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Abstract— We study distributed cooperative decision-making
in a multi-agent stochastic multi-armed bandit (MAB) problem
in which agents are connected through an undirected graph and
observe the actions and rewards of their neighbors. We develop
a novel policy based on partitions of the communication graph
and propose a distributed method for selecting an arbitrary
number of leaders and partitions. We analyze this new policy
and evaluate its performance using Monte-Carlo simulations.

I. INTRODUCTION

The challenge of cooperative decision-making under un-

certainty is a common feature of engineered as well as nat-

ural systems. Decision-making under uncertainty hinges on

the tradeoff between exploitation, where a decision-making

agent chooses to maximize its parameter-dependent decision-

making objective, and learning those system parameters

though exploration. Multiarmed bandit (MAB) problems are

canonical formulations of this explore-exploit tradeoff.

The stochastic MAB problem features a given set of

options (arms), each with an associated stochastic reward

distribution with unknown mean. An agent chooses one arm

at a time, receiving a reward sampled from the associated

distribution. The agent’s goal is to maximize the cumulative

expected reward over time. To do so the agent must balance

learning the identity of the best arm (exploration) and choos-

ing the arm with highest expected reward (exploitation).

MAB problems have a long and rich history, with ap-

plications in diverse scientific fields such as control and

robotics [1], ecology [2, 3], psychology [4], and commu-

nications [5, 6]. In their seminal work, Lai and Robbins [7]

established a lower bound on the expected number of times

a sub-optimal arm must be selected by an optimal policy in a

frequentist setting. Many algorithms have been designed that

achieve the lower bound in [7] uniformly in time (see [8]

for a survey). One such algorithm is the Upper Confidence

Bound (UCB) policy by Auer et al. [9].

To date most research on the MAB problem has focused

on policies for a single decision-maker. However, the rising

importance of networked systems warrants the development

of scalable and distributed algorithms for groups of decision-

makers facing MAB problems. In this paper we build upon
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classical single-agent bandit policies [9] and extend them to

the multi-agent setting.

The multi-agent MAB problem has been investigated in

several contexts. Anantharam et al. [10] studied the case of

multiple centralized players. Several researchers [6, 11, 12],

inspired by the radio network spectrum access problem,

have considered the case of decentralized multi-agent MAB

with only indirect communication between agents through

conflicts during arm selection. In [13–16] cooperative multi-

agent MAB problems have been studied, where agents com-

municate over a network graph to maximize the cumulative

reward of the group and do not interfere with one another.

In our previous work [13, 14], agents communicate their

estimates of mean rewards to their neighbors. In the present

paper we draw inspiration from [15], in which agents com-

municate only decisions and rewards to neighbors rather than

estimates of mean rewards. The Follow Your Leader (FYL)

algorithm of [15] partitions the network into “leaders,” which

use the UCB1 algorithm, and “copiers,” which imitate the

actions of an adjacent leader. The FYL algorithm selects how

many and which agents will be leaders using a dominating set

of the graph; these must be computed prior to runtime. [17]

studied the multi-agent MAB problem in which agents can

communicate decisions and rewards with their neighbors, but

they cannot imitate each other. Specifically, they considered

the case of side-observations, where sampling a given arm

reveals the rewards that other agents would have received

had they selected the same arm.

In this paper we study the distributed cooperative MAB

problem with local communication. Here agents are faced

with a stochastic MAB problem and they can access the

decisions and rewards of their neighbors as defined by a

static communication graph. We introduce and analyze a

partition-based distributed decision-making algorithm, where

only one agent in each partition, a so-called leader, makes

independent decisions based on its local information. The

other agents in the partition, the so-called followers, imitate

the decisions of the leader in the partition, either directly if

the leader is a neighbor, or, otherwise, indirectly by imitating

a neighbor along a path to the leader. The ability to imitate

a neighbor who is itself imitating another neighbor is the

key difference in the problem formulation between our work

and [15]. In [15] agents can only imitate a neighbor that is a

leader, and our relaxation of this constraint leads to a richer

set of possible strategies and analysis.

Our problem setup is motivated by the phenomenon

of social imitation, which is often encountered in natural

systems [18–20]. We also define and analyze a distributed



algorithm for partitioning the network and choosing leaders,

where the number of leaders can be prescribed. We demon-

strate that our algorithms obtain order-optimal performance

for the group. We explore our results using several graphs

through simulation and analytic performance bounds.

