
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

TECHNOMETRICS
2019, VOL. 00, NO. 0, 1–12
https://doi.org/10.1080/00401706.2019.1638834

A Latent Variable Approach to Gaussian Process Modeling with Qualitative and
Quantitative Factors

Yichi Zhanga, Siyu Taoa, Wei Chena, and Daniel W. Apleyb

aDepartment of Mechanical Engineering, Northwestern University, Evanston, IL; bDepartment of Industrial Engineering & Management Sciences,
Northwestern University, Evanston, IL

ABSTRACT
Computer simulations often involve both qualitative and numerical inputs. Existing Gaussian process (GP)
methods for handling this mainly assume a different response surface for each combination of levels of the
qualitative factors and relate themvia amultiresponse cross-covariancematrix.We introduce a substantially
different approach that maps each qualitative factor to underlying numerical latent variables (LVs), with
the mapped values estimated similarly to the other correlation parameters, and then uses any standard
GP covariance function for numerical variables. This provides a parsimonious GP parameterization that
treats qualitative factors the same as numerical variables and views them as affecting the response via
similar physicalmechanisms. This has strong physical justification, as the effects of a qualitative factor in any
physics-based simulation model must always be due to some underlying numerical variables. Even when
the underlying variables aremany, sufficient dimension reduction arguments imply that their effects can be
represented by a low-dimensional LV. This conjecture is supported by the superior predictive performance
observed across a variety of examples.Moreover, themapped LVs provide substantial insight into thenature
and effects of the qualitative factors. Supplementary materials for the article are available online.
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1. Introduction

Computer simulations play essential roles in today’s science and
engineering research. As an alternative to more difficult and
expensive physical experiments, computer simulations help to
explore or experiment with the physical process and under-
stand how input factors affect the response of interest. Gaussian
process (GP) models, a.k.a. kriging models, have become the
most popular method for modeling simulation response sur-
faces (Fang et al. 2006; Sacks et al. 1989; Santner et al. 2003).
These standardmethods for the design and analysis of computer
experiments were developed under the premise that all the
input variables are quantitative, which fails to describe many
applications. For example, consider a stamping operation, in
which the response is themaximum strain over a stamped panel,
and one of the factors affecting strain is the qualitative lubricant
type (e.g., three different types: A, B, and C). Another example
is modeling the thermal dynamics of a data center (Qian et al.
2008), which involves qualitative factors such as “hot air return
vent location” and “power unit type.”

Let y (·) denote the computer simulation response model
with inputs w = (x, t)∈Rp+q, where x =

(
x1, x2, . . ., xp

)
repre-

sent p quantitative variables, and t =
(
t1, t2, . . ., tq

)
represent

q qualitative factors, with the jth qualitative factor having mj
levels, j = 1, 2, . . ., q. When there are only quantitative inputs
x, a common model is

y (x) = µ+ G (x) , (1)

CONTACT Daniel W. Apley apley@northwestern.edu Department of Industrial Engineering & Management Sciences, Northwestern University, 633
Clark St, Evanston, IL 60208.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/TECH.
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where µ is a constant prior mean, G (x) is a zero-mean GP with
covariance functionK (·, ·) = σ 2R (·, ·), σ 2 is the prior variance,
and R (·, · |φ ) denotes the correlation function with parameters
φ. A commonly-used correlation function for quantitative vari-
ables is the Gaussian correlation function

R
(
x, x′) = exp

{

−
p∑

i=1
φi

(
xi − x′

i
)2

}

, (2)

which quantifies the correlation between G (x) and G
(
x′) for

any two input locations x =
(
x1, . . ., xp

)
and x′ =

(
x′
1, . . ., x′

p

)
.

φ =
(
φ1, . . .,φp

)
is the vector of correlation parameters to

be estimated via maximum likelihood estimation (MLE), along
with µ and σ 2.

These types of correlation functions cannot be directly used
with qualitative factors because the distances between the lev-
els of qualitative factors are not defined. To incorporate both
qualitative and quantitative factors into GPmodeling, a number
of covariance structures have been proposed and investigated
(McMillan et al. 1999; Joseph and Delaney 2007; Qian et al.
2008; Zhou et al. 2011; Zhang and Notz 2015; Deng et al. 2017).
Most methods essentially treat the computer model as a mul-
tiresponse GP with a different response for each combination of
levels of the qualitative factors, often with some simplifications
in the covariance structure. We discuss these methods in detail
in Section 3.

In this article, we propose a fundamentally different method
of handling qualitative factors in GP models that involves a

© 2019 American Statistical Association and the American Society for Quality
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2 Y. ZHANG ET AL.

Figure 1. Six cross-sectional shapes, corresponding to six levels of the qualitative
factor for the beam bending example: (1) circular cross-section with diameter h; (2)
square cross-sectionwith height andwidth h; (3) I-shaped cross-sectionwith height
and width h and thickness 0.1 h; (4) hollow square cross-section with outer side
length h and thickness 0.15 h; (5) hollow circular cross-section with outer diameter
h and thickness 0.15 h; (6) H-shape cross-section with height and width h and
thickness 0.1 h.

latent variable (LV) representation of the qualitative factors. The
main idea is to map the levels of each qualitative factor to a set
of numerical values for some underlying latent unobservable
quantitative variable(s). After obtaining this mapping, our GP
covariance model over (x, t) can be any standard GP covariance
model for quantitative variables over (x, z(t)), where z(t) is the
numerical vector of mapped LVs. The mapped values {z(t)}
can be obtained in a straightforward and computationally stable
manner via MLE along with the correlation parameters for x,
and the mapping is scaled so that the correlation parameters for
z are unity.

There are strong physical arguments for why our mapped LV
approach constitutes a covariance parameterization that, while
tractable and involving relatively few parameters to estimate, is
flexible enough to capture the behavior of many real physical
systems. For any real physical systemmodel having a qualitative
input factor, there are always underlying physical variables that
account for the differences in the response across the differ-
ent levels of the factor. For example, in the earlier stamping
example, differences in the response (panel deformation, strain,
stress, etc.) due to different lubricant types must be due to the
lubricant types having different numerical values (denoted by
{v1(t), v2(t), v3(t), . . .}) for some underlying physical proper-
ties such as lubricity, viscosity, density, and thermal stability of
the oil. Otherwise, there is no way to code a simulation model
to account for the effects of lubricant type.

