes a reward
7s,(t)(t) associated with s;(t), where T"is the time horizon.
The adaptive decision rule employed by player j is given
by p(Us_1{7s,(a)(t), sj(d)}), which is a distributed policy
based on its own observation and decision history.

We assume a collision model M in which player j receives
a reward 7, (4)(t) from arm s;(¢) if it is the only player to
select arm s;(¢) at time ¢. Then, the expected total reward
can be written as

EP[S] =B
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where O; ;(t) = 1 if only player j selects arm ¢ at time ¢
and is zero otherwise; and the expectation is computed over
different realization of O; ;(t) under policy p.

Let o be a permutation of {1,..., N} at time ¢ such that

Poy1y(t) > o > g, () (t).

The maximization of E#[S] in (1) is equivalent to minimizing
the expected cumulative group regret defined by

T N M
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ROL(T) is the expect difference between the cumulative
reward of the perfect selection and that of policy p under
collision model M. Our main purpose here is to design
policy p that minimizes R/, (7).

In this paper, we study the above MAB problem in an
abruptly-changing environment, in which the mean rewards
from arms switch to unknown values at unknown time
instants. We refer to these time instants as breakpoints.
We assume that the number of breakpoints until time 7T is
Yr € O(T), where v € [0,1) and is known a priori. In
addition, the minimum difference in mean rewards between
any pair of arms at any time is lower bounded by A ;.

B. Algorithms for the stationary stochastic MAB problem

In the stationary MAB problem, (;(t) is a constant func-
tion of time denoted by p;, for each ¢ € {1,..., N}. In this
setting, two algorithms relevant to this paper are : (i) UCB
for the single player MAB problem (ii) Distributed Learning
algorithm with Prioritization (DLP) for multi-player MAB
problem.

The UCB algorithm initializes by selecting each arm once
and subsequently selects the arm s(t) at time ¢ defined by

s(t) = argmax {F;(t — 1) + ¢;(t — 1)},
ie{l,...,N}

where 7;(t — 1) is the statistical mean of the reward from
arm i until time t, ¢;(t — 1) = niinfl) and n;(t — 1)
is the number of times arm 7 has been selected until time
t. Auer et al. [20] showed that UCB algorithm achieves
expected cumulative regret that is within a constant factor
of the optimal.

DLP is a distributed algorithm based on the UCB al-
gorithm. Here, distributed algorithm means that a player
makes a decision only based upon its own observation
history and does not communicate with other players. To
avoid regret caused by multiple players selecting the same
arm, Selective Learning of the k-th largest expected reward
(SL(k)) algorithm is designed aiming at making player k pick
the k-th best arm. Towards this end, player k determines the
set A (t) of k arms associated with the k largest values in
the set {F;(t — 1)+ ¢;(t —1) |7 € {1,...,N}}, and select
arm

sk(t) = argmin{7;(t — 1) — ¢;(t — 1)}.
1€AL(T)
Gai et al. [13] established that DLP achieves order-optimal
expected cumulative regret.

C. SW-UCB¥# for the non-stationary MAB problem

The Sliding-Window UCB (SW-UCB) algorithm [8] was
adapted in [10] to develop SW-UCB#. SW-UCB# is an
algorithm for single player MAB problem in non-stationary
environment. At time ¢, it maintains an estimate of the
mean reward 7;(¢, ) at each arm 4, using only the rewards
collected within a sliding-window of observations. Let the
width of the sliding-window at time ¢ € {1,...,T} be
7(t,a) = min{[At*],t}, where parameter o € (0,1] is
tuned based on environment characteristics. Let n;(t,a) =
Zfi:t#(tmﬂ 1(5(a)=) be the number of times arm ¢ has
been selected within the time-window at time ¢, where 1{,}
is the indicator function, and

_ 1 .
it ) = n;(t, o) Z

Based on the above estimate, the SW-UCB# algorithm at
each time selects the arm

ri(d)s@y=iy-  (2)

s(t) = argmax {F;(t — 1,a) + ¢t — 1, )}, (3)
ie{l,...,N}

where ¢;(t—1,a) = % In the following, we would

refer to 7;(t — 1,a) + ¢;(t — 1, ), for i € {1,...,N} as
the upper confidence bounds on the estimated rewards. It
has been shown in [10] that the expected cumulative regret
for SW-UCB# under the abruptly-changing environment is
upper bounded by a sublinear function of time, i.e., the time
average of the regret asymptotically converges to zero.

