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Abstract
Calculations of electrostatic potential and solvation free energy of macromolecules
are essential for understanding the mechanism of many biological processes. In the
classical implicit solvent Poisson–Boltzmann (PB) model, the macromolecule and
water are modeled as two-dielectric media with a sharp border. However, the dielec-
tric property of interior cavities and ion-channels is difficult to model realistically in
a two-dielectric setting. In fact, the detection of water molecules in a protein cav-
ity remains to be an experimental challenge. This introduces an uncertainty, which
affects the subsequent solvation free energy calculation. In order to compensate this
uncertainty, a novel super-Gaussian dielectric PB model is introduced in this work,
which devices an inhomogeneous dielectric distribution to represent the compactness
of atoms and characterizes empty cavities via a gap dielectric value. Moreover, the
minimal molecular surface level set function is adopted so that the dielectric profile
remains to be smooth when the protein is transferred from water phase to vacuum. An
important feature of this new model is that as the order of super-Gaussian function
approaches the infinity, the dielectric distribution reduces to a piecewise constant of
the two-dielectric model. Mathematically, an effective dielectric constant analysis is
introduced in thiswork to benchmark the dielectricmodel and select optimal parameter
values. Computationally, a pseudo-time alternative direction implicit (ADI) algorithm
is utilized for solving the super-Gaussian PB equation, which is found to be uncon-
ditionally stable in a smooth dielectric setting. Solvation free energy calculation of
a Kirkwood sphere and various proteins is carried out to validate the super-Gaussian
model and ADI algorithm. One macromolecule with both water filled and empty cav-
ities is employed to demonstrate how the cavity uncertainty in protein structure can
be bypassed through dielectric modeling in biomolecular electrostatic analysis.
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1 Introduction

Calculations of electrostatic potential and solvation free energy of macromolecules
are essential for understanding themechanism of biological processes. However, these
calculations cannot be done analytically for irregularly shaped objects, and so com-
putational methods must be applied. There are two major approaches for solvation
free energy analysis, i.e., explicit models and implicit models (Li et al. 2015). Explicit
models treat water as individual molecules; on the contrary, implicit models consider
solvent phase as continuummedia (Che et al. 2008; Baker et al. 2001; Li et al. 2013a).
Compared to explicit models, implicit models are more efficient; therefore they can
handle much larger systems (Baker et al. 2001; Li et al. 2012), however, it comes
with the price of losing some atomic information and having the ambiguity of how to
describe the dielectric properties of the system, the solute, and the water phases.

As a partial differential equation (PDE) model for electrostatics of biomolecules,
the Poisson–Boltzmann (PB) equation is a widely used implicit solvent method (Baker
et al. 2001). Traditionally, a two-dielectric approach is employed in the PB model to
describe the dielectric properties: a biomolecule is assigned a low dielectric constant
while the surrounding water phase is considered as a high dielectric constant medium.
A dielectric interface is assumed at the macromolecule-water boundary, which is
usually modeled as a molecular surface. The most commonly used definitions of the
macromolecule-water boundary are the Van der Waals (VDW) surface (Pang and
Zhou 2013), the solvent accessible surface (SAS) (Lee and Richards 1973), and the
solvent excluded surface (SES) (Richards 1977;Connolly 1983).However, these “hard
sphere” molecular surface models are known to admit geometric singularities, such
as cusps and self-intersecting surfaces (Bates et al. 2008).

To avoid geometric singularities associated with “hard sphere” definitions of the
molecular surface, “soft sphere” models have been developed (Blinn 1982; Duncan
and Olson 1993; Grant and Pickup 1995), where each atom is outlined by a Gaussian
density distribution function. While dealing with multiple atoms, the summation of
these Gaussian soft clouds forms a density map which generates Gaussian molecular
surfaces at appropriate isosurfaces or level sets to approximate theVDWsurface, SAS,
or SES. The density maps based on volumes can also be generated by other smoothly
decaying functions (Chen and Lu 2011) or by maximizing the Gaussian functions and
then post-processing using a low-pass filtering (Giard and Macq 2010). The models
based onGaussian surfaces are particularly useful for fast and robustmolecular surface
mesh generations (Chen and Lu 2011; Zhang et al. 2006; Yu et al. 2008).

In most studies of Gaussian surfaces, the PB equation is still solved in a two-
dielectric setting by generating an iso-surface as the dielectric boundary. Across such a
sharp interface, the PB solution loses its regularity. In order to avoid accuracy reduction
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in numerical discretization near the interface, sophisticated interface algorithms have
to be adopted for handling the dielectric jump in solving the PBequation.With rigorous
interface treatments, the matched interface and boundary (MIB) method (Zhou et al.
2006; Chen et al. 2011) and the immersed interface method (IIM) (Qiao et al. 2006)
can improve the accuracy significantly, but they develop complexity in the algorithm
to a certain extent which reduces the computational efficiency.

Instead of using a sharp molecular surface definition, smooth or smeared molecular
surfaces have also been introduced in the literature (Bates et al. 2008, 2009; Cheng
et al. 2007; Zhao et al. 2013; Dai et al. 2018), in which a smooth transition is assumed
in between solute and solvent domains. For instance, by using the Euler–Lagrange
variation of the free energy minimization, (Bates et al. 2008, 2009) introduced a
variational PDE model for molecular surface generation. Neglecting other solute-
solvent interactions, this model is simplified to be the surface area minimization,
and gives rise to the minimal molecular surface (MMS). Cheng et al. (2007) have
employed the level set approach to minimize a free energy functional for coupling
the polar-nonpolar interaction at the solvent-solute interface, and the corresponding
PDEmodel involves contributions from electrostatic effects, pressure, Gauss andmean
curvatures, and others. A phase-field variational approach has been developed in Zhao
et al. (2013) to represent the solute-solvent interface via a double-well potential in the
free energy functional. The convergence of the phase field free energy functionals and
forces to their sharp interface limits has been rigorously proved (Dai et al. 2018). By
using these smooth molecular surfaces, simple numerical methods can be employed
for solving the PB equation, and complicated interface treatments are unnecessary.