To make these arguments more concrete, consider the clas-
sic beam bending problem in which the qualitative factor is
the cross-sectional shape of the beam with six levels: circular,
square, I-shape, hollow square, hollow circular, and H-shape
(see Figure 1). The beamhas an elasticmodulusE= 600GPa and
is operating within its linear elastic range. The beam is fixed on
one end, and a force of P = 600N is applied vertically at the free
end. The response y is the amount of deformation at the free end.
In addition to the cross-sectional shape represented by the qual-
itative factor t, there are two numerical input variables: beam
length L and beam width (which is the same as beam height)
h. The underlying numerical variables {v1(t), v2(t), v3(t), . . .}

for cross-section type t would be the complete cross-sectional
geometric positions (normalized by the “size” parameter h of
all the elements in the finite element mesh of the beam. The
physics of this beam bending problem is transparent enough
that we know the beam deflection y depends on the complete
high-dimensional geometric descriptors {v1(t), v2(t), v3(t), . . .}
via the response function y(L, h, t) = L3

3 109h4I , where I = I(t) =
I(v1(t), v2(t), v3(t), . . .) is the normalized (by h) moment of
inertia of the cross-section. Consequently, the underlying high-
dimensional variables that govern the effect of the qualitative
factor t on y can be mapped down to a single numerical variable
I(t).

With advanced knowledge of these physics, one should obvi-
ously treat the cross-section shape as the single numerical input
I(t). But to illustrate the motivation and justification behind
our latent variable Gaussian process (LVGP) approach, suppose
such knowledgewere unavailable. In this case, one optionwould
be to treat the cross-section as the qualitative factor t and use
an existing GP method for qualitative inputs that presumes no
underlying numerical structure. A second option would be to
include the set of numerical variables {v1(t), v2(t), v3(t), . . .}
as inputs, which is not feasible due to the extremely high
dimensionality. Our LVGP approach is an attractive alternative
that presumes there exists some unknown underlying LV z(t)
that captures the joint effect of {v1(t), v2(t), v3(t), . . .} on the
response, and the approach attempts to discover the underlying
effect of t by estimating the LV mapping z(t). If the approach
performs effectively in this case (we demonstrate later that it
does), the estimated LVmapping z(t)will represent the normal-
ized moment of inertia I(t).

Returning to the general situation, although there may be
many underlying variables {v1(t), v2(t), v3(t), . . .}, their collec-
tive effect on the response will often be captured by some low-
dimensional latent combination of the variables. To see this,
notice that their collective effect can always be written as y =
g(x, v1, v2, v3, . . .) for some function g(·). If, for example, the
dependence happens to be of the form y ∼= g(x,β1v1 + β2v2 +
· · · ), then a single one-dimensional LV z(t) = β1v1(t) +
β20v20(t) + · · · suffices to capture the effects of the qualitative
factor t. More generally, if the dependence happens to be of the
form y ∼= g(x, h1 (v1, v2, . . .) , h2 (v1, v2, . . .)) for some func-
tions g (·), h1 (·) and h2 (·), then a two-dimensional LV z(t) =
(h1(v1(t), v2(t), . . .), h2(v1(t), v2(t), . . .)) suffices to capture the
effects of the qualitative lubricant type.

The preceding is a rather broad and flexible structure for
representing the effects of quantitative variables and quali-
tative factors on y. For even more general g (·) and more
complex dependence of the response on {v1, v2, . . .}, the
same arguments behind sufficient dimension reduction (Cook
and Ni 2005; Li 1991) imply that the collective effects of
{v1, v2, . . .} can be represented approximately as a function
of the coordinates over some lower dimensional manifold in
the {v1, v2, . . .}-space. If the manifold is approximately two-
dimensional, then y∼=g (x, h1 (v1, v2, . . .) , h2 (v1, v2, . . .)), and
the two-dimensional LV representation that we use in our
approach will suffice.

To summarize the justification and advantages of our LVGP
approach, it (1) has strong physical justification, since the effect
of any qualitative factor t must always be due to a set of



231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

TECHNOMETRICS 3

underlying numerical variables {v1 (t) , v2 (t) , v3 (t) , . . .}, and
the effect of these can often be captured by some low-
dimensional LV z (t); (2) provides far superior predictive per-
formance, relative to existing alternatives, across the variety of
examples that we consider later; (3) has the added benefit of pro-
viding excellent interpretability of the effects of a qualitative fac-
tor t via inspection of a scatterplot of the two-dimensional (2D)
mapped LV values {z (1) , z (2) , . . . , z (m)} (m is the number of
levels of t) to look for any patterns or clustering in the mapped
values; and (4) is flexible in that it allows one’s favorite covari-
ance function for numerical variables (e.g., Gaussian, power
exponential, Matèrn, lifted Brownian, etc., either separable or
nonseparable versions) to be used over the combined original
and mapped numerical variables (x, z (t)). Advantages (2) and
(3) will be demonstrated later in the examples.

The outline of the remainder of the article is as follows.
Section 2 describes our LVGP representation of qualitative fac-
tors, along with the MLE implementation for estimating all
covariance parameters, including the LV mapping z(t). Sec-
tion 3 reviews existing GP models for qualitative and quanti-
tative variables. Section 4 reports numerical comparisons for a
number of examples showing that our proposed LVGP method
consistently outperforms existing methods and is capable of
accurately identifying the underlying LV structure. Section 5
discusses why one would ever treat an input as qualitative if
its effect must always be due to underlying numerical variables.
Section 6 concludes the article.

2. Latent Variable Representation of Qualitative
Factors

2.1. A 1D LVGP Representation for q = 1

We first describe the approach in the context that we have a
single qualitative factor t withm levels (labeled t = 1, 2, . . .,m)
and are using a one-dimensional (1D) LV z(t) to represent the
m levels. Them levels of t will be mapped tom latent numerical
values (z (1) , . . ., z (m)) for z. The input w = (x, t) is therefore
mapped to (x, z(t)), and using theGaussian correlation function
in (2), our correlation model is (a constant prior variance σ 2 is
still assumed)

Cor
{
y (x, t) , y

(
x′, t′

)}
= Cor

{
y (x, z(t)) , y

(
x′, z

(
t′
))}

= exp
{

−
p∑

i=1
φi

(
xi − x′

i
)2 −

(
z(t) − z

(
t′
))2

}

, (3)

where φi’s are the correlation parameters for the quantitative
variables x. Note that there is no correlation parameter for z.
We take it to be unity, because when (z (1) , . . ., z (m)) are esti-
mated in theMLE optimization, their spacing will appropriately
account for the correlation between the levels of the qualitative
factor t.

Under the model (3), the log-likelihood function is

l (µ, σ ,φ,Z) = −n
2
ln

(
2πσ 2) − 1

2
ln |R (φ,Z)|

− 1
2σ 2

(
y − µ1

)T R (φ,Z)−1 (
y − µ1

)
, (4)

where n is the sample size, 1 is an n-by-1 vector of ones, y
is the n-by-1 vector of observed response values, Z = (z(1),

Figure 2. Limitations of 1 D LV representation: (a) in 1 D the LV mappings cannot
represent three equally correlated levels; (b) in a 2 D latent space, the three LV
mappings z(1), z(2) and z(3) can be arranged as the vertices of an equilateral
triangle to represent equal correlations among all three levels; (c) the singularity
issue of the covariance matrix when two points become too close to each other
when exchanging positions during the MLE optimization search; d) in 2 D, the LVs
can move freely to avoid covariance singularity when exchanging positions during
the MLE optimization.

