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Abstract— This paper presents a strategy to enable a team
of mobile robots to adaptively sample and track a dynamic
process. We propose a distributed strategy, where robots collect
sparse sensor measurements, create a reduced-order model
(ROM) of a spatio-temporal process, and use this model
to estimate missing measurements of the dynamic process.
The robots then use the inferences to adapt the model and
reconfigure their sensing locations. The key contributions of
this process are two-fold: 1) leveraging the dynamics of the
process of interest to determine where to sample and how
to estimate the process, and 2) maintaining fully distributed
models, sensor measurements, and estimates of the time-varying
process. We illustrate the application of the proposed solution in
simulation and compare it to centralized and global approaches.
We also test our approach with physical marine robots tracking
a process in a water tank.

I. INTRODUCTION

Being able to track and predict information about dynamic
processes deepens our understanding of biological, chemical,
and physical phenomena in the environment. Often, these
dynamic processes exhibit complex, spatio-temporal behav-
iors. Mobile robots are particularly well-suited to track these
process because of their abilities to carry sensors and adapt
their sensing locations. Robots can be used to support a
wide range of activities dependent on tracking and predicting
processes that vary across both space and time, such as
tracking oil spills in water or pollutant concentrations in air
for environmental monitoring, gas leaks for pipeline repair,
or forest fire boundaries for search and rescue. For these pro-
cesses, autonomous mobile robots modeling the environment
and determining where to gather sensor measurements are
cheaper than global tracking systems and more adaptive than
fixed sensors. The process dynamics provide rich information
about its spatial and temporal dependencies. Thus, robots
should leverage their mobility and sensing capabilities to
adequately model and estimate the environment.

However, given that they are inherently complicated,
spatio-temporal processes are often difficult to model in a
meaningful way, and even in scenarios where representations
are available, they are often high-dimensional, which is
computationally burdensome. Additionally, these processes
often occur in dynamic, uncertain environments, so robots
should not rely on centralized techniques to mitigate the
effects of communication constraints and robot failures. The
question then still remains as to how robots can leverage
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the spatio-temporal dynamics of the process to model and
estimate the environment in a distributed way.

Previous works have studied multi-robot coordination
for environmental monitoring, mapping, and modeling. The
works most related to this paper fall under two categories:
providing coverage and maximizing information (or alterna-
tively minimizing entropy) using Gaussian processes (GPs).
In [1], a technique was developed for providing optimal
sensor placement in an environment, where a weighting
function accounting for sensing quality and coverage of the
environment has to be known a priori. This work has been
extended in several ways. In [2], the stochastic uncertainty
of modeling the weighting function is incorporated online
to optimize the deployment of the sensors. In [3], authors
propose a method that does not rely on weighting functions
being known a priori and instead learns them online. Despite
their advantages, coverage control techniques do not take into
account the equations governing the dynamic process and
thus the determined placement of sensors may not capture
the relevant features needed to estimate the field.

GPs are widely used in modeling spatio-temporal pro-
cesses. The framework in [4] models the environment as
GPs, learns confidence measures on the uncertainty of the
model, and utilizes this uncertainty in path planning to
minimize risk. In [5], authors also use GPs to model the
desired quantity of interest for monitoring as part of a
stochastic optimization strategy to minimize regret when
collecting samples. In [6], robots use GPs to create a map
of the environment, partition the space to determine nearby
locations, and selects future sampling locations based on
reducing the entropy in the map. The work presented in
[7] adapts the model in real-time based on observations and
optimizes sensing locations based on the changing model.
However, as with coverage control techniques, GPs neglect
the principle dynamics of the fluid flow. GPs may not capture
important nonlinearities of the process of interest and are
inappropriate for functions with varying smoothness or scale
of variation.

Other approaches, such as [8] and [9] study sensor place-
ments. However, sensor placement method do not leverage
robots” mobility and do not account for their ability to move
locations. In [10] and [11], authors consider the fusion and
control of active sensor networks. In this work, we are more
interested in using the dynamics of the process to inform the
robots’ modeling and estimation.