The paper is organized as follows. In Section II we intro-

duce the cooperative MAB problem and give a lower bound

on the number of times a suboptimal arm will be chosen by

the network. In Section III we propose and analyze the UCB-

Partition and token-passing partition generation algorithms.

We analyze the UCB-Partition algorithm using Monte-Carlo

simulations in Section IV and conclude in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

A. Cooperative MAB Problem with Local Communication

Consider an MAB problem with N arms and M agents.

The reward associated to arm i ∈ {1, . . . , N} is a bounded

random variable in [0, 1] with unknown mean mi. The

communication among agents is modeled by a connected,

unweighted, undirected network graph G = (V, E), |V| = M .

Let N (k) denote the set of neighbors of each agent k ∈ V .

We assume that the agents can be classified into leaders

and followers. We assume that every follower is connected

to at least one leader through a path in G, and it imitates

one such leader, either directly or indirectly through a chain

of followers. The set of leaders induces a partitioning of the

graph in which every agent in a leader’s partition ultimately

imitates it. We assume that at each time t each leader

has access to the arms chosen and rewards received by its

neighbors, while each follower only has access to the arms

chosen by its neighbors. We also assume that each agent k
knows the degree of its neighbors: |N (j)| for each j ∈ N (k).

Let each agent k choose arm ik(t) at time t ∈ {1, . . . , T}
and receive i.i.d reward rk(t). The total number of times up

to time t that agent k has selected arm i is nk
i (t) and that

agent k and its neighbors have selected arm i is n̄k
i (t) =

nk
i (t)+

∑

j∈N (k) n
j
i (t). The sequence of rewards received by

agent k and its neighbors from arm i is {rki,s}s∈{1,...,n̄k
i
(t)}.

The estimated mean of arm i at time t by agent k given

its own and its neighbors’ realized rewards is µ̄k
i,n̄k

i
(t)

=

1
n̄k
i
(t)

∑n̄k
i (t)

s=1 rki,s. Each leader ℓ can compute n̄ℓ
i(t) and µ̄ℓ

i(t).

The objective of this paper is to design a distributed

algorithm for partitioning the graph G, assigning a leader to

each partition such that every other agent in the partition

imitates it, and determining a sequential decision-making

policy for the leaders and the followers such that efficient

group performance is achieved. Alternatively, a set of leaders

may be assigned and the distributed algorithm should select

the set of followers and, consequently, the graph partitioning.

The regret of agent k at each time t conditioned on the

choice ik(t) is defined by Rk(t) = mi∗ −mik(t) ≡ ∆ik(t),

where mi∗ = maxi∈{1,...,N} mi. We characterize group per-

formance in terms of the total expected cumulative regret de-

fined by
∑M

k=1

∑T

t=1 E[R
k(t)] =

∑M

k=1

∑N

i=1 ∆iE[nk
i (T )],

where T is the horizon length.

In this paper, we restrict our attention to policies in which

the leaders follow the UCB algorithm with the estimates

of the mean rewards that are computed using the rewards

received by the leader and its neighbors and the followers

imitate one of their neighbors.

B. Lower Bounds on Expected Cumulative Regret

It follows from [10] that the expected number of times a

suboptimal arm i is selected by a fusion center with access

to the reward for each agent is lower bounded by

M
∑

k=1

E[nk
i (T )] ≥

(

1

D(pi||pi∗)
+ o(1)

)

lnT. (1)

where D(p||p∗) is the Kullback-Leibler divergence between

the probability density pi and pi∗ .

In the following we develop a policy that achieves provable

performance within a constant factor of the above bound.

III. PARTITION BASED MULTI-PLAYER MAB

In this section we describe and prove upper bounds

on the performance of partition-based multi-player MAB.

We introduce several definitions, describe the problem and

the UCB-Partition algorithm.We then establish bounds on

performance of the UCB-Partition algorithm.

A. Definitions and Notation

We now introduce several definitions that formalize the

leader/follower relationships inherent in the UCB-Partition

algorithm. We will use these formal definitions to prove an

upper bound on the cumulative expected regret of the algo-

rithm. Fig. 1 illustrates these definitions with an example.

Let Gldr = (Vldr, Eldr) be a directed graph such that Vldr =
V and

Eldr = {(k, j) ∈ E | k can imitate j}.