III. THE ROUND ROBIN SW-UCB# ALGORITHM IN
ABRUPTLY-CHANGING ENVIRONMENT

In this section, we present the Round Robin SW-UCB#
algorithm (RR-SW-UCB#) for multi-player MAB problem
in abruptly-changing environment.



Algorithm 1: The RR-SW-UCB# Algorithm

For abruptly-changing environment

Imput :v €[0,1), Apin € (0,1), A\ERso , T €N & k;
Set o= 15";
Output : sequence of arm selection for player k;

% Initialization:
1 Set 2 < 0, ordered set G < (), and t < 1;

2 while t < T do

3 ifte{1,...,N} then

| Pick arm s5(t) = mod(t + k —2,N) + 1;
4 else

Compute €2, containing M arms with M largest values
in

{FFt-La)+cft-1,a)|ie{l,...,N}};
Ascending sort the arm indices in Qy, G < sorty (2g);
fori e {1,...,M} do

Pick arm sg(t) = G(mod(t — N +k —2, M) +1);
t+—t+1;

A. The RR-SW-UCB# algorithm

In the RR-SW-UCB# algorithm, each player maintains
the estimate of mean rewards using a sliding window of
observations. Each player k € {1,..., M} computes 7% (¢, )
and cF(t,) as in (2) and (3) using their own observation,
and maintains an upper confidence bound on the estimated
mean reward 7F(t — 1,a) + cf(t — 1,a) from each arm
1 €{1,...,N}. For initial N iterations, i.e.,t € {1,..., N},
the player k selects each arm once. Then, at time instants
{N +nM +1},cz.,. it computes the set 25, containing M
arms with M largest values in the set

(Pt —1,0) +cft—1,0)|ic{l,...,N}}.

These arms are sorted in ascending value of their indices
(not using the upper confidence bounds), and the player k
selects these arms in a round robin fashion starting with the
k-th arm in the set. It will be shown in the following section
that the estimated set of M best arms, 2, will be the same
for each player with high probability. Details of RR-SW-
UCBH# is shown in Algorithm 1. The free parameter A in the
algorithm can be used to refine the finite time performance
of the algorithm.

B. Analysis of RR-UCB#

Before the analysis, we introduce the following notation.
Let QM (t) denote the set of M arms with the M largest
mean rewards at time ¢. Then, the total number of times
Qp(t) # QM (t) until time T can be defined as

T
Nu(T) =) Lqa, (1)

t=1

We now upper bound N (T) in the following lemma.
Lemma 1: For the RR-SW-UCB# algorithm and the
multi-player MAB problem with with NV arms and M players

in the abruptly-changing environment with the number of
break points Yp = O(T"), v € [0, 1), the total number of
times () # QM (t) until time T for any player k satisfies
Ti-« AM(1+a)InT
D<o [(E 1) (14 MO T
M= =G P s,
2N+ M+1\2
%(T) | +Tr(MT =127+ M = 1)+ N.
Proof: We begin by separately analyzing windows with
and without breakpoints.
Step 1: We define set 7 such that for all ¢ € T, ¢t is either a
breakpoint or there exists a break point in its sliding-window
of observations {¢t — 7(t — 1,«),...,t —1}. For t € T, the
statistical means are biased. It follows that

T < Tr[MT =1)"].
Consequently, N (T) can be upper-bounded as
NU(T) € Tr(IMT = 1)+ M = 1) + N(T), )

where N (T) := Zle 10, (t)y£aM (t),t¢T)- The term M —1
in (4) is due to the fact that 25 is computed every M steps.
In the following steps, we will bound N, (T).

Step 2: If Q. (t) # QM (), there exists at least one arm i
such that i € Q4 (¢) and i ¢ QM (¢). Then, it can be shown
that

T N
Ni(T) <N+ Z Z L0 (6),igQM (6) 4 ¢ T i (t—1,0) <I(t,a)}
t=N+1 i=1
T N
+ Z Z Liicaut), igQM () t¢Toni(t—La)>l(t,)}s  (O)
t=N+1 i=1

where we choose I(t, o) = %.

