
On Distributed Multi-player Multiarmed Bandit Problems

in Abruptly Changing Environment

Lai Wei Vaibhav Srivastava

Abstract— We study the multi-player stochastic multiarmed
bandit (MAB) problem in an abruptly changing environment.
We consider a collision model in which a player receives reward
at an arm if it is the only player to select the arm. We design
two novel algorithms, namely, Round-Robin Sliding-Window
Upper Confidence Bound# (RR-SW-UCB#), and the Sliding-
Window Distributed Learning with Prioritization (SW-DLP).
We rigorously analyze these algorithms and show that the
expected cumulative group regret for these algorithms is upper
bounded by sublinear functions of time, i.e., the time average
of the regret asymptotically converges to zero. We complement
our analytic results with numerical illustrations.

I. INTRODUCTION

Achieving coordinated behavior of multiple decision-

makers in unknown, uncertain, and non-stationary envi-

ronments without any explicit communication among them

is of immense interest in a variety of applications, in-

cluding robotic swarming, spectrum access, and Internet

of Things. Such decision-making problems often require

decision-makers to balance tradeoff between learning the

environment and the policies of other decision-makers, and

maximizing their own utility.

The distributed multi-player MAB problem embodies this

fundamental decision-making tradeoff. In these problems,

multiple decision-makers sequentially allocate a single re-

source each by repeatedly choosing one among a set of com-

peting alternative arms (options). The objective of decision-

makers is to maximize their total reward, while ensuring

that their allocation at each time is not coincident with any

other decision-maker. In a non-stationary version of these

problems, the utility (reward) of the arms varies with time.

These problems provide a rich modeling framework for a

variety of interesting settings, including, robotic foraging and

surveillance [1–3], acoustic relay positioning for underwater

communication [4], and channel allocation in communication

networks [5].

Most of the algorithmic solutions to the multi-player MAB

problem deal with a stationary environment. In [11, 12], a

lower bound on expected cumulative group regret for a cen-

tralized policy is derived and algorithms that asymptotically

achieve this lower bound are designed. Distributed multi-

player MAB problem with no communication among players

has been studied in [5, 13–16]. Distributed cooperative

multi-player MAB problem in which agents communicate to
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improve their estimates of mean rewards are studied in [17–

19].

In the context of the single player MAB problem, some

classes of non-stationary MAB problem have been studied

in the literature. In [6], authors study a non-stochastic

MAB problem in which the rewards are deterministic and

non-stationary. They propose algorithmic solutions to this

problem and study a weaker notion of the regret, wherein

the policy generated by the algorithm is compared against

the best policy within the policies that select the same arm

at each time. These algorithms are adapted to handle a

class of non-stationary environments and upper bounds on

the standard notion of the regret are derived in [7]. In [8],

authors study a class of non-stationary MAB problems in

which the mean rewards at arms may switch abruptly at

unknown times to unknown values. They design an upper

confidence bound (UCB) based algorithm that relies on

estimates of the mean rewards from a recent time-window

of observations. In [9], authors study the MAB problem in a

piecewise-stationary environment. They use active detection

algorithms to determine the change-points and restart the

UCB algorithm. Authors in [10] develop variants of the

algorithm in [8] for non-stationary MAB problems with

abruptly-changing and slowly-varying mean rewards. They

also develop deterministic sequencing of exploration and

exploitation type of algorithms for these environments.

In this paper, we build upon the literature on distributed

multi-player MAB problem with no communication among

players and design analogous algorithms for a class of

non-stationary environments. In particular, we extend ideas

in [10] to the multi-player setting and design two algorithms

to solve these problems. The major contributions of this

work are twofold. First, we design and rigorously analyze

two algorithms, namely, RR-SW-UCB# and SW-DLP for

the multi-player MAB problem in abruptly changing envi-

ronments. Second, we augment our analysis with numerical

illustrations.

The paper is organized as follows. In Section II, we discuss

preliminaries and introduce the problem. In Section III and

IV, we design and analyze the RR-SW-UCB# and SW-DLP

algorithms, respectively. We illustrate these algorithms with

some numerical examples in Section V. Finally, we conclude

in Section VI.

II. BACKGROUND & PROBLEM DESCRIPTION

In this section, we formulate the muti-player non-

stationary MAB problem, and introduce a class of non-

stationary environments: the abruptly-changing environment.