. . . , z(m)) are the mapped values of the m levels of t, and
R (φ,Z) is the n-by-n correlation matrix whose elements are
obtained by plugging pairs of the n sample values of (x, t) into
(3). Without loss of generality, we set the first level t = 1 to
correspond to the origin in the LV space (i.e., z (1) = 0), because
in (3) only the relative distances between levels of t in the LV
space affect the correlation. For the same reason, fixing z (1) is
necessary to prevent indeterminacy or nonidentifiability during
the MLE optimization process.

In the numerical studies in Section 4, we found that a 1D
latent space effectively captures the correlation structure of
qualitative factors in a variety of real and realistic examples.
However, using the 1D latent representation has the following
shortcomings, and so we prefer a 2D latent representation.
Suppose the qualitative factor t has three levels and the response
correlation Cor

(
y (x, t) , y

(
x′, t′

)
| φ

)
for all levels t ̸= t′ is

the same value (e.g., 0.6). To represent this via (3), the three
levels must have equal pairwise distances in the LV space, which
is impossible using a 1D representation. This is depicted in
Figure 2(a) for the case that |z (2) − z (1) | = |z (3) − z (2) |,
in which case |z (3) − z (1) | = 2|z (2) − z (1) |, so that the
correlation between levels t = 1 and t′ = 3must be smaller than
the correlation between the other two pairs of levels. To repre-
sent the equal correlation scenario, a 2D latent space shown in
Figure 2(b) is necessary, in which the three 2D latent mapped
values (z(1), z(2), z(3)) can form an equilateral triangle. The
2D latent representation also provides correlation structure
flexibility in other regards, beyond what the 1D representation
can provide.

Another potential issue with a 1D latent representation
can occur when the MLE optimizer adjusts the mapped LVs
(z (1) , . . . , z (m)) along the single latent dimension z. If any two
z values become too close at any point in the optimization, this
could cause singularity of the correlation matrix. For example,
suppose the initial guesses for two latent points (say z (1) and
z (2)) are reversed from what their MLEs are. As illustrated
in Figure 2(c), during the MLE optimization, z (1) and z (2)
may need to gradually move toward each other to reverse their
positions, which may cause covariance singularity when they
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Figure 3. Indeterminacy caused by translation and rotation: Three different con-
figurations for the mapped latent values {z(1), z(2), z(3)} have the same pairwise
distances and the same covariance structure.

get too close. With more qualitative levels, there is a higher
probability of encountering singularity during optimization. In
contrast, a 2D latent space can reduce the likelihood of singular-
ity significantly, because the points can be moved around more
freely in the 2D space. For example, the positions of z(1) and
z(2) can be reversedwithout ever having tomove them too close
to each other, as shown in Figure 2(d).

2.2. A 2D LV Representation for q = 1

As depicted in Figure 2, compared with a 1D LV rep-
resentation, a 2D representation provides more flexibil-
ity to capture complex correlation structures for qualita-
tive factors and better numerical behavior in the MLE
optimization. With a single qualitative factor (q = 1),
to extend the model (3) to incorporate a 2D LV z =
(z1, z2) ∈ R2, we map the m levels of t to the m points
{z (1) = (z1 (1) , z2 (1)) , . . . , z (m) = (z1 (m) , z2 (m))} in 2D
latent space. The input w = (x, t) is thus mapped to (x, z(t)),
and the corresponding Gaussian correlation function is

Cor
{
y (x, t) , y

(
x′, t′

)}

= exp
{

−
p∑

i=1
φi

(
xi − x′

i
)2 −

∥∥z(t) − z
(
t′
)∥∥2

2

}

, (5)

where ∥·∥2 denotes the Euclidean 2-norm. The mapped values
for the m levels are again estimated via MLE, along with the
other covariance parameters. A total of 2 (m − 1)−1 = 2m−3
scalar latent values are required to represent the m different
levels of t, because (i) similar to the 1D case, the first level of
t can always be mapped to the origin (i.e., z(1) = (0, 0)) to
remove the indeterminacy caused by translation invariance; and
(ii) to remove indeterminacy due to rotational invariance in the
2D latent space, we can restrict the 2D position of the mapped
value z(2) for the second level to lie on the horizontal axis.
Figure 3 illustrates this for m = 3 by showing three different
configurations of three mapped latent values {z (1) , z (2) , z (3)}
that are translated and rotated versions of each other. They
therefore have the exact same pairwise distances and result in
the same covariance structure via (5). Our convention of taking
z (1) to be the origin and z (2) to lie on the horizontal axis

removes the indeterminacy and reduces the total number of free
parameters to estimate from 2m to 2m−3, which scales linearly
with the number of levels of the qualitative variable.

With m > 3 levels, one might consider a more general
version of our approach that uses an (m − 1)-dimensional
LV representation z = (z1, . . . , zm−1) ∈ Rm−1 in (5). Sim-
ilar to the 2D scenario, to avoid indeterminacy due to rota-
tion/translation invariance, the mapped value for the first level
can be taken to be the origin z (1) = (0, . . . , 0) ∈ Rm−1,
and we can likewise restrict z (2) = (z1 (2) , 0, . . . , 0) ∈
Rm−1, z (3) = (z1 (3) , z2 (3) , 0, . . . , 0) ∈ Rm−1, …, and
z (m) = (z1 (m) , z2 (m) , . . . , zm−1 (m)) ∈ Rm−1. This model
would require estimating m (m − 1) /2 independent mapped
LV parameters in total, which is the same as in the unrestrictive
covariance model of Qian et al. (2008). Thism− 1 dimensional
LVGP model is a very general covariance structure that allows
the independent representation of all m (m − 1) /2 pairwise
correlations of the response across them qualitative levels for t.
However, we do not believe such a general (m−1)-dimensional
LV representation is needed for most problems. This is sup-
ported by the conceptual “sufficient dimension reduction” argu-
ments given in Section 1 and the numerical results in Section 4,
for which the correlation structures of the qualitative factors
have effective low-dimensional (1D or 2D) representations.

2.3. A 2D LV RepresentationwithMultiple Qualitative
Factors

In general, suppose there are q > 1 qualitative factors t =(
t1, t2, . . . , tq

)
, where the jth factor tj ∈

{
1, 2, . . . ,mj

}
, and

mj denotes the number of levels of tj. Our approach has a
very efficient and natural way to handle multiple qualitative
factors, that is, akin to how multiple numerical input variables
are handled in GP modeling. We simply use a different 2D LV
zj to represent each qualitative factor tj (j = 1, 2, . . . , q). As
explained earlier, there are 2mj − 3 parameters for each z j, so
that the total number of parameters is only

∑q
j=1(2mj − 3).