We begin with bounding the sécond term on the right hand
side of inequality (5). First, we partition time instants into
G epochs. Let G € N be such that

1

A1 —a)(G-1)]7% <T<[A1-a)G]T5. (6)
Then, we have the following epochs

{1+¢(g_ 1)7a¢(g)}q€{l,G}7 (7N

where ¢(g) = [[A(1 — a)g]™= |. Let { be any time instant
other than the first instant in the g-th epoch. We will now
show that all but one of the time instants in the g-th epoch
until £ are ensured to be contained in the time-window at .
Towards this end, consider the increasing convex function
flz) = 2T+ with o € (0,1). It follows that f(xz3) —
f(w1) < f'(w2)(x2 — 1) if m2 > 1. Then, substituting
ry =¢g—1and zo = % in the above inequality and
simplifying, we get

11—«

i—(\1-a)(g—1)T= < A{a(m

—g+1>.

Fl—a

Since by definition of the g-th epoch, ﬁ < g, we have

f— (A1 —a)(g —1)™= | < min{f + 1, A[%] + 1}
=7(t,a) + 1.



The only time instant in g-th epoch that is possibly not
contained in time window at ¢ is 1 + ¢(g — 1). Then for
any arm ¢ € {1,..., N},

t

> Leauwy < Mni(h).
2+¢(g9-1)
Furthermore, in the g-th epoch in the partition, either

Z Z Liicou(t), igQM (), t¢T, ni(t—1,a) <l(t,a)} = 0;

tE€g-th epoch i=1

®)

or there exist at least one time-instant ¢ in the g-th epoch
such that

Z Liicau(), igQM (), t¢T, ni(t—1,0)<(t,a)} > 0-
=1

Let the last time instant satisfying this condition in the g-th
epoch be

t(g) = max{t € g-th epoch|
N
D Llieon ), ig0d (1, 1T, ni(t—1,0)<i(t,00} > O}
i=1

Note that t(g) ¢ 7 indicates, for each i € {1,..., N}, p1;(s)

is a constant for all s € {t(g) — 7(¢t(9) — 1,0),...,t(g)}.

Then, it follows from (8) that

N
Do D Lienn(n), igM (5,67 ma (- 1,0) <t}
tEg-th epoch i=1

t(g) N
<N-M + Z Z Yoo (4) t¢ T ns (t-1,0)<l(t,)}

t=¢(g—1)+2 i=1

N
<N -M+ > Miti(g),

i=1

g(N—M)(H

a)L{igaM (i(g)), tg) T}

AM(1+a)InT
)

min

©))

where ¢;(g) = max{t € g-thepoch | i € Qx(t), i ¢
OM@), t ¢ T,ni(t —1,a) < I(t,a)} and t;(g) < t(g)

for all ¢ € {1,...,N}. Therefore, from (7) and (9) , we
have
T N
Z Z1{ier(t),i¢Q*(t),ni(tfl,oz)<l(t,a)}
t=N+1i=1

AM(1 + )1nT>.

A2

min

< G(N—M)<1—|— (10)
Step 3: In this step, we bound the expectation of the last
term in (5). It can be shown that
N
Z Liicqu(t),igaM () t¢ T ni(t—1,0)>1(t,a)}
i=1
R(t)  h(t)

< Z Z Z Zl{ng(t 1,a)=s¢,n;(t—1,a)=s;,t¢T}

igQM () CeQM () s¢=1s;=I(t,x)

X 17 (t—1,0)+ee (t—1,a) <Fi (t—1,0)+ei (b= 1,a) ni (t—1,a) >1(t,a) }»

Y

where h(t) := W—‘ is the maximum number of times

an arm can be selected within the time window at ¢ — 1. Note

that 7;(t — 1,a) + ¢;(t —1,0) <F(t — L, a) + ¢i(t — 1, )
means at least one of the following holds.