The contributions of this work are two-fold. First, we
propose a framework that uses the dynamics of the process
to allow robots to compactly model the environment, infer



properties of the environment using sparse sensing data,
and assimilate these inferences to update the model and
determine if they should navigate to new sensing locations.
The framework allows for a non-balanced assignment of
regions to robots, where robots are able to estimate properties
of the environment in regions for which there is no available
sensing data. Second, we exploit the structures of the model
and inference techniques to allow for the process model and
estimated field values to be computed in a fully distributed
fashion. Unlike other works in this domain, we explicitly
use the dominant spatial and temporal characteristics of
the dynamic process in order to allow robots to determine
sensing locations and adapt the model and estimations.

II. PROBLEM STATEMENT

Consider tracking a dynamic process in a continuous
spatial region R € R? or R € R®. R can be discretized into n
spatial points such that at each of the points, a measurement,
such as concentration or temperature, can be obtained and
provides a representation of the spatio-temporal dynamic
process, P. The n spatial points can be grouped into s non-
overlapping regions.

Consider a team of ¢ robots, where each robot is equipped
with a sensor that is capable of sensing across each of the
s sensing regions. The quality and range of the sensors on
the robots are homogeneous. Furthermore, the robots are ca-
pable of localization and can communicate small packets of
information, such as matrices, with their neighbors. To begin,
robots can estimate the dynamic process using either histor-
ical data or some forecast model. Each robot only maintains
a model of the environment for its assigned regions. Each
robot is able to share a compact amount of information about
its model with its neighbors and use aggregated information
about the models to determine the optimal sensing regions
to achieve this estimation. The communication network only
needs to maintain connectivity. Robots can move and create
or break their connections with other robots, so long as the
graph topology remains connected.

Problem Statement: Given a region R, a team of ¢ ho-
mogeneous robots such that ¢ << s, develop an adaptive
sampling and tracking strategy to track a dynamic process
P, where each robot is capable of sensing all the points
within the region it is assigned to.

In our solution to this problem, each robot is assigned its
own sensing region. The ¢ — s regions that are not being
sensed are assigned arbitrarily to robots. Thus, robots do not
need to keep a full model of the environment. Though robots
are taking sparse measurements, they are able to produce
the least-squares error estimation of the dynamic process.
Robots can update their models in a distributed fashion, even
though the process exhibits complex relationships over the
regions. Each robot is able to adapt its existing model based
on new sensing information in its own region and a reduced
representation of the new sensing information from other
robots. All of the robots can reconfigure their locations based
on their updated models from the new sensing data.

II1. METHODOLOGY

The following section will describe the procedures for
a) obtaining a reduced order model, b) selecting sensing
locations for optimal field reconstruction, and c) using new
measurements to obtain estimates of the field, update the
reduced order model and select new sensing locations. We
will begin by describing the method as a fully centralized
procedure and later describe how to implement the procedure
in a distributed fashion.

A. Reduced Order Model using Proper Orthogonal Decom-
position

Fluid flows are infinite dimensional fields that can widely
vary temporally and spatially and exhibit complex behavior.
In order to extract the dominant dynamics of these fields,
techniques for modal analysis are often used to construct a
low-dimensional approximation of flows. We use the proper
orthogonal decomposition (POD) [12], [13] to obtain a
representative reduced order model of the flow field.

For POD analysis, m snapshots of the field are col-
lected, either through experimentation or numerical sim-
ulations, such that at each time ¢t = 1,..,m, x(t) =
[€1(t),...,z,(t)]T, where n is the spatial dimension of
some discretization of the flow field. A covariance matrix
is constructed as

1 1
K=- tz(t)' = —XXT 1
l ; zt)zt) = —XXT, (1)
where X € R™ ™ with its columns as x(t).
The low-dimensional basis is created by solving the sym-
metric eigenvalue problem

K¢i = Xigp, 2

where K has n eigenvalues such that Ay > Ao... > A, >0
and the eigenvectors ¢ are pairwise orthonormal.

