Secure Serverless Computing using
Dynamic Information Flow Control

KALEV ALPERNAS, Tel Aviv University, Israel and VMware Research, USA
CORMAC FLANAGAN, UC Santa Cruz, USA

SADJAD FOULADI, Stanford University, USA

LEONID RYZHYK, VMware Research, USA

MOOLY SAGIV”, Tel Aviv University, Israel

THOMAS SCHMITZ, UC Santa Cruz, USA

KEITH WINSTEIN, Stanford University, USA

The rise of serverless computing provides an opportunity to rethink cloud security. We present an approach
for securing serverless systems using a novel form of dynamic information flow control (IFC).

We show that in serverless applications, the termination channel found in most existing IFC systems
can be arbitrarily amplified via multiple concurrent requests, necessitating a stronger termination-sensitive
non-interference guarantee, which we achieve using a combination of static labeling of serverless processes
and dynamic faceted labeling of persistent data.

We describe our implementation of this approach on top of JavaScript for AWS Lambda and OpenWhisk
serverless platforms, and present three realistic case studies showing that it can enforce important IFC security
properties with modest overhead.

CCS Concepts: » Security and privacy — Information flow control; Access control;
Additional Key Words and Phrases: Information Flow Control, Serverless, Cloud Computing

ACM Reference Format:

Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz, and Keith
Winstein. 2018. Secure Serverless Computing using Dynamic Information Flow Control. Proc. ACM Program.
Lang. 2, OOPSLA, Article 118 (November 2018), 26 pages. https://doi.org/10.1145/3276488

1 INTRODUCTION

In May 2017, the Equifax credit reporting agency suffered a security breach, leaking social security
numbers and other personal information of 145.5 million consumers [Forbes 2017]. The breach,
which exploited a code injection vulnerability in Apache Struts [National Vulnerability Database
2017], became the latest in a series of high-profile attacks on public and private clouds compromising
sensitive personal information of hundreds of million users [Computerworld 2009, 2014; Digital
Trends 2016; Forbes 2014; The Register 2011; Wikipedia 2017a,b,c; Wired 2016; ZDNet 2015; ZDNet
2016].

“Work done while at VMware Research.

Authors’ addresses: Kalev Alpernas, Tel Aviv University, Israel , VMware Research, USA, kalevalp@post.tau.ac.il; Cormac
Flanagan, UC Santa Cruz, USA; Sadjad Fouladi, Stanford University, USA; Leonid Ryzhyk, VMware Research, USA; Mooly
Sagiv, Tel Aviv University, Israel; Thomas Schmitz, UC Santa Cruz, USA; Keith Winstein, Stanford University, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART118

https://doi.org/10.1145/3276488

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:2 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Most of these attacks can be traced down to two types of faults: misconfigurations and software
vulnerabilities. The former include issues like incorrect database security attributes [Digital Trends
2016; PCWorld 2010; TechRepublic 2017], the choice of weak authentication schemes [Comput-
erworld 2014], or the use of unpatched software [Forbes 2017]. The latter include code and SQL
injections, file inclusions, directory traversals, etc. [CNET Magazine 2011; Computerworld 2009;
ZDNet 2015; ZDNet 2016].

Simply put, the enormous Trusted Computing Base (TCB) of modern cloud applications makes it
intractable to enforce information security in these environments.

A promising avenue to a smaller TCB lies in the use of information flow control (IFC)-based
security [Denning 1976; Sabelfeld and Myers 2003]. In the IFC world, information is protected by a
global security policy that cannot be overridden by a misconfigured application. The policy explicitly
and concisely captures constraints on end-to-end information flow through the system, e.g., “credit
card numbers can only be exposed to appropriate card associations (e.g., Visa or MasterCard)”.

The IFC system enforces the policy even for buggy or malicious applications, thus removing
application code and configuration from the TCB of the cloud. In particular, an application that has
been hijacked by a code injection attack should not be able to bypass the enforcement mechanism.
This is in contrast to security models based on access control lists or capabilities, where, for instance,
a compromised program running with database administrator privileges can easily leak the entire
database to a remote attacker.

Despite significant progress on IFC, it remains difficult to apply in real software. Dynamic IFC
systems [Austin and Flanagan 2009; De Groef et al. 2012; Efstathopoulos et al. 2005; Stefan et al.
2011] often incur high runtime overhead. Static IFC (see e.g. [Myers 1999; Myers and Liskov 2000;
Sabelfeld and Myers 2003; Zdancewic 2002]) systems shift the costs to development time, usually
via the use of type systems; however, they restrict the style of programming, which complicates
their adoption.

We demonstrate that IFC for cloud computing is feasible, and can be implemented for essentially
unmodified applications with manageable overhead. We achieve these properties by leveraging
recent developments in cloud computing, namely, the rise of serverless computing [Sbarski 2017].
Initially popularized by Amazon’s AWS Lambda [Amazon 2017a], serverless computing is rapidly
gaining adoption by cloud providers [Apache Software Foundation 2017; Fn Project 2017; Google
2017; IBM 2017; Microsoft 2017] and tenants [Airbnb 2017; Baird et al. 2016; Boyd 2017; Chowhan
2016; Ellis 2017; Eriksen 2013; Fouladi et al. 2017b; Jonas et al. 2017; Nordstrom Technology 2017]
due to its key benefits: elastic scalability, ease of deployment, and flexible pay-per-use pricing.

Serverless computing achieves these benefits by decoupling application logic from resource
management. In the serverless model, users express their applications as collections of functions
triggered in response to user requests or calls by other functions. A function can be written in any
language and may request a certain runtime environment, including, e.g., specific versions of the
Python interpreter and libraries. However, the function is agnostic of where this environment is
instantiated: a physical machine, a virtual machine or a container. The cloud platform manages
function placement and scheduling, automatically spawning new function instances on demand.
This requires application state to be decoupled from functions and placed in a shared data store
(e.g., a database or a key-value store), allowing all function instances to access the state regardless
of their physical placement in the cloud.

We argue that serverless computing has fundamental implications for cloud security. In particular,
it may enable practical IFC for the cloud. Our key observation is that a serverless function constitutes
a natural unit of information flow tracking. First, a serverless function activation handles a single
request on behalf of a specific user and only accesses secrets related to this request. Second, each
invocation starts from a clean state and does not get contaminated with sensitive data from previous

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:3

(cloud)
sandbox

F()
—F'__ shim (b,) \ =

y ()

o

_ datastore)

Fig. 1. Trapeze architecture. Serverless function F is encapsulated in a sandbox. All inputs and outputs of F,
including (a) invocations of F from within and from outside of the cloud, (b) calls to other serverless functions,
(c) reads and writes to shared data stores, and (d) external communication channels, are monitored by the
security shim.

invocations; any state shared across invocations must be kept in a global data store!. Under a
conservative assumption that all secrets obtained during function execution propagate to all its
outputs, we can track the global flow of information in the system by monitoring inputs and outputs
of all functions in the system.

Based on this observation, we develop the first IFC system for serverless applications, called
Trapeze. Trapeze encapsulates each unmodified serverless function in a sandbox, which intercepts
all interactions between the function and the rest of the world, including other functions, shared
data stores, and external communication channels, and redirects them to the security shim (Figure 1).
The shim tracks information flow and enforces the global security policy.

The class of supported policies, along with policy enforcement rules, is defined by Trapeze’s
dynamic IFC model. The model addresses a weakness in many existing static and dynamic IFC
systems, which leak information through the termination channel, whereby an adversary can infer
one bit of information by observing termination or non-termination of the program. The parallel
nature of the serverless environment amplifies this weakness, allowing the attacker to construct a
high-bandwidth information channel, effectively defeating the purpose of IFC (Section 2).

Our IFC model eliminates this channel by enforcing a strong security property known as
termination-sensitive non-interference (TSNI) [Sabelfeld and Sands 2001]. Trapeze achieves TSNI
through a novel combination of static program labeling with dynamic labeling of the data store
based on a faceted store semantics. Static program labeling restricts the sensitivity of data a server-
less function can observe ahead of time and is key to eliminating the termination channel. Dynamic
data labeling is crucial to securing unmodified applications that do not statically partition the data
store into security compartments, while the faceted store semantics eliminates implicit storage
channels. We present a formal proof, validated using the Coq proof assistant, that our model
enforces TSNL

We evaluate Trapeze on three real-world serverless applications: an online retail store [Nordstrom
Technology 2017], a parallel build system [Fouladi et al. 2017a], and an image feature extraction
service [Serverless, Inc 2017]. We use Trapeze to secure these applications with minimal changes
to application code.

Thus, our key contributions in this work are

(1) alight-weight IFC shim architecture for serverless computing,

IPractical serverless platforms do not strictly enforce this property, allowing functions to cache state across invocations. In
Section 6 we discuss how we enforce IFC in the presence of such local cached state.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:4 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

1 function F/*compromised*/():
2e for i = @ to 63:

T
/ \ se fork leak_bit (i)
e b !
s function leak_bit(i):
\ / se secret = store.read(100)
1

7e if secret[il]:
(a) Example security lattice. T is the 8T diverge

most secret label at the top of the lat- 9e eve.send(i)

tice; L is the bottom (least secret) label. (b) High-bandwidth termination channel in the

classical dynamic IFC model.

Fig. 2. Security lattice and program used to demonstrate a high bandwidth termination channel.