Gldr encodes all possible variations of followers in the UCB-

Partition algorithm: a directed edge in Gldr indicates that the

agent at the tail may follow the agent at the head. Gldr can

therefore be used to enforce operation constraints on who

can or cannot follow others.

We now define the set of all leaders by L and, in the

following, we will denote the i-th element of L by ℓi. We

also define Grlz
ldr = (V rlz

ldr , E
rlz
ldr) such that V rlz

ldr = V and

E rlz
ldr ={(k, j)⊂Eldr | ∄ m 6= j ∈ Vldr, (k,m) ∈ E rlz

ldr , k /∈ L}.

Note that E rlz
ldr is defined recursively and restricts follower

agent k to imitate at most one leader or follower. Grlz
ldr

thus encodes a possible realization of follower and leader

combinations when using the UCB-Partition algorithm: a

directed edge in Grlz
ldr indicates that the agent at the tail will

follow the agent at the head, and agents with no outgoing

edges are leaders.

For a given realization Grlz
ldr, we define the set of followers

of leader ℓj as

F rlz
j ={ℓj}∪{k ∈V rlz

ldr |∃ directed path from k to ℓj in Grlz
ldr}.

and the set of direct followers of leader ℓj as

F rlz
j-direct = {ℓj}∪{k ∈ V rlz

ldr | (k, ℓj) ∈ E rlz
ldr}.



The sets F rlz
j , j ∈ {1, . . . , |L|}, define a partitioning of G,

where each partition contains one leader that every follower

in the partition ultimately imitates, and F rlz
j-direct ⊆ F rlz

j . Fig. 1

illustrates these subgraphs for a given G and three example

realizations Grlz
ldr. We denote the length of the longest path

present in Grlz
ldr within the partition defined by F rlz

j as diamrlz
j .

Every realization of Grlz
ldr induces a partitioning of the graph

G. Equivalently, for any partitioning of the graph G, we

can choose a leader in each partition and construct Grlz
ldr.

The following analysis holds for any realization Grlz
ldr and

is oblivious to how Grlz
ldr is constructed, i.e., whether it is

induced by a given set of leaders or if it is induced by a

given partitioning.

The set F rlz
j-direct is used later in this paper to bound the

expected cumulative regret of the UCB-Partition algorithm

for both a single partition and multiple partitions of G.

B. UCB-Network and Follow Your Leader Algorithms

The UCB-Network and Follow Your Leader (FYL) algo-

rithms are defined in [15]. The UCB-network algorithm is

equivalent to setting L = V , making every agent a leader

that can access rewards of its neighbors. The UCB-Network

algorithm is thus easily distributed, but it does not allow for

any agent to imitate.

In the FYL algorithm the leaders L are defined as a

dominating set1 of G, and the followers of ℓj are composed

of a subset of the neighbors of ℓj . In the FYL algorithm

the best performance is achieved when L is defined as the

minimal dominating set. An example of leader selection

corresponding to the minimal dominating set is shown in

Panel C in Fig. 1.

C. UCB-Partition Algorithm

First, we define

Qk
i (t, n̄

k
i (t)) = µ̄k

i,n̄k
i
(t) +

√

2 ln (t)

n̄k
i (t)

. (2)

The UCB-Partition algorithm is as follows:

(i) Initialization phase: Every leader j ∈ L chooses each

arm once, and each follower k ∈ F rlz
j chooses randomly

for the first timestep.

(ii) Each leader j ∈ L selects arm with highest Qj
i (t, n̄

j
i (t)),

and each follower k selects the arm selected by agent

{m ∈ V rlz
ldr | (k,m) ∈ E rlz

ldr} at the previous timestep.

D. Expected Cumulative Regret of UCB-Partition

Here we establish an upper bound on the cumulative

expected regret of the UCB-Partition algorithm.

Theorem 1. For the UCB-Partition algorithm with defini-

tions given in Section III-A the following bounds hold for

1A subset of nodes of a graph is called a dominating set if for every
node not in the dominating set, there exists an adjacent node that belongs
to the dominating set. The smallest dominating set is called the minimal
dominating set.

