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Abstract— We study distributed cooperative decision-making
in a multi-agent stochastic multi-armed bandit (MAB) problem
in which agents are connected through an undirected graph and
observe the actions and rewards of their neighbors. We develop
a novel policy based on partitions of the communication graph
and propose a distributed method for selecting an arbitrary
number of leaders and partitions. We analyze this new policy
and evaluate its performance using Monte-Carlo simulations.

I. INTRODUCTION

The challenge of cooperative decision-making under un-
certainty is a common feature of engineered as well as nat-
ural systems. Decision-making under uncertainty hinges on
the tradeoff between exploitation, where a decision-making
agent chooses to maximize its parameter-dependent decision-
making objective, and learning those system parameters
though exploration. Multiarmed bandit (MAB) problems are
canonical formulations of this explore-exploit tradeoff.

The stochastic MAB problem features a given set of
options (arms), each with an associated stochastic reward
distribution with unknown mean. An agent chooses one arm
at a time, receiving a reward sampled from the associated
distribution. The agent’s goal is to maximize the cumulative
expected reward over time. To do so the agent must balance
learning the identity of the best arm (exploration) and choos-
ing the arm with highest expected reward (exploitation).

MAB problems have a long and rich history, with ap-
plications in diverse scientific fields such as control and
robotics [1], ecology [2, 3], psychology [4], and commu-
nications [5, 6]. In their seminal work, Lai and Robbins [7]
established a lower bound on the expected number of times
a sub-optimal arm must be selected by an optimal policy in a
frequentist setting. Many algorithms have been designed that
achieve the lower bound in [7] uniformly in time (see [8]
for a survey). One such algorithm is the Upper Confidence
Bound (UCB) policy by Auer et al. [9].

To date most research on the MAB problem has focused
on policies for a single decision-maker. However, the rising
importance of networked systems warrants the development
of scalable and distributed algorithms for groups of decision-
makers facing MAB problems. In this paper we build upon
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classical single-agent bandit policies [9] and extend them to
the multi-agent setting.

The multi-agent MAB problem has been investigated in
several contexts. Anantharam et al. [10] studied the case of
multiple centralized players. Several researchers [6, 11, 12],
inspired by the radio network spectrum access problem,
have considered the case of decentralized multi-agent MAB
with only indirect communication between agents through
conflicts during arm selection. In [13—-16] cooperative multi-
agent MAB problems have been studied, where agents com-
municate over a network graph to maximize the cumulative
reward of the group and do not interfere with one another.
In our previous work [13, 14], agents communicate their
estimates of mean rewards to their neighbors. In the present
paper we draw inspiration from [15], in which agents com-
municate only decisions and rewards to neighbors rather than
estimates of mean rewards. The Follow Your Leader (FYL)
algorithm of [15] partitions the network into “leaders,” which
use the UCB1 algorithm, and “copiers,” which imitate the
actions of an adjacent leader. The FYL algorithm selects how
many and which agents will be leaders using a dominating set
of the graph; these must be computed prior to runtime. [17]
studied the multi-agent MAB problem in which agents can
communicate decisions and rewards with their neighbors, but
they cannot imitate each other. Specifically, they considered
the case of side-observations, where sampling a given arm
reveals the rewards that other agents would have received
had they selected the same arm.

In this paper we study the distributed cooperative MAB
problem with local communication. Here agents are faced
with a stochastic MAB problem and they can access the
decisions and rewards of their neighbors as defined by a
static communication graph. We introduce and analyze a
partition-based distributed decision-making algorithm, where
only one agent in each partition, a so-called leader, makes
independent decisions based on its local information. The
other agents in the partition, the so-called followers, imitate
the decisions of the leader in the partition, either directly if
the leader is a neighbor, or, otherwise, indirectly by imitating
a neighbor along a path to the leader. The ability to imitate
a neighbor who is itself imitating another neighbor is the
key difference in the problem formulation between our work
and [15]. In [15] agents can only imitate a neighbor that is a
leader, and our relaxation of this constraint leads to a richer
set of possible strategies and analysis.

Our problem setup is motivated by the phenomenon
of social imitation, which is often encountered in natural
systems [18-20]. We also define and analyze a distributed



algorithm for partitioning the network and choosing leaders,
where the number of leaders can be prescribed. We demon-
strate that our algorithms obtain order-optimal performance
for the group. We explore our results using several graphs
through simulation and analytic performance bounds.