The corresponding Gaussian correlation function for our
approach is
Cor

{
y
(
x, t =

(
t1, . . ., tq

))
, y

(
x′, t′ =

(
t′1, . . . , t′q

))}

= exp

⎧
⎨

⎩−
p∑

j=1
φj

(
xj − x′

j

)2
−

q∑

j=1

∥∥∥zj
(
tj
)
− zj

(
t′j
)∥∥∥

2

2

⎫
⎬

⎭ ,

(6)
where zj (l) = (zj1 (l) , z

j
2 (l)) denotes the 2D mapped LV for

level l of the qualitative factor tj. The 2mj − 3 values for the
mapped LVs for each factor tj, along with the parameters φ, µ,
and σ 2 of the GP model, are estimated via MLE.

In addition to yielding a relatively parsimonious yet flexible
parameterization, this approach also has the following desirable
characteristic.Most of the existingGP approaches for qualitative
factors treat the computer model as a multiresponse GP with a
different response for each combination of levels. In contrast,
our LVGP model treats the response at different level combi-
nations to be from a single response surface that is continuous
over the numerical LVs that account for the effects of the qual-
itative factors. This, together with using a separate 2D LV zj to



467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

TECHNOMETRICS 5

represent each qualitative factor, results in an approach that is
consistent with how numerical input variables are handled in
standardGPmodeling.Moreover, even thoughwe have used the
separable (in x and z) Gaussian covariance in (6), any covariance
model used for numerical variables can be used over the joint
(x, z) space. This includes either the separable or nonseparable
versions of the power exponential, Matèrn (Rasmussen et al.
2006), and liftedBrownian (Plumlee andApley 2017) covariance
functions.

3. Review of Existing GP Approaches for Qualitative
Factors

3.1. Unrestrictive Covariance (UC)

A popular approach in the literature for GP modeling with
qualitative variables was introduced by Qian et al. (2008) and
further developed in Zhou et al. (2011). They assumed

Cor
{
y (x, t) , y

(
x′, t′

)}
= τt,t′ exp

{

−
p∑

i=1
φi

(
xi − x′

i
)2

}

, (7)

where τt,t′ is the correlation between the responses correspond-
ing to level t and t′. An m × m correlation matrix τ with
row-t, column-t′ entry τt,t′ is used to represent the correlations
across all m levels of the qualitative variable. To ensure that the
correlation defined in (7) is valid, the matrix τ must be positive
definite with unit diagonal elements (PDUDE). When there are
q > 1 qualitative factors, one approach is to define a single
qualitative factor that represents combinations of levels of all the
qualitative factors and then use (7). Alternatively, a somewhat
less general structure that was also considered in Qian et al.
(2008) is the Kronecker product structure

Cor
{
y
(
x, t =

(
t1, . . ., tq

))
, y

(
x′, t′ =

(
t′1, . . ., t′q

))}

=
q∏

j=1
τ
j
tj,t′j

exp
{

−
p∑

i=1
φi

(
xi − x′

i
)2

}

, (8)

where τ
j
l,l′ represents the correlation between levels l and l′ of

tj. Zhou et al. (2011) later simplified the estimation procedure
for τ to ensure positive definiteness by using a hypersphere
decomposition (Rebonato and Jäckel 1999).

Zhang and Notz (2015) showed that one could use indicator
variables in the Gaussian correlation function to generate the
correlation structure in (8). For positive integers i, l, and l′,
define the level indicator functions

Il (i) =
{
1 i = l
0 i ̸= l (9)

and

Wl,l′ (i) =
{
Il (i)+ Il′ (i) if l ̸=l′

Il (i) if l = l′ , (10)

and consider the correlation function

Cor
{
y
(
x, t =

(
t1, . . ., tq

))
, y

(
x′, t′ =

(
t′1, . . ., t′q

))}

=
q∏

j=1
exp

⎧
⎨

⎩−
mj−1∑

l,l′=1
φ
j
l,l′

(
Wl,l′

(
tj
)
− Wl,l′

(
t′j
))2

⎫
⎬

⎭

× exp
{

−
p∑

i=1
φi

(
xi − x′

i
)2

}

, (11)

where
{
φ
j
l,l′ : 1 ≤ l, l′ ≤ mj − 1

}
are additional parameters to be

estimated via MLE. Zhang and Notz (2015) showed that (11)
is equivalent to (8) for τ

j
l,l′ > 0, in that there is a one-to-

one correspondence between the φ
j
l,l′ ’s in (11) and the τ

j
l,l′ ’s in

(8). Using the formulation in (11) allows one to use standard
GP fitting packages to estimate the τ

j
l,l′ ’s in the Qian et al.

(2008) method with a mild restriction that τ
j
l,l′ > 0. When

a single qualitative factor (q = 1) is used to represent all
the combinations of levels of multiple qualitative factors, (11)
reduces to (7) with all τl,l′ > 0. There is no restriction on the
elements of τ in (7) and (8) as long as it is a PDUDE, so it
is sometimes referred to as the unrestrictive covariance (UC).
Because of symmetry, there are m (m − 1) /2 free parameters
to be estimated in τ , which represent allm (m − 1) /2 pairwise
correlations of the qualitative factor levels.

3.2. Multiplicative Covariance

Qian et al. (2008) also discussed some simplified special cases
of the UC model. The simplest model assumes τl,l′ = τ for all
l ̸= l′, which is referred to as an exchangeable covariance (EC)
(Joseph and Delaney 2007; Qian et al. 2008). Another simplified
model termed the multiplicative covariance (MC) (McMillan
et al. 1999; Qian et al. 2008) assumes that for all t ̸= t′

τt,t′ = e−(θt+θt′), (12)

where θl is a parameter associated with level l of the qualitative
factor t, and there are m parameters in this model. As pointed
out in Zhang andNotz (2015), thismethod is equivalent to using
a standard GP for quantitative variables with the qualitative
variable represented by the set of indicator variables in (9),
analogous to how nominal categorical variables are handled in
linear regression.

When m ≤ 3 the MC model is nearly equivalent to the UC
model, with the only difference being that τt,t′ are restricted
to being nonnegative (Zhang and Notz 2015). However, when
m ≥ 4, the MCmodel has the following undesirable properties,
as shown in Zhang and Notz (2015). Suppose m = 4 and the
response surfaces (over x) for levels 1 and 2 are highly correlated,
the response surfaces for levels 3 and 4 are highly correlated, but
the response surfaces for levels 1 and 2 are very different from
the surfaces for levels 3 and 4. According to (12), since each θl >
0, in order tomake τ1,2 ≈ τ3,4 ≈ 1, wemust have θ1, θ2, θ3, and
θ4 all close to 0. But in this case, the correlation between levels
1 and 3 becomes τ1,3 = e−(θ1+θ3) ≈ 1, which contradicts the
assumption that levels 1 and 3 are not correlated. TheMCmodel
fails in this case because it uses only m parameters to specify
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m (m − 1) /2 pairwise correlations, and the simplified param-
eterization fails to capture this common physical situation. In
contrast, our LVGP model can easily handle this case even with
the 1D LV representations via setting z (2) ≈ 0 and z (3) ≈
z (4) ≫ 0. We believe that our simplified parameterization
using LVs is more consistent with many physical systems and
generally is more effective at capturing commonly occurring
correlation structures, while still requiring only a small number
of parameters.