A. The non-stationary multi-player stochastic MAB problem

Consider an N -armed bandit problem, i.e., an MAB prob-

lem with N arms. Let the total number of players be M ∈
{1, . . . , N}. The reward associated with arm i ∈ {1, . . . , N}
is modeled as a random variable with bounded support [0, 1]
and an unknown time-varying mean µi(t) ∈ [0, 1]. Each

player j ∈ {1, . . . ,M} selects a particular arm sj(t) ∈
{1, . . . , N} at time t ∈ {1, . . . , T} and observes a reward

rsj(t)(t) associated with sj(t), where T is the time horizon.

The adaptive decision rule employed by player j is given

by ρ(∪t
d=1{rsj(d)(t), sj(d)}), which is a distributed policy

based on its own observation and decision history.

We assume a collision model M in which player j receives

a reward rsj(t)(t) from arm sj(t) if it is the only player to

select arm sj(t) at time t. Then, the expected total reward

can be written as

E
ρ[S] = E

ρ
[

T
∑

t=1

N
∑

i=1

M
∑

j=1

µi(t)Oi,j(t)
]

, (1)

where Oi,j(t) = 1 if only player j selects arm i at time t
and is zero otherwise; and the expectation is computed over

different realization of Oi,j(t) under policy ρ.

Let σt be a permutation of {1, . . . , N} at time t such that

µσt(1)(t) ≥ . . . ≥ µσt(N)(t).

The maximization of Eρ[S] in (1) is equivalent to minimizing

the expected cumulative group regret defined by

Rρ
M(T ) =

T
∑

t=1

M
∑

k=1

µσt(k)(t)−E
ρ
[

T
∑

t=1

N
∑

i=1

M
∑

j=1

µi(t)Oi,j(t)
]

.

Rρ
M(T ) is the expect difference between the cumulative

reward of the perfect selection and that of policy ρ under

collision model M. Our main purpose here is to design

policy ρ that minimizes Rρ
M(T ).

In this paper, we study the above MAB problem in an

abruptly-changing environment, in which the mean rewards

from arms switch to unknown values at unknown time

instants. We refer to these time instants as breakpoints.

We assume that the number of breakpoints until time T is

ΥT ∈ O(T ν), where ν ∈ [0, 1) and is known a priori. In

addition, the minimum difference in mean rewards between

any pair of arms at any time is lower bounded by ∆min.

B. Algorithms for the stationary stochastic MAB problem

In the stationary MAB problem, µi(t) is a constant func-

tion of time denoted by µi, for each i ∈ {1, . . . , N}. In this

setting, two algorithms relevant to this paper are : (i) UCB

for the single player MAB problem (ii) Distributed Learning

algorithm with Prioritization (DLP) for multi-player MAB

problem.

The UCB algorithm initializes by selecting each arm once

and subsequently selects the arm s(t) at time t defined by

s(t) = argmax
i∈{1,...,N}

{r̄i(t− 1) + ci(t− 1)},

where r̄i(t − 1) is the statistical mean of the reward from

arm i until time t, ci(t − 1) =
√

2 ln t
ni(t−1) and ni(t − 1)

is the number of times arm i has been selected until time

t. Auer et al. [20] showed that UCB algorithm achieves

expected cumulative regret that is within a constant factor

of the optimal.

DLP is a distributed algorithm based on the UCB al-

gorithm. Here, distributed algorithm means that a player

makes a decision only based upon its own observation

history and does not communicate with other players. To

avoid regret caused by multiple players selecting the same

arm, Selective Learning of the k-th largest expected reward

(SL(k)) algorithm is designed aiming at making player k pick

the k-th best arm. Towards this end, player k determines the

set Ak(t) of k arms associated with the k largest values in

the set {r̄i(t − 1) + ci(t − 1) | i ∈ {1, . . . , N}}, and select

arm

sk(t) = argmin
i∈Ak(t)

{r̄i(t− 1)− ci(t− 1)}.

Gai et al. [13] established that DLP achieves order-optimal

expected cumulative regret.