The original basis is then truncated into a new basis
® by choosing k eigenvectors that capture a user-defined
fraction, F, of the total variance of the system, such that
their eigenvalues satisfy

k
ZiZI AZ > E.

n 2 3)
Zi:l Ai
Thus, each term x(t) can be written as
x(t) = ®c(t), “)

where c(t) = [c1(t),...,cx(t)]T holds time-dependent co-
efficients and ® € R™** with its columns as D140 Dk
The low-dimensional, orthogonal subspace associated with
@ is an optimal approximation of the data with respect to
minimizing least squares error.

B. Optimizing Robot Locations for Field Reconstruction

Given a low-dimensional representation of the subspace on
which the data is located, the properties of the orthogonal
bases can be used to compute the optimal set of locations
to place robots in order to reconstruct the field from sparse
data in real-time.
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Fig. 1.
data point y,, containing all the measurements of the field is projected as y,
onto the subspace P, where y,- equivalently represents a vector of just the
sensor measurements. As the angle between P, and the subspace associated
with @ decreases, so does the projection error of ;..

Geometric interpretation of maximizing minimum eigenvalue. The

Consider the problem of reconstructing a field from mea-
surements in ¢ arbitrary sensing regions. Given s total
sensing regions, let S C {1,...,s} where S contains the
locations of the ¢ sensing regions. Measurements of the
field are collected over the ¢ sensing regions as y,(t)
for sensing region r € S, where each y,.(t) € R"*!
for n, points of measurements in region r. Let matrices
®, € R"** guch that the rows of ®, are the rows of
® corresponding to the locations in sensing region r. Using
the gappy POD [13]-[15], the time-dependent coefficients
that minimize the distance between y(t), sensor values,
and g(t), the projection of sensor values onto the subspace
associated with the vectors {®,},cs can be found using

&(t) = AB

for A=) ®/®,and B=)» & y(t), ©®)
res res

where this time-dependent coefficient é(t) is then applied to
® as in (4) to recover the missing values of the field.

Next, we discuss how to select g sensing regions from the
set of S possible regions to optimize the reconstruction of
the full field using only measurements from the ¢ regions.
The matrix A € R*** depends only on the set of S sensing
regions and is not time varying. If measurements from all
sensing regions were used, the matrix A would be the
identity matrix since A = ®'® = I for ® containing
orthonormal columns and the coefficients é(t) could be
calculated exactly using (4). However, since only some and
not all sensing regions are being used, the sensing regions
should be chosen such that the rows of the eigenvectors
corresponding to these sensing regions create a basis that
is close to orthogonal. Additionally, [16] provides a criteria
for selecting the optimal set of sensing regions S as

max min \;(A), (6)

where maximizing the minimum eigenvalue of A in turn
minimizes the maximum angle between the subspace asso-
ciated with @ and P,, the subspace associated with using
only the sensor measurements, as shown in Fig. 1.

Let a;; represent entries in A and r; = Zj i Qig» the
Gershgorin circle theorem [17] states that all eigenvalues of
A lie in a circle centered at a;; with radius r;. Using this
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Fig. 2. Comparison of centralized framework for model-inference-
assimilation scheme and corresponding distributed scheme. In (a), the
centralized frameworks keeps a global model which is combined with
sensor measurements to estimate the field and update the model. In (b), the
distributed framework allows robots take sensing measurements at specific
regions and estimate the values of the field using the current model and their
neighbors’ data. These estimates are used to update the model at robots’
assigned locations.

property of the eigenvalues of A, an estimation of (6) is
given by

max min a;;, (7)
S i

where maximizing the minimum diagonal element of A
seeks the set S that results in A being both close to
orthonormal and minimizing the distance between the the
subspaces associated with ® and {®,.},cs. The algorithm
developed in [16] and extended in [8] is then used to find
the set S that satisfies criteria (7).

C. Adaptive Computation of Reduced Order Model and
Robot Locations

The techniques described in [8], [14]-[16] rely on com-
puting full POD basis vectors using snapshots of data over
the process. Instead, we propose a method that dynamically
adapts the POD basis vectors using incoming data and
reconfigures the position of the robots based on the adapted
POD.

