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Abstract. In this paper, we consider iterative methods based on sam-
pling for computing solutions to separable nonlinear inverse problems
where the entire dataset cannot be accessed or is not available all-at-once.
In such scenarios (e.g., when massive amounts of data exceed memory
capabilities or when data is being streamed), solving inverse problems,
especially nonlinear ones, can be very challenging. We focus on separa-
ble nonlinear problems, where the objective function is nonlinear in one
(typically small) set of parameters and linear in another (larger) set of
parameters. For the linear problem, we describe a limited-memory sam-
pled Tikhonov method, and for the nonlinear problem, we describe an
approach to integrate the limited-memory sampled Tikhonov method
within a nonlinear optimization framework. The proposed method is
computationally efficient in that it only uses available data at any itera-
tion to update both sets of parameters. Numerical experiments applied to
massive super-resolution image reconstruction problems show the power
of these methods.

Keywords: Tikhonov regularization · sampled methods · variable projection ·
Kaczmarz methods · super-resolution · medical imaging and other applications

1 Introduction

Advanced tools for image reconstruction are essential in many scientific ap-
plications ranging from biomedical to geophysical imaging [11]. A major chal-
lenge in many of the newer imaging systems is that the entire dataset cannot
be accessed or is not available all-at-once. For example, faster scan speeds on
recently-developed micro-tomography instruments have resulted in very large
datasets [14]. Using standard image reconstruction techniques to analyze the
massive amounts of data is computationally intractable. Another example arises
in streaming-data problems or automated pipelines, where immediate feedback
(e.g., a partial reconstruction) may be needed to inform the data acquisition pro-
cess [21]. These scenarios are becoming common in many applications, thereby
motivating the need for further developments on sampled iterative methods for
image reconstruction.
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We consider image reconstruction problems where the underlying model is
separable and nonlinear. For the case where observations are available all-at-
once, the data acquisition process can be modeled as,

b = A(ytrue)xtrue + ε , (1)

where xtrue ∈ Rn contains the desired image, ytrue ∈ Rp contains the desired
forward model parameters, A(·) : Rp → Rm×n is a nonlinear operator describ-
ing the forward model, ε ∈ Rm contains noise or measurement errors (typi-
cally treated as a realization from a Gaussian distribution with zero mean), and
b ∈ Rm contains the observations. It is often assumed that A(ytrue) is known,
in which case we have a linear model. However, in many realistic scenarios,
parameters ytrue must be estimated from the data. Here we assume that the
parameterization of the model A(·) is known and that the number of parame-
ters in ytrue is significantly smaller than the number of unknowns in xtrue, i.e.,
p� n. An example of a separable nonlinear inverse problem of this form arises
in super-resolution image reconstruction, see Section 4.

Since image reconstruction problems are usually ill-posed, small errors in
the data can result in very large errors in the solution. Thus regularization
is need to compute a reasonable solution, and here we consider the widely-
used Tikhonov regularization method. That is, we are interested in Tikhonov-
regularized optimization problems of the form,

min
x,y

f(x,y) = ‖A(y)x− b‖22 + λ ‖x‖22 , (2)

where λ > 0 is a regularization parameter that balances the data-fit and the
regularization term. Note that (2) is separable1 since the objective function f
is a linear function in terms of x and a nonlinear function in terms of y. Previ-
ously developed numerical optimization methods for (2) have been investigated
and range from fully decoupled approaches (e.g., alternating optimization) to
fully coupled (e.g, nonlinear) approaches [6]. A popular alternative is the vari-
able projection method [9, 19], where the linear parameters are mathematically
eliminated and a nonlinear optimization scheme is used to solve the reduced
optimization problem. These methods have been investigated for various image
processing applications, see e.g., [2, 7, 12]. However, all of these methods require
all-at-once access to the data to perform full matrix-vector multiplications with
A(y), and hence they cannot be used for massive or streaming problems.

In this paper, we develop an iterative sampled method to estimate a solution
for (2) in the case of massive or streaming data. The method follows a variable
projection approach by first mathematically eliminating the linear variables.
However, to address massive or streaming data, we use recently-developed sam-
pled Tikhonov methods to approximate the regularized linear problem and use
a sampled Gauss-Newton method to approximate the nonlinear variables. Sam-
pled Tikhonov methods are simple and have favorable convergence properties
[22]. Also, limited-memory variants can reduce computational costs.