G

Gldr

A. Grlz
ldr

B. Grlz
ldr

C. Grlz
ldr

ℓi
F rlz

j-direct\ℓj F rlz
j \F rlz

j-direct

Fig. 1: Example of a communication graph G and a Gldr that allows for any
agent to imitate any neighbor in G. Panels A and B show two possible
realizations of Grlz

ldr for the case of one leader. Panel C demonstrates a
realization for three leaders. The selection of each agent’s role, which defines
Grlz

ldr , can be driven by design constraints or optimized to minimize the upper
bounds on performance. Note that even if two agents are not connected in
Grlz

ldr they can still share sample information if connected in G.

i 6= i∗ and given a Grlz
ldr with |L| = 1:

M
∑

k=1

E
[

nk
i (T )

]

≤
8 ln (T )

∆i

·
|F rlz

1 |

|F rlz
1-direct|

+M3(1 +
π2

3
) + (|F rlz

1 | − 1)diamrlz
1 ,

where |F rlz
1 | = M and |F rlz

1-direct| = |N (ℓ1)|+ 1.

Proof. We start by noticing that

M
∑

k=1

nk
i (T ) ≤ |F rlz

1 |nℓ1
i (T ) + (|F rlz

1 | − 1)diamrlz
1 (3)

= |F rlz
1 |

T
∑

t=1

1
{

iℓ1(t) = i
}

+ (|F rlz
1 | − 1)diamrlz

1

≤ (|F rlz
1 | − 1)diamrlz

1 + |F rlz
1 |

[

A

|F rlz
1-direct|

+

T
∑

t=1

1

{

iℓ1(t) = i, nℓ1
i (t) >

A

|F rlz
1-direct|

}]

, (4)

where A is a constant that will be chosen later and the

(|F rlz
1 |−1)diamrlz

1 term in (3) follows because every follower

will not necessarily be copying their leader until the leader’s



choices propagate through the network. We now bound the

second part of (4) using techniques from [9].

T
∑

t=1

1

{

iℓ1(t) = i, nℓ1
i (t) >

A

|F rlz
1-direct|

}

≤
T
∑

t=1

1

{

Qℓ1
i∗ (t, n̄

ℓ1
i∗ (t))<Qℓ1

i (t, n̄ℓ1
i (t)), nℓ1

i (t) >
A

|F rlz
1-direct|

}

≤
T
∑

t=1

1

{

Qℓ1
i∗ (t, n̄

ℓ1
i∗ (t))<Qℓ1

i (t, n̄ℓ1
i (t)), n̄ℓ1

i (t) > A−M

}

(5)

≤
T
∑

t=1

1

{

min Qℓ1
i∗ (t, a)

1<a<(|N (ℓ1)|+1)t

< max Qℓ1
i (t, b)

A−M<b<(|N (ℓ1)|+1)t

}

≤
T
∑

t=1

(|N (ℓ1)|+1)t
∑

a=1

(|N (ℓ1)|+1)t
∑

b=A−M

1

{

Qℓ1
i∗ (t, a) < Qℓ1

i (t, b)
}

where (5) follows because the direct followers of the

leader choose iℓ1(t) at time t + 1. In the spirit of [9],

if 1

{

Qℓ1
i∗ (t, a) < Qℓ1

i (t, b)
}

holds then at least one of the

following must hold:

µ̄i∗,a ≤ mi∗ −

√

2 ln (t)

a
(6)

µ̄i,b ≥ mi +

√

2 ln (t)

b
(7)

mi∗ < mi +

√

8 ln (t)

b
(8)

As in [9], we bound (6) and (7) using Chernoff-Hoeffding

bounds as

P

(

µ̄i∗,a ≤ mi∗ −

√

2 ln (t)

a

)

≤ t−4, and

P

(

µ̄i,b ≥ mi +

√

2 ln (t)

b

)

≤ t−4.

Setting A = M + 8 ln(t)
∆2

i

, we see that (8) never holds. Thus,

|F rlz
1 |

T
∑

t=1

1

{

iℓ1(t) = i, nℓ1
i (t)>

A

|F rlz
1-direct|

}

≤ |F rlz
1 |

T
∑

t=1

(|N (ℓ1)|+1)t
∑

a=0

(|N (ℓ1)|+1)t
∑

b=A−M

2

t4

≤ |F rlz
1 |

T
∑

t=1

2

t2
(|N (ℓ1)|+ 1)2

≤ |F rlz
1 |(|N (ℓ1)|+ 1)2(1 +

π2

3
) ≤ M3(1 +

π2

3
),

which completes the proof.