(2) anew IFC model that enforces TSNI, along with its formal semantics and proof of correctness,
and
(3) an experimental evaluation of the architecture and the model on three serverless applications.

Finally, we point out that our IFC model is not limited to the serverless domain. Generally
speaking, it applies to any reactive system that decouples computation from state. Examples of
such systems include, e.g., Hadoop [Apache Software Foundation [n. d.]], Apache Spark [Zaharia
et al. 2012] and Stateless Network Functions [Kablan et al. 2017].

2 WHY ANEW IFC MODEL FOR SERVERLESS?

As discussed above, a serverless function offers a convenient unit of information tracking, enabling
practical IFC for serverless applications. It seems natural that our next step should be adapting an
existing IFC model to the serverless environment. However, we do not take this path, as existing
models do not provide adequate security for serverless applications. Specifically, most previous
IFC models, both dynamic and static, enforce a security property known as termination-insensitive
non-interference (TINI) [Sabelfeld and Sands 2001]. Intuitively, TINI guarantees that an attacker
cannot deduce secrets stored in the system from its non-secret outputs. However, they may be able
to deduce part of a secret from the fact that the system stopped producing outputs.

This information channel, known as the termination channel, is often disregarded because it has
low bandwidth, typically leaking just a single bit. This is not true in serverless systems. Below, we
construct an attack on a serverless application, that amplifies the termination channel by spawning
many parallel computations, each leaking one bit.

Example 2.1. Consider a serverless system with two users: a benign user Bob and a malicious
user Eve. We introduce security labels b and e to tag Bob’s and Eve’s data respectively. Labels
form a lattice, with labels higher up in the lattice representing more secret data. Bob and Eve are
mutually distrusting, therefore their labels are incomparable (Figure 2a).

Eve launches a code injection attack against serverless function F, forcing the function to execute
malicious code in Figure 2b. This code is designed to leak Bob’s 64-bit secret stored under key 100
in the key-value store to Eve.

We assume that the system is secured using a classical dynamic IFC model where the function’s
label gets bumped up when branching or looping on a secret and gets bumped back down when
the control flow structure ends. The function initially runs with Eve’s label e (every line in the
listing is annotated with the current label of the function). Before reading Bob’s secret, the function
forks 64 instances of the helper function leak_bit (lines 2-3). Each instance reads the secret and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:5

branches on one of its bits. If the bit is 1, then the function’s dynamic label rises to b Ll e = T and
the function goes into an infinite loop. Otherwise, if the bit is 0, then the function’s label remains
at e and the function sends a message to Eve (here, eve is a handle to Eve’s HTTP session), which
succeeds because the label of the channel (e) is higher than or equal to the function’s current label.
Eventually, Eve receives a list of the bits of the secret that are equal to 0. O

We implemented the above attack in AWS Lambda and were able to leak 170 bits per second
by scaling the number of threads. Thus, by elastically scaling the computation, the serverless
architecture also scales the termination channel. This is in line with theoretical results, which
suggest that in a concurrent system, the termination channel can leak a secret in time linear in the
size of the secret [Askarov et al. 2008].

We therefore aim for a stronger security guarantee, known as termination-sensitive non-
interference (TSNI) [Sabelfeld and Sands 2001], which eliminates the termination channel. Note that
the termination channel in the above example arises as the function’s label, and hence its ability to
send to an external channel, depends on the labels of values the function reads from the store. In
contrast, our proposed model assigns a static security label to each function activation. To do so,
we take advantage of the fact that a serverless function always runs on behalf of a specific user and
can be assigned a corresponding security label. The complete model, presented in Sections 3 and 4,
also offers a secure way to dynamically increase the function’s label without introducing a side
channel.

The function’s label determines its view of the data store: the function can only observe the
existence of data whose label does not exceed the function’s label. For example, when reading a
key that contains a secret above function’s current label, the store returns the same result as if
the key was not present in the store. This information hiding semantics is somewhat tricky to
maintain when multiple functions with incomparable labels write to the same store location. We
avoid information leaks in this situation by employing faceted store semantics, where each record
can contain several values (facets) with different security labels [Austin and Flanagan 2012; Yang
et al. 2016].

To the best of our knowledge, Trapeze is the first IFC system to combine static program labeling
with dynamic labeling of data using faceting. This combination eliminates termination and storage
channels and enforces a strong security property, TSNL

3 INFORMAL DESIGN
3.1 Threat Model and Assumptions

We assume that the following entities are trusted, i.e., not malicious or compromised: (1) the cloud
operator, (2) physical hosts and network, (3) system software (OS, hypervisor, container manager,
scheduler), (4) serverless runtime, (5) shared data stores, (6) the sandboxing technology. Assumptions
(1) through (5) can in the future be relaxed with the help of a secure enclave technology such as Intel
SGX [Hunt et al. 2016; Intel Corporation 2014], data encryption, and software verification [Denning
and Denning 1977; Heintze and Riecke 1998].

We further trust the serverless application administrator to enforce the following invariants
on application configuration: (1) all data stores used by the application are configured to only be
accessible from serverless functions, (2) all serverless functions in the system are sandboxed.

Finally, we trust the application developer to correctly define the application’s information flow
policy and declassifier functions (Section 6.2).

The rest of the application is untrusted. In particular, we assume that the attacker can compromise
application code running inside serverless functions, including any of the frameworks and libraries
it uses.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:6 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

In this paper we focus on data confidentiality, i.e., protecting sensitive data from being exposed
to unauthorized users. The complementary problem of enforcing data integrity, i.e., protecting data
from unauthorized modification is outside the scope of Trapeze, although it can also be enforced
with the help of IFC techniques [Sabelfeld and Myers 2003].

3.2 Security Lattice

We start the construction of our IFC model with the lattice of security labels. Labels represent
security classes of information flowing through the system. Trapeze does not assign any specific
semantics to labels; however in practice they typically represent users or roles of the system.

Trapeze relies on a trusted authentication gateway to tag all external input and output channels
with correct security labels. For example, when Eve establishes an HT TP session with the system,
the session gets tagged with Eve’s label e.

Given the labeling of inputs and outputs, Trapeze applies information flow rules presented below
to enforce that information received through an input channel labeled I; can only be exposed
through an output channel labeled I, if I; E I,.

3.3 Information Flow Rules

The choice of information flow rules determines two critical properties of an IFC system: security
and transparency. The former characterizes the class of insecure behaviors the system prevents.
The latter characterizes the class of secure programs that the system executes with unmodified
semantics and that therefore do not need to be modified to work with Trapeze. Trapeze enforces
the strong security property of TSNI at the cost of some loss of transparency that, we argue, is
acceptable in serverless systems.

Trapeze assigns a runtime security label to every serverless function activation. This label is
derived from the event that triggered the function. In particular, if the function was invoked via
an HTTP request from a user, it obtains the user’s security label. Alternatively, when invoked by
another function, it inherits the caller’s label. The function’s label controls its ability to send to an
output channel: a send is only allowed if the function’s label is smaller than or equal to the channel
label.

Trapeze also dynamically labels records in the data store. To this end, the security shim intercepts
data store operations issued by the function and modifies them to insert and check security labels.
When a function creates or updates a record in the store, the record inherits the function’s label
(see detailed write semantics below). When reading from the store, the function only observes
values whose labels are below or equal to its own label. From the function’s perspective, the store
behaves as if it did not contain any data that the function may not observe.

A function can upgrade its label to an arbitrary higher label using the raiseLabel operation. This
operation does not introduce an unauthorized information channel, as the decision to upgrade
cannot depend on secrets above function’s previous label (such secrets are simply invisible to the
function). The upgrade mechanism is useful, for example, when a function running on behalf of
a regular user needs to update global statistics on behalf of a superuser. Upgrade is a one-way
operation: a function’s label can never be downgraded below its current value.

Store semantics Trapeze’s security shim conceals the existence of data whose security label is
not less than or equal to the function’s label. Maintaining this semantics is straightforward when
all writes to a data store location carry the same label. Writes with conflicting labels, on the other
hand, may introduce implicit storage channels, where the attacker infers secrets by observing that
labeled values exist within particular store locations without observing the actual values [Austin
and Flanagan 2010]. The following example illustrates the problem:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:7

7 function Fe():

function Fb(): se X = 0

b secret = store.read(100) 9e for i = 0 to 63:

b for i = 0 to 63: 10 e store.write(i,1234)

b if secret[i] == 1: e if store.read(i) != 1234:
b store.write(i,1) 12e x[i]l =1

13e eve.send(x)

Fig. 3. Implicit storage channel via conflicting writes.

Example 3.1 (Implicit storage channel). Figure 3 shows two functions running with labels b and e
respectively that collude to leak Bob’s 64-bit secret to Eve. Fb reads the secret in line 2; however it
does not have the authority to send it to Eve directly. Instead it encodes each bit of the secret using
a record in the key-value store. Fe reconstructs the secret by attempting to write to locations 0
through 63 and then reading the value back in. There are several ways an IFC system can handle
the write-read sequence in lines 10-11, but none of them prevents the unauthorized information
flow. The system may fail or diverge on writing to a store location with an incomparable label, thus
introducing a termination channel, which can be further amplified by concurrency. Alternatively,
it may silently ignore the conflicting write, in which case the subsequent read reveals that the
store does not contain the expected value and thus gives away the presence of a secret value at
this location. Note that dynamically raising the label of Fe to e LI b in line 11 does not prevent the
information leak: the failure to send to Eve in line 13 would leak one bit to her. This is another
form of the termination channel and can be easily amplified by exploiting concurrency. Finally, we
could overwrite Bob’s data in the store, but this would introduce an unauthorized channel in the
reverse direction, from Eve to Bob. O

Note that in the special case when security labels are totally ordered implicit storage channels
can be eliminated by applying the no-sensitive-upgrade rule [Austin and Flanagan 2010], which
allows writes with a low label to a high location, but fails writes with high labels to low locations.
However, no such mechanism exists for writes with incomparable labels.