The paper is organized as follows. In Section II we intro-
duce the cooperative MAB problem and give a lower bound
on the number of times a suboptimal arm will be chosen by
the network. In Section III we propose and analyze the UCB-
Partition and token-passing partition generation algorithms.
We analyze the UCB-Partition algorithm using Monte-Carlo
simulations in Section IV and conclude in Section V.

II. BACKGROUND AND PROBLEM FORMULATION
A. Cooperative MAB Problem with Local Communication

Consider an MAB problem with /N arms and M agents.
The reward associated to arm ¢ € {1,..., N} is a bounded
random variable in [0,1] with unknown mean m;. The
communication among agents is modeled by a connected,
unweighted, undirected network graph G = (V, ),
Let NV (k) denote the set of neighbors of each agent k € V.

We assume that the agents can be classified into leaders
and followers. We assume that every follower is connected
to at least one leader through a path in G, and it imitates
one such leader, either directly or indirectly through a chain
of followers. The set of leaders induces a partitioning of the
graph in which every agent in a leader’s partition ultimately
imitates it. We assume that at each time ¢ each leader
has access to the arms chosen and rewards received by its
neighbors, while each follower only has access to the arms
chosen by its neighbors. We also assume that each agent &
knows the degree of its neighbors: |./\/ (7)] for each j € N (k).

Let each agent k choose arm i*(t) at time ¢ € {1,...,T}
and receive i.i.d reward 7% (¢). The total number of times up
to time ¢ that agent k has selected arm i is n¥(¢) and that
agent k and its neighbors have selected arm i is nk(t) =
nFt)+ JEN (k) nl(t). The sequence of rewards received by
agent k and its neighbors from arm ¢ is {rﬁs}se{17.._,ﬁ§(t)}.
The estimated mean of arm ¢ at time ¢ by agent k given
its own and its neighbors’ realized rewards is fi*

ink(t)
t
iy Tomt 74,

. Each leader £ can compute 7% (t) and ji¢(t).

‘The objectlve of this paper is to design a distributed
algorithm for partitioning the graph G, assigning a leader to
each partition such that every other agent in the partition
imitates it, and determining a sequential decision-making
policy for the leaders and the followers such that efficient
group performance is achieved. Alternatively, a set of leaders
may be assigned and the distributed algorithm should select
the set of followers and, consequently, the graph partitioning.

The regret of agent k£ at each time ¢ conditioned on the
choice i*(t) is defined by R*(t) = ms — mn) = Ajrgy),
where m;+ = max;e(1,... N} ™i. We characterize group per-
formance in terms of the total expected cumulatlve regret de-
fined by S50, ST E[RF(0)] = TiL, T, AE[E(T))
where T is the horizon length.

In this paper, we restrict our attention to policies in which
the leaders follow the UCB algorithm with the estimates

of the mean rewards that are computed using the rewards
received by the leader and its neighbors and the followers
imitate one of their neighbors.

B. Lower Bounds on Expected Cumulative Regret

It follows from [10] that the expected number of times a
suboptimal arm ¢ is selected by a fusion center with access
to the reward for each agent is lower bounded by

M . # O i
];]E[n ) = (D(pi|pﬂ)+ (1))1 T. (1)

where D(p||p.) is the Kullback-Leibler divergence between
the probability density p; and p;«.

In the following we develop a policy that achieves provable
performance within a constant factor of the above bound.

III. PARTITION BASED MULTI-PLAYER MAB

In this section we describe and prove upper bounds
on the performance of partition-based multi-player MAB.
We introduce several definitions, describe the problem and
the UCB-Partition algorithm.We then establish bounds on
performance of the UCB-Partition algorithm.

A. Definitions and Notation

We now introduce several definitions that formalize the
leader/follower relationships inherent in the UCB-Partition
algorithm. We will use these formal definitions to prove an
upper bound on the cumulative expected regret of the algo-
rithm. Fig. 1 illustrates these definitions with an example.

Let Gigr = (Var, £1ar) be a directed graph such that Vig, =
V and

Ear = {(k,j) € €| k can imitate j}.