1 This is sometimes referred to as partially separable [18].
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An outline of the paper is as follows. In Section 2 we provide an overview of
sampled Tikhonov methods and provide a numerical exploration of the conver-
gence properties of the limited-memory variants. Then in Section 3 we describe
iterative sampled methods for separable nonlinear inverse problems, where the
sampled Tikhonov methods from Section 2 are integrated within a nonlinear
optimization framework for updating estimates of xtrue and ytrue. Numerical re-
sults from super-resolution imaging are presented in Section 4, and conclusions
and future work are presented in Section 5.

2 Sampled Tikhonov methods for linear inverse problems

Suppose y is fixed and consider computing the Tikhonov solution,

xtik = arg min
x

‖Ax− b‖22 + λ ‖x‖22 , (3)

for the case where all of A and b are not available at once. For linear problems,
we can use sampled limited-memory Tikhonov (slimTik) methods, in which
we iteratively solve a sequence of sampled least-squares problems [22]. These
sampled Tikhonov methods can be interpreted as extensions of block Kaczmarz
type methods and are related to recursive least squares methods for ill-posed
problems, randomized least-squares solvers, and stochastic optimization methods
for convex programs, see e.g., [1, 3, 8, 16, 10, 17, 24].

Let’s assume that matrix A and vector b can be partitioned into M blocks,

A =

A(1)

...
A(M)

 and b =

 b(1)

...
b(M)

 . (4)

For simplicity we assume that all blocks have the same dimension, i.e., A(i) ∈
R`×n and b(i) ∈ R`, i = 1, . . . ,M , with ` = m/M . Then for an arbitrary initial
guess x0 ∈ Rn and λ > 0, the k-th slimTik iterate can be written as

xk = xk−1 − sk

with

sk =
(
kλ
M In + M>kMk + A>kAk

)−1 (
A>k (Akxk−1 − bk) + λ

M xk−1
)
,

where Ak = A(((k−1)modM)+1), bk = b(((k−1)modM)+1), and matrix Mk =[
A>k−r, . . . ,A

>
k−1
]>

collects the previously-accessed matrix blocks up to memory
level r ∈ N. Note that mod is the modulo operation, and hence we are sampling
with cyclic control. Thus, after all blocks in ascending order have been visited, the
algorithm continues with the first block; other sampling strategies are possible,
but these investigations are beyond the scope of this paper, see [4]. The memory
level is assumed to be constant, and for the first r iterates, the blocks of A and b
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with negative indices are set to zero. Notice that the update sk can be computed
efficiently by solving the regularized least-squares problem,

sk = arg min
s

∥∥∥∥∥∥∥
 Mk

Ak√
kλ
M In

 s−

 0
Akxk−1 − bk√

λ
kM xk−1


∥∥∥∥∥∥∥
2

2

,

using iterative methods such as LSQR [20]. The slimTik method with memory
r is an approximation of the full memory method where r = M − 1, for which
it can be shown that xM = xtik, for details see [22]. Hence, the full memory
slimTik method converges after M iterations to the Tikhonov solution (3),
with the corresponding regularization parameter λ.

We illustrate convergence for an example from the Regularization Tools tool-
box [11]. We use the gravity example which provides a matrix A ∈ R1000×1000

and a vector xtrue. We partition A into M = 100 blocks with ` = 10 and
let λ = 0.0196. We simulate observed data by adding Gaussian white noise
with zero mean such that the noise level is 0.01, i.e., b = Axtrue + ε where
‖ε‖2

‖Axtrue‖2
= 0.01. First, we run slimTik for one epoch (k = M) with memory

levels r = 0, . . . ,M −1, and we report the relative error between the reconstruc-
tions xM and the Tikhonov solution xtik in the left panel of Fig. 1. Note that for
full memory (i.e., r = M−1), the relative error is within machine precision. Also,
for lower memory levels, the reconstructions xM are close to the Tikhonov solu-
tion. The right panel of Fig. 1 illustrates the asymptotic convergence of slimTik
for memory levels r = 0, 2, 4, 6, and 8, where we also compare to a standard
sampled gradient (sg) method without regularization. Errors are plotted after
each full epoch. Empirically, we observe that the iterates xk converge to xtik as
k → ∞, using cyclic control. Asymptotic convergence of these methods using
cyclic, random cyclic, or fully random control has not yet been studied and is
current research. Asymptotic convergence for consistent systems using cyclic or
random control has been shown in [23, 4, 16, 13].