To begin, POD basis vectors ®(¢t1) are computed using
T arbitrary snapshots {x(t1,1),...,z(t1,7)} where z(t) €
R™*!, The snapshots are gathered from either experiments or
numerical simulation based on the equations governing the
process of interest. A set of sensing regions S(t1) is selected
according to the algorithm described above, where robots are
then deployed to collect measurements. Estimates of the field
are computed using y.,.(t) for » € Sy, the collected sensing
data, {®,(t1)},es,, the POD basis over the sensing regions,
and the relationship (5). The new inferences are assimilated
into the covariance matrix R as in (1) as new snapshots,
at which point the POD basis vectors are recomputed as
®(t2) and a new set of sensing regions S(t2) are found.
This procedure is repeated for the duration of the mission.
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Fig. 3. Visualization of spatial points corresponding to rows of eigenvectors
in POD basis. In (a), the full field is shown, where each region is a set of
points in the field. Blue regions are monitored by the robots and thus are
the regions with sensor measurements, while the field in the white regions
are inferred using the ROM. In (b), the dashed lines contain the regions
for which each robot either takes measurements or estimates values. The
matrix in (c) shows rows in the POD basis that correspond to a single robot’s
assigned regions indicated with the gray dashed lines.
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averaging and Markov chains; we refer the interested reader
to [18] for more details. Each agent ¢ can compute P?, its
own estimate of P, as shown in Algorithm 1:

Algorithm 1: Push-sum algorithm

Input : P; from each robot
Output: estimates P for each robot of sum of all P;
select 5, let w; =1, and w; =0 Vi # 1
for each robot i in parallel do
P, = P;;
for loop do
Py =3 5N, mii Py
Ww; mijwj;
end

= ZJGNq

P;
wi

return P? =

end

robot i estimating field at i,...,i,

Sensing at i, i, ‘ I
neighbors of robot i i i) A H‘iﬂ‘ :
i B ROM at
e ali]

h Field estimates

Sensing | — atiyiy, andi,
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Fig. 4. Regions assigned to robot for sensing, estimating and modeling.

The robot senses at a location and is assigned arbitrary regions for which no
sensor measurements exists. The robot uses its own ROM over its assigned
regions, its collected sensor measurements, and sensor measurements from
its neighbors to estimate the missing values of the field, all of which will
then be used to update its reduced order model.

D. Distributed Algorithm

The procedure described above can be implemented in
a distributed fashion. A comparison of the centralized and
distributed approach is shown in Fig. 2. The model of the en-
vironment is represented as the matrix of eigenvectors, where
each row of the matrix corresponds to a spatial point. These
can be distributed to different robots, and robots can keep
on-board the rows corresponding to their assigned regions as
shown in Fig. 3. The push-sum algorithm [18] is leveraged
to allow for robots to maintain field measurements only over
their respective regions, while occasionally exchanging small
packets of information with their neighbors to understand the
full field and recompute optimal sensing locations, shown in
Fig. 4. Instead of having all robots compute the estimates of
field measurements for regions without sensor measurements,
these regions are assigned arbitrarily to robots, such that the
values at each region are only estimated by one robot.

The push-sum algorithm is described here. Suppose some
matrix P = ). P;. Further, there exists agents where each
agent ¢ has access to matrix P; and can communicate with
its neighbors NN;. Let M be an arbitrary stochastic matrix
such that m;; = 0 if agent 4 is not a neighbor to agent j. A
stochastic matrix is used to exploit the equivalence between

The push-sum algorithm is used for the distributed com-
putations of a) the covariance matrix from data at sensing
regions, b) the eigenvectors and eigenvalues for the POD
basis vectors, and c) the time-dependent coefficients for
estimating the full field. First, we show how to compute the
eigenvalues and eigenvectors of a pre-computed covariance
matrix in a distributed fashion using existing techniques.
Then, we will bypass the need to directly compute the
covariance matrix and instead compute the eigenvalues and
eigenvectors from on-board data in a distributed setting.