Fi(t—1,a) > pi(t) + ¢t —1,a), (12)

Fe(t—1,0) < pc(t) —cc(t —1,a), (13)

pe(t) — milt) < 2¢;(t — 1, 0). (14)

Since n;(t — 1,a) > (¢, ), (14) does not hold. Applying
Chernoff-Hoeffding inequality [21, Theorem 1] to bound the
probability of events (12) and (13), we obtain

P(Fi(t — 1,a) > ps(t) 4+ ¢i(t — 1, 00)) < ¢720F),
P(7,(t — 1,a) < puj(t) —cj(t — 1,)) < t720+9),

5)
(16)
Since € is only computed at time instants {N + nM +
1}776220, from (11), (15) and (16), we have

T N

E{ Z Z1{i€Qk(t),i¢Qi‘/I(t),t¢T,ni(tfl,a)ZZ(t,a)}}
t=N+1 i=1

h(F(m) h(F(m) [T51

S(N=-MM DT DTN 2Mf(n)”

s¢=1 s;=l(t,a) n=0
T-N
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(N_M)()\+M+1) 22 9
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where f(n) := N +nM + 1. Therefore, it follows from (4),
(5), (10), and (17) that

A7)

NT) < N+ (v - o (14 0L Ty

Alin
]

From (6), we have G < /\?11 oy + 1. and this yields the
conclusion. ]

Based on Lemma 1, we now establish the order of
expected cumulative group regret of RR-SW-UCB# in the
abruptly changing environment.

Theorem 2: For the RR-SW-UCB# algorithm and the
multi-player MAB problem with N arms and M players in
the abruptly-changing environment with the number of break
points Y7 = O(T"), v € [0,1), under collision model M,
the expected cumulative group regret satisfies

RRRSWUCBH(T) ¢ O(T"5 I T)

Proof: 1If all player identify QM (¢) correctly at time t,
no expected regret is accrued. It follows from Lemma 1 that
Ni(T) € O(T*+* InT) for all k € {1,...,M}. The total
number of times that any player m1s1dent1ﬁes QM (t) until
time 7' can be upper bounded by Zg/ilNk(T). Thus, we
conclude the proof. [ ]

DY+ M —1).




Algorithm 2: The SW-DLP Algorithm

Input, output and parameters are the same as RR-SW-UCB#
% Initialization:
1 Set Ay <+ 0 and t + 1;

2 while t < T do
3 ifte{l,...,N} then
| Pick arm s (t) = mod(t +k —2,N) + 1;

4 else
Compute Ay, containing k arms with k largest values in

{Fit—1,0) +cf(t—1,a) [i€{1,...,N}};
Pick arm

sk(t) = arg min{ﬂ’-“(t —1,a) — cf(t —1,a)}
i€ Ay,

IV. THE SW-DLP ALGORITHM IN ABRUPTLY-CHANGING
ENVIRONMENT

In this section, we introduce the SW-DLP algorithm for
multi-player MAB problem in abruptly-changing environ-
ment.

A. The SW-DLP algorithm

The SW-DLP algorithm combines the ideas from SW-
UCB# and DLP. Similar to SW-UCB#, upper confidence
bounds on the mean rewards are computed using a sliding
window of observations as in (2) and (3). Following the
same allocation rule in DLP, at each time instant, player k
computes a set Ay containing all k largest values in the set

{FEt—1,0)+cFt—1,0)|ic{l,...,N}},
and selects arm

sp(t) = argmin{7F(t — 1,0) — cF(t — 1,a)}.
1€ AR (L)
Details about the SW-DLP is shown in Algorithm 2. The
parameters in the SW-DLP algorithm are the same as in the
RR-SW-UCB# algorithm. In the following, we will refer to
7F(t—1,a) —cf(t —1,a) as the lower confidence bound on
the estimate reward from arm ¢.

B. Analysis of SW-DLP

Theorem 3: For the SW-DLP algorithm and the multi-
player MAB problem with N arms and M players in the
abruptly-changing environment with the number of break
points T = O(T"), v € [0, 1), under collision model M,
the expected cumulative group regret satisfies

+v

RSYPY(T) € O(T InT)

Proof: The proof is similar to the proof of Theorem 2
and we only present a sketch. Let 0y (¢) be the k-th best arm
at time ¢. The total number of time instants that 0 (¢) is not
selected by player k£ with SW-DLP satisfies

T
Nie < ToINT = DT+ L2000 0¢7y, (18)

t=1

9 T
where N := 37, L (0£0.(6)}-

We partition the time instants as in (7). Then, similarly
to (8) in the proof of Lemma 1, it can be shown that

t

Z Lo (ty=ip < nalf),

2+¢(g—1)

19)

for any arm ¢ € {1,...,N} and f € g-th epoch and ¢ #
1+ ¢(g—1).