Stefan et al. [Stefan et al. 2012] prevent implicit storage channels in their LIO library by assigning
static immutable security labels to all mutable shared state. In the context of Trapeze this could
be accomplished by statically partitioning the data store into regions with fixed security label.
While simple and efficient, this solution would not work with existing serverless systems that do
not admit such static partitioning, thus defeating our goal of seamless integration with existing
serverless software.

We therefore take a different approach to eliminating implicit storage channels that is compatible
with unmodified serverless applications. Specifically, we rely on faceted store semantics, where each
record can contain several values (facets) with different labels [Austin and Flanagan 2012; Yang
et al. 2016]. Facets are created dynamically: when a value with a new label is stored in the record, a
facet is created for it (see Section 4 for precise semantics). A read returns the most recent write
that is visible to the function. Thus, facets conceal writes with label b from a function running with
label e, unless b C e.

Example 3.2. We replay the example in Figure 3 with faceted store semantics. Since function
labels b and e are incomparable, their respective writes will go into different facets. The functions
do not observe each other’s writes either explicitly or indirectly, as in Example 3.1. O

Faceted stores were previously introduced in IFC research in work on faceted execution [Austin
and Flanagan 2012; Austin et al. 2017, 2013; Yang et al. 2016]. The fundamental difference from

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:8 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

our approach is in the read semantics. Under faceted execution, a read conceptually forks the
program, creating a separate branch for each facet read from the store. If the program sends to an
external channel, only the branch whose label is compatible with that of the channel is allowed
to send. Similar to our design, faceted execution eliminates storage channels; however it does so
at a potentially high runtime cost and may become impractical in a system with a large security
lattice. In contrast, Trapeze avoids faceted-execution using the apriori knowledge of the function’s
label by pruning all incompatible facets at read time. Existing faceted execution systems expose
the termination channel and therefore enforce TINI, whereas Trapeze enforces the stronger TSNI
property.

In the practical use of Trapeze, faceting is an exceptional situation. Trapeze is designed to run
unmodified applications that assume conventional store semantics. The moment multiple facets are
created in some store location, this semantics is violated, as different functions can now observe
different values at the same location. Trapeze treats such situations as attempted exploits and
notifies the administrator, who can then take recovery actions, e.g., remove the offending function
from the system and rollback the store to the previous consistent state. In the meanwhile Trapeze
guarantees that the system continues running without exposing any sensitive information to the
attacker.

Faceted store semantics is emulated by the security shim on top of a conventional non-faceted
store. In Section 6, we implement facets on top of a key-value store. Yang et al. [Yang et al. 2016]
present the design of a faceted SQL database.

Transparency The flip side of Trapeze’s strong TSNI security guarantees and light-weight protec-
tion is the theoretical loss of transparency, i.e., the ability to run existing unmodified applications.
By assigning a static security label to a function, we restrict data that is visible to it. In particular,
the function cannot access values above its security level even if it does not send these values (or
anything derived from them) through unauthorized channels. On the other hand, all writes to the
data store performed by the function are conservatively labeled with the function’s label even if
they do not carry any secrets.

Both problems can be addressed by refactoring the application. In particular, the function can
gain access to secret data via the raiseLabel operation. Conversely, one can avoid tainting data
with excessively high labels by splitting the offending function into several functions that run with
lower labels. However, if many such changes are required in order to adapt existing applications to
work with Trapeze, this will create a barrier to Trapeze’s practical adoption.

Our evaluation in Section 6 indicates that in practice the loss of transparency is not an issue in
serverless applications due to the common serverless design practice where every function only
accesses values that are related to a specific small task and are therefore likely to have compatible
security labels.

Covert channels In this work we do not address covert timing channels [Biswas et al. 2017]. A
variety of techniques have been proposed for addressing timing channels [Kashyap et al. 2011;
Stefan et al. 2012], and incorporating these ideas in Trapeze remains a topic for future work. We
do point out that static assignment of security labels to functions complicates timing attacks on
Trapeze: since functions cannot observe secret values, such values can not affect their execution
time.

At the same time, a faceted store may expose a new timing channel: while a function only
observes values that belong to one facet, the presence of multiple facets may affect the timing of
data store accesses. However, this channel is hard to exploit in practice: as discussed above, the
creation of multiple facets is an exceptional situation in Trapeze, which instantly gets escalated

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:9

to the administrator, who is expected to disable parts of the system under attack or even halt the
entire system.

4 FORMAL SEMANTICS

In this section, we formalize our IFC semantics for serverless systems with an underlying persistent
key-value store. Since computations at different security labels might write to the same key, the
key-value store maps each key to a set of values (facets), each with a different label, and we order
this set into a sequence according to the temporal order of the writes. The initial store oy maps
each key k to the empty sequence: oy = Ak.c.

A state 3 € State of the system consists of a key-value store o € Store, plus a multiset of currently
executing serverless function activations called processes (see Figure 4). Each process p = (t,1)
consists of a thread t plus its associated security label [€ Label.

Observable events e € Event of the system include the input event start p, which starts a new
process p,” and the output event output ch v, which sends the value v on output channel ch.

The state transition relation 3 — 3’ describes how the system executes. The first rule [s-START]
handles an incoming event start p simply by adding p to the multiset of processes. The next
five transition rules all involve executing a particular process (¢,/) until its next I/O operation
op € Operation. For maximal generality, we do not formalize the computation language, but instead
assume that the function run : Thread — Operation executes the thread t and returns the next I/O
operation, which includes a continuation for the rest of the thread (analogous to the coinductive
definitions used by Bohannon et al. [2009]).

We describe each operation and its corresponding transition rule in turn:

o [s-sEND] for send ch v t’: This rule checks that the process is permitted to output on channel ch
(here, label : OutputChannel — Label returns the security label of each channel). The process
becomes stuck if this check fails. Otherwise, it generates the output event e = output ch v
and the new process state (¢’, [) using the continuation #’ returned from run.

[s-REaD] for read k f: This rule reads the labeled value sequence o (k) from the store; uses
the projection operation o(k)]; defined in Figure 5 to remove all values not visible to the
current label; and passes the last entry in this list (i.e. the most recent visible write) to the
read continuation f.

Note that o(k)]; may be the empty sequence e, either because key k was never written, or
because no such writes are visible to the current process; in this case, last(¢e) returns L, which
is passed to f.

This rule (and the following four below) generates a dummy observable event nop, since it
does not have any externally visible behavior.

[s-wriTE] for write k v t’: In a conventional data store, a new write would overwrite the
previous value at that key. In contrast, our faceted store semantics must ensure that a low-label
process unable to see the new write will still read an older write. Hence we represent o (k) as
a sequence of labeled values. At a new write (v, [) of value v at label [, we can garbage-collect
or remove all older writes (v,1”) in this sequence o(k) that are no longer visible, namely
those where [C I’, since any process that could read (v’,1”) can also read the more recent
write (v, [). The following function performs this garbage collection, and then appends the
new labeled value:

% Serverless systems spawn a new function/process p to handle each incoming event. Here, we assume that each incoming
event contains that new process, to simplify the formal development.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:10 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Serverless execution state

I € Label
v € Value
S € LabeledValueSeq = (Value x Label)*
k € Key
o € Store = Key — LabeledValueSeq
t € Thread
p € Process w= (t,1])
ps € Processes = multisets of processes
> € State = (o,ps)

External events and I/O operations

e € Event start p
output ch v
nop

ch € OutputChannel
es € Events
op € Operation

Event*

read k f

write k v t

sendchot

fork t t

raiseLabel [t

stop

(Value x Label), — Thread

f € ReadContinuation

State transition relation

(0, ps) U (opsw) [s-START]
(0, ps W {(t,D}) 57 (6, ps W {(t, D)}) run(t) = send chv t' [s-SEND]

1 C label(ch)
(o, psw{(t,D)}) o8 (o,ps WA{(f(last(a(k)!|1)),D}) | run(t) = read k f [s-READ]

nop

(o,psw{(t,))}) — (olk:=write(c(k),v,l)], run(t) = write k v t’ [s-WRITE]
ps WA, D})

(o,psw{(t,))}) i (o,psw{(t',D}w{t”,D}) run(t) = fork t’ ¢” [s-FORK]

(o,psw{(t,D}) BN (o, psw{(t',1")}) run(t) = raiseLabel I’ t’ [S-RAISE-LABEL]
rcr

(o,ps) L (o,ps) [s-sk1p]

es
3 —" ¥ | Multiple-step state transition relation
€

—* 3 [REFL]
etes
—* 3 > -3 [TRANS]

es
2/ * 2//

Fig. 4. Formal semantics.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:11

Sli=S\{@,I"NesS|I'El}
ps|; = multiset{(¢,1’) e ps | I’ T I}
ol =Ak.o(k)ls
e At,l’. e = start (t,!’)and I’ C [
eli=1e dch,v. e = output ch v and label(ch) C |

nop otherwise.