C. SW-UCB# for the non-stationary MAB problem

The Sliding-Window UCB (SW-UCB) algorithm [8] was

adapted in [10] to develop SW-UCB#. SW-UCB# is an

algorithm for single player MAB problem in non-stationary

environment. At time t, it maintains an estimate of the

mean reward r̄i(t, α) at each arm i, using only the rewards

collected within a sliding-window of observations. Let the

width of the sliding-window at time t ∈ {1, . . . , T} be

τ(t, α) = min{⌈λtα⌉, t}, where parameter α ∈ (0, 1] is

tuned based on environment characteristics. Let ni(t, α) =
∑t

d=t−τ(t,α)+1 1{s(d)=i} be the number of times arm i has

been selected within the time-window at time t, where 1{·}

is the indicator function, and

ri(t, α) =
1

ni(t, α)

t
∑

d=t−τ(t,α)+1

ri(d)1{s(d)=i}. (2)

Based on the above estimate, the SW-UCB# algorithm at

each time selects the arm

s(t) = argmax
i∈{1,...,N}

{ri(t− 1, α) + ci(t− 1, α)}, (3)

where ci(t−1, α) =
√

(1+α) ln t
ni(t−1,α) . In the following, we would

refer to ri(t − 1, α) + ci(t − 1, α), for i ∈ {1, . . . , N} as

the upper confidence bounds on the estimated rewards. It

has been shown in [10] that the expected cumulative regret

for SW-UCB# under the abruptly-changing environment is

upper bounded by a sublinear function of time, i.e., the time

average of the regret asymptotically converges to zero.

III. THE ROUND ROBIN SW-UCB# ALGORITHM IN

ABRUPTLY-CHANGING ENVIRONMENT

In this section, we present the Round Robin SW-UCB#

algorithm (RR-SW-UCB#) for multi-player MAB problem

in abruptly-changing environment.



Algorithm 1: The RR-SW-UCB# Algorithm

For abruptly-changing environment

Input : ν ∈ [0, 1), ∆min ∈ (0, 1), λ ∈ R>0 , T ∈ N & k;

Set : α = 1−ν

2
;

Output : sequence of arm selection for player k;

% Initialization:

1 Set Ωk ← ∅, ordered set G ← (), and t← 1;

2 while t ≤ T do

3 if t ∈ {1, . . . , N} then

Pick arm sk(t) = mod(t+ k − 2, N) + 1;

4 else
Compute Ωk containing M arms with M largest values

in

{r̄ki (t− 1, α) + cki (t− 1, α) | i ∈ {1, . . . , N}};

Ascending sort the arm indices in Ωk , G ← sort↑(Ωk);

for i ∈ {1, . . . ,M} do

Pick arm sk(t) = G(mod(t−N + k− 2,M)+ 1);
t← t+ 1;

A. The RR-SW-UCB# algorithm

In the RR-SW-UCB# algorithm, each player maintains

the estimate of mean rewards using a sliding window of

observations. Each player k ∈ {1, . . . ,M} computes r̄ki (t, α)
and cki (t, α) as in (2) and (3) using their own observation,

and maintains an upper confidence bound on the estimated

mean reward r̄ki (t − 1, α) + cki (t − 1, α) from each arm

i ∈ {1, . . . , N}. For initial N iterations, i.e., t ∈ {1, . . . , N},

the player k selects each arm once. Then, at time instants

{N + ηM +1}η∈Z≥0
, it computes the set Ωk containing M

arms with M largest values in the set

{r̄ki (t− 1, α) + cki (t− 1, α) | i ∈ {1, . . . , N}}.

These arms are sorted in ascending value of their indices

(not using the upper confidence bounds), and the player k
selects these arms in a round robin fashion starting with the

k-th arm in the set. It will be shown in the following section

that the estimated set of M best arms, Ωk, will be the same

for each player with high probability. Details of RR-SW-

UCB# is shown in Algorithm 1. The free parameter λ in the

algorithm can be used to refine the finite time performance

of the algorithm.

B. Analysis of RR-UCB#

Before the analysis, we introduce the following notation.

Let ΩM
∗ (t) denote the set of M arms with the M largest

mean rewards at time t. Then, the total number of times

Ωk(t) 6= ΩM
∗ (t) until time T can be defined as

Nk(T ) :=
T
∑

t=1

1{Ωk(t) 6=ΩM
∗ (t)}.

We now upper bound Nk(T ) in the following lemma.

Lemma 1: For the RR-SW-UCB# algorithm and the

multi-player MAB problem with with N arms and M players

in the abruptly-changing environment with the number of

break points ΥT = O(T ν), ν ∈ [0, 1), the total number of

times Ωk(t) 6= ΩM
∗ (t) until time T for any player k satisfies

Nk(T )≤(N −M)
[( T 1−α

λ(1− α)
+ 1

)(

1 +
4M(1 + α) lnT

∆2
min

)

+
π2

3

(λ+M + 1

M

)2]

+ΥT

(

⌈λ(T − 1)α⌉+M − 1
)

+N.