Corollary 1. For the UCB-Partition algorithm with defini-

tions given in Section III-A the following bounds hold for

i 6= i∗ and any given Grlz
ldr with a generic set of leaders L:

M
∑

k=1

E
[

nk
i (T )

]

≤
8 ln (T )

∆i

∑

j∈L

|F rlz
j |

|F rlz
j-direct|

+M3(1 +
π2

3
) +

∑

j∈L

(|F rlz
j | − 1)diamrlz

j .

Proof. Similar to the proof of Theorem 1, we note that

M
∑

k=1

nk
i (T ) ≤

∑

j∈L

|F rlz
j |n

ℓj
i (T ) +

∑

j∈L

(|F rlz
j | − 1)diamrlz

j

=
∑

j∈L

|F rlz
j |

T
∑

t=1

1
{

iℓj (t) = i
}

+
∑

j∈L

(|F rlz
j | − 1)diamrlz

j

≤
∑

j∈L

(|F rlz
j | − 1)diamrlz

j +
∑

j∈L

|F rlz
j |

[

A

|F rlz
j-direct|

+

T
∑

t=1

1

{

iℓj (t) = i, n
ℓj
i (t) >

A

|F rlz
j-direct|

}]

≤
∑

j∈L

(|F rlz
j | − 1)diamrlz

j +A
∑

j∈L

|F rlz
j |

|F rlz
j-direct|

+M2(1 +
π2

3
)
∑

j∈L

|F rlz
j | (9)

=
∑

j∈L

(|F rlz
j | − 1)diamrlz

j +A
∑

j∈L

|F rlz
j |

|F rlz
j-direct|

+M3(1+
π2

3
),

where (9) follows from Theorem 1, completing the proof.

E. Distributed Partition-Based Multi-agent MAB using To-

ken Passing

The UCB-Partition algorithm and the associated bounds

provide performance guarantees for a given Grlz
ldr, which by

definition defines |L| partitions of G and the leader-follower

assignments. In this section we present a distributed method

for choosing |L| leaders and partitions, which in turn, with

follower assignments, gives Grlz
ldr.

This method is comprised of two parts: leader identifica-

tion and partition generation. The goal of the leader identi-

fication step is for each agent to construct, in a distributed

fashion, a list of tuples of size |L|, where each tuple contains

the identify and degree of agents with top |L| degree. Let

each agent k have a unique identity number v, and let each

agent know their own degree, |N (k)|, in G, and identity of

their neighbors. Each agent initially constructs a list of size

|L| with only one entry: the agent’s identity and degree, and

the other entries are empty. Then, each agent exchanges this

list with each of their neighbors and combines their own

list with those received to create a new list of agents with

the top |L| degrees in the lists (in case of ties, the agent

with lower identity is selected). Each agent then repeats this

process with their new list, and the procedure converges in

number of timesteps equal to at most two times the diameter

of graph G plus one.



To accomplish partition generation each agent represented

in the final list identifies itself as a leader. Followers then

recursively choose an agent to imitate. First, the agents that

are adjacent to leader(s) commit to imitating a leader, and

transmit a committed signal to their neighbors. Subsequently

the uncommitted neighbors may choose to imitate one of the

committed agents, until all agents are committed.

This procedure defines Grlz
ldr, and the performance bounds

established in Section III-D hold. In future work will we

rigorously show that this strategy converges to a valid

partition for a connected communication graph G.

Fig. 2 demonstrates three examples of leader selection and

follower assignment using this method for 1, 3, and 5 leaders.

Note that Grlz
ldr is not unique for the 3 and 5 leader cases as

some followers must choose arbitrarily between two or more

options. The identity number v is omitted for clarity, but it

is used to break ties when choosing 5 leaders.

IV. NUMERICAL ILLUSTRATIONS

In this section we compare the behavior and performance

of the UCB-Partition algorithm with the algorithms in [15].

We show that the UCB-Partition algorithm performs well

over a variety of graph structures and offers performance

advantages over related algorithms.

All simulations are conducted with a 2-armed bandit

using rewards drawn from a Bernoulli distribution with

m = [0.5, 0.7] and T = 103 or T = 104. In Figs. 3

and 4 we show cumulative regret of the group over time

for different graph structures as given in Figs. 1 and 2,

respectively. The cumulative regret in our simulations are

computed by averaging over 8000 Monte-Carlo runs using

the UCB-Partition and UCB-Network algorithms, as well as

for the case with no communication between agents.