Besides the free energy variational approach, another physical way to describe
the solute-solvent boundary as a smooth transition layer has also been introduced
in (Abrashkin et al. 2007; Koehl et al. 2009; Mengistu et al. 2009; Bohinc et al.
2017). This is achieved by incorporating the structures of water dipoles and ions into
mean field modeling of the electric double layer. This introduces additional terms in
the PB equation to account for interacting Langevin dipoles (Mengistu et al. 2009)
or non-electrostatic type Yukawa interactions (Koehl et al. 2009). Mathematically,
the generalized PB equations in these studies could be rewritten into a standard PB
equation with an effective field-dependent dielectric function, which is then smoothly
variant in the solvent domain (Abrashkin et al. 2007).

Besides the above mentioned PBmodels with two homogeneous media away from
the solute-solvent boundary, heterogeneous dielectric models have also been intro-
duced in the literature (Alexov and Gunner 1997, 1999; Nymeyer and Zhou 2008;
Song 2002; Voges and Karshikoff 1998; Hu and Wei 2012; Li et al. 2013b, 2014;
Chakravorty et al. 2018b), in which the dielectric function ε is not uniform and varies
within the structure of the molecule. Physically, such an inhomogeneity, reflecting dif-
ferent polarizability and flexibility, is well-documented for the amino acids (Hammel
2012; Kokkinidis et al. 2012). Mathematically, the heterogeneous dielectric distribu-
tion provides an alternative means to mimic the effect of conformation changes of the
macromolecule on the solvation free energy, because dielectric distributions reflect
the structure-energy relations via screening of the electrostatic interactions within the
solute and between the solute and solvent (Warshel and Russell 1984; Warshel et al.
2006).
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This studywill pay particular attention to theGaussian dielectric PBmodel (Li et al.
2013b, 2014), which was developed with an aim to provide a “correct” description
of the dielectric property of the macromolecule, i.e., beginning with macromolecule
interior and moving toward the macromolecular surface and further into the water
phase, the ability of the corresponding medium to respond to local electrostatic field
constantly increases (Simonson and Perahia 1995). This dielectric model has been
found to outperform the traditional two dielectric model in many biological appli-
cations, including a better agreement with experimentally measured solvation free
energy of small molecules (Li et al. 2013b, 2014) and a better prediction of the pKa’s
of ionizable groups against thousand experimentally measured pKa’s in various pro-
teins (Wang et al. 2015a, b). The Gaussian dielectric model has also demonstrated the
feasibility of approximating ensemble average polar solvation free energy by calcu-
lating a single macromolecular structure and without resorting to expensive molecular
dynamics or Monte Carlo simulations (Chakravorty et al. 2018a).

This paper aims to extend the Gaussian PB model (Li et al. 2013b, 2014) by
modeling the dielectric property of protein cavities explicitly. Cavities and channels
are frequently encountered in biomolecules. The determination of dielectric values
for cavities is still in its infancy for inhomogeneous models (Ng et al. 2008), because
such cavity regions could be empty or filled with water molecules. Nevertheless, the
detection of water molecules in a cavity remains to be an experimental challenge. This
introduces an uncertainty for implicit solventmodeling. Physically, how to compensate
such an uncertainty in inhomogeneous dielectric models has not been studied before.
What we know are several simple principles. For example, trapped water molecules
tend to interact with the surrounding atoms via either hydrogen bonds or VDW forces,
and thus lose their flexibility. Consequently, the dielectric value of cavity water should
be smaller in comparison with that of bulky water, while it is still larger than that of
amino acids. Moreover, the size or volume of cavity plays an important role here,
because it affects the rotational polarizability of confined water molecules in response
to the local electrostatic field. In the Gaussian dielectric model (Li et al. 2013b, 2014),
the cavity region may be characterized through the compactness of atoms. However,
the dielectric value of such gap region or the maximal dielectric value εmax of the
macromolecule is not directly controllable, instead it is inflated by the external water
dielectric value (usually taken as ε = 80). In order to model the dielectric property of
protein cavities explicitly, we propose a super-Gaussian dielectric model in this work,
in which a new parameter εgap for the cavity regions is introduced. The selection of
εgap or εmax could depend on cavity size and any additional information available to
biologists. Moreover, the maximal dielectric value εmax remains unchanged in both
water or vacuum phases. Finally, this parameter also allows us to compensate the
uncertainty of whether a cavity is empty or filled with water molecules in free energy
calculations.

As another extension, the super-Gaussian PB model will maintain the smoothness
of dielectric functions in both water and vacuum states in calculating free energies. In
the Gaussian dielectric model (Li et al. 2013b, 2014), the inhomogeneous dielectric
profile of the macromolecule is generated based on the water state first. Then a surface
cut with an empirical iso-value is conducted to preserve the same inhomogeneous
profile for the vacuum state. Consequently, the ε function becomes discontinuous,
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because outside the surface cut, ε = 1 is simply used for the vacuum. A modified
surface cut technique has been reported recently (Chakravorty et al. 2018a), which
results in a C0 but not C1 continuous dielectric function in vacuum state, even though
it is C∞ continuous in water state. In the proposed model, the minimal molecular
surface (MMS) (Bates et al. 2008; Tian and Zhao 2014) will be employed to represent
solute and solvent regions. The main purpose of such representation is not defining a
molecular surface. Instead, the MMS allows us to represent both water and vacuum
states in one equation, by simply changing the exterior dielectric value to be 80 or
1. The interior dielectric profile for proteins keeps unchanged in this process. With
these extensions, the new Gaussian model guarantees the dielectric functions being
C∞ continuous in both water and vacuum states.