Proof: We begin by separately analyzing windows with

and without breakpoints.

Step 1: We define set T such that for all t ∈ T , t is either a

breakpoint or there exists a break point in its sliding-window

of observations {t− τ(t− 1, α), . . . , t− 1}. For t ∈ T , the

statistical means are biased. It follows that

|T | ≤ ΥT ⌈λ(T − 1)α⌉.

Consequently, Nk(T ) can be upper-bounded as

Nk(T ) ≤ ΥT

(

⌈λ(T − 1)α⌉+M − 1
)

+ Ñk(T ), (4)

where Ñk(T ) :=
∑T

t=1 1{Ωk(t) 6=ΩM
∗ (t),t/∈T }. The term M−1

in (4) is due to the fact that Ωk is computed every M steps.

In the following steps, we will bound Ñk(T ).
Step 2: If Ωk(t) 6= ΩM

∗ (t), there exists at least one arm i
such that i ∈ Ωk(t) and i /∈ ΩM

∗ (t). Then, it can be shown

that

Ñk(T ) ≤N+

T
∑

t=N+1

N
∑

i=1

1{i∈Ωk(t),i/∈ΩM
∗ (t),t/∈T ,ni(t−1,α)<l(t,α)}

+

T
∑

t=N+1

N
∑

i=1

1{i∈Ωk(t), i/∈ΩM
∗ (t),t/∈T ,ni(t−1,α)≥l(t,α)}, (5)

where we choose l(t, α) = 4(1+α) ln t
∆2

min

.

We begin with bounding the second term on the right hand

side of inequality (5). First, we partition time instants into

G epochs. Let G ∈ N be such that

[λ(1− α)(G− 1)]
1

1−α < T ≤ [λ(1− α)G]
1

1−α . (6)

Then, we have the following epochs

{1 + φ(g − 1), . . . , φ(g)}g∈{1,...,G}, (7)

where φ(g) =
⌊

[λ(1 − α)g]
1

1−α

⌋

. Let t̃ be any time instant

other than the first instant in the g-th epoch. We will now

show that all but one of the time instants in the g-th epoch

until t̃ are ensured to be contained in the time-window at t̃.
Towards this end, consider the increasing convex function

f(x) = x
1

1−α with α ∈ (0, 1). It follows that f(x2) −
f(x1) ≤ f ′(x2)(x2 − x1) if x2 ≥ x1. Then, substituting

x1 = g − 1 and x2 = t̃1−α

λ(1−α) in the above inequality and

simplifying, we get

t̃− (λ(1− α)(g − 1))
1

1−α ≤ λt̃α
( t̃1−α

λ(1− α)
− g + 1

)

.

Since by definition of the g-th epoch, t̃1−α

λ(1−α) ≤ g, we have

t̃− ⌊(λ(1− α)(g − 1))
1

1−α ⌋ ≤ min{t̃+ 1, λ⌈t̃α⌉+ 1}

= τ(t̃, α) + 1.



The only time instant in g-th epoch that is possibly not

contained in time window at t̃ is 1 + φ(g − 1). Then for

any arm i ∈ {1, . . . , N},

t̃
∑

2+φ(g−1)

1{i∈Ωk(t)} ≤ Mni(t̃). (8)

Furthermore, in the g-th epoch in the partition, either

∑

t∈g-th epoch

N
∑

i=1

1{i∈Ωk(t), i/∈ΩM
∗ (t), t/∈T , ni(t−1,α)<l(t,α)} = 0,

or there exist at least one time-instant t in the g-th epoch

such that
N
∑

i=1

1{i∈Ωk(t), i/∈ΩM
∗ (t), t/∈T , ni(t−1,α)<l(t,α)} > 0.

Let the last time instant satisfying this condition in the g-th

epoch be

t(g) = max{t ∈ g-th epoch|
N
∑

i=1

1{i∈Ωk(t), i/∈ΩM
∗ (t), t/∈T , ni(t−1,α)<l(t,α)} > 0}.

Note that t(g) /∈ T indicates, for each i ∈ {1, . . . , N}, µi(s)
is a constant for all s ∈ {t(g) − τ(t(g) − 1, α), . . . , t(g)}.