3.3. Additive GPModel with Qualitative Variables

The UC and MC models both assume multiplicative forms
of correlations across the quantitative factors and qualitative
factors. Deng et al. (2017) proposed the additive covariance
structure

Cov
{
y (x, t) , y

(
x′, t′

)}
=

q∑

j=1
σ 2
j τ

j
tj,t′j

R
(
x, x′ ∣∣φ(j)

)
, (13)

where R(x, x′|φ(j)) is the Gaussian correlation function defined
in (2) with correlation parameters φ(j) associated with the qual-
itative factor tj, σ 2

j is a prior variance term associated with qual-
itative factor tj, and τ

j
tj,t′j

has the same definition as in (8). This

covariance model is equivalent to assuming y
(
x, t1, . . . , tq

)
=

µ+G1 (x, t1)+· · ·+Gq
(
x, tq

)
,whereµ is the overallmean, and

the Gj’s are independent zero-mean GPs, each with covariance
functions over

(
x, tj

)
given by the individual terms in (13).

When there is only one qualitative factor, this model is equiv-
alent to the covariance model (8). For q > 1, Deng et al. (2017)
argued that it provides more flexibility for modeling complex
computer simulations than themodel (8), which assumes a fixed
covariance structure over x for all qualitative factors.

It should be noted that if all categorical inputs have two
levels, our LVGP covariance (6), theQian et al. (2008)Kronecker
product covariance (8), and the MC covariance (12) are all
equivalent to the standard GP approach for numerical inputs
but using binary numerical coding for the two-level categorical
inputs. Hence, we focus on the situation of more than two levels
for the categorical inputs.

4. Numerical Comparisons

In this section, we conduct numerical studies to investigate the
effectiveness of the proposed LVGP model (6) with a Gaussian
correlation function on a number of examples. The supple-
mentary materials section provides additional examples and
further details on the examples in this section. We compare the
proposedmethod with the three covariance structures reviewed
in the previous section:

(a) UC covariance in (8) (Qian et al. 2008; Zhou et al. 2011),
using the equivalent reformulation (11) discussed in Zhang
and Notz (2015);

(b) MC covariance (12) (McMillan et al. 1999; Qian et al. 2008;
Zhang and Notz 2015), using the equivalent reformulation
(9) with indicator variables discussed in Zhang and Notz
(2015);

(c) Additive GP with unrestrictive correlation (Add_UC)
defined in (13), which is equivalent toUCwhen there is only
a single qualitative factor.

The Gaussian correlation function in (2) is used for all quanti-
tative variables x in these four methods. To evaluate the model
accuracy of eachmethod, we use the relative root-mean-squared
error (RRMSE) for the fitted GP model predictions over N =
10,000 hold-out test points:

RRMSE =

√√√√
∑N

i=1
(
ŷ (wi) − y (wi)

)2
∑N

i=1
(
y (wi) − ȳ

)2 , (14)

where ŷ(wi) and y (wi) denote the predicted and the true values,
respectively, at the input test location wi, and ȳ is the average
of the true responses over the 10,000 test points. The 10,000
test points are generated uniformly for both the quantitative
variables and qualitative factors. For each example, we used
30 replicates, where on each replicate we generated a different
“training” design, the data from which were used to fit the
four covariance models, and then we calculated the resulting
test RRMSE for the four models. Each training design was a
maximin Latin hypercube design (LHD) in the quantitative
variables, with the levels of the qualitative factors randomly
sampled. The design sizes were chosen so that the RRMSE for
the best model for each example was less than 0.1, to ensure that
the designs were of sufficient size to allow reasonable prediction
accuracy.

Wefit theUCandMCmodels through the sameoptimization
routine for MLE used in our LVGPmodel. MATLAB code from
the supplemental materials of Deng et al. (2017) was used to fit
the Add_UC model. To have a common basis for comparison,
when fitting all models, we used 200 random initial guesses
for the GP hyper-parameters to help ensure good MLE solu-
tions (one might wish to use more initial guesses for higher
dimensional problems). During optimization, the correlation
parameters for all quantitative inputs are reparametrized as
θi = log10(φi), with θi ∈ [−3, 3], and each LV zji (l) is restricted
to the interval [−2, 2]. Formerly, we had used a much larger
interval [−10, 10] over which to search for theMLEs of the LVs.
However, their MLEs were almost always much smaller than
this, so we now restrict the search range to [−2, 2]. This typically
allows sufficiently small correlations between levels, when small
correlations are needed. An LHD is used for generating the
200 random initial guesses to cover the search space as evenly
as possible. For the MLE optimization, we use the MATLAB
function fmincon, which uses an interior-point method with
BFGS for a Hessian approximation.

4.1. BeamBending Example Revisited

When applying our LVGP approach to the beam bending
example discussed in the introduction, we do not incorpo-
rate the physics knowledge that the underlying numerical vari-
ables {v1(t), v2 (t) , v3(t), . . .} characterizing the cross-section
impact the response only via the normalized moment of inertia
I(t). Instead, we rely on the LVGP approach to discover the
underlying LV structure. As discussed in Section 1, if our LVGP
approach performs effectively, the estimated LV mapping z(t)
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Figure 4. Boxplots of RRMSE across 30 replicates for the four engineering examples with n = 60, 80, 60, and 100, respectively. Our LVGP model achieves the smallest
RRMSE in each example. Note that the y-axis is in log scale.

Figure 5. Estimated 2 D LVs z = (z1, z2) representing the levels of the qualitative factors in the four engineering examples for a typical replicate: the values of z2 are
small compared with z1, indicating that the estimated latent representation is a one-dimensional representation that closely matches the settings in Table S2 of the
supplementary materials.

will represent the normalizedmoment of inertia I(t). Frombasic
mechanics, the normalizedmoments of inertia for the six cross-
sections in Figure 1 are I1 = π/64 = 0.0491, I2 = 1/12 =
0.0833, I3 = 0.0449, I4 = 0.0633, I5 = 0.0373, and I6 = 0.0167,
and their inverses (which turn out to be very closely related to
the mapping z(t)) are 1/I1 = 20.4, 1/I2 = 12.0, 1/I3 = 22.3,
1/I4 = 15.8, 1/I5 = 26.8, and 1/I6 = 59.9. Notice that the
H-shaped cross section (level t = 6) has substantially different
1/I than the other cross-sections, and the six cross sections
ordered from largest to smallest 1/I are levels 6, 5, 3, 1, 4,
then 2. The ordering and relative spacing agrees nearly perfectly
with the estimated LVs z (1)—z (6) shown in Figure 5. Conse-
quently, our LVGP model correctly discovered the underlying
mapped LV z(t) that captures the effect of the qualitative factor
on y.