Giar encodes all possible variations of followers in the UCB-
Partition algorithm: a directed edge in G4, indicates that the
agent at the tail may follow the agent at the head. G4, can
therefore be used to enforce operation constraints on who
can or cannot follow others.

We now define the set of all leaders by £ and, in the
following, we will denote the i-th element of £ by ¢;. We
also define GIlz = (Vilz €12y such that V{1 = V and

S =1k, 5) CEuar | Fm # j € Viar, (kym) € Ef k & L3

Note that £ is defined recursively and restricts follower
agent k to imitate at most one leader or follower. G2
thus encodes a possible realization of follower and leader
combinations when using the UCB-Partition algorithm: a
directed edge in GI? indicates that the agent at the tail will
follow the agent at the head, and agents with no outgoing
edges are leaders.

For a given realization G['2, we define the set of followers

of leader ¢; as
]-';lz: {;Yu{k € Vit | 3 directed path from k to £; in Gy:}.
and the set of direct followers of leader ¢; as

Filtiea = {4} UTk € Vit | (k,6;) € &gt}



The sets F}”, j € {1,...,|L]}, define a partitioning of G,
where each partition contains one leader that every follower
in the partition ultimately imitates, and .7-'rl Sdirect © }';IZ. Fig. 1
illustrates these subgraphs for a given g and three example

realizations Gjiz. We denote the length of the longest path
rlz

rlz

present in G} within the partition defined by ]-'rlZ as diam;

Every realization of G induces a partltlomng of the graph
G. Equivalently, for any partitioning of the graph G, we
can choose a leader in each partition and construct GiZ.
The following analysis holds for any realization G and
is oblivious to how G¥ is constructed, i.e., whether it is
induced by a given set of leaders or if it is induced by a
given partitioning

The set 7 2 et is used later in this paper to bound the
expected cumulative regret of the UCB-Partition algorithm

for both a single partition and multiple partitions of G.

B. UCB-Network and Follow Your Leader Algorithms

The UCB-Network and Follow Your Leader (FYL) algo-
rithms are defined in [15]. The UCB-network algorithm is
equivalent to setting £ = V), making every agent a leader
that can access rewards of its neighbors. The UCB-Network
algorithm is thus easily distributed, but it does not allow for
any agent to imitate.

In the FYL algorithm the leaders £ are defined as a
dominating set' of G, and the followers of ¢; are composed
of a subset of the neighbors of ¢;. In the FYL algorithm
the best performance is achieved when L is defined as the
minimal dominating set. An example of leader selection
corresponding to the minimal dominating set is shown in
Panel C in Fig. 1.

C. UCB-Fartition Algorithm

First, we define

21n (t)
n(t)

The UCB-Partition algorithm is as follows:

QF (8,2 () = [y iy + )

(1) Initialization phase: Every leader 5 € L chooses each
arm once, and each follower k € .7-';'2 chooses randomly
for the first timestep. . .

(i) Each leader j € L selects arm with highest Q7 (¢, 7] (t)),
and each follower k selects the arm selected by agent
{m € Vil | (k,m) € £} at the previous timestep.

D. Expected Cumulative Regret of UCB-Partition

Here we establish an upper bound on the cumulative
expected regret of the UCB-Partition algorithm.

Theorem 1. For the UCB-Partition algorithm with defini-
tions given in Section IlI-A the following bounds hold for

'A subset of nodes of a graph is called a dominating set if for every
node not in the dominating set, there exists an adjacent node that belongs
to the dominating set. The smallest dominating set is called the minimal
dominating set.
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Fig. 1: Example of a communication graph G and a Gy, that allows for any
agent to imitate any neighbor in G. Panels A and B show two possible
realizations of g{}; for the case of one leader. Panel C demonstrates a
realization for three leaders. The selection of each agent’s role, which defines
gféi, can be driven by design constraints or optimized to minimize the upper
bounds on performance. Note that even if two agents are not connected in

g{g; they can still share sample information if connected in G.
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Proof. We start by noticing that
M
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where A is a constant that will be chosen later and the
(| F7| —1)diam’” term in (3) follows because every follower
will not necessarily be copying their leader until the leader’s

) < [F7 g (T) + (17| = Ddiami”  (3)

= l} + (|JF™| — 1)diam"”
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A
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choices propagate through the network. We now bound the
second part of (4) using techniques from [9].