3 Iterative sampled methods for separable nonlinear
inverse problems

Next for separable nonlinear inverse problems of the form (2), we describe an
iterative sampled approach that integrates slimTik within a nonlinear optimiza-
tion framework so that both sets of parameters can be updated as data become
available. Similar to the mathematical description in Section 2, we assume that
A and b can be split into blocks as in (4), but where A(i)(·) : Rp → R`×n,
i = 1, . . . ,M , with ` = m/M . For an initial guess of the linear parameters
x0 ∈ Rn, nonlinear parameters y0 ∈ Rp, and λ > 0, the k-th iterate of the
separable nonlinear slimTik (sn-slimTik) method can be written as

xk = xk−1 − sk

yk = yk−1 − αk
(
J>k Jk

)†
J>k rk (yk−1) (5)
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Fig. 1. Convergence of the slimTik method. The plot in the left panel contains the
relative errors between the iterates after one epoch and the Tikhonov solution, for
different memory levels. The plot in the right panel illustrates asymptotic convergence
of the slimTik method for memory levels r = 0, 2, 4, 6, and 8. For comparison we
include relative errors for a sample gradient method.

with

sk = arg min
s

∥∥∥∥∥∥∥
Mk (yk−1)
Ak (yk−1)√

kλ
M In

 s−

 0
Ak (yk−1)xk−1 − bk√

λ
kM xk−1


∥∥∥∥∥∥∥
2

2

,

where Ak ( · ) = A(((k−1)modM)+1) ( · ), bk = b(((k−1)modM)+1), and Mk ( · ) =[
Ak−r ( · )> , . . . ,Ak−1 ( · )>

]>
for chosen memory level r ∈ N. The blocks of

A and b with negative indices are set to the zero function and zero vector,
respectively. Here rk(·) : Rp → R`(r+1) is the sample residual function defined as

rk (y) =


Ak−r (y)

...
Ak−1 (y)
Ak (y)

xk −


bk−r

...
bk−1
bk

 ,
Jk is the Jacobian of rk evaluated at yk−1, and αk is the step size determined
by a line search method [18]. The Jacobian can be approximated with finite
differences or found analytically. Note that † represents the pseudo-inverse in
(5) and is required since Jk might not have full column rank. Also, as with
any nonlinear, nonconvex optimization method, the initial guess must be within
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the basin of attraction of the desired minimizer. A summary of the sn-slimTik

algorithm is provided below.

Algorithm 1 sn-slimTik

1: Inputs: x0, y0, r, λ, M
2: for k = 1, 2, . . . do
3: Get Ak (yk−1), bk, and Mk (yk−1)

4: sk = arg min
s

∥∥∥∥∥∥∥
Mk (yk−1)
Ak (yk−1)√

kλ
M

In

 s−

 0
Ak (yk−1)xk−1 − bk√

λ
kM

xk−1


∥∥∥∥∥∥∥
2

2
5: xk = xk−1 − sk

6: yk = yk−1 − αk
(
J>k Jk

)†
J>k rk (yk−1)

7: end for

4 Numerical Results

In this section, we provide numerical results for super-resolution image recon-
struction, which can be represented as a separable nonlinear inverse problem [5].
Suppose we have M low-resolution images. The underlying model for super-
resolution imaging can be represented as (1), where xtrue contains the high-
resolution (HR) image, and b and A(ytrue) can be partitioned as in (4), where
b(i) contains the i-th low-resolution (LR) image and A(i)(·) : Rp → R`×n. More
specifically, if we assume that the deformation for each LR image is affine (e.g.,
can be described with at most 6 parameters) and independent of the parameters
for the other images, then we can partition y as

y =

 y(1)

...
y(M)


and have A(i)(y) = RS(y(i)) where R is a restriction matrix that takes a HR
image to a LR one and S(y(i)) represents an affine transformation defined by
parameters in y(i). Then the goal is to solve (2) to estimate the HR image as
well as update the transformation parameters.