Figure 4 shows boxplots of the RRMSE over the 10,000
hold-out test prediction points across 30 replicates. On each
replicate, a different maximin LHD was generated, and each of
the four models was refit. Our LVGP model had substantially
better RRMSE performance than the other covariance models
in this beam bending example and also across the other three
examples of real engineeringmodels (borehole, OTL, and piston
models) described in the supplementary materials. The MC

and UC models performed similarly to each other, except that
MC worked a little better than UC on the OTL example. The
Add_UC model had the highest error across all four examples,
perhaps because these real engineering examples do not have
the additive structure that it assumes.

In addition, Figure 5 shows that the estimated LVs are posi-
tioned nearly exactly along the horizontal z1 axis for all four
examples. Because there truly was a single latent numerical
variable associated with each qualitative factor tj in all of these
examples, and the ordering and relative distances between the
numerical values of the mapped qualitative levels in Figure 5
closely mimic those for the true levels (see Table S2 in the
supplementary materials), the LVGP approach has effectively
identified the underlying latent numerical structure for each
example.

4.2. AMaterials Design Example with Qualitative Inputs

As emphasized throughout this article, all qualitative factors in
physics-based simulations must impact the response via some
underlying numerical variables {v1(t), v2(t), v3(t), . . .}. How-
ever, inmany situations, the underlying numerical variablesmay
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be so high-dimensional and the simulation physics so complex
that it precludes conveniently identifying them and incorporat-
ing them into a GPmodel with only numerical variables. This is
the case in the following materials design example (Balachan-
dran et al. 2016). The dataset consists of the simulated shear
modulus (the response, y) of material compounds belonging to
the family of M2AX phases. The M atom has ten levels (i.e., 10
different candidate choices for the compound) {Sc, Ti, V, Cr, Zr,
Nb, Mo, Hf, Ta, W}, the A atom has two levels {C, N}, and the
X atom has twelve levels {Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl,
Pb}. Thus, there are three qualitative factors with 10, 2, and 12
levels, respectively, to represent the different choices of atoms
for the compound. Among the total 240 possible combinations,
17 combinations have negative shear modulus and thus are not
considered in this example (see Balachandran et al. 2016 for
more details).

In the original study, the authors considered GP surrogate
modeling. However, due to the high dimensionality and lack
of transparency of the underlying {v1(t), v2(t), v3(t), . . .}, and
due to the lack of effective GP modeling software for qualitative
inputs, the authors used a GP model for numerical-only inputs
with a relatively small set of numerical features (which can be
viewed as a small subset of {v1 (t) , v2(t), v3(t), . . .}) that they
suspected would have large effects on the response. In total,
they chose seven features to serve as their numerical GP inputs,
which are the s-, p-, and d-orbital radii for the M atom, and
the s- and p-orbital radii for the A and X atoms. The orbital
radii are from the Waber-Cromer scale. We refer to their GP
modeling approach with only these seven numerical inputs as
the “Quant_only” approach.

In the following, we show the advantages of using GP mod-
eling with the original three qualitative inputs over the Quant-
only GP model, and we also show the advantages of the LVGP
model over existing GP models that can handle qualitative
factors.We consider two versions of the LVGPmodel: One using
only the three qualitative inputs (denoted as LV_qual), and the
other using the three qualitative inputs in addition to the seven
orbital radii numerical variables (denoted as LV). The seven
numerical variables are in some sense redundant if the three
qualitative inputs are included since the latter are functions of
the former. However, one might speculate that there may be
advantages to include them along with the qualitative inputs if
they truly have a large impact on the response. The other three
models that we compare are three existing GP models that we
discussed in Section 3 to handle qualitative and quantitative
inputs (ADD_UC, UC, and MC), all with the three qualitative
inputs plus the seven numerical inputs.

There are 223 data points in total, and we used 200 of them
for training and the remaining 23 to compute the test RRMSE.
The training and test sets were chosen randomly from the
223 points, and we repeated this procedure for ten replicates,
where on each replicate we chose different random subsets to
serve as the training and test sets and repeated the modeling.
Figure 6 shows that our LVGP methods (both LV and LV_qual)
have much lower RRMSE than any of the other approaches.
Notice that Quant_only results in consistently large RRMSE,
possibly due to the seven chosen numerical features providing
an insufficient quantitative representation of the effects of the
qualitative levels. Although it includes the qualitative factors

Figure 6. RRMSE comparison for the materials design example. Our LVGP method
with (LV) orwithout (LV_qual) the additional seven numerical features achieved the
lowest RRMSE.

along with the quantitative features, the UC approach does
not improve the accuracy compared with Quant_only. This is
likely due to the fact that two of the qualitative variables have
relatively large numbers of levels (10 and 12), resulting in a large
number of parameters to estimate in the UC model. Both MC
andADD_UChave better RRMSE thanUC, although our LVGP
model achieves even better RRMSE. The best performingmodel
was LV_qual since its 25th, 50th, and 75th RRMSE percentiles
were all slightly better than those for the LVGPmodel, and sub-
stantially better than all other models. It is somewhat surprising
that the LV_qual model performed better than the LV model,
since the additional seven numerical features included in the
LV model were speculated to have large effects. The benefit of
including the additional seven numerical features appears to be
offset by the additional challenge of estimating more hyperpa-
rameters. We view this as evidence that our LVGP approach
handles qualitative factors and identifies the underlying LV
structure effectively.

This example illustrates an important reason why one
would consider using qualitative factors in a GP model, even
though their effects must be due to underlying numerical
variables: Without definitive prior knowledge and a simula-
tor whose mechanisms are transparent, selecting an appropri-
ate set of low-dimensional features of the high-dimensional
{v1(t), v2(t), v3(t), . . .} is often subjective and provides an
incomplete representation of the effects of the qualitative t (as
witnessed from the poor Quant_only performance in Figure 6).
If we instead work with the qualitative factors as inputs, the
LVGP model can account for the more complete information
not captured by quantitative variable features, thereby improv-
ing the GP model predictions.

4.3. Borehole ExampleWith a True Latent Space That is 2D

In the beam bending example, the effects of the qualitative
factor can be reduced to a function of a single underlying
numerical variable, so that the true latent numerical space for
the qualitative factor is 1D. Here, we modify the borehole
example described in the supplementary materials by creating
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Table 1. Mapping from the 2 D underlying numerical variables (rw , Hl) to the
single qualitative factor t in the revised borehole example.