Besides the above mentioned two extensions, there are several other differences
between the Gaussian and super-Gaussian dielectric models. First, a super-Gaussian
density function is employed in the new model as a “soft sphere” representation for
each atom, which includes the Gaussian function as a special issue with the order
m = 1. An important feature of this function is that it approaches piecewise dielectric
constants of the two-dielectric model in the limit of orderm going to infinity. Theoreti-
cally, the proposed super-Gaussian dielectric model bridges the gap between Gaussian
and two-dielectric PB models. In practice, m = 3 or 4 achieves a good trade-off in
our modeling and simulations. Second, the Gaussian model is a surface-free dielectric
model (Li et al. 2013b, 2014; Chakravorty et al. 2018b), while the MMS hypersurface
function is required in constructing the super-Gaussian dielectric distribution. Hence,
without requiring any molecular surface definition, the Gaussian model has the poten-
tial to be applied to more general applications. Also, the super-Gaussian dielectric
function needs additional computation time for setting up the MMS level set func-
tion. Fortunately, a fast algorithm is available for generating the MMS (Tian and Zhao
2014), which scales as O(N ) for N being the spatial degree of freedoms. Third, the
ion distribution is treated differently in both models. In the classical two-dielectric PB
model, the presence of mobile ions is realized through the Debye–Huckel parameter
or Debye length κ . One normally defines κ as a piecewise constant with a vanishing
value in the solute region and a nonzero constant (say κ̄) in the solvent region. In the
super-Gaussian model, κ it will be defined in the same manner as the dielectric func-
tion ε, by using the MMS characteristic function for both solute and solvent domains.
Consequently, κ will change smoothly and monotonically from zero to κ̄ . A more
physical approach is proposed in the Gaussian model (Jia et al. 2017; Chakravorty
et al. 2018b), in which a desolvation penalty term is introduced into the Boltzmann
distribution of mobile ions. In the resulted modified PB equation, the coefficient of the
nonlinear hyperbolic term will change smoothly from zero to κ̄ in a non-monotonic
manner, because the Born equation definition of desolvation penalty depends on the
inhomogeneous ε function.

In this work, a pseudo-time alternating direction implicit (ADI) algorithm (Geng
and Zhao 2013; Zhao 2014; Wilson and Zhao 2016) will be employed to solve the
nonlinear PB equation of the super-Gaussian dielectric model. We note a numerical
issue here relating to the smooth definition of the Debye length κ , resulting from
ion distribution treatments of either Gaussian or super-Gaussian models. In partic-
ular, κ could be nonzero in certain places which belong to the solute region in the
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two-dielectric model, but are now in the transition layer between solute and solvent
media (Zhao 2014). Therefore, the hyperbolic nonlinear term of the PB equation could
take huge values at such places, so that numerical methods could be unstable (Zhao
2014). To suppress the nonlinear instability, a pseudo-time continuation approach with
analytical integration of the nonlinear term has been proposed in the literature (Geng
and Zhao 2013; Zhao 2014; Wilson and Zhao 2016). Based on finite difference spa-
cial discretization, efficient alternating direction implicit (ADI) schemes have been
developed for pseudo-time integration (Geng and Zhao 2013; Zhao 2014; Wilson and
Zhao 2016). However, such ADI schemes could not achieve unconditional stability in
treating two-dielectric PB equations. For the present super-Gaussian dielectric model
and well filtered MMS representation, the pseudo-time ADI algorithm will be uncon-
ditionally stable for solving the nonlinear PB equation.

The proposed super-Gaussian dielectric PB model carries several parameters.
In order to benchmark the new model and select optimal parameter values, two
approaches will be considered in this paper. Mathematically, an effective dielectric
constant (EDC) analysis is introduced as a simple means to assess different dielectric
models. This is purely a geometrical approach that computes an averagedEDCover the
entire domain either analytically or numerically, and it allows us to explore the impact
of each parameter to the total dielectric function. In the other approach, comparison in
electrostatic free energy is carried out for two-dielectric and super Gaussian models.
We note that with a different dielectric setting, our super Gaussian results will not
converge to the two-dielectric ones. However, it is useful to adjust parameters so that
the new dielectric model could numerically produce energy values that are compara-
ble to the two-dielectric model. This is particularly convenient if one wants to replace
an existing two-dielectric PB solver by the proposed one in a software package. We
note that the optimal parameter values produced by two approaches have some minor
difference. Alternatively, the model validation could be conducted by comparing with
explicit solvent molecular dynamics (MD) simulations, which, however, are quite time
consuming.

The rest of the paper is organized as follows. Section 2 introduces the super-
Gaussian dielectric PBmodel with a few parameters. An EDC analysis is proposed for
determining the best fitting parameters, and the role of hypersurface function generated
from MMS is discussed. In Sect. 3, the super-Gaussian PB equation is discretized by
using a pseudo-time ADI algorithm. Model validation and convergence, accuracy, and
stability of the ADI algorithm are experimented by calculating solvation free energy
for a single atom system in Sect. 4. The proposed model and algorithm are further
verified in Sect. 5, by considering various proteins. Particular attention will be paid
on studying a real protein with both water-filled and empty cavities. This article ends
with a brief conclusion.