Then, it follows from (8) that

∑

t∈g-th epoch

N
∑

i=1

1{i∈Ωk(t), i/∈ΩM
∗ (t),t/∈T ,ni(t−1,α)<l(t,α)}

≤N−M +

t(g)
∑

t=φ(g−1)+2

N
∑

i=1

1{i/∈ΩM
∗ (t),t/∈T ,ni(t−1,α)<l(t,α)}

≤ N −M +

N
∑

i=1

Ml(ti(g), α)1{i/∈ΩM
∗ (t(g)), t(g)/∈T }

≤ (N −M)
(

1 +
4M(1 + α) lnT

∆2
min

)

, (9)

where ti(g) = max{t ∈ g-th epoch | i ∈ Ωk(t), i /∈
ΩM

∗ (t), t /∈ T , ni(t − 1, α) < l(t, α)} and ti(g) ≤ t(g)
for all i ∈ {1, . . . , N}. Therefore, from (7) and (9) , we

have
T
∑

t=N+1

N
∑

i=1

1{i∈Ωk(t),i/∈Ω∗(t),ni(t−1,α)<l(t,α)}

≤ G(N −M)
(

1 +
4M(1 + α) lnT

∆2
min

)

. (10)

Step 3: In this step, we bound the expectation of the last

term in (5). It can be shown that

N
∑

i=1

1{i∈Ωk(t),i/∈ΩM
∗ (t),t/∈T ,ni(t−1,α)≥l(t,α)}

≤
∑

i/∈ΩM
∗ (t)

∑

ζ∈ΩM
∗ (t)

h(t)
∑

sζ=1

h(t)
∑

si=l(t,α)

1{nζ(t−1,α)=sζ , ni(t−1,α)=si,t/∈T }

× 1{rζ(t−1,α)+cζ(t−1,α)≤ri(t−1,α)+ci(t−1,α),ni(t−1,α)≥l(t,α)},
(11)

where h(t) :=
⌈

⌈λ(t−1)α⌉
M

⌉

is the maximum number of times

an arm can be selected within the time window at t−1. Note

that rj(t− 1, α) + cj(t− 1, α) ≤ ri(t− 1, α) + ci(t− 1, α)
means at least one of the following holds.

ri(t− 1, α) ≥ µi(t) + ci(t− 1, α), (12)

rζ(t− 1, α) ≤ µζ(t)− cζ(t− 1, α), (13)

µζ(t)− µi(t) < 2ci(t− 1, α). (14)

Since ni(t − 1, α) ≥ l(t, α), (14) does not hold. Applying

Chernoff-Hoeffding inequality [21, Theorem 1] to bound the

probability of events (12) and (13), we obtain

P(ri(t− 1, α) ≥ µi(t) + ci(t− 1, α)) ≤ t−2(1+α), (15)

P(rj(t− 1, α) ≤ µj(t)− cj(t− 1, α)) ≤ t−2(1+α). (16)

Since Ωk is only computed at time instants {N + ηM +
1}η∈Z≥0

, from (11), (15) and (16), we have

E

[

T
∑

t=N+1

N
∑

i=1

1{i∈Ωk(t),i/∈ΩM
∗ (t),t/∈T ,ni(t−1,α)≥l(t,α)}

]

≤ (N −M)M

h(f(η))
∑

sζ=1

h(f(η))
∑

si=l(t,α)

⌈T−N
M

⌉
∑

η=0

2Mf(η)−2(1+α)

≤ (N −M)M2

⌈T−N
M

⌉
∑

η=0

2f(η)−2(1+α)h(f(η))2

≤ (N −M)
(λ+M + 1

M

)2 ∞
∑

η=1

2η−2

=
π2

3
(N −M)

(λ+M + 1

M

)2

, (17)

where f(η) := N + ηM +1. Therefore, it follows from (4),

(5), (10), and (17) that

Nk(T ) ≤ N + (N −M)
[

G
(

1 +
4M(1 + α) lnT

∆2
min

)

+
π2

3

(λ+M + 1

M

)2]

+ΥT

(

⌈λ(T − 1)α⌉+M − 1
)

.

From (6), we have G ≤ T 1−α

λ(1−α) + 1, and this yields the

conclusion.

Based on Lemma 1, we now establish the order of

expected cumulative group regret of RR-SW-UCB# in the

abruptly changing environment.