The method of orthogonal iteration allows for the com-
putation of the top k eigenvectors and eigenvalues of a
symmetric matrix K € R™*"™ using Algorithm 2:

Algorithm 2: Orthogonal iteration

set Q € R™*¥ with random elements;
for loop do

V=KQ;

QrRY v
end
return columns of @ as eigenvectors;
return diagonals of R as eigenvalues

The distributed computation of Algorithm 2 rests on
the following matrix properties, shown in detail in [18].
However, while [18] assumes a bijection between the rows
of the covariance matrix and the robots performing the
computation, we show here that this is not strictly necessary,
allowing for a non-balanced assignment of rows to robots.
Every row of the covariance matrix K corresponds to a
location in the field. Each robot ¢ is assigned the set of
rows, L;, of the matrices K and @ corresponding to the
spatial points in its sensing region and some arbitrary subset
of the spatial points of the regions not covered by any
robot. Let L = L; U (U;cn, Lj), where N; is the set of
neighbors of robot 7 so that L is the set that contains all
the spatial points assigned to robot ¢ and its neighbors. To



start, the rows V; for [ € L; can be estimated as a linear
combination of the random row vectors Q,,, over all m € L
with coefficients a;,,,. Then each robot can use an estimate
of the matrix R to apply to its set of rows V; for [ € L;
to find the corresponding rows @ for the next iteration of
orthogonal iteration. An estimate of R is found by leveraging
the relation:

W=V'V=R"Q"QR, (8)

where Q" Q = I since Q orthonormal and R is a unique
upper triangular matrix. Since W = Y | V_TV,, each
agent can compute W, over its sensing region as W, =
e L. VlTVl. Using the push-sum algorithm, each agent
can compute estimates Wi, perform a Cholesky factorization
to compute Wi = R;'—IAZZ and apply IAZ; ! to its rows
Vi to compute Q; = VlRf. Q) is then used in the
next iteration of the orthonormal iteration algorithm. This
requires the entries the covariance matrix K to be known
and communication between neighbors to estimate the values
Vi.

We leverage the following relation presented in [19] to
climinate the centralized computation of K = LXXT
and instead allow for the distributed computation of the
eigenvectors and eigenvalues of K directly from X without
explicitly constructing K. Let the Diag operator create a
diagonal matrix out of a given vector and the diag operator
extract the diagonal elements of a given matrix. Each column
v; can be computed as

1 T

1
= —diag( XX Tq;1")
rln )
= —diag(X X " Diag(q;)11")
m

idiag[X(11TDiag(qj)X)T].
m

For q; = [gj(1), ..., qj(n)], the I*" row of Diag(g;)X is
equal to ¢; (1) X;. Furthermore, the quantity 11" Diag(q;)X
is a matrix where each row is equal to the sum of all the rows
of Diag(q;)X. Thus, only the quantity F = > | D,,
where D = Diag(g;)X and D, denotes the rows of D,
needs to be computed. Each robot can individually compute
the quantity F; = > ,.; ¢;(1)X; and then can compute
estimates F" using the push-sum algorithm. Then, the ("
row of v; is equal to %F”'TXL This is carried for all k
columns of @ and V. The full procedure for distributed
computation of eigenvectors and eigenvalues is shown in
Algorithm 3:

To estimate the time-dependent coefficients, each robot
can compute its own A; and B; as in (5) and use the
push-sum algorithm to compute estimates A and B®. Then,
robots can compute the estimate ¢&; = AiB' and apply
coefficients ¢&; to the rows @ to estimate the values §; =
Q;¢; that are missing in the regions [ € L;.