(61 cee en)il =el;...enls
(o,ps)li=(ali,psli)

Fig. 5. Definition of projection function.

write : LabeledValueSeq X Value X Label —
LabeledValueSeq
write(S,v,1) = (S\ {(@",I")eS|ICI'}) + (v,])
The symbol + denotes sequence concatenation.
e [p-FORK] for fork ¢’ t"’: This rule forks a new thread ¢”/, where ¢’ is the continuation of the
original thread. Both threads inherit the security label of the original process.
o [s-RAISE-LABEL] for raiseLabel I’ t": This rule simply raises the label of the current process
to a higher label I/, which, for example, permits the process to read more secret data.
e Finally, [s-sk1p] allows a state to perform stuttering nop steps at any time, as a technical
device to facilitate the non-interference proof below.

Note that no rule is needed for the stop operation. Instead we just leave the stopped processes in
the process multiset for simplicity.

5 TERMINATION SENSITIVE NON-INTERFERENCE

We use the notation e|; on various domains to remove any information that is not visible to an
observer at level [(see Figure 5). For example: S|; contains only values with labels visible to I, and
psl; contains only processes with labels visible to [. An event e is visible to [if it starts a process
visible to /, or if it outputs on a channel visible to [; otherwise, we say e|; = nop. We write o; ~; o,
to denote that items appear equivalent to an observer at level [, i.e., 1 |; = ®3];.

Our proof is based on the projection lemma below, which relates the execution of the full system
> and the portion X|; visible at level I. Every step of X has a corresponding step in X|; (part 1) and
vice versa (part 2).

Lemma (Projection).

Part 1. If
(5]
T — 3]
then for some X/, and e,
(]
>l — Zé 21 Xy Zé e{ X eé
Part 2. If
€1
le —_—> 21
then for some X/, and e,
) i % 21 = 2 €1~ €

Proof. See appendix.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:12 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Based on this lemma, our proof of single-step and multi-step termination sensitive non-
interference is straightforward.®
Theorem (Single step Termination Sensitive Non-Interference).

If
e
S Mm% 55
then for some X/ and e,
S 53, B3 eame
Proof. By Projection (Part 1):
e: ’ ’ ’
il — 3 DT e1 X e3

for some X7 and es. The [-equivalence assumption implies that 3, |; =, %. By Projection (Part 2):
S5 3, B3, esxe

for some X, and e;. Therefore, by transitivity of ~;, we have %] ~; X/ and e; =, e,, as required.

Corollary (Termination Sensitive Non-Interference).
If

es;
~ * ’
21 x| 22 21 —> 21
then for some X/, and e,
€esy

Ty —" 2 DT es; ~j es,.

es
Proof. By induction on the derivation of 3 e .

Our Coq formalization of these semantics and proofs is available at https://github.com/kalevalp/
trapeze/blob/master/coq-proof/proof.v.

Our TSNI result states that the set of observable outputs of the system under all possible schedules
does not depend on inputs that are not visible to the observer. This result does not prevent a
malicious scheduler from leaking secrets by prioritizing certain schedules, e.g., by scheduling
low-security processes based on high-security secrets. However, as mentioned earlier, we assume
that the scheduler is not adversarial in this manner. Prior work [Stefan et al. 2012] has addressed
this problem by assuming a round-robin scheduler, but this assumption is not realistic for serverless
computing.

6 IMPLEMENTATION AND EVALUATION
6.1 Implementation

In order to evaluate our proposed security architecture and IFC model, we developed an open-source
prototype implementation of Trapeze [Alpernas et al. 2017]. The implementation is portable and
currently runs on the two most popular serverless platforms—AWS Lambda [Amazon 2017a] and
OpenWhisk [Apache Software Foundation 2017]. It consists of three components: the sandbox, the
security shim, and the authentication service.

Sandbox The Trapeze sandbox encapsulates application code, redirecting all its inputs and outputs
through the security shim (Figure 1). The exact sandboxing technology depends on the programming
language used. We currently support serverless functions written in JavaScript for the node.js
runtime, which is one of the most common types of serverless functions on both AWS and IBM
Cloud Functions, IBM’s public OpenWhisk service.

3 When applied to a reactive system as we have here, this notion of termination-sensitive non-interference is often known
as progress-sensitive non-interference.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:13

We encapsulate node.js functions using the VM2 sandbox [VM2 2017]. VM2 relies on proxy
objects [Van Cutsem and Miller 2013] to restrict untrusted JavaScript code to only interact with
the world outside of the sandbox via whitelisted interfaces. Specifically, we restrict the serverless
function inside the sandbox to only be able to invoke methods of the security shim. By design, the
VM2 sandbox cannot be bypassed by buggy or malicious sandboxed code.

The use of a language-based sandbox technology means that both the sandbox and the JavaScript
runtime are part of the Trapeze TCB. For example, bugs in low-level C/C++ bindings used by the
JavaScript runtime [Brown et al. 2017] can in principle be exploited to break out of the sandbox.
Brown et al. [2017] propose an efficient static analysis to detect such bugs.

Restricting access to local state Our IFC model assumes that a function starts from a clean
state and can only observe secrets passed to it through arguments or read from the shared store.
In practice, serverless platforms expose other types of state, access to which must be restricted
to maintain the TSNI guarantee. In particular, serverless functions typically run in a container
environment. For efficiency, the container and the node.js process that executes the function are
reused across multiple invocations. This allows functions to cache local state inside the container.
There are two types of such persistent container-local state: (1) global variables inside the node.js
process, (2) external state stored in the local file system and processes.

Our implementation restricts the use of both types of local state, enforcing IFC model invariants.
First, our sandbox re-initializes the encapsulated node.js process to clean state on each serverless
invocation, thus preventing state sharing through global variables. Note that this behavior is
compatible with the standard serverless semantics, which does not guarantee that node.js state is
preserved across invocations.

Second, our sandbox configuration by default blocks accesses to all OS resources, including
files and processes. To support existing serverless applications that use these resources, we would
like to re-enable access to selected resources in a secure way. To this end, we implement adapters
that enforce IFC semantics for specific resource types. We have so far implemented an adapter for
securely running external processes (described below). Support for other resources can be added in
the future. For example, we envisage a file system adapter that enforces faceted semantics for local
file accesses.

Security shim The security shim monitors all inputs and outputs of a function and enforces IFC
rules. The shim consists of multiple adapter modules, one for each supported input and output
interface. There are four groups of adapters: (1) data store adapters, (2) function call adapters, (3)
external channel adapters, (4) local state adapters.

A data store adapter implements faceted store semantics on top of a conventional cloud data
store. Trapeze currently supports a single type of data store—a faceted key-value store implemented
on top of a relational database. The key-value store implements a standard dictionary with the
following operations: put(key, value), get(key), del(key), and keys() (returns all keys in
the store). The store is backed by a relational database table with 3 columns, for the key, value,
and label. The table contains an entry for each facet of each value in the store. We used MySQL
server available in AWS through Amazon Relational Database Service. The security shim passes an
additional parameter to every operation—the security label. The get operation performs an SQL
query that returns all entries that match the given key, and whose label is less than or equal to the
given label. The del operation deletes all facets with labels greater than or equal to the given label.
The put operation deletes the same elements a del does, and then inserts the given key-value pair,
with the given label. In addition to the faceted version, we also provide a conventional insecure
key-value store implementation as a baseline for performance evaluation.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:14 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Function call adapters support different ways to invoke serverless functions, making sure that
the callee inherits the caller’s label, as required by our IFC model. We support two invocation mech-
anisms: AWS Step Functions, which run a workflow with multiple serverless functions, controlled
by a finite automaton, and Amazon Kinesis, which supports asynchronous communication via
real-time event streams.

External channel adapters enable secure communication across the cloud boundary. The sup-
ported types of channels are (1) user-initiated HTTP sessions, (2) email communication via the
Nodemailer module [nodemailer 2017], and (3) connections to external S3 buckets (used to upload
large data objects that do not fit in HTTP requests). HTTP sessions obtain their security labels
from the authentication service (see below). The Nodemailer adapter uses the user database (see
below) to map an email address to a user security label. The S3 adapter inherits the label of the
user who provides login credentials for the S3 bucket.

Local state adapters mediate access to local OS resources such as files and processes, as discussed
above. For instance, many serverless functions invoke external programs. We would like to allow
such functionality in Trapeze, while enforcing that the external program cannot leak secrets to
the outside world. To this end, we implemented an adapter that runs arbitrary programs in a
ptrace-based sandbox [Fouladi et al. 2017a]. The sandbox restricts the program’s I/O activity to a
temporary local directory, which gets purged on every serverless function invocation.

Authentication service The authentication service is responsible for associating a correct security
label with every external HTTP session. It is implemented on top of a user database that stores
credentials, email addresses, and security labels of all users in the system.

The entire Trapeze framework consists of 1174 lines of JavaScript code, including 649 lines in
the the AWS and OpenWhisk shim modules, 484 lines in the key-value store, and 41 lines in the
authentication service.