2 Mathematical modeling

In this section, we will first briefly describe the existing models, including the two-
dielectric Poisson–Boltzmann (PB) model and Gaussian dielectric PB model. Then,
a super-Gaussian dielectric PB model will be introduced. A geometrical analysis will
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be employed to systematically study the influence of the adjustable parameters of the
new model in various settings.

2.1 Two-dielectric Poisson–Boltzmannmodel

Consider a macromolecule, for example, a protein being immersed into an aqueous
solvent. Define a large enough cubic domain � in R

3 for this three dimensional
(3D) solute-solvent system. In the classical two-dielectric PB model, the domain � is
divided by a molecule surface � into two parts, namely the inner solute domain �m

and the outer solvent domain �s such that � = �m ∪ �s and �m ∩ �s = �. Denote
the boundary of � as ∂�. For �r ∈ R

3, the electrostatic potential u of this system is
governed by the nonlinear Poisson–Boltzmann equation and its most commonly used
dimensionless form (Lu et al. 2008; Geng and Zhao 2013) is given as

− ∇ · (ε(�r)∇u(�r)) + κ2 sinh(u(�r)) = ρm(�r), (1)

where the singular source term is

ρm(�r) = 4π
ec2

kBT

Nm∑

j=1

q jδ(�r − �r j ). (2)

On the outer boundary ∂�, a Dirichlet boundary condition can be assumed

u(�r) = ec2

kBT

Nm∑

j=1

q j

εs |�r − �r j |e
(−|�r− �r j |

√
κ̄2
εs

)
. (3)

In the two-dielectric PB model, the dielectric function ε(�r) is assumed to be a
piecewise constant

ε(�r) =
{

εm, �r ∈ �m

εs, �r ∈ �s .
(4)

In the present study, we will take εm = 1 for the protein and εs = 80 for the
water. Similarly, the modified Debye–Hückel parameter κ is a piecewise constant. It
vanishes in �m , i.e., κ = 0, while in �s κ = κ̄ , where κ̄2 = 8.486902807Å−2 Is
and Is is the ionic strength of the solvent. Here, kB is the Boltzmann constant with
kBT = 0.5921830 kcal/mol at T = 298K , and ec is the fundamental charge and q j

is the partial charge for the j th atom in the solute, centered at �r j . Moreover, ec and q j

have the same units and e2c = 332.06364 kcal/mol. The total number of atoms present
in the solute macromolecule is denoted by Nm .

The energy releasedwhen the solutemacromolecule is dissolved in solvent is known
as the free energy of solvation. The polar component of solvation free energy can be
calculated in the PB model by computing the difference between total electrostatic
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free energy of the macromolecule in the solvent and in the vacuum. In particular, for
the two-dielectric PB model, the solvation free energy is defined as


G = Gs − G0 = 1

2

∫

�

ρm(u(�r) − u0(�r))d�r (5)

where u(�r) is the solution of the PB equation (1), while u0(�r) is the electrostatic
potential of the macromolecule in the vacuum. The vacuum state is obtained by taking
ε(�r) = 1 throughout and setting the ionic strength Is = 0. Consequently, κ = 0 in the
PB equation (1) and κ̄ = 0 in the boundary condition (3). Thus, u0(�r) is in fact the
solution of a Poisson equation

− 
u0 = ρm, (6)

with the same singular source (2).

2.2 Gaussian dielectric PBmodel

In order to overcome some inherent difficulties associated with the two-dielectric PB
model, a Gaussian dielectric PB model has been proposed in Li et al. (2013b, 2014)
to provide a “correct” description of the dielectric property of the macromolecule.
Physically, at the atomistic level of detail, any system in molecular biophysics is made
up of macromolecules immersed in water, and can be considered as a multitude of
atoms: atoms of water molecules and amino acids (nucleic acids). It thus makes sense
to study a smooth dielectric PB model, in which one avoids to define a solute-solvent
boundary or molecular surface. Instead, an appropriate definition of the dielectric
function ε(�r) is assumed in the entire domain�. Moreover, it is known that beginning
with the macromolecule interior and moving toward the macromolecular surface and
further into the water phase, the ability of the corresponding medium to respond to the
local electrostatic field constantly increases (Simonson and Perahia 1995). Hence, one
should expect that ε(�r) in the water state increases smoothly from the solute region to
the solvent region. Finally, allowing ε(�r) to be inhomogeneous gives us flexibility in
modeling different polarizability of the amino acids (Hammel 2012; Kokkinidis et al.
2012), andmimicking the effect of conformation changes of themacromolecule on the
solvation free energy (Warshel and Russell 1984; Warshel et al. 2006; Chakravorty
et al. 2018a).

A “soft sphere” approach by introducing a density function for each atom seems
to be a natural model to fulfill all of the above considerations. This motivated the
development of the Gaussian dielectric PB model (Li et al. 2013b, 2014) in the water
state. Suppose the density at the position �r for the i th atom is given by Grant and
Pickup (1995); Grant et al. (2001); Im et al. (1998)

gi (�r) = exp
[−|�r − �ri |2

σ 2R2
i

]
(7)
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where �ri is the center of the i th atom, Ri is the Van der Waals radius of the i th atom
and σ is the relative variance. Once the density for each atom is generated, the total
density function for the atoms and overlapped area covered by multiple atoms is given
by

g0(�r) = 1 −
Nm∏

i=1

[1 − gi (�r)] (8)

where the cross term such as gi g j accounts for the density of the overlap region due to
the i th and j th atoms.Also the total density function ensures that the overlap region has
a density higher than that generated by a single atom. The range of the function g0 is
[0, 1]. Finally, the dielectric distribution is derived as a weighted convex combination

εG(�r) = g0(�r)εm + (1 − g0(�r))εs (9)

where εm and εs are the dielectric constants in the molecule and water respectively.
Similar to the two-dielectric model, we will take εm = 1 and εs = 80 in the present
study. By simply replacing ε(�r) in the PB equation (1) by εG(�r), the Gaussian PB
model has achieved a great success in various biophysical applications (Li et al. 2013b,
2014).