Algorithm 3: Distributed eigenvectors from data

set Q € R™** with random elements;
select 4, let w; =1, and w; =0 Vi #1;
for loop do
for each row r of Q in parallel do
for each robot i do
Zi = e, 1r X1
Compute Z; with Algorithm 1 (push-sum);
for [ € L; do
‘ o = 227 Xy
end
Wi = ZleLi ‘/lT‘/l 5
Compute W; with Algorithm 1 (push-sum);
Use Cholesky factorization Wit = R;r Ri;
Q=ViR;";

end
end

end
return rows Q; as eigenvectors for robot i;
return diagonals of R; as eigenvalues for robot ¢;

E. Task Allocation

Using the distributed algorithm, individual robots can
adaptively calculate their respective eigenvectors and eigen-
values. They can then share the necessary properties of their
eigenvectors to each compute the optimal sensing locations.
After finding the set of optimal sensing locations, robots are
assigned to locations as to minimize the total cumulative path
traveled by all robots.

IV. SIMULATIONS AND EXPERIMENTS

Analyses were carried out both in simulation and on
physical robots. In simulation, a 1x1 m 2-dimensional grid
space was modeled using video data from an experimental
flow tank for low Reynolds numbers. The grid space was
discretized into 9 non-overlapping regions. 4 robots were
simulated in the field. A concentration field was created by
placing dye in an experimental flow tank and recorded on
video. Concentration values of the dye in the tank were
estimated for each time step from the grayscale values of
the pixels of the images from a grayscale video of the LoRe
tank. Concentration values of the field were gathered for
100 equally spaced times across the time series, and noise
was then added to these concentration values. These were
then used to the construct the initial POD basis for the
distributed optimal placement algorithm. Data was collected
for another 100 sequential times before adapting the POD
basis and recomputing the optimal placement algorithm. The
distributed optimal placement algorithm was compared to the
centralized optimal placement algorithm, where all compu-
tations occur on a centralized system and are broadcasted
to robots. Additionally, the distributed optimal placement
algorithm were compared with radial basis function (RBF)
interpolation schemes. Radial basis function interpolations
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Fig. 5.
with pose information from motion capture system and ability to commu-
nicate. Water tank with projection of dynamic process depicted in white in

(b).

Experimental setup with marine robots. Robot boat (a) equipped
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Fig. 6. Norm-wise relative error between field simulation and various field
estimation algorithms at each time step. Estimations are calculated using
(a) RBF using sensing data, (b) RBF using random points, (c) proposed
distributed algorithm, (d) centralized version of proposed algorithm. Black
circles represent estimations calculated using the optimal placement and
POD basis. Gray vertical lines indicate robots switching their placement.

were computed using sensing data from the optimal sensing
locations from the distributed method and using randomly
selected points across the entire field. All of these methods
were compared against the optimal placement algorithm,
which was calculated using noiseless data across the entirety
of the time series.

Experiments were carried out in a 5x3 m water tank using
4 marine robots, shown in Fig. 5a. The concentration field
was mapped and projected onto the tank using the video from
the LoRe tank, shown in Fig. 5b. The robots then tracked the
projected concentration field using the distributed algorithm.

V. RESULTS

The simulation results of the comparison of the various
field estimation schemes over the entire time series are
shown in Fig. 6. The Frobenius norm-wise error between the
actual concentration value and the estimated field computed
using various algorithms was computed for each time step.
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Fig. 7. Mean absolute error at spatial points calculated over time series for
various field estimation algorithms. Concentrations at points are calculated
using (a) RBF using sensing data, (b) RBF using random points, (c) optimal
placement and POD basis, (d) centralized version of proposed algorithm,
and (f) proposed distributed algorithm.

Concentration value at field Absolute error at spatial points

530 100 150 200 250 50 100 150 200 250
L0 -
>0.5 1 % %
4 ] & b Y b
0.0 T T T T
0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0
X X X X
(a) (b} (c) (d)
t=16.55 secs t = 16.88 secs
Fig. 8.  Concentration field and absolute error at spatial points before

and after robots switch locations using distributed placement algorithm.
Concentration field (a) and absolute errors (b) are before the switch;
concentration field (c) and absolute errors (d) are after assimilating data
and switching positions.
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Fig. 9. Mean absolute error at spatial points calculated over time series