6.2 Declassifiers

Many real-world applications allow limited flow of information down the security lattice. For
example, a credit reporting agency may make the distribution of consumers across credit score
bands publicly available. This statistics is computed based on the credit history of all consumers
and must therefore be labeled with the least upper bound of all their labels. However, since the
aggregate statistics exposes negligible amount of information about individual consumers, it can
be safely declassified.

Similar to previous IFC models, Trapeze introduces declassifiers to support such scenarios. A
declassifier is a triple (h, [, D), where h and [are security labels, such that] C h, and D is a serverless
function. A declassifier is invoked just like any other serverless function; however its security label
is computed using special rules. Let x be the label of the calling function. Then the declassifier is
assigned label x”, such that:

x =
x, otherwise

) {l, iflCxCh

By design, declassifiers violate the non-interference property; therefore the formal model and
proofs in Section 4 are given for the pure IFC model without declassifiers.

6.3 Evaluation Questions
Our evaluation aims to answer the following questions:

(1) Security: Can Trapeze enforce information security in real-world serverless applications? In
particular, can confidentiality requirements of such applications be captured in a security

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:15

< P .
Email \/
Photo Photographer
Request \ Registry
l i

Register

LY Photographer API
_/ ny @/ B
Receive Get Photos Photos Retail Event
Photo API Event

Step Function Stream
Processor

(AWS Kinesis) &7
Create
Product

API

. ::..
@ @ @&

Photo Product Catalog Credit Card Credit Card
Storage Release APl &, Builder Authorization Registry
S ~
/ N s
~
A S\ L
1L
AN S <
wy
Catalog Product Purchase Product Purchase
API Catalog Step Function API

Fig. 6. The architecture of the Hello, Retail! project. Circles labeled A represent the main functions of
this application. Functions whose names end with ‘API’ can be directly invoked via client HTTP requests.
Arrows show interactions between different components. Red dashed arrows indicate interactions that carry
declassified data.

policy consisting of a security lattice and trusted declassifiers? Can Trapeze enforce the
policy in the presence of buggy or malicious code?

(2) Transparency: Can Trapeze secure existing serverless applications with minimal modifica-
tions?

(3) Performance: Can Trapeze achieve the first two goals with low performance overhead?

6.4 Case Studies

To answer the above questions, we carried out three case studies where we used Trapeze to add a
security layer to existing serverless applications. We outline each of the case studies below.

Case study 1: Hello, Retail! Hello, Retail! is a project from the serverless team at Nordstrom.
The goal was to produce a purely serverless, back-end for an e-commerce web site. It has since
been open-sourced [Nordstrom Technology 2017] and won the architecture competition award at
serverlessConf Austin’17 [McKim, John 2017].

We made several changes to Hello, Retail! before applying Trapeze to it. First, we replaced
DynamoDB and S3 databases in Hello, Retail! with with calls to Trapeze’s key-value store. Second,
we replaced calls to the Twilio SMS messaging service, which is currently not supported by Trapeze,
with e-mail communication. Third, we extended the Hello, Retail! project with a product purchase
subsystem, which manages online orders and credit card payments. The resulting system consists
of 21 serverless functions. Figure 6 shows the high-level architecture of the system.

The system serves several types of users: (1) the store owner, who manages the online catalog
and processes orders, (2) photographers, who upload product images to the catalog, (3) customers,
who navigate the catalog and place orders, and (4) the VISA credit card authority, which authorizes
card payments on behalf of customers. The security lattice (Figure 7) consists of labels, matching
these user categories. Solid lines in the diagram show the partial order of security labels; dashed
arrows show declassifiers, with a declassifier (h, [, D) represented by an arrow from label k to I.
Table 1 summarizes the security labels in this case study.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:16 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Table 1. Security classes in the Hello, Retail! case study.

| label | description |

owner Sensitive information managed by the store owner, including product catalog
and photographers’ email addresses. Items in the catalog are only visible to
the owner until they are released to the public via the release declassifier.

client; Labels online purchases of a specific customer. This information is visible to
the customer and the store owner (since client; C owner)

clientCC; Customer credit card information that can only be released to a credit card
authority

VISA Labels the external communication channel to the VISA credit card authority

photographer; | Product photos uploaded by a photographer

The following scenario illustrates the flow]/)
of sensitive information through the Hello, Re- owner "‘\._‘ .
tail! system. Every step in the scenario is anno- photo request = }aurhor'ze“
tated with security label(s) of data involved in 'e'ease“i_‘ |photographeru (e
this step.
1. [owner] The owner creates a new product)J_

description in the catalog.

2. [photographer;] The owner sends an emailto Fig. 7. Security lattice and declassifiers in the Hello,
one of the photographers requesting a picture Retail! case study.

of the product. The request includes informa-

tion from the product description, declassified with the (owner, photographer;, photo_request())
declassifier, which implements a trusted user interface that request owner’s confirmation of the
declassification.

3. [photographer;] The photographer uploads a product image to the catalog.

4. [L] Once the owner is ready to make the product publicly available in the online catalog, she
declassifies it using the (owner, L, release()) declassifier.

5. [client;/clientCC;] A client orders a product from the catalog. Order information, labeled client;
is visible to the the client as well as the owner, since client; C owner. Client’s credit card details
are labeled clientCCj, and are hidden from the owner (clientCC; [Z owner).

6. [VISA] Before the order is finalized, credit card information is sent to VISA for payment autho-
rization through an external channel labeled VISA.

7. [client;] The response received through this channel consists of one bit of information indicating
success or failure, which gets declassified by the (VISA, client;, authorize()) declassifier, making
the outcome of the request visible to the client and the owner.

Case study 2: gg gg [Fouladi et al. 2017a; gg project 2017] is a system for running parallel software
workflows, such as software compilation and video processing, on serverless platforms. In gg, each
unit of work, or thunk, specifies both the executable to run and all its data dependencies. The
workflow is synthesized as a direct acyclic graph (DAG) of thunks, and is recursively executed on a
serverless platform by gg’s execution engine. gg identifies each dependency in a content-addressed
way, using a key-value store as the storage backend. gg consists of a single serverless function,
which internally runs arbitrary user-provided executables. Each invocation of the function executes
exactly one thunk by fetching the dependencies from the object store, executing the thunk, and
storing the output back into the object store.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:17

We use a parallel build framework implemented on top of gg [Fouladi et al. 2017a] as a concrete
use case. The framework extracts a workflow DAG, where every thunk corresponds to an invocation
of a build tool (e.g., a compiler or a linker), from the project makefile.

The original gg implementation is single-tenant, with every authen-
ticated user having access to all sources and binaries in the system. We
use Trapeze to introduce a secure multi-tenant mode to gg. In this mode,
tenants only have access to their own source and compiled code. A thunk -
running on behalf of the tenant taints all of its outputs with the tenant’s . open_source()
label. A tenant may release some of their sources or compiled binaries to J_‘:"
the public, making them available to all other tenants. This is reflected in
the security lattice in Figure 8 with mutually incomparable tenant labels
and a (user;, L, open_source()) declassifier.

Prior to adding the multi-tenant mode to gg, we ported parts of it that were written in Python to
JavaScript, as well as modified it to use our key-value store.

[tenant |

Fig. 8. gg security lattice.

Case study 3: Image feature extraction This serverless application gives its users access to
Amazon’s AWS Rekognition image analysis service [Amazon 2017b]. It is based on the ‘Fetch
File and Store in S3’ and ‘Analyse Image from S3” examples from the Serverless Examples collec-
tion [Serverless, Inc 2017].

The application consists of the upload function that takes an image T
URL, fetches the image and stores it in the key-value store, and the
feature extraction function that uses AWS Rekognition to extract
features from the image and send them to the user.

We use Trapeze to add a security layer to this example, enforcing J_

that every user can only access information extracted from images
they own. This policy is expressed in the simple security lattice in
Figure 9.

Fig. 9. Security lattice in case
study 3.

6.5 Security

We employ Trapeze to protect sensitive data in the three case studies. The original implementation
of these applications either offered coarse-grained protection, giving every authenticated user
access to all data in the system, or implemented ad hoc security policies embedded in application
code. For example, the Hello, Retail! system by design only exposes credit card details to the credit
card authority. Such protection relies on checks scattered around the application code and is easy
to get wrong. Besides, it can be bypassed by any exploit that subverts the application logic.

Trapeze captures the security requirements of each of the three case studies in a security policy
consisting of a security lattice and declassifiers, shown in Figures 7, 8, 9. Our policies are simple and
concise, consisting of only several classes of labels and few declassifiers. The policies are decoupled
from the application logic and its software architecture. For instance, adding new functions to the
application, changing its control flow, or even refactoring the database schema, do not affect the
security policy.

Furthermore, Trapeze is immune to malicious or compromised application logic. We simulated
code injection attacks in our case studies by replacing some of the original functions with malicious
functions that attempt to leak secrets to unauthorized users, similar to examples in Figures 2b and 3.
As expected, these simulated attacks failed when running the application with Trapeze.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:18 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Table 2. Size of the case studies in lines of code (LoCs): (1) LoCs comprising the application, (2) lines added
or modified to adapt the application to work with Trapeze, (3) LoCs in trusted declassifiers.

l case study ‘ app code (LoCs) ‘ modif. code (LoCs) ‘ declassifier code (LoCs) ‘
Hello, Retail! 1,300 3 104
gg 8,800 2 94
Feature Extraction 95 0 0

6.6 Transparency

As discussed in Section 3, Trapeze enforces TSNI at the cost of reduced transparency, which may
require the developer to refactor the application to work with Trapeze.