In electrostatic free energy calculations, a surface cut of εG(�r) at an iso-value 20
is conducted to introduce a sharp boundary � (Li et al. 2013b, 2014). Inside �, the
dielectric function of the vacuum state is the same as that in the water state, i.e.,
ε̃G(�r) = εG(�r), while outside �, ε̃G(�r) = 1. One then solves the Poisson equation

− ∇ · (ε̃G∇u0(�r)) = ρm, (10)

for the electrostatic potentialu0 in vacuum, and then computes the solvation free energy
by (5). Note that ε̃G is discontinuous in (10) so that various difficulties associated with
the two-dielectric PB equation may not be avoided. Recently, a further modification
to ε̃G has been introduced in Chakravorty et al. (2018a), which results in a C0 but not
C1 continuous function.

2.3 Super-Gaussian dielectric PBmodel

In this paper, we propose to define the density of the i th atom as a super Gaussian
function

gsi (�r) = exp
[

−
( |�r − �ri |2

σ 2R2
i

)m]
. (11)

Note that with the order m = 1, gsi (�r) becomes the original Gaussian density func-
tion gi (�r). To illustrate the idea, we first consider the dielectric distribution defined by
(8), and (9) and simply replace gi (�r) by gsi (�r). A virtual comparison of the correspond-
ing Gaussian and super Gaussian distributions for a single atom system is depicted in
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Fig. 1 aA single atom is immersed into water, b density function of one atom form = 1 (Gaussian),m = 4
(super-Gaussian of order 4) and c dielectric distribution of the single atom system calculated by Eq. (9) for
Gaussian and super-Gaussian (order 4) densities

Fig. 2 The dielectric distributions generated by the super Gaussian functions for a one-atom system. In all
figures, the red line represents the piecewise constant of the two dielectric model

Fig. 1. It can be seen that the super-Gaussian function or higher order Gaussian has a
flat-top density and a rapid while smooth transition at the solute-solvent border area.
As m goes to infinity, gsi (�r) approaches to a step function that equals one inside the
Van der Waals (VDW) sphere with the center �ri and radius Ri and equals zero outside
the sphere. Consequently, the dielectric distribution shown in Fig. 1c will converge to
the piecewise constant of the two-dielectric model, i.e., Eq. (4). A mathematical proof
of this statement is provided in the “Appendix”. Therefore, the super Gaussian density
includes both Gaussian density and piecewise constant as special cases. In practice,
we will consider an order m in the range of {1, 2, . . . , 8}, which maintains enough
smoothness when the function is sampled on a discrete grid. In Fig. 2, we depict the
super Gaussian dielectric distributions for a one-atom system by using different order
m and relative variance σ . The optimal selection of these parameter values will be
discussed later.
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In order to explicitlymodel the dielectric properties of protein cavities, we introduce
a parameter εgap to represent the maximum dielectric value of the macromolecule. In
particular, we similarly define the total density function as

gs0(�r) = 1 −
Nm∏

i=1

[1 − gsi (�r)]. (12)

A new dielectric distribution is proposed within a protein region

εin(�r) = εmg
s
0(�r) + εgap[1 − gs0(�r)], (13)

where the constants εm and εgap are defined as the reference dielectric values at the
atom centers and in a gap region, respectively, with εgap > εm . By substituting (12)
into (13), we have an equivalent form of εin

εin(�r) = εm + (εgap − εm)

Nm∏

i=1

[1 − gsi (�r)]. (14)

It is then clear that εm and εgap are, respectively, theminimal andmaximal dielectric
values of the protein, independent of the outside medium.

The physical idea underlying (13) or (14) is that the permittivity at a loosely packed
region of a protein shall be higher than that in a densely packed region, because the
former region has a higher polarization or allows a larger conformational change.
In a densely packed region, the charged atoms and amino acid chains are harder
to shift from their average equilibrium positions when an electric field is placed,
so that the polarization or density of induced electric dipole moments is weaker.
Moreover, cavities have to be taken into account in an inhomogeneous dielectricmodel.
Crystallographic waters may be trapped inside some large cavities. The polarization of
water molecules inside cavities is smaller than the bulky water molecules in a solvent
due to their restricted degree of freedom, but it is still much higher than that of protein.
This suggests that εm < εgap ≤ εs . An appropriate value for εgap depends on the real
protein system and will be determined through analytical and numerical means in this
work. Also, we will take εm = 1 and εs = 80 as in the other models.

In the super-Gaussian PB model, we propose to provide certain description of the
solute and solvent domain on top of the dielectric distribution, which will eliminate
the need of a surface cut operation for the vacuum state. We note that traditional
molecular surfaces, including the VDW surface (Pang and Zhou 2013), the solvent
accessible surface (SAS) (Lee and Richards 1973), and the solvent excluded surface
(SES) (Richards 1977; Connolly 1983), could not fulfill our goal here, because the
smoothness still cannot be maintained across a sharp solute-solvent interface. Instead,
we propose to employ the minimal molecular surface (MMS) (Bates et al. 2008,
2009), which is defined as the unique surface that is of the smallest area and encloses
all VdW balls. Physically, the MMS model is attained through the surface free energy
minimization. Mathematically, the Euler–Lagrange variation of the free energy leads
to a mean curvature flow partial differential equation (PDE), which can be solved by
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Fig. 3 a The hypersurface functions S and (1− S) of the solute-solvent region along a straight line. b The
blue and red curves depict the dielectric function εsG (�r) of the super Gaussian model in the water and
vacuum phases respectively. c The blue and red curves depict the dielectric functions εG (�r) and ε̃G (�r) of
the Gaussian model in the water and vacuum phases respectively

a fast algorithm developed in Tian and Zhao (2014). The numerical solution provides
not only the MMS, but also a level set function or hypersurface function S(�r) defining
the solute and solvent regions in a smooth manner, see Fig. 3a for an illustration.