We study the event that player k does not select arm 6 ()
at time ¢ under two scenarios: (i) Ay # QF(¢), and (i) Ay =
QF(t), where QF(t) is the set with k best arms at time t.
Then, we have

T T
D Laewou0). Ty <D L2050, 12T
t=1 t=1
T
+ ) a0 (1), A= (1), g7y (20)
t=1

Note that unlike RR-SW-UCB#, in SW-DLP, after initial-
ization, Ag(¢) is computed every time instead of only at time
instants {N +nM +1},cz.,. However, this difference does
not change the order of the total number of times that Q¥ (¢)
is misidentified. Therefore, with the fact (19), it follows
similarly to the proof of Lemma 1 that

T
14v

D Liazarmy €0(T

t=1

In T). (21)

The Chernoff-Hoefding inequality is symmetric about the
estimated mean and upper tail bound is identical to the
lower tail bound. Hence, second term on the right hand side
of inequality (20) that involves selecting sy (t) using lower
confidence bounds can be bounded similarly to the first term.
Thus, we have

T
1+v

> Lgsuw#on), A=k, i27y € O(T+ InT). (22)

t=1
Substituting (21) and (22) into (20), and substituting (20)
into (18), we conclude that N}, € O(T% InT).

The number of times the group does not receive a reward
from arm 6 (t) is upper bounded by the number of times
player k does not receive a reward from arm 6 (t). Player
k does not receive a reward from arm 6y (¢) if one of the
following conditions is true (i) arm 6 (¢) is not selected by
player k, and (ii) arm 6 (¢) is selected by another player
j # k. The total number of times either one of these events
occurs at any arm 6 (t), for all k € {1,..., M}, can be
upper bounded by Zf:[:l 2Ny. Since Ny, € O(THTV In T)
for all & € {1,..., M}, we conclude the proof. [ |

Remark 1 (Comparison of RR-SW-UCB# and SW-DLP):
In multi-player MAB algorithms, assignment of a player
to a targeted arm is crucial to avoid collisions. In RR-SW-
UCB#, the indices of arms and the indices of players are
employed for this assignment. A round robin policy ensures
all players select M-best arms persistently and have an
accurate estimate of the associated mean rewards. While in
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Fig. 1. The performance the two algorithms in the abruptly changing
environment. (a) The solid lines show the performance of RR-SW-UCB#
(b) The solid lines and dashed lines show the performance of SW-DLP and
RR-SW-UCB#, respectively.

SW-DLP, such accurate estimation by all players is driven
by the lower confidence bound based assignment of players
to the arms. O

V. NUMERICAL ILLUSTRATION

In this section, we present simulation results for RR-SW-
UCB# and SW-DLP in the abruptly changing environment.
In the simulations, we consider a multi-player MAB problem
with 6 arms and 3 players. We consider three different
values {0.15, 0.3, 0.45} of parameter v that describes the
number of breakpoints to show the performance the both
algorithms. The breakpoints are introduce at time instants
where the next element of sequence {[t"|}icq1,.. N} iS
different from current element. We pick them at these
time instants to make number of breakpoints YT; € O(t")
uniformly for all ¢ € {1,...,T}. At each break point,
the mean rewards at each arm is randomly selected from
{0.05, 0.22, 0.39, 0.56, 0.73, 0.90}. In both algorithms, we
select A = 12.3.

As shown in Fig. 1, with either algorithm, the ratio of the
empirical cumulative group regret to the order of 5 Int
is upper bounded by a constant. The dashed lines in Fig. 1
(b) are taken directly from (a). The comparison shows that
the cumulative regret of RR-SW-UCB# is much lower than
SW-DLP. However, if cost of switching between arms is
considered, then the round-robin structure of RR-SW-UCB#
would incur significant cost, and in such a scenario SW-DLP
might be preferred.

VI. CONCLUSION AND FUTURE DIRECTIONS

We studied the multi-player stochastic MAB problem in
abruptly environment under a collision model in which a
player receives a reward by selecting an arm if it is the
only player to select that arm. We designed two novel
algorithms, RR-SW-UCB# and SW-DPL to solve this prob-
lem. We analyzed these algorithms and characterized their
performance in terms of expected cumulative group regret.
In particular, we showed that these algorithms incur sublinear
expected cumulative regret, i.e., the time average of the regret
asymptotically converges to zero.