Table 2 measures the loss of transparency in our case studies by reporting the size of changes to
application code in terms of lines of code (LoCs) required to adapt the application to work with
Trapeze. This does not take into account the changes needed to port the application to use our
key-value store as well as other compatibility changes that are not fundamental to the Trapeze
architecture and can be made unnecessary with some additional engineering effort.

None of the case studies required splitting a function into multiple functions. Hello, Retail! re-
quired calling raiseLabel twice, once in order to upgrade the label of the purchase placement
function from client; to clientCC; before saving the customer’s credit card details in the data store,
and once to upgrade the label of the payment authorization function from client; to VISA, in order
to read credit card details from the store and send them to the credit card authority. In addition,
the gg case study required a minor change due to a technicality: the existing code was not fully
compatible with the VM2 sandbox.

These results indicate that in practice the loss of transparency is not an issue in serverless
applications. This is due to the common software design practices in the serverless world, where
each function is assigned a single small task and only accesses the values that are related to this
task and are therefore likely to have compatible security labels.

The last column of the table reports the total size of declassifiers used in each case study. This
number characterizes the amount of trusted application code in each example.

6.7 Performance

We measure the overhead of Trapeze by running case studies 1 and 3 on the AWS Lambda serverless
platform. We run case study 2 on the OpenWhisk platform in the IBM Cloud (formerly, IBM Bluemix),
since AWS Lambda does not support ptrace, which we use to sandbox binary executables in gg
(Section 6.1).

Table 3 summarizes the runtime overhead of Trapeze. Since the overhead may depend on the
exact workload, we constructed several typical workflows for each case study. We test the Hello,
Retail! case study on two workloads: the ‘Build&Browse’ workload, that simulates the construction
and browsing of the product catalog, and the ‘Update&Purchase’ workload, that simulates updates
to the catalog followed by a series of online purchases. We test gg by using it to compile four open
source software packages: mosh, git, vim, and openssh. Finally, we consider two scenarios for the
Image Feature Extraction: the ‘Tmage Upload’ scenario, that uploads a single image to the data
store, and the ‘Feature Extraction’ scenario that performs feature extraction for a stored image.

For each workload, we report the total number of serverless function calls (the #4 column in
Table 3). The ‘function runtime’ section of the table reports the total runtime of all functions in
the scenario with and without protection and the relative slowdown introduced by protection,
averaged across 10 runs. These runtimes do not include additional declassifier calls introduced in

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:19

Table 3. Trapeze performance.

scenario 1 function runtime (ms) A(%)
insecure [Trapeze
Hello, Retail!

Update&Purchase | 435 51,246 98,563 92.33
Build&Browse 955 | 257,799 391,900 52.03
g8
mosh 111 681,173 654,448 -3.92
git 917 | 2,602,500 2,660,721 2.24
vim 234 | 1,242,873 1,338,128 7.66
openssh 654 | 1,626,223 1,649,139 1.41
Image Feature Extraction
Image Upload 1 475 525 10.4

Feature Extraction 1 1,882 2,114 12.3
Table 4. Storage overhead of Trapeze.

case study [insecure (KB) [Trapeze (KB) [A(%) ‘

Hello, Retail! 2,704 3,200 18.34

gg 15,054,000 15,118,496 0.43

Feature Extraction 8,256 8,416 1.94

the protected execution. Accounting for declassifiers increased the total runtime by another 10%
in the Build&Browse workload, while not making any measurable impact on other workloads. In
our initial experiments we also measured the total time to execute each workload; however we
found that, due to the non-deterministic nature and varying resource availability in the serverless
environment, these times varied wildly across different runs and did not provide any insights into
the performance of Trapeze.

For most workloads, Trapeze adds a modest overhead of up to 12.3% to function runtime. The
negative overhead in the gg mosh workload is due to the noisy IBM Cloud environment, where
the runtime of a function varies dramatically across different invocations based on the load on the
node where the function is scheduled. The overhead is higher in the Hello, Retail! case study, up
to 92.33% in the Update&Purchase scenario. Further benchmarking revealed that the bulk of this
overhead is due to the startup time of the VM2 sandbox, which adds 100ms on average per function
invocation. Since all functions in this example have short runtimes, the startup time becomes a
significant contributor to the total runtime. We measured that two thirds of the startup time is spent
loading libraries used by the application. In Section 6.8 we present an approach that eliminates
most of this overhead.

Finally, we evaluate the storage overhead of our secure key-value store. Table 4 compares database
sizes (in kilobytes) for an insecure and secure versions of the store for each of the three case studies
(we report results for one of the workloads in each case study, as the relative increase in the database
size is independent of the workload). The secure database requires more space, as it stores a security
label with each value. This overhead is low (under 2%) in examples where the database stores large
objects, e.g., images or source files. It is more significant (18.34%) in the Hello, Retail! case study
where individual values stored in the database are small.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:20 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Table 5. Overhead results of the fork optimized Trapeze.

average function runtime (ms) A(%)
insecure [Trapeze [fork optimized Trapeze | Trapeze [fork-opt
Microbenchmark 1 | 126.21ms | 274.29ms 154.26ms 117.31% 22.23%
Microbenchmark 2 | 226.82ms | 354.85ms 250.31ms 56.45% 10.36%

6.8 Recovering the Warm Start Optimization in Trapeze

A bulk of the overhead observed in the Hello, Retail! case study is due to the loss of the warm
start optimization with Trapeze. Serverless platforms load the execution environment once per
function instance and reuse it across multiple invocations. In case of node.js functions, this entails
pre-loading JavaScript modules required by the function. The resulting closure may be used to
persist global variables within these modules across invocations, thereby bypassing the security
mechanism. As discussed in Section 6.1, we prevent this by discarding the sandbox along with all
global state on function termination. This results in a secure execution, at the cost of running all
module-loading and environment-setup code on every function invocation.

Ideally, we would like to reuse pre-loaded libraries across multiple invocations without exposing
changes to the global state. We achieve this using the following optimization that exploits the POSIX
fork system call. When a function is instantiated inside a container, we pre-load all JavaScript
libraries inside the sandbox and fork the node.js process. We execute the serverless function in the
child process, terminating the process upon function completion. On each subsequent invocation,
the parent process forks a new child. The child inherits a fully initialized environment, but since it
runs in a separate address space, the execution of the function within the child process does not
affect the parent process, ensuring that subsequent invocations of the function are unaffected by
any changes made by previous invocations.

fork calls are substantially faster than module loads. In our experiments, fork calls took at most
1ms. Subsequently, this approach results in a substantial recovery of performance, while retaining
the same security guarantees.

In order to evaluate the performance gains from the fork optimization, we have measured the
running times of two microbenchmarks that simulate the overheads seen in the Hello, Retail! case
study. The microbenchmarks load the same modules and configuration files that are loaded in the
functions of the Hello, Retail! case study, and idle for 125ms and 225ms in Microbenchmark 1 and
Microbenchmark 2 respectively, to simulate computations performed by Hello, Retail! functions. The
fork optimized version of Trapeze showed significantly improved overheads, in one case reducing
the overhead from 56% in the original Trapeze implementation to 10% in the fork optimized version,
and in the other reducing the overhead from 117% to 22%. The results are summarized in Table 5.

Unfortunately, the fork optimization is not immediately applicable to the Hello, Retail! case
study. The Kinesis stream API used in Hello, Retail! does not work correctly when invoked from
a forked process. This is not a fundamental limitation, but it requires support from the Amazon
AWS team to fix. However, based on our microbenchmarks, we are confident that a low-overhead
solution can be implemented based on the foundations provided by Trapeze.

7 RELATED WORK

The modern technique for using security labels to dynamically monitor information flow was
proposed by Denning [1976] as the Lattice Model. That work also defines the concept of implicit flow
of information. Austin et al. [2017] describe three techniques for monitoring such flows, namely

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:21

Failure Oblivious and No Sensitive Upgrade and Permissive Upgrade. Our work exposes a fourth
choice using faceted values specifically to eliminate implicit flows.

Austin and Flanagan [2012] introduce faceted values as a full language-based enforcement
technique: rather than focusing specifically on controlling implicit flows, they combine the faceted
value concept with the concept of multiple executions, which enables more precise enforcement at
the cost of more runtime overhead.

Trapeze enforces a strong form of non-interference, TSNI. Most existing IFC systems support
only termination-insensitive non-interference (TINI). The few previous systems that enforce TSNI
are either too restrictive or too costly for most practical applications. The multilevel security (MLS)
model [Bell and LaPadula 1973] achieves TSNI by statically partitioning all the code and data in the
system into security compartments. This model, designed primarily for military-grade systems, is
too restrictive for most applications and requires complete re-design of existing software. Smith and
Volpano [Smith and Volpano 1998] present a security type system that enforces TSNI by imposing a
harsh restriction that loop conditions may not depend on secret data. Heintze and Riecke [Heintze
and Riecke 1998] propose a secure typed Lambda calculus called SLam. While SLam only enforces
TINI, Sabelfeld and Sands [Sabelfeld and Sands 2001] point out that a version of SLam with lazy
evaluation semantics would be termination-sensitive.