Level of t rw Hl Level of t rw Hl Level of t rw Hl

1 0.05 700 5 0.10 700 9 0.15 700
2 0.05 740 6 0.10 740 10 0.15 740
3 0.05 780 7 0.10 780 11 0.15 780
4 0.05 820 8 0.10 820 12 0.15 820

a qualitative factor t having 12 levels that represent 12 discrete
combinations of two underlying numerical variables rw and Hl
(see the supplementary materials). The mapping from (rw, Hl)
to the level of t is listed in Table 1. The other quantitative
input variables all have the same ranges shown in Table S1 of
the supplementary materials. This example represents the case
where multiple underlying numerical variables vary across the
levels of a qualitative factor, and we demonstrate below that our
LVGP model can successfully reveal the underlying structure,
just as it did in the Figure 5 examples.

Figure 7(a) plots the estimated 2D LVs associated with the
qualitative factor t, from which we see that the 12 levels of t are
arranged into three groups, each representing a different level
of rw. Moreover, within each group, as Hl increases, the points
move predominantly along the z1 direction. Thus, the estimated
2D LVs have successfully revealed the dependence of the quali-
tative factor on the underlying numerical variables rw and Hl,
with z2 approximately representing rw, and z1 approximately
representing a combination of Hl and rw.

Notice that the levels of rw and Hl are evenly spaced in their
original units, as shown in Table 1, but the estimated z1 and z2
values are not evenly spaced in Figure 7(a). The reason is that
in our LVGP model, the distances between LVs depend on the
response correlation across the qualitative levels, which depends
not only on the distances between the underlying inputs but also
on the behavior of the response. The response surface contour
plot in Figure 7(b) further illustrates the reason: when rw is
at its lower level 0.05, the response does not change as much
along the Hl dimension as when rw is at its higher level 0.15.
Consequently levels 1–4 are more closely spaced in Figure 7(a)
than levels 9–12 are. In this sense, our LVGPmodel has correctly
identified the structural dependence of the qualitative levels on
a set of underlying numerical variables, in terms of capturing the
response similarities/differences across the levels of the factor.

4.4. LVGP vs. BNGP, and the Effect of Dimensionality

This example compares our LVGP approach (in which
only the qualitative levels of the input are available) with
an approach that treats the underlying numerical variables
{v1(t), v2 (t) , v3(t), . . .} as available and uses them in a
standard GP model for numerical inputs. We refer to the latter
as the benchmark numerical GP (BNGP) approach, since it
uses information (the underlying numerical variables) that is
not used in the LVGP approach and that might not be easily
available in practice. The same design of experiments is used
for both methods, so that the numerical variables used in the
BNGP approach are only evaluated at locations corresponding
to the qualitative levels.

For this example, we replace the qualitative variable t
with m = 5 in Math Function 1 described in (S1) of the
supplementary materials by a set of J underlying numeri-
cal variables {v1(t), v2 (t) , v3(t), . . .,vJ(t)} and investigate the
effect of dimensionality J on the performance. Specifically, the
response is

y
(
x, v1(t), v2(t), . . .vJ(t)

)

= 7 sin (2πx1 − π)+

⎡

⎣J−1/2
J∑

j=1
vj(t)

⎤

⎦ ∗ sin (2πx2 − π) .

(15)
To be consistent with the y (x, t) response surface in
(S1) of the supplementary materials, we chose the 5 × J
values for {v1(t), v2(t), . . . vJ(t): t = 1, 2, . . . , 5} so that
{J−1/2 ∑J

j=1 vj(t): t = 1, 2, . . . , 5} = {1, 13, 1.5, 9.0, 4.5}.
Beyond that, we randomly generated the values for
{v1(t), v2 (t) , . . . vJ(t): t = 1, 2, . . . , 5}. More specifically, we
used the basis vectorsA =

[
a1, a2, . . . , aJ

]
for the J-dimensional

space, where a1 = J−1/21, and aj = J−1/2 (J − 1)−1/2 (
Jej − 1

)

for j = 2, 3, . . . , J, with 1 and ej denoting the J-length column
vector of ones and the J-length column vector of zeroswith a one
in the jth position, respectively. Then, for each t = 1, 2, . . . , 5,
we used [v1(t), v2(t), . . . vJ(t)]T = A[v(t), u2(t), . . . uJ(t)]T
with {v(t) : t = 1, 2, . . . , 5} = {1, 13, 1.5, 9.0, 4.5} and the
5 × (J − 1) values for {u2(t), u3(t), . . . uJ(t) : t = 1, 2, . . . , 5}
randomly generated from a uniform distribution over the
interval [0, 10].

Figure 7. (a) estimated 2 D mapped LVs representing the 12 levels of the qualitative factor t in the revised borehole example. The latent representation successfully
uncovered the structural dependence of the factor levels on the two underlying numerical variables: the three levels of rw (represented by colors) are distributed along z2
dimension and within each rw group the four levels of Hl correspond to z1 varying; (b) contour plot of the response in revised borehole example as a function of rw and Hl
with the other numerical variables in Table S1 fixed at their mean values.
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Figure 8. RRMSE comparison (each boxplot is for 20 replicates) of BNGP vs. LVGP for the example in (15) with design sizes n = 30, 40, 50, 60, and 70 (corresponding to
columns) when the dimension of the underlying numerical variables is J = 1, 3, 5, and 10 (corresponding to rows). Our LVGP model has only slightly higher error than
the benchmark BNGPmodel that uses the underlying numerical v(t)when J = 1, and the differences decrease with larger n. The BNGPmodel degrades significantly when
the dimension of the underlying numerical variables increases.

We conducted 20 replicates of the example, where on each
replicate we generated a different set of 5× (J−1) uniform ran-
dom numbers for {u2(t), u3(t), . . . uJ(t) : t = 1, 2, . . . , 5} and
a different design of experiments. For the latter, we generated a
size-n LHD in the {x1, x2} space and then assigned the level for t
for each of the n runs by randomly sampling one of its five levels.
TheBNGPmodelwasfit to the samedata as the LVGPmodel but
using the underlying numerical {v1(t), v2(t), . . . vJ(t)} instead
of t. Figure 8 compares the RRMSEs across 20 replicates for five
different DOE sizes (n = 30, 40, 50, 60, and 70) and for four
different values of J (1, 3, 5, 10).

The main conclusion drawn from Figure 8 is that if the
underlying numerical variables are low-dimensional (J = 1),
very little accuracy is lost if we use the LVGP approach, relative
to using the BNGP approach that incorporates the numerical
variable information; and if the underlying numerical variables
are higher dimensional (J ≥ 3), the LVGP gives much better
accuracy than the BNGP approach. We note that for J = 1 and
the smaller designs (n < 50 roughly), the BNGP approach does
indeed perform slightly better than the LVGP approach, but the
difference becomes negligible for the larger designs (n > 50
roughly).