The hypersurface function S(�r) of the MMS model (Bates et al. 2008, 2009; Tian
and Zhao 2014) was originally used for representing the protein region, with S = 1
inside all VDW balls and S = 0 outside the SAS (based on a probe radius 1.5Å). A
smooth transition from one to zero is obtained through numerical PDE solution. In the
proposed super Gaussian PBmodel, we will make use of (1−S) to present the exterior
region so that both water and vacuum phases could be modeled in one equation

εsG(�r) = S(�r)εin(�r) + [1 − S(�r)]εout , (15)

where the constant εout determines the dielectric value far away from the protein.
Note that S = 1 inside the VDW region so that inhomogeneity of the super Gaussian
dielectric distribution is retained. By setting εout to be 1 or 80, one simply switches
from vacuum phase to water phase.

In the proposed super Gaussian dielectric model, the PB equation is modified as

− ∇ · (εsG∇u) + (1 − S)κ̄2 sinh(u) = Sρm, (16)

where we have similarly inserted the hypersurface function S(�r) for both the source
and nonlinear terms. Note that κ̄ is a constant, not a piecewise constant in our notation.
The switch off of the nonlinear term relies on (1− S), which has some impact numer-
ically (Zhao 2014). Similarly, the electrostatic potential u0 in vacuum is calculated by
neglecting the nonlinear term

− ∇ · (εsG∇u0) = Sρm, (17)

because κ̄ = 0 now. Of course, in this Poisson equation, we shall take εout = 1 for
defining εsG(�r) in (15). One can then compute the solvation free energy by (5).

In the super Gaussian model, the dielectric function εsG(�r) remainsC∞ continuous
in both water and vacuum states. This is illustrated by considering a two-atoms system
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in Fig. 3b, in whichm = 3, σ = 1.3, and εgap = 20. It can be observed that inside the
solute region, εsG(�r) is identical for both water and vacuum phases. Near the solute-
solvent boundary, the dielectric value produces a smooth bump, because εgap = 20
allows a large ε away from the center of the atom. Further away from atoms, the
hypersurface function S(�r) plays a dominant role so that ε decays to εout = 1 smoothly.
For a comparison, the dielectric functions εG(�r) and ε̃G(�r) of the Gaussian model,
for water and vacuum phase respectively, are depicted in Fig. 3c. In the water phase,
the maximal value of εG(�r) is determined by εs = 80, so that it is higher than that of
εsG(�r). In the vacuum phase, by conducting a surface cut at 20, ε̃G(�r) = εG(�r) inside
two atoms. Nevertheless, ε̃G(�r) is discontinuous at atom boundaries.

2.4 Effective dielectric constant analysis

In the proposed super Gaussian dielectric model, there are three adjustable param-
eters, i.e., the order m, the relative variance σ which determines the window width
of super Gaussian distribution, and εgap which controls the maximal dielectric value
of the solute. In this subsection, we will explore the impact of these parameters on
the final heterogeneous dielectric function ε(�r) and find certain means for selecting
suitable values of these parameters for real applications. We are also interested in a
comparison among three dielectric models, i.e., the classical two-dielectric function
(4), the Gaussian dielectric distribution (9), and the super Gaussian one (15), which
will be referred to as Model I, II, and III, respectively, in this subsection.

In principal, the solvation free energy calculation is an ideal means for validating
dielectric PB models and calibrating parameters. For example, the solvation energies
produced by the Gaussian dielectric model have been compared with experimental
results for some organic small molecules (Li et al. 2013b). For large macromolecules,
measurement of solvation energies is still an experimental challenge. Thus, to assess
the Gaussian dielectric model for proteins, explicit solvent molecular dynamics (MD)
simulations have been conducted to generate referencing solvation energies to compare
with the PB results (Li et al. 2013b). We note that MD simulations are usually time
consuming.

In this paper, we propose an effective dielectric constant (EDC) analysis as a simple
means to assess different dielectric models. Consider some simple systems with a few
atoms immersed in the water. We first generate the dielectric function ε(�r) by a model
over a certain domain �. We then define the effective dielectric constant as

ε̂ =
∫
�

ε(�r)d�r∫
�
d�r , (18)

which measures, in an average sense, the resistance encountered when forming an
electric field in this solute-solvent system. The EDC can be calculated either analyt-
ically or numerically, and enables us to investigate the role of each parameter in the
super Gaussian distribution.

To select suitable parameter values, we will benchmark the EDC of the super
Gaussian model against that of the two-dielectric model, and report the relative dif-
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ference between them in our studies. Note that this does not mean that we treat the
two-dielectric PB model as the “correct” model to compare with. In fact, the original
purpose of Gaussian type models is to improve the two-dielectric PB model. How-
ever, in practice, the two-dielectric function is still the most widely used setting for
the PB equation. It thus makes sense that a new dielectric model should not deviate
from the two-dielectric model too much. With the EDC analysis, we can ensure the
super Gaussian model agrees with the two-dielectric model in a mean field sense. This
could potentially persuade more biologists to use the new model, because more free-
dom is available now for modeling purpose. However, we also note that with similar
EDC values, the electrostatic solvation energies produced by the two-dielectric and
the super Gaussian models could still be significantly different.