between field and distributed algorithm for various discretizations of field,
numbers of robots, and snapshots used to compute original POD basis.
Algorithm tested for (a) 4 robots, 9 regions, and 100 snapshots, for (b) 4
robots, 9 regions, and 500 snapshots, for (c)8 robots, 25 regions, and 100
snapshots, and for (d) 8 robots, 25 regions, and 500 snapshots.
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Fig. 10. Norm-wise relative error between field and distributed algorithm
for various discretizations of field, numbers of robots, and snapshots used
to compute original POD basis. Algorithm tested for (a) 4 robots, 9 regions,
and 100 snapshots, for (b) 4 robots, 9 regions, and 500 snapshots, for (c)8
robots, 25 regions, and 100 snapshots, and for (d) 8 robots, 25 regions, and
500 snapshots.
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Fig. 11.  Robotic boats tracking dynamic process in water tank. The
dynamic process is shown in white, and robots are circled in red. The robots
assume positions based on the initial POD basis in (a). The robots switch
positions after collected sensor measurements and updating their model in

(b).

Both RBF interpolation schemes perform significantly worse
than the optimal placement algorithms. Even in the case
of the RBF with randomly selected sensor points, the field
estimation is approximately an order of magnitude worse
than the optimal field estimation. However, the distributed
algorithm and centralized algorithm perform just slightly
worse than the optimal field estimation.

The mean absolute error of the various field estimation
schemes is shown in Fig. 7. The RBF interpolation scheme
using the data from the sensor measurements results in high
error across the field, as it is unable to adequately estimate
values in regions far from the sensing locations. The RBF
interpolation scheme using random points fails to capture the
interesting features of the process. The distributed algorithm
fails in similar areas as compared to the optimal placement
algorithm. This can be attributed to little to no data being
collected over these regions, which makes it difficult to
estimate the concentration values over these areas. Addition-
ally, the distributed algorithm performs slightly worse than
the centralized algorithm. This is expected given the fact

that distributed algorithm uses only local information in its
computation of the field estimate.

The adaptive nature of the algorithm allows robots to
rectify tracking errors by recomputing the POD basis and
possibly reassigning the sensing locations. This is shown in
Fig. 8 where robots are able to improve field measurements
for areas of high error after reassimilating their collected data
to determine new sensing locations and a new POD basis.

The distributed algorithm demonstrates consistent results
across various discretizations of the spatial region, various
numbers of robots, and various initial models of the dynamic
process, as shown in Fig. 9 and 10. Mean absolute errors
between the estimated field and the actual field for 4 robots
with 9 total regions in Fig. 9a and for 8 robots with
25 total regions in Fig. 9c perform comparably despite a
nearly 15% reduction in the area being sensed by robots.
This can be attributed to the robustness of the constructed
model. Despite, the use of various initial POD bases, the
distributed optimal placement eventually results in similar
errors estimations as shown by Fig. 10a-d. This is again due
to the adaptive nature of the algorithm.

In the water tank, the robots were able to track the
projected dye. The robots collect measurements from their
sensing locations and adapt their assigned models. They are
able to switch locations to track the process as shown in Fig.
11.

VI. CONCLUSIONS

In this work, we have proposed a solution for the sampling
and tracking of a dynamic process with a team of mobile
robots. This approach uses distributed to techniques to allow
for modeling and estimation of a field. Unlike other works,
this work leverages the rich information from the process
dynamics to inform where robots should sense, how they
should best model their environment, and how they should
adapt their belief about the environment.

For future work, we would like include an analysis on the
error bounds of the algorithm. Namely, we hope to establish
upper bounds on the errors introduced through reduced order
modeling and the distributed computations. Additionally, we
would like to investigate the use heterogeneous robots, such
as a team of aerial robots and marine robots to produce multi-
fidelity models of the environments. Incorporating these
multi-fidelity models may allow for the use of complemen-
tary information. For example, aerial robots may be able to
collect and model less granular information but over wider
areas of the field, while marine robots may be able to collect
and model higher granularity information but only at specific
locations of the field.
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