We will investigate iterative sampled methods for super-resolution problems
with massive or streaming data, but first we investigate a smaller problem where
all of the data can be accessed at once. In Experiment 1, we compare our pro-
posed sn-slimTik method with different memory levels to the results from the
variable projection method. We show that with relatively modest memory levels,
our approaches can achieve reconstructions with similar quality to full-memory
reconstructions in comparable time. Then in Experiment 2, we consider a very
large streaming super-resolution problem, where both the resolution of the im-
ages as well as the number of LR images present a computational bottleneck.

In both experiments, we initialize x0 = 0, and y0 is obtained by adding
Gaussian white noise with zero mean to ytrue where the variance is 2.45 · 10−3
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in Experiment 1 and 4.48 · 10−4 in Experiment 2. We set the regularization
parameter in advance, but mention that methods for updating the regularization
parameter can be found in [22].

Algorithm 2 variable projection

1: Inputs: y0, λ
2: for k = 1, 2, . . . do

3: xk = arg min
x

∥∥∥∥[A(yk−1)√
λIn

]
x−

[
b
0

]∥∥∥∥2
2

4: r̃k(yk−1) = A(yk−1)xk − b

5: yk = yk−1 − αk
(
J̃>k J̃k

)†
J̃>k r̃k(yk−1)

6: end for

4.1 Experiment 1: Comparing sn-slimTik to variable projection

Both sn-slimTik and variable projection are iterative methods that update x
and y. However, the variable projection method requires access to all data at
once and thus may be infeasible for massive or streaming problems. The goal of
this experiment is to show that we can achieve similar reconstructions as existing
methods, but without the need to access all data and matrices at once.

For completeness, we provide in Algorithm 2 the basic variable projection
algorithm [9, 19], which is a Gauss-Newton algorithm applied to the problem,

min
y
f(x(y),y).

Here J̃k is the Jacobian of A(y)xk−b with respect to y at yk−1, and αk is a
line search parameter. Analytical methods can be used to obtain the Jacobian,
see [5]. Notice that each iteration of the variable projection algorithm requires
access to the entire data set b as well as matrix A(y) in order to solve the linear
least squares problem in step 3. For our experiments, we use the LSQR method
to solve the linear Tikhonov problem, where each iteration of LSQR requires a
matrix-vector multiplication with A(yk−1) and A(yk−1)>. Each multiplication
requires access to all of the data, and thus, in terms of data access, is equivalent
to one epoch of slimTik.

For this experiment, the goal is to recover a HR image that contains 5122

pixels from a set of M = 100 LR images, each containing 1282 pixels, i.e.,
A(y) ∈ R100·1282×5122 . The HR image is of an astronaut and was obtained from
NASA’s website [15]. The HR image and three of the simulated LR images are
provided in Fig. 2. The noise level for each LR image was set to 0.01, and the
regularization parameter was set to λ = 8 · 10−2.

In Fig. 3, we provide relative error norms for the reconstructions and relative
error norms for the affine parameters,

‖xk − xtrue‖2
‖xtrue‖2

and
‖yk − ytrue‖2
‖ytrue‖2

, (6)
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(a) HR image (b) HR subimage (c) LR subimage

Fig. 2. Super-resolution imaging example. The high-resolution (HR) image and a
subimage corresponding to the yellow box are provided in (a) and (b) respectively.
The subimage of one of the low-resolution (LR) images is provided in (c).

respectively. We compare the sn-slimTik method with memory levels r = 0, 1,
and 5 for 5 epochs (100 iterations correspond to one epoch), and provide results
for 4 iterations of the variable projection method for comparison.

Following the discussion above, it is difficult to provide a fair comparison
since each variable projection iteration requires a linear solve and here we use
20 LSQR iterations for each outer iteration. Performing one LSQR iteration
requires the same memory access as 100 iterations of sn-slimTik with any
memory level. Thus, in Fig. 3 we plot the relative reconstruction error norms for
variable projection only after every 100 iterations of sn-slimTik. We see that for
both parameters sets, sn-slimTik produces relative reconstruction errors that
are comparable to the variable projection method. For this experiment variable
projection took 644 seconds, sn-slimTik took 366 seconds with memory 0, 800
seconds with memory 1, and 2,570 seconds with memory 5.