Theorem 2: For the RR-SW-UCB# algorithm and the

multi-player MAB problem with N arms and M players in

the abruptly-changing environment with the number of break

points ΥT = O(T ν), ν ∈ [0, 1), under collision model M,

the expected cumulative group regret satisfies

RRR-SW-UCB#
M (T ) ∈ O

(

T
1+ν
2 lnT

)

Proof: If all player identify ΩM
∗ (t) correctly at time t,

no expected regret is accrued. It follows from Lemma 1 that

Nk(T ) ∈ O(T
1+ν
2 lnT ) for all k ∈ {1, . . . ,M}. The total

number of times that any player misidentifies ΩM
∗ (t) until

time T can be upper bounded by
∑M

k=1 Nk(T ). Thus, we

conclude the proof.



Algorithm 2: The SW-DLP Algorithm

Input, output and parameters are the same as RR-SW-UCB#

% Initialization:

1 Set Ak ← ∅ and t← 1;

2 while t ≤ T do

3 if t ∈ {1, . . . , N} then

Pick arm sk(t) = mod(t+ k − 2, N) + 1;

4 else
Compute Ak containing k arms with k largest values in

{r̄ki (t− 1, α) + cki (t− 1, α) | i ∈ {1, . . . , N}};

Pick arm

sk(t) = argmin
i∈Ak

{r̄ki (t− 1, α)− cki (t− 1, α)};

IV. THE SW-DLP ALGORITHM IN ABRUPTLY-CHANGING

ENVIRONMENT

In this section, we introduce the SW-DLP algorithm for

multi-player MAB problem in abruptly-changing environ-

ment.

A. The SW-DLP algorithm

The SW-DLP algorithm combines the ideas from SW-

UCB# and DLP. Similar to SW-UCB#, upper confidence

bounds on the mean rewards are computed using a sliding

window of observations as in (2) and (3). Following the

same allocation rule in DLP, at each time instant, player k
computes a set Ak containing all k largest values in the set

{r̄ki (t− 1, α) + cki (t− 1, α) | i ∈ {1, . . . , N}},

and selects arm

sk(t) = argmin
i∈Ak(t)

{r̄ki (t− 1, α)− cki (t− 1, α)}.

Details about the SW-DLP is shown in Algorithm 2. The

parameters in the SW-DLP algorithm are the same as in the

RR-SW-UCB# algorithm. In the following, we will refer to

r̄ki (t−1, α)− cki (t−1, α) as the lower confidence bound on

the estimate reward from arm i.

B. Analysis of SW-DLP

Theorem 3: For the SW-DLP algorithm and the multi-

player MAB problem with N arms and M players in the

abruptly-changing environment with the number of break

points ΥT = O(T ν), ν ∈ [0, 1), under collision model M,

the expected cumulative group regret satisfies

RSW-DLP
M (T ) ∈ O

(

T
1+ν
2 lnT

)

Proof: The proof is similar to the proof of Theorem 2

and we only present a sketch. Let θk(t) be the k-th best arm

at time t. The total number of time instants that θk(t) is not

selected by player k with SW-DLP satisfies

N̂k ≤ ΥT ⌈λ(T − 1)α⌉+
T
∑

t=1

1{sk(t) 6=θk(t), t/∈T }, (18)

where N̂k :=
∑T

t=1 1{sk(t) 6=θk(t)}.

We partition the time instants as in (7). Then, similarly

to (8) in the proof of Lemma 1, it can be shown that

t̃
∑

2+φ(g−1)

1{sk(t)=i} ≤ ni(t̃), (19)

for any arm i ∈ {1, . . . , N} and t̃ ∈ g-th epoch and t 6=
1 + φ(g − 1).

We study the event that player k does not select arm θk(t)
at time t under two scenarios: (i) Ak 6= Ωk

∗(t), and (ii) Ak =
Ωk

∗(t), where Ωk
∗(t) is the set with k best arms at time t.