In the super Gaussian model, the minimal molecular surface (MMS) is calculated
by using the fast algorithm developed in Tian and Zhao (2014). Through the EDC anal-
ysis, we will choose the relative variance for the Gaussian dielectric model around
the value 1, namely, σ ∈ {0.8, 0.9, . . . , 1.3}. When we upgrade the density func-
tion from Gaussian to super-Gaussian, the corresponding relative variance will be
changed and depends on the choice of m ∈ {1, 2, . . . , 8}. Finally, as we consider the
super-Gaussian dielectricmodel (εsG ) for the inhomogeneousmacromolecule interior,
we need to decide the preference of εgap ∈ {2, 4, . . . , 8, 10, 20, 40, 80} for different
solute-solvent system. This selection depends on the cavity inside the solute. In the
two-dielectric model, the solvent excluded surface (SES) is chosen as the molecu-
lar surface defining the solute-solvent boundary, and will be calculated by using the
MSMS package (Sanner et al. 1996). We refer to Bates et al. (2008) for a detailed
comparison between MMS and MSMS.

2.4.1 Effective dielectric constant analysis with one atom

We first conduct the effective dielectric constant (EDC) analysis for a single atom
solute-solvent system in the water phase. Consider a sphere with radius R0 = 2Å and
center at the original. A large enough domain � = [−a, a]3 is chosen with a = 8Å.
See Fig. 1a for an illustration. By taking εs = 80 and εm = 1, three dielectric models
are studied in this paper. By comparing the EDCs of three models, we can find the
optimal values of parameter σ and m for the one atom system.

Model I: In the two-dielectric model, ε2(�r) is defined as a piecewise constant as in
Eq. (4). The EDC can be calculated analytically in this case

ε̂2 =
∫
�

ε2d�r∫
�
d�r = εs(2a)3 − (εs − εm)( 43πR3

0)

(2a)3
= 79.3537. (19)

Model II: In the Gaussian dielectric model, εG(�r) is calculated by (9). The EDC
ε̂G for εG is calculated through numerical integration:

ε̂G =
∫
�

εGd�r∫
�
d�r =

∫
�
[εmg0 + εs(1 − g0)]d�r

(2a)3
, (20)
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Fig. 4 Comparison of effective dielectric constant of Gaussian dielectric model with different σ

where g0 is given by the equation (8), and ε̂G only depends on the relative variance
σ . By taking σ = {0.8, 0.9, 1.0, 1.1, 1.2, 1.3}, the EDC results are reported in Fig. 4.
It can be seen from Fig. 4a that out of the six discrete numbers being considered,
σ = 0.9 obviously provides the best fit to ε̂2. This is in excellent agreement with
the existing study, in which the optimal value obtained through molecular dynamics
simulations is σ = 0.93 (Chakravorty et al. 2018a). The slice plot of εG(�r) is given in
Fig. 4b for several σ values. Physically, the relative variance controls the upper half
window-width of the function εG . As σ increases, the window becomes wider at the
upper half section of εG which belongs to the solvent region, while has less impact to
the bottom half section. Due to this broadening effect of σ , the EDC decreases as σ

increases, as can be seen in Fig. 4a.
Model III: For a comparison, we will also consider the super Gaussian function

for the one-atom system. Nevertheless, we note that with only one atom, there is no
cavity or gap region in the solute. Consequently, εgap is physically undefined in this
system. For this reason, we will not study the actual super Gaussian dielectric model.
Instead, in the Gaussian dielectric model (9), we simply replace g0(�r) by the super-
Gaussian density function gs0(�r) defined by Eq. (12). Let us denote the corresponding
dielectric model as εsG . This enables us to investigate the roles of the order m and
relative variance σ in the one-atom system. Numerical integration is carried out to
calculate the EDC similarly

ε̂sG =
∫
�

εsGd�r∫
�
d�r =

∫
�
[εmgs0 + εs(1 − gs0)]d�r

(2a)3
. (21)

We first vary σ without changing m. Similarly to the previous case, it is found that
ε̂sG decreases as σ increases for a fixed m, see Fig. 5a for the case m = 3. Moreover,
for a larger m, the optimal σ value becomes larger. For example, for m = 3, the
optimal σ value is larger than 1 now. Next, by fixing σ , the effect of changing m
is shown in Fig. 5b. It can be seen that the EDC increases quickly when m changes
from 1 to 2, achieves a maximum around m = 3 or m = 4, and then declines slowly.
Asymptotically, for σ = 1, the EDC of the super Gaussian density should approach to
that of the two-dielectric model asm → ∞, i.e., limm→∞ εsG = ε2. This confirms that
the super Gaussian dielectric function approaches to the two-dielectric function when
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Fig. 5 a The EDC of the super-Gaussian density function with power m = 3, b the EDC for σ = 1.0 and
σ = 1.1, c–e Comparison of area differences between the compensated dielectric curves εsG (�r)− ε2(�r) for
σ = 1.0, 1.1, 1.2 and m = 1, 2, 3

m goes to infinity. For σ = 1.1, the EDC curve is simply a shift of that of σ = 1.0
downwardly with the optimal orders being m = 3 or m = 4. For the other σ values,
we have seen the same pattern that the EDC values for m > 4 are quite close to those
of m = 3 or m = 4. Thus, in our numerical computations, we usually choose m = 3
or m = 4 with an optimized σ .