Sub-images of sn-slimTik reconstructions at iterations k = 100 and 200
with memory parameters 0, 1, and 5 are provided in Fig. 4. We note that for
k = 1 all three reconstructions are identical since all of them only have access
to the first LR image. Reconstructions after 100 iterations are also similar, but
after 200 iterations, we see that sn-slimTik with memory level 5 produces a
better reconstruction. These results show that including memory in the slimTik
algorithm may be beneficial, and results are comparable to those of variable
projection.

4.2 Experiment 2: sn-slimTik for a massive problem

Next we consider a very large streaming super-resolution problem, where the
goal is to reconstruct a HR image of 10242 pixels from 300 LR images of 642

pixels that are being observed in time. The HR image comes from NASA [15] and
is depicted, along with three of the LR images, in Fig. 5. For this example, once
all data has been accessed, A ∈ R300·642×1,0242 is too large to store in memory.
Furthermore, in many streaming scenarios, we would like to be able to compute
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Fig. 3. Relative reconstruction error norms for the image xk (left) and the nonlinear
parameters yk (right) for variable projection and sn-slimTik for various memory levels.
Note that variable projection errors are only provided after every 100 iterations of
sn-slimTik.

sn-slimTik, r = 0 sn-slimTik, r = 1 sn-slimTik, r = 5

k
=

1
0
0

k
=

2
0
0

Fig. 4. Sub-images of sn-slimTik reconstructions for memory levels r = 0, 1, and 5
for iterates within the first two epochs of data access.
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(a) HR image (b) LR image (c) LR image (d) LR image

Fig. 5. Streaming super-resolution imaging example. The high-resolution (1,024 ×
1,024) image is provided in (a), along with three of the low-resolution (64× 64) images
in (b)–(d).
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Fig. 6. Relative reconstruction errors for both the linear (left) and nonlinear (right)
parameters for the streaming data super-resolution problem.

partial image reconstructions and update the nonlinear parameters during the
data acquisition process, e.g., while LR images are still being streamed. Notice
that the variable projection method requires us to wait until all LR images are
observed, and even then it may be too costly to access all of A at once.

Thus, in this experiment, we consider the sn-slimTik method with memory
levels r = 0, 1, and 5. We run 300 iterations (e.g., accessing one epoch of the data)
and set the noise level for each LR image to be 0.01 and λ = 5 ·10−3. In Fig. 6 we
provide the relative reconstruction errors for xk and yk. We observe that a higher
memory level corresponds to improved estimates of the nonlinear parameters and
the reconstructions. In Fig. 7, we provide sub-images of absolute errors images
of the reconstructions, computed as |x300 − xtrue|, in inverted colormap so that
white corresponds to small absolute errors. These images show that sn-slimTik
methods produce better reconstructions with increased memory level, but an
increased memory level comes with an increase in computation time. For this
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error sub-image r = 0 error sub-image r = 1 error sub-image r = 5

Fig. 7. Sub-image of absolute error images for sn-slimTik reconstructions with differ-
ent memory levels.

example, the CPU times for sn-slimTik are 1,035, 1,954, and 5,858 seconds for
memory levels of 0, 1, and 5, respectively.

5 Conclusions

In this work we introduced the sn-slimTik method, which is a sample based
iterative algorithm to approximate the solution of a separable nonlinear inverse
problem, for the case where the data cannot be accessed all-at-once. The method
combines limited-memory sampled Tikhonov methods, which were developed for
linear inverse problems, within a nonlinear optimization framework. Numerical
results on massive super-resolution problems show that results are comparable
to those from variable projection, when all data can be accessed at once. When
this is not the case (e.g., streaming or massive data), the sn-slimTik method
can effectively and efficiently update both sets of parameters.

A future area of research is to develop a theoretical analysis of the conver-
gence properties of sn-slimTik and slimTik methods, including asymptotic
convergence and a mean squared error analysis. Furthermore, future investiga-
tions should incorporate importance sampling, where the sampling strategy can
be adapted as data become available.
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