There are several possible avenues for future research. In
this paper, we focused on an abruptly changing environment.

Extension of this work to other classes of non-stationary
environments such as slowly-varying environment is of
considerable interest. Another avenue of future research is
extension of these algorithms to the multi-player Markovian
MAB problem.

REFERENCES

[1] J. R. Krebs, A. Kacelnik, and P. Taylor, “Test of optimal sampling by
foraging great tits,” Nature, vol. 275, no. 5675, pp. 27-31, 1978.

[2] V. Srivastava, P. Reverdy, and N. E. Leonard, “On optimal foraging
and multi-armed bandits,” in Proceedings of the 51st Annual Allerton
Conference on Communication, Control, and Computing, Monticello,
IL, USA, 2013, pp. 494-499.

, “Surveillance in an abruptly changing world via multiarmed
bandits,” in IEEE Conference on Decision and Control, 2014, pp. 692—
697.

[4] M. Y. Cheung, J. Leighton, and F. S. Hover, “Autonomous mobile

acoustic relay positioning as a multi-armed bandit with switching

costs,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, Tokyo, Japan, November 2013, pp. 3368-3373.

A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Distributed

algorithms for learning and cognitive medium access with logarithmic

regret,” IEEE Journal on Selected Areas in Communications, vol. 29,

no. 4, pp. 731-745, 2011.

[6] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48-77, 2002.

[71 O. Besbes, Y. Gur, and A. Zeevi, “Optimal exploration-exploitation
in a multi-armed-bandit problem with non-stationary rewards,” arXiv
preprint arXiv:1405.3316, 2014.

[8] A. Garivier and E. Moulines, “On upper-confidence bound policies
for non-stationary bandit problems,” arXiv preprint arXiv:0805.3415,
2008.

[9] F. Liu, J. Lee, and N. Shroff, “A change-detection based framework
for piecewise-stationary multi-armed bandit problem,” arXiv preprint
arXiv:1711.03539, 2017.

[10] L. Wei and V. Srivastava, “On abruptly-changing and slowly-varying
multiarmed bandit problems,” in American Control Conference, Mil-
waukee, WI, Jun. 2018, to appear, arXiv:1802.08380.

[11] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient
allocation rules for the multiarmed bandit problem with multiple plays-
part i: Iid rewards,” IEEE Transactions on Automatic Control, vol. 32,
no. 11, pp. 968-976, 1987.

[12] ——, “Asymptotically efficient allocation rules for the multiarmed
bandit problem with multiple plays-part ii: Markovian rewards,” IEEE
Transactions on Automatic Control, vol. 32, no. 11, pp. 977-982, 1987.

[13] Y. Gai and B. Krishnamachari, “Distributed stochastic online learning
policies for opportunistic spectrum access,” IEEE Transactions on
Signal Processing, vol. 62, no. 23, pp. 6184-6193, 2014.

[14] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with
multiple players,” IEEE Transactions on Signal Processing, vol. 58,
no. 11, pp. 5667-5681, 2010.

[15] D. Kalathil, N. Nayyar, and R. Jain, “Decentralized learning for
multiplayer multiarmed bandits,” IEEE Transactions on Information
Theory, vol. 60, no. 4, pp. 2331-2345, 2014.

[16] N. Nayyar, D. Kalathil, and R. Jain, “On regret-optimal learning in
decentralized multi-player multi-armed bandits,” IEEE Transactions
on Control of Network Systems, vol. 5, no. 1, pp. 597-606, 2016.

[17] S. Shahrampour, A. Rakhlin, and A. Jadbabaie, “Multi-armed bandits
in multi-agent networks,” 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017.

[18] P. Landgren, V. Srivastava, and N. E. Leonard, “On distributed coop-
erative decision-making in multiarmed bandits,” in European Control
Conference, Aalborg, Denmark, Jun. 2016, pp. 243-248.

, “Distributed cooperative decision-making in multiarmed bandits:
Frequentist and Bayesian algorithms,” in IEEE Conference on Decision
and Control, Las Vegas, NV, USA, Dec. 2016, pp. 167-172.

[20] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2, pp.
235-256, 2002.

[21] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58,
no. 301, pp. 13-30, 1963.

[3]

[5

=

[19]