Since the EDC values change significantly for 1 ≤ m ≤ 3, it is interesting to further
compare the difference among them from a different perspective. In Fig. 5c–e, we plot
the compensated dielectric curves, i.e., εsG(�r) − ε2(�r), over the cross section plane
y = 0. As can be seen from these figures, the compensated curves are positive inside
the atom, because εsG ≥ 1 and ε2 = 1. Right outside the atom boundary, ε2 becomes
80, so that the compensated curves immediately drops to negative numbers. As the
radius keeps increasing, εsG approaches 80 so that the compensated curves vanish at
both ends. We note that due to the symmetry of this system, the net area obtained by
integrating each compensated curve in such a two-dimensional (2D) setup essentially
captures the volume difference between the EDC values for the super Gaussian and
two-dielectric models. For each σ , whenm becomes larger, the areas for both positive
and negative regions shrink significantly. This is essentially why the EDC lines change
dramatically for 1 ≤ m ≤ 3 in Fig. 5b. Comparing with the different σ values, it seems
that σ = 1.1 produces more balanced net areas.
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Fig. 6 a The solvent excluded surface (SES) generated by the MSMS package for D=4, 4.5,…, 7Å. b The
minimal molecular surface (MMS) for D=4, 4.5,…, 7Å

2.4.2 Effective dielectric constant analysis with four atoms

We next study a four-atom system immersed in water so that a cavity region can be
formed. This enables us to explore the role of εgap in the super Gaussian model for
the water phase. To this end, consider a regular tetrahedron with all sides having the
same length D. Four atoms are defined by using the vertices of the tetrahedron as
centers and with a radius 2Å. By fixing the center of this tetrahedron as the origin
of the coordinate, we will vary D from 4 to 7Å. The illustrations of four atoms with
D = 4Å and D = 7Å are shown in Figs. 7a, 8a, respectively. A large enough domain
� = [−a, a]3 is chosen with a = 11Å. By taking εs = 80 and εm = 1, the effective
dielectric constant (EDC) in Eq. (18) is computed via numerical integration in all
cases.

For theGaussian dielectricmodel (9), εG(�r) in thewater phase ismainly determined
by the positions and the radii of four atoms. For the two-dielectric model (4) and super
Gaussian model (15), the dielectric function is greatly influenced by the underlying
molecular surfaces. In particular, in the two-dielectric model, ε2(�r) = 1 inside the
solvent excluded surface (SES) and ε2(�r) = 80 outside. The SES is generated by
the MSMS package (Sanner et al. 1996) in the present study, see Fig. 6 for MSMS
with different D values. It is seen that the solute domain initially becomes larger as
D increases. However, as D keeps increasing, the reentry region in between the four
atoms becomes smaller and smaller. Self-intersecting singularities are developed for
D = 6Å and D = 6.5Å. When D = 7Å, the system becomes four isolated balls,
because with a probe radius 1.5, the probe sphere can freely pass the gaps between
atoms. For the super Gaussian model, εsG(�r) is calculated based on the hypersurface
function S(�r) of the minimal molecular surface (MMS) (Tian and Zhao 2014). For a
comparison, the MMS iso-surfaces with S = 0.9 at different D values are also shown
in Fig. 6.A similar pattern as in theMSMScan be seen, i.e., the solute domain increases
initially and then shrinks as D increases. Nevertheless, the MMS gives isolated atoms
at an earlier D value, and never runs into geometrical singularities (Bates et al. 2008).

We first study the super Gaussian model with fixed D and εgap values. Since the
hypersurface function S(�r) plays an additional role in calculating dielectric distri-
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Fig. 7 a Four-atom system in water solvent, where each atom-center is placed at the vertex of a regular
tetrahedron of side D = 4Å. b Effective Dielectric Constant ε̂sG for different m and σ with εgap = 2

butions, the optimal m and σ results could be different from those of the one-atom
system, because our previous study did not involve S(�r). We consider two extreme
cases, D = 4Å and D = 7Å, for studying m and σ .

With D = 4Åand atomic radius 2Å, four balls are touching each other, leaving little
space in between them.We thus fix εgap = 2 in this scenario, and calculate the effective
dielectric constant (EDC) ε̂sG for σ ∈ {0.9, 1.0, . . . , 1.3} and m = 1, 2, . . . , 8, see
Fig. 7b. As we have discussed for the one atom case before, with the increment of
σ , the upper window part of super Gaussian function becomes wider and it reduces
the EDC. We observe the same behavior in the 4-atom system too. Also, higher m
values broaden the lower window-width too and it decreases the EDC ε̂sG of the
super-Gaussian dielectric model as well. As we record the EDC, we observe very
small variations in ε̂sG for different σ and m values, i.e., 78.626 < ε̂sG < 78.634.
This insensitiveness indicates that the dielectric distribution is essentially dominated
by the MMS hypersurface function S(�r) and εgap = 2 for the current case with no
cavities. In particular, the choice of εgap = 2 does not let the dielectric distribution εsG
bump up inside the small room in between four atoms, see Fig. 7a. From the parameter
selection point of view, we will still suggest to use m = 3 or m = 4, while any choice
of σ does not make much difference for D = 4Å.

When D = 7Å, a probe with radius 1.5Å can freely access the interior of the four
atoms. Both MSMS and MMS give isolated spheres in Fig. 6. Physically, the internal
region should be treated as solvent. Thus we take εgap = 80 in the super Gaussian
model, and calculate the EDC ε̂sG for σ ∈ {0.9, 1.0, . . . , 1.3} and m = 1, 2, . . . , 8.
As can be shown in Fig. 8b, ε̂sG is also decaying when m or σ is large. But the range
of EDC values is quite large now, i.e., from 78.3666 to 79.3623, due to εgap = 80. For
a comparison, we consider