Indeed, Stefan et al. [2012] implemented a Haskell library called LIO, which guarantees TSNI by
requiring programmers to decompose their programs into separate threads with floating labels.
These are analogous to the processes in our formalism. LIO prevents implicit storage channels by
assigning immutable security labels to state shared between processes. In contrast, Trapeze uses
faceted values instead.

Secure multi-execution [Devriese and Piessens 2010] achieves TSNI by running multiple indepen-
dent copies of the program, one for each security class. This technique introduces CPU and memory
overhead proportional to the number of security classes. While acceptable in systems with few
security classes (e.g., Devriese and Piessens [Devriese and Piessens 2010] consider only two classes,
secret and non-secret), this becomes impractical in cloud-scale systems with potentially millions
of mutually untrusting users. Faceted execution has the potential to mitigate this drawback, and
Bielova and Rezk [2016] have proposed a theoretical approach for extending the faceted execution
model to enforce TSNI.

The Asbestos OS [Efstathopoulos et al. 2005] applies dynamic IFC at the granularity of an OS
process, similar to how Trapeze operates at the granularity of a serverless function. Asbestos
associates a static security label with each process; however this label only serves as an upper
bound on the label of data the process can access. Process’s effective label changes dynamically,
which enables the implicit termination channel.

To the best of our knowledge, Trapeze is the first system to apply IFC to serverless applications.
Several researchers advocate the use of IFC in the broader context of secure cloud computing [Bacon
et al. 2014; Pasquier et al. 2016]; however we are not aware of a practical implementation of these
ideas.

8 CONCLUSION

The advent of serverless computing provides the opportunity to rebuild our cloud computing
infrastructure based on a rigorous foundation for information flow security. We present a novel and
promising approach for dynamic IFC in serverless systems. This approach combines (1) a sandbox
and security shim that monitors all I/O operations of each serverless function invocation; (2) static
security labels for each serverless function invocation; and (3) dynamic faceted labeling of data in
the persistent store.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:22 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

This combination of ideas provides the strong security guarantee of TSNI, which is necessary
in serverless settings to avoid high-bandwidth termination channel leaks via multiple concurrent
requests.

Our Trapeze implementation of this approach is lightweight, requiring no new programming
languages, compilers, or virtual machines. The three case studies show that Trapeze can enforce
important IFC properties with low space and time overheads.

We believe Trapeze represents a promising approach for deploying serverless systems with
rigorous security guarantees that help prevent costly information leaks arising from buggy or
mis-configured application code or from code-injection attacks.

A SUMMARY OF AUXILIARY SEMANTIC DETAILS

€ is the empty sequence and + is concatenation.

label : OutputChannel — Label

run : Thread — Operation

write : LabeledValueSeq X Value X Label —
LabeledValueSeq

write(S,v,1) = (S\{(@,I") e S|ICI'}) + (v,])

i~ ®; means o1); = &3],

B PROOF DETAILS

Lemma (Invisibility).

If
rel
(a.ps W{(t,1)}) — (0", ps W ps’)

then

o'li=als

el; = nop
ps'li={}

Proof. Omitted.

Lemma (Projection 1).
1 1tz 53,
then 3%7.3e,. X, =, Y} and X} ~; X} and e] % e;.
Proof.
Let (o, ps) = .
Let (oy,ps;) = X1
Proceed by cases (ie inversion) on (1).
Case: [s-START]. Let ¢, 1’ be such that:
ey = start (¢,1’); and
o/ = o0;and
ps; = ps+(t,1).
Proceed by cases.
Case: where I’ C L.
Pick X/ = (als, psli + (t,1)).
Pick e; = start (t,1).
QED by [s-START].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:23

Case: where I’ IZ [.
Pick X/ = %|; and pick e; = €.
QED by [s-sk1p].
Case: [s-skiP]. e; = € and] = X.

Pick) = X|; and pick e} = €.

QED by [s-ski1p].
Last case: any other rule. Let t,I’, ps, psz be such that:
ps = ps; W{(t,1")}; and
ps; = ps1 W psy; and
Proceed by cases.

Case: where I’ IZ L.

o/li=ol;ande;]; = eand ps;|; = {} by Invisibility.

QED by [s-ski1p].
Last case: where I’ C [.

Resume case analysis on (1).
Case: [s-SEND]. Let ch, v, t’ be such that:

e; = output ch v; and

o/ = o;and

ps2 = {(t",l')}; and

run(t) = send ch v t’; and

I’ C label(ch).

Pick 2 = (ol psili W {(",1)}).

Pick e; = output ch v.

QED by [s-sTEP].
Remaining cases omitted.

Lemma (Projection 2).
1) ISl -3,

then 33,.3e,. = 2, Yy and X ~; Xy and e; 7 e.
Proof.

Let (o,ps) = 3.

Let (crl,psl) =2

Proceed by cases (ie inversion) on (1).

Case: [s-START]. Let £, [’ be such that:

e; = (t,1'); and

o1 =ol;;and

ps; =psl; + (t,1’); and

Pick 3y = (o,ps + (t,1')) and e, = e;.

QED by [s-START].

Case: [S-SKIP].

Pick >, =Y and e; = €.
QED by [s-skip].

Case: [s-sEND]. Let t,1’, ps3, ch, v, t’ be such that:

) psli=pss 8 {(t,1)}; and
ps1 = pss W{(t',I')}; and

e; = output ch v; and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:24 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

o1 = ol and
run(t) = send ch v t’; and
I’ C label(ch).

rei by (2).

pss = (ps — (LD by (2).

Pick 23 = (o,ps — (£,1") + (', 1)).

Pick ey = e;.

QED by [s-sEND].

Remaining cases omitted.

ACKNOWLEDGMENTS

We thank Aurojit Panda, David Tennenhouse, and the anonymous referees for insightful comments
that improved this paper. This publication is part of projects that have received funding from
the European Research Council (ERC) under the European Union’s Seventh Framework Program
(FP7/2007-2013) / ERC grant agreement no. [321174-VSSC]. The research was supported in part by
Len Blavatnik and the Blavatnik Family foundation, the Blavatnik Interdisciplinary Cyber Research
Center at the Tel Aviv University, and the Pazy Foundation. This material is based upon work
supported by the United States-Israel Binational Science Foundation (BSF) grants No. 2016260. This
research was supported, in part, by NSF Grants 1337278 and 1421016. SF and KW were supported
by NSF grant CNS-1528197, DARPA grant HR0011-15-2-0047, and by VMware, Google, Huawei,
Dropbox, and Facebook.

REFERENCES

Airbnb. 2017. StreamAlert: A serverless framework for real-time data analysis and alerting. http://airbnb.io/projects/
streamalert/.

Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz, and Keith Winstein. 2017.
Trapeze source code repository. https://github.com/kalevalp/trapeze.

Amazon. 2017a. AWS Lambda. https://aws.amazon.com/lambda/.

Amazon. 2017b. AWS Rekognition. https://aws.amazon.com/rekognition/.

Apache Software Foundation. [n. d.]. Apache Hadoop. https://hadoop.apache.org/.

Apache Software Foundation. 2017. OpenWhisk. https://openwhisk.apache.org/.

Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. 2008. Termination-Insensitive Noninterference Leaks
More Than Just a Bit. In Proc. of ESORICS 2008. Malaga, Spain, 333-348.

Thomas H. Austin and Cormac Flanagan. 2009. Efficient Purely-dynamic Information Flow Analysis. In Proc. of PLAS 2009.
113-124.

Thomas H. Austin and Cormac Flanagan. 2010. Permissive Dynamic Information Flow Analysis. In Proc. of PLAS 2010. 1-12.

Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic Information Flow. In Proc. of POPL 2012.
165-178.

Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. 2017. Multiple Facets for Dynamic Information Flow with
Exceptions. ACM Trans. Program. Lang. Syst. 39, 3, Article 10 (May 2017), 56 pages. https://doi.org/10.1145/3024086
Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. 2013. Faceted Execution of Policy-agnostic

Programs. In Proc. of PLAS. Seattle, Washington, USA, 15-26.

Jean Bacon, David Eyers, Thomas F.].-M. Pasquier, Jatinder Singh, loannis Papagiannis, and Peter Pietzuch. 2014. Information
Flow Control for Secure Cloud Computing. IEEE Transactions on Network and Service Management 11, 1 (Jan. 2014),
76-89.

Andrew Baird, Michael Connor, and Patrick Brandt. 2016. Coca-Cola: Running Serverless Applications with Enterprise
Requirements. https://aws.amazon.com/serverless/videos/video-lambda-coca-cola/.

D. Elliott Bell and Leonard J. LaPadula. 1973. Secure Computer Systems: Mathematical Foundations. Technical Report 2547.
MITRE.

Nataliia Bielova and Tamara Rezk. 2016. Spot the difference: Secure multi-execution and multiple facets. In European
Symposium on Research in Computer Security. Springer, 501-519.

Arnab Kumar Biswas, Dipak Ghosal, and Shishir Nagaraja. 2017. A Survey of Timing Channels and Countermeasures. ACM
Comput. Surv. 50, 1 (March 2017), 6:1-6:39.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

Secure Serverless Computing using Dynamic Information Flow Control 118:25

Aaron Bohannon, Benjamin C Pierce, Vilhelm Sjéberg, Stephanie Weirich, and Steve Zdancewic. 2009. Reactive noninterfer-
ence. In Proceedings of the 16th ACM conference on Computer and communications security. ACM, 79-90.