T

-0y _— 4y A
Sa{o—n o> )
d A
< Y- 1{ @ittt ) <@ enl )00 >
t=1 direct

T
< S a{Qk a0y <@l walt o)l (0> - |
&)

max Q%'

T
<> 1S min Qi (ta) < (t,b)
A—M<b<(|N(€1)|+1)t

1<a<(|N(€1)|+1)t
(N () 1+ 1)t (IN (L) [+1)¢
> r{ita) <t}

b=A—-M

~
Il
-

M=
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where (5) follows because the direct followers of the
leader choose i1 (t) at time t + 1. In the spirit of [9],
if 1 {in (t,a) < Q% (t, b)} holds then at least one of the
following must hold:

21In (t
fixq < M= — 2n(®) (6)
a
21n (¢
fiip > mi + % 7
I
Mae < g+ 4] 0 Iz(t) ®)

As in [9], we bound (6) and (7) using Chernoff-Hoeffding

bounds as
21n (¢

p (;—m <mee - n<>) <179, and
a

21n (t)) e

P (ﬁi,b > m; + 5

Setting A = M + 81:51:)’ we see that (8) never holds. Thus,
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which completes the proof. O

Corollary 1. For the UCB-Partition algorithm with defini-
tions given in Section III-A the following bounds hold for

rlz

1 # 1* and any given Gif with a generic set of leaders L:
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Proof. Similar to the proof of Theorem 1, we note that
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where (9) follows from Theorem 1, completing the proof.
O

E. Distributed Partition-Based Multi-agent MAB using To-
ken Passing

The UCB-Partition algorithm and the associated bounds
provide performance guarantees for a given Gz, which by
definition defines |£| partitions of G and the leader-follower
assignments. In this section we present a distributed method
for choosing |£]| leaders and partitions, which in turn, with
follower assignments, gives GlZ.

This method is comprised of two parts: leader identifica-
tion and partition generation. The goal of the leader identi-
fication step is for each agent to construct, in a distributed
fashion, a list of tuples of size |L|, where each tuple contains
the identify and degree of agents with top |£| degree. Let
each agent k have a unique identity number v, and let each
agent know their own degree, [N (k)|, in G, and identity of
their neighbors. Each agent initially constructs a list of size
|£] with only one entry: the agent’s identity and degree, and
the other entries are empty. Then, each agent exchanges this
list with each of their neighbors and combines their own
list with those received to create a new list of agents with
the top |L£| degrees in the lists (in case of ties, the agent
with lower identity is selected). Each agent then repeats this
process with their new list, and the procedure converges in
number of timesteps equal to at most two times the diameter
of graph G plus one.




To accomplish partition generation each agent represented
in the final list identifies itself as a leader. Followers then
recursively choose an agent to imitate. First, the agents that
are adjacent to leader(s) commit to imitating a leader, and
transmit a committed signal to their neighbors. Subsequently
the uncommitted neighbors may choose to imitate one of the
committed agents, until all agents are committed.

This procedure defines G2, and the performance bounds
established in Section III-D hold. In future work will we
rigorously show that this strategy converges to a valid
partition for a connected communication graph G.

Fig. 2 demonstrates three examples of leader selection and
follower assignment using this method for 1, 3, and 5 leaders.
Note that GIZ is not unique for the 3 and 5 leader cases as
some followers must choose arbitrarily between two or more
options. The identity number v is omitted for clarity, but it
is used to break ties when choosing 5 leaders.

IV. NUMERICAL ILLUSTRATIONS

In this section we compare the behavior and performance
of the UCB-Partition algorithm with the algorithms in [15].
We show that the UCB-Partition algorithm performs well
over a variety of graph structures and offers performance
advantages over related algorithms.

All simulations are conducted with a 2-armed bandit
using rewards drawn from a Bernoulli distribution with
m = [0.5, 0.7 and T = 10% or T = 10* In Figs. 3
and 4 we show cumulative regret of the group over time
for different graph structures as given in Figs. 1 and 2,
respectively. The cumulative regret in our simulations are
computed by averaging over 8000 Monte-Carlo runs using
the UCB-Partition and UCB-Network algorithms, as well as
for the case with no communication between agents.