Example 1 (Regret for Small Graphs). Fig. 3 shows group

cumulative expected regret for G and the three versions of

Grlz
ldr as given in Fig. 1. The UCB-Partition greatly improves

performance over the UCB-Network algorithm, demonstrat-

ing the benefits of imitation. Additionally, version C of

Grlz
ldr is a minimal dominating set partition for the FYL

algorithm, so the better performance of UCB-Partition A over

C here shows the advantage of the UCB-Partition algorithm

over the FYL algorithm when used with suitable leaders.

Finally, the the better performance of UCB-Partition A over

B demonstrates the benefit of selecting agents with higher

degree to be leaders.

Example 2 (Regret for Large Graphs using Token Passing).

Fig. 4 shows group cumulative expected regret for G and the

three versions of Grlz
ldr corresponding to 1, 3, and 5 leaders

as given in Fig. 2. Here, increasing the number of leaders

results in a small increase in group cumulative regret for

large T , which is also reflected in the performance bounds,

a phenomenon we discuss in Example 3. As in Example 1,

the UCB-Partition significantly improves performance over

the UCB-Network algorithm.

Example 3 (Time Dependency of Optimal Leader Selec-

tion). Fig. 5 compares the relative performance of the UCB-

G

Gldr, |L| = 1

Grlz
ldr , |L| = 3

Grlz
ldr , |L| = 5

ℓi
F rlz

j-direct\ℓj F rlz
j \F rlz

j-direct

Fig. 2: Example of a large communication graph G and a Gldr (not shown)
that allows for any agent to follow any neighbor in G. Three panels show
three possible realizations of Grlz

ldr with 1, 3, and 5 leaders, respectively,
where the leaders and followers are selected using the token passing method
described in III-E.

Fig. 3: Simulation results of expected cumulative regret for the UCB-
Network and UCB-Partition algorithms using G and Grlz

ldr as given in Fig. 1.

Partition algorithm using the 1, 3, and 5 leader realizations

Grlz
ldr in Fig. 2 at each timestep t for T = 103. Early on, the

3 leader network outperforms the 1 leader network, but as

t grows the 1 leader network begins to perform the best, a

trend which can be seen continuing in Fig. 4.

This is expected as bounds expressed in Theorem 1 and

Corollary 1 indicate that as T → ∞ the lowest regret will be

obtained when the agent or agents with the highest overall

degree in G are the only leaders. This result is indicated by

the domination of the logarithmic term in the bound and is



Fig. 4: Simulation results of expected cumulative regret for the UCB-
Network and UCB-Partition algorithms using G and Grlz

ldr as given in Fig. 2.

Fig. 5: Simulation results of the expected cumulative group regret of the 1,
3, and 5 leader Grlz

ldr’s in Fig. 2 as a percentage of the algorithm with highest
regret at each time t. Lower percentage values indicate lower regret.

intuitive, as over large timescales it is beneficial to wait and

imitate, through one’s neighbors, a leader with the highest

possible number of available samples.

However, for T < ∞ the Grlz
ldr-dependent constant terms

in Theorem 1 and Corollary 1 can be significant relative

to the logarithmic term, and having more leaders may be

advantageous as this tends to reduce |F rlz
j | and diamrlz

j .

Additionally, this factor would be particularly important for

non-stationary MAB problems in social settings, where the

mean rewards from the arms can change in time.

These results suggest that selecting the optimal leaders or

optimal number of leaders is a function not only of G but also

of the time horizon T . We intend to explore this trade-off in

future work.

V. FINAL REMARKS

In this paper we investigated cooperative decision-making

in networks using the cooperative multi-agent MAB prob-

lem. We developed the UCB-Partition algorithm and proved

bounds on its performance. Additionally, we developed a

distributed policy that utilizes token-passing, does not require

knowledge of the full communication graph, and can select

an arbitrary number of leaders for use with the UCB-Partition

algorithm. We demonstrated the utility of the UCB-Partition

using several different examples of communication graphs

and explored the time dependency of selecting the optimal

number of leaders.

Future research directions include tightening the perfor-

mance bounds of the UCB-Partition algorithm and con-

structing algorithms for leader selection as a function of

time. Additionally, alternate metrics for choosing when to

imitate or lead may offer performance benefits, and a tight

lower bound on expected regret as a function of the local

communication graph remains an open problem. It would

also be interesting to use our results in studies of human or

animal networks facing problems described by the MAB.
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