5. Why Use Qualitative Factors at All?

Aside from the superior numerical performance of the LVGP
approach demonstrated in our examples, the main justifica-
tion for LVGP is the recognition that the effects of qualitative
factors on a numerical response must always be due to some
set of underlying numerical variables {v1(t), v2(t), v3(t), . . .}
that vary across the different levels of the factor. In light of
this, one may question whether it would be better to simply
identifywhat are the variables {v1(t), v2(t), v3(t), . . .} that vary
across the levels t of the factor, and then to include these as

numerical inputs in a standard GP model for only numerical
variables. Identifying the numerical variables should generally
be straightforward, albeit perhaps tedious, since whoever coded
the simulation must know which variables he/she included in
the code. Assuming this can be done in practice, the appropri-
ateness of a purely numerical GP model largely depends on the
dimension of {v1(t), v2(t), v3(t), . . .} and on the level of prior
knowledge regarding how they collectively affect the response
variable.

The adverse effect of dimensionality of {v1(t), v2(t),
v3(t), . . .} on predictive performance when they are treated as
purely numerical was demonstrated in Figure 8. To further elu-
cidate the issue, reconsider the beam bending example, in which
{v1(t), v2(t), v3(t), . . .} for the cross-sectional qualitative fac-
tor are the complete set of 2D coordinates for every integration
point in the finite element mesh of the cross-section. If 1,000
integration points are used, then there are 2,000 underlying
numerical variables {v1(t), v2(t), v3(t), . . .,v2000(t)} that vary
as the level t (cross-section shape) varies. The best way to handle
this is to have prior knowledge of the physics of the system
and to know in advance that {v1(t), v2(t), v3(t), . . .,v2000(t)}
only affect the response via the 1D moment of inertia variable
I(t) = I (v1(t), v2(t), v3(t), . . . , v2000(t)). In this case, it would
be naive to treat the cross-sectional shape as a qualitative factor.
Instead, one would represent the cross-sectional shape via the
single numerical variable I(t) and include it in a standard GP
model for numerical-only inputs (although the J = 1 results in
Figure 8 indicate that one might not lose too much if the LVGP
approach is used).

Such strong prior knowledge of how {v1(t), v2(t),
v3(t), . . .} affect the response is not generally available. If
{v1(t), v2(t), v3(t), . . .} is low-dimensional (e.g., only one or
two variables), then one should probably forego a qualitative
factor treatment and, instead, include {v1, v2, v3, . . .} as
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additional numerical variables in the simulation experiments.
This would entail varying {v1, v2, v3, . . .} over some
experiment designed for numerical variables, conducting
the simulation runs at these values, and then using a GP model
for numerical variables to model the response surface.

On the other hand, if {v1(t), v2(t), v3(t), . . .} is high-
dimensional, it may be impossible to include them all as addi-
tional numerical variables in the simulation. This is clearly
the case for the beam bending example, for which one would
never attempt to include {v1, v2, v3, . . . , v2000} as 2,000 addi-
tional numerical variables in the simulation experiment and
in the GP surrogate model. Instead, with only six differ-
ent levels, one would be far better off treating the cross
section as qualitative factor and using the LVGP approach.
An additional benefit of the LVGP approach is that it can
help to discover the low-dimensional LVs {z1(t), z2(t)} =
{z1 (v1(t), v2(t), v3(t), . . .) , z2 (v1(t), v2(t), v3(t), . . .)} that
capture the effects of the underlying high-dimensional variables
{v1(t), v2(t), v3(t), . . .} on the response. This was clearly evi-
dent from Figures 5 and 7.

In general, it may be better to forego a qualitative factor
GP model and instead represent them as numerical inputs in
a standard GPmodel if either (i) there are only a few underlying
numerical variables that differ across the levels of the qualitative
factor or (ii) there are many underlying numerical variables,
but one has strong prior knowledge that they collectively affect
the response only via a few low-dimensional combinations, and
the functional forms of these combinations are known. If many
underlying numerical variables differ across levels, and one does
not understand the physics clearly enough to identify a few low-
dimensional combinations onwhich the response depends, then
a GP model with qualitative inputs should be used.

6. Conclusions

In this article, we developed an LVGP model for GP-based
simulation response surface modeling with both quantitative
and qualitative factors. The approachmaps the qualitative factor
levels to a corresponding set of 2D latent numerical variable
values so that distances in the LV space account for response
correlations across levels of the qualitative factors. We argue
that the proposed two-dimensional LVGP model (6) is flexible
enough to accurately capture complex correlations of many
qualitative factors. To support this, we have (1) demonstrated
consistently superior predictive performance across a variety of
mathematical and engineering examples (Figures 4, 6, and S1)
and (2) provided a physical explanation of why differences in
the response behavior across qualitative factor levels are truly
due to underlying numerical variables that can bemapped down
to a lower dimensional space of LVs (e.g., the beam bending
example).

Another desirable characteristic of our LVGP approach is
that the estimated LVs provide insight into the relationship
between the levels of a factor, regarding how similar or different
the response surfaces are for the different levels. In all of our
examples, the visualization of the LV space (Figures 5, 7, and
S2) successfully revealed the structure of the true underlying
variables that account for the response differences between

levels. Moreover, in contrast to the existing methods for han-
dling qualitative factors that were reviewed in Section 3, our
LVGP approach is compatible with any standard GP correlation
function, including nonseparable correlation functions such as
power exponential, Matèrn and lifted Brownian. This allows
greater flexibility when modeling complex systems. The result-
ing covariance function in our LVGP model always results in a
valid (positive semidefinite) covariance matrix without having
to incorporate additional constraints, making the MLE routine
easier to implement.

Our numerical performance studies focused on the RRMSE
comparisons and on the LVGP model’s ability to estimate the
underlying LV structure.However, one often usesGPmodels for
their built-in ability to quantify the uncertainty in the response
predictions via prediction intervals obtained from the built-
in mean square prediction error formula or some appropriate
computational Bayesian analysis. Further studies on whether
the LVGP model has relative advantages or disadvantages for
uncertainty quantification would be useful.

Finally, our focus has been on GP modeling for simulation
response surfaces. In the much broader landscape of general
regression modeling with qualitative factors, it still holds that
the effects of any qualitative factor t on a numerical response
variable must be due to some underlying set of characteristics
that differ across the levels of t. If these characteristics are all
quantifiable, thenwe can view themas the underlying numerical
variables {v1(t), v2 (t) , v3(t), . . .} to which we have referred
throughout this article. If one accepts this viewpoint, then the
LV mapping concepts in this article may have much broader
applicability in regression with qualitative variables than just
the GP modeling setting considered in this article. As a simple
example, the standard linear regression approach of encoding a
qualitative factor with m levels as m − 1 0/1 dummy variables
can be viewed as mapping the qualitative factor down to a 1D
LV numerical space, where the mapped LV values are exactly
the estimated regression coefficients of the 0/1 dummy vari-
ables. However, the LV interpretations are not as clear when
one considers interactions between the 0/1 dummy variables
and other numerical or qualitative predictors. We are currently
investigating whether some of the LV mapping concepts that
we have used in this article may also be useful in the broader
regression context.
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on the examples in Section 4. The R-package “LVGP”, which is available
from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-
project.org/package=LVGP, contains the code for fitting LVGP models to
general mixed-variable datasets.
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