Mark Boyd. 2017. iRobot Confronts the Challenges of Running Serverless at Scale. https://thenewstack.io/
irobot-confronts-challenges-running-serverless-scale/.

Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson Engler, Ranjit Jhala, and Deian Stefan. 2017. Finding and Preventing
Bugs in JavaScript Bindings. In Proc. of S&P 2017. 559-578.

Kuldeep Chowhan. 2016. Serverless Computing Patterns at Expedia. https://www.slideshare.net/AmazonWebServices/
aws-reinvent-2016-serverless-computing-patterns-at-expedia-svr306.

CNET Magazine. 2011. The PlayStation Network breach (FAQ). https://www.cnet.com/news/
the-playstation-network-breach-faq/.

Computerworld. 2009. SQL injection attacks led to Heartland, Hannaford breaches. https://www.computerworld.com/
article/2527185/security0/sql-injection-attacks-led-to-heartland--hannaford-breaches.html.

Computerworld. 2014. Two-factor authentication oversight led to JPMorgan breach. https://www.computerworld.com/
article/2862578/twofactor-authentication-oversight-led-to-jpmorgan-breach-investigators-reportedly-found.html.

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. 2012. FlowFox: a web browser with flexible
and precise information flow control. In Proc. of CCS 2012. 748-759.

Dorothy E Denning. 1976. A lattice model of secure information flow. Comm, of the ACM 19, 5 (1976), 236—243.

Dorothy E. Denning and Peter J. Denning. 1977. Certification of Programs for Secure Information Flow. Commun. ACM 20,
7 (July 1977), 504-513.

Dominique Devriese and Frank Piessens. 2010. Noninterference Through Secure Multi-execution. In Proc. IEEE SSP 2010.
109-124.

Digital Trends. 2016. The latest data breach involves the voting records of 93.4 million Mexican citizens. https://www.
digitaltrends.com/computing/mexico-voting-breach/.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler, David Maziéres, Frans
Kaashoek, and Robert Morris. 2005. Labels and event processes in the Asbestos operating system. In Proc. of SOSP 2005.

Ken Ellis. 2017. How Reuters Replaced WebSockets with Amazon Cognito and SQS. https://serverless.com/blog/
how-reuters-replaced-websockets-with-amazon-cognito-and-sqs/.

Marius Eriksen. 2013. Your server as a function. In In Proc. of PLOS 2013.

Fn Project. 2017. https://fnproject.io/.

Forbes. 2014. eBay Suffers Massive Security Breach, All Users Must Change Their Passwords. https://www.forbes.
com/sites/gordonkelly/2014/05/21/ebay-suffers-massive-security-breach-all-users-must-their-change-passwords/
#793467c57492.

Forbes. 2017. How Hackers Broke Equifax: Exploiting A Patchable Vulnerability. https://www.forbes.com/sites/
thomasbrewster/2017/09/14/equifax-hack-the-result-of-patched-vulnerability/#20abe9015cda.

Sadjad Fouladi, Dan Iter, Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2017a. A Thunk to
Remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (Under review). http://stanford.edu/
~sadjad/gg-paper.pdf.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubramaniam, William Zeng, Rahul Bhalerao,
Anirudh Sivaraman, George Porter, and Keith Winstein. 2017b. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In Proc. of NSDI 2017. Boston, MA, 363-376.

gg project. 2017. gg source code repository. https://github.com/stanfordsnr/gg.

Google. 2017. Google Cloud Functions. https://cloud.google.com/functions/.

Nevin Heintze and Jon G. Riecke. 1998. The SLam Calculus: Programming with Secrecy and Integrity. In Proc. of POPL 1998.
San Diego, California, USA, 365-377.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016. Ryoan: A Distributed Sandbox for
Untrusted Computation on Secret Data. In Proc. of OSDI 2016. Savannah, GA, USA, 533-549.

IBM. 2017. IBM Cloud Functions. https://console.bluemix.net/openwhisk/.

Intel Corporation. 2014. Intel Software Guard Extensions Programming Reference.

Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Occupy the Cloud: Distributed Computing for
the 99%. CoRR abs/1702.04024 (2017). http://arxiv.org/abs/1702.04024

Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless Network Functions: Breaking the Tight Coupling
of State and Processing. In Proc. of NSDI 2017. Boston, MA, 97-112.

Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. 2011. Timing-and termination-sensitive secure information flow:
Exploring a new approach. In 2011 IEEE Symposium on Security and Privacy. IEEE, 413-428.

McKim, John. 2017. Announcing the Winners of the Inaugural ServerlessConf Architecture Competition. https://read.
acloud.guru/announcing-the-winners-of-the-inaugural-serverlessconf-architecture-competition- 1dce2db6da3.

Microsoft. 2017. Azure Functions. https://azure.microsoft.com/services/functions/.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

118:26 K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, and K. Winstein

Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control. In Proc. of POPL 1999. 228-241.

Andrew C Myers and Barbara Liskov. 2000. Protecting privacy using the decentralized label model. TOSEM 9, 4 (2000),
410-442.

National Vulnerability Database. 2017. CVE-2017-5638. https://nvd.nist.gov/vuln/detail/ CVE-2017-5638.

nodemailer 2017. nodemailer. https://github.com/nodemailer/nodemailer.

Nordstrom Technology. 2017. Hello, Retail! https://github.com/Nordstrom/hello-retail.

Thomas Pasquier, Jean Bacon, Jatinder Singh, and David Eyers. 2016. Data-Centric Access Control for Cloud Computing. In
Proc. of SACMAT 2016. Shanghai, China, 81-88.

PCWorld. 2010. Microsoft Cloud Data Breach Heralds Things to Come. https://www.pcworld.com/article/214775/microsoft_
cloud_data_breach_sign_of future.html.

Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow security. IEEE Journal on selected areas in
communications 21, 1 (2003), 5-19.

Andrei Sabelfeld and David Sands. 2001. A Per Model of Secure Information Flow in Sequential Programs. Higher Order
Symbol. Comput. 14, 1 (March 2001), 59-91.

Peter Sbarski. 2017. Serverless Architectures on AWS: With examples using AWS Lambda. Manning Publications, Shelter
Island, NY.

Serverless, Inc. 2017. Serverless Examples. https://github.com/serverless/examples.

Geoffrey Smith and Dennis Volpano. 1998. Secure Information Flow in a Multi-threaded Imperative Language. In Proc. of
POPL 1998. San Diego, California, USA, 355-364.

Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C Mitchell, and David Mazieres. 2012. Addressing covert
termination and timing channels in concurrent information flow systems. In ACM SIGPLAN Notices, Vol. 47. 201-214.

Deian Stefan, Alejandro Russo, John C. Mitchell, and David Maziéeres. 2011. Flexible Dynamic Information Flow Control in
Haskell. In Proc. of Haskell 2011. 95-106.

TechRepublic. 2017. Massive Amazon S3 leaks highlight user blind spots in enterprise race to the cloud. https://www.
techrepublic.com/article/massive-amazon-s3-breaches-highlight-blind-spots-in-enterprise-race-to-the-cloud/.

The Register. 2011. RSA explains how attackers breached its systems. https://www.theregister.co.uk/2011/04/04/rsa_hack _
howdunnit/.

Tom Van Cutsem and Mark S. Miller. 2013. Trustworthy Proxies: Virtualizing Objects with Invariants. In Proc. of ECOOP
2013. Montpellier, France, 154-178.

VM2 2017. VM2. https://github.com/patriksimek/vm2.

Wikipedia. 2017a. Anthem medical data breach. https://en.wikipedia.org/wiki/Anthem_medical_data_breach.

Wikipedia. 2017b. Sony Pictures hack. https://en.wikipedia.org/wiki/Sony_Pictures_hack.

Wikipedia. 2017c. Yahoo! data breaches. https://en.wikipedia.org/wiki/Yahoo!_data_breaches.

Wired. 2016. Inside the Cyberattack That Shocked the US Government. https://www.wired.com/2016/10/
inside-cyberattack-shocked-us-government/.

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and Stephen Chong. 2016. Precise,
Dynamic Information Flow for Database-backed Applications. In Proc. of PLDI 2016. Santa Barbara, CA, USA.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proc. of NSDI 2012. San Jose, CA.

Stephan Arthur Zdancewic. 2002. Programming languages for information security. Ph.D. thesis, Cornell University.

ZDNet. 2015. Anatomy of the Target data breach: Missed opportunities and lessons learned. http://www.zdnet.com/article/
anatomy-of-the-target-data-breach-missed-opportunities-and-lessons-learned,/.

ZDNet. 2016. AdultFriendFinder network hack exposes 412 million accounts. http://www.zdnet.com/article/
adultfriendfinder-network-hack-exposes-secrets-of-412-million-users.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 118. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Why a new IFC model for serverless?
	3 Informal design
	3.1 Threat Model and Assumptions
	3.2 Security Lattice
	3.3 Information Flow Rules

	4 Formal semantics
	5 Termination Sensitive Non-Interference
	6 Implementation and evaluation
	6.1 Implementation
	6.2 Declassifiers
	6.3 Evaluation Questions
	6.4 Case Studies
	6.5 Security
	6.6 Transparency
	6.7 Performance
	6.8 Recovering the Warm Start Optimization in Trapeze

	7 Related work
	8 Conclusion
	A Summary of auxiliary semantic details
	B Proof details
	Acknowledgments
	References