Then, we have

T
∑

t=1

1{sk(t) 6=θk(t), t/∈T } ≤
T
∑

t=1

1{Ak 6=Ωk
∗(t), t/∈T }

+

T
∑

t=1

1{sk(t) 6=θk(t),Ak=Ωk
∗(t), t/∈T }. (20)

Note that unlike RR-SW-UCB#, in SW-DLP, after initial-

ization, Ak(t) is computed every time instead of only at time

instants {N + ηM +1}η∈Z≥0
. However, this difference does

not change the order of the total number of times that Ωk
∗(t)

is misidentified. Therefore, with the fact (19), it follows

similarly to the proof of Lemma 1 that

T
∑

t=1

1{Ak 6=Ωk
∗(t)}

∈ O
(

T
1+ν
2 lnT

)

. (21)

The Chernoff-Hoefding inequality is symmetric about the

estimated mean and upper tail bound is identical to the

lower tail bound. Hence, second term on the right hand side

of inequality (20) that involves selecting sk(t) using lower

confidence bounds can be bounded similarly to the first term.

Thus, we have

T
∑

t=1

1{sk(t) 6=θk(t), Ak=Ωk
∗(t), t 6=T } ∈ O

(

T
1+ν
2 lnT

)

. (22)

Substituting (21) and (22) into (20), and substituting (20)

into (18), we conclude that N̂k ∈ O
(

T
1+ν
2 lnT

)

.

The number of times the group does not receive a reward

from arm θk(t) is upper bounded by the number of times

player k does not receive a reward from arm θk(t). Player

k does not receive a reward from arm θk(t) if one of the

following conditions is true (i) arm θk(t) is not selected by

player k, and (ii) arm θk(t) is selected by another player

j 6= k. The total number of times either one of these events

occurs at any arm θk(t), for all k ∈ {1, . . . ,M}, can be

upper bounded by
∑M

k=1 2N̂k. Since N̂k ∈ O
(

T
1+ν
2 lnT

)

for all k ∈ {1, . . . ,M}, we conclude the proof.

Remark 1 (Comparison of RR-SW-UCB# and SW-DLP):

In multi-player MAB algorithms, assignment of a player

to a targeted arm is crucial to avoid collisions. In RR-SW-

UCB#, the indices of arms and the indices of players are

employed for this assignment. A round robin policy ensures

all players select M -best arms persistently and have an

accurate estimate of the associated mean rewards. While in
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Fig. 1. The performance the two algorithms in the abruptly changing
environment. (a) The solid lines show the performance of RR-SW-UCB#
(b) The solid lines and dashed lines show the performance of SW-DLP and
RR-SW-UCB#, respectively.

SW-DLP, such accurate estimation by all players is driven

by the lower confidence bound based assignment of players

to the arms. �

V. NUMERICAL ILLUSTRATION

In this section, we present simulation results for RR-SW-

UCB# and SW-DLP in the abruptly changing environment.

In the simulations, we consider a multi-player MAB problem

with 6 arms and 3 players. We consider three different

values {0.15, 0.3, 0.45} of parameter ν that describes the

number of breakpoints to show the performance the both

algorithms. The breakpoints are introduce at time instants

where the next element of sequence {⌊tν⌋}t∈{1,...,N} is

different from current element. We pick them at these

time instants to make number of breakpoints Υt ∈ O(tν)
uniformly for all t ∈ {1, . . . , T}. At each break point,

the mean rewards at each arm is randomly selected from

{0.05, 0.22, 0.39, 0.56, 0.73, 0.90}. In both algorithms, we

select λ = 12.3.

As shown in Fig. 1, with either algorithm, the ratio of the

empirical cumulative group regret to the order of t
1+ν
2 ln t

is upper bounded by a constant. The dashed lines in Fig. 1

(b) are taken directly from (a). The comparison shows that

the cumulative regret of RR-SW-UCB# is much lower than

SW-DLP. However, if cost of switching between arms is

considered, then the round-robin structure of RR-SW-UCB#

would incur significant cost, and in such a scenario SW-DLP

might be preferred.

VI. CONCLUSION AND FUTURE DIRECTIONS

We studied the multi-player stochastic MAB problem in

abruptly environment under a collision model in which a

player receives a reward by selecting an arm if it is the

only player to select that arm. We designed two novel

algorithms, RR-SW-UCB# and SW-DPL to solve this prob-

lem. We analyzed these algorithms and characterized their

performance in terms of expected cumulative group regret.

In particular, we showed that these algorithms incur sublinear

expected cumulative regret, i.e., the time average of the regret

asymptotically converges to zero.

There are several possible avenues for future research. In

this paper, we focused on an abruptly changing environment.

Extension of this work to other classes of non-stationary

environments such as slowly-varying environment is of

considerable interest. Another avenue of future research is

extension of these algorithms to the multi-player Markovian

MAB problem.
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