Example 1 (Regret for Small Graphs). Fig. 3 shows group
cumulative expected regret for G and the three versions of
GlZ as given in Fig. 1. The UCB-Partition greatly improves
performance over the UCB-Network algorithm, demonstrat-
ing the benefits of imitation. Additionally, version C of
G2 is a minimal dominating set partition for the FYL
algorithm, so the better performance of UCB-Partition A over
C here shows the advantage of the UCB-Partition algorithm
over the FYL algorithm when used with suitable leaders.
Finally, the the better performance of UCB-Partition A over
B demonstrates the benefit of selecting agents with higher
degree to be leaders.

Example 2 (Regret for Large Graphs using Token Passing).
Fig. 4 shows group cumulative expected regret for G and the
three versions of GIiZ corresponding to 1, 3, and 5 leaders
as given in Fig. 2. Here, increasing the number of leaders
results in a small increase in group cumulative regret for
large T', which is also reflected in the performance bounds,
a phenomenon we discuss in Example 3. As in Example 1,
the UCB-Partition significantly improves performance over

the UCB-Network algorithm.

Example 3 (Time Dependency of Optimal Leader Selec-
tion). Fig. 5 compares the relative performance of the UCB-

g
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Fig. 2: Example of a large communication graph G and a Gjg; (not shown)
that allows for any agent to follow any neighbor in G. Three panels show
three possible realizations of gl"éﬁ with 1, 3, and 5 leaders, respectively,
where the leaders and followers are selected using the token passing method
described in III-E.
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Fig. 3: Simulation results of expected cumulative regret for the UCB-
Network and UCB-Partition algorithms using G and g{};r as given in Fig. 1.

Partition algorithm using the 1, 3, and 5 leader realizations
Gl in Fig. 2 at each timestep ¢ for 7' = 103. Early on, the
3 leader network outperforms the 1 leader network, but as
t grows the 1 leader network begins to perform the best, a
trend which can be seen continuing in Fig. 4.

This is expected as bounds expressed in Theorem 1 and
Corollary 1 indicate that as T" — oo the lowest regret will be
obtained when the agent or agents with the highest overall
degree in G are the only leaders. This result is indicated by
the domination of the logarithmic term in the bound and is
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Fig. 4: Simulation results of expected cumulative regret for the UCB-
Network and UCB-Partition algorithms using G and g{}; as given in Fig. 2.
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Fig. 5: Simulation results of the expected cumulative group regret of the 1,
3, and 5 leader g{g{r’s in Fig. 2 as a percentage of the algorithm with highest
regret at each time ¢. Lower percentage values indicate lower regret.

intuitive, as over large timescales it is beneficial to wait and
imitate, through one’s neighbors, a leader with the highest
possible number of available samples.

However, for T' < oo the Gj-dependent constant terms
in Theorem 1 and Corollary 1 can be significant relative
to the logarithmic term, and having more leaders may be
advantageous as this tends to reduce |.7:}IZ\ and diam}lz.
Additionally, this factor would be particularly important for
non-stationary MAB problems in social settings, where the
mean rewards from the arms can change in time.

These results suggest that selecting the optimal leaders or
optimal number of leaders is a function not only of G but also
of the time horizon T'. We intend to explore this trade-off in
future work.

V. FINAL REMARKS

In this paper we investigated cooperative decision-making
in networks using the cooperative multi-agent MAB prob-
lem. We developed the UCB-Partition algorithm and proved
bounds on its performance. Additionally, we developed a
distributed policy that utilizes token-passing, does not require
knowledge of the full communication graph, and can select
an arbitrary number of leaders for use with the UCB-Partition
algorithm. We demonstrated the utility of the UCB-Partition
using several different examples of communication graphs
and explored the time dependency of selecting the optimal
number of leaders.

Future research directions include tightening the perfor-
mance bounds of the UCB-Partition algorithm and con-
structing algorithms for leader selection as a function of
time. Additionally, alternate metrics for choosing when to
imitate or lead may offer performance benefits, and a tight
lower bound on expected regret as a function of the local
communication graph remains an open problem. It would
also be interesting to use our results in studies of human or
animal networks facing problems described by the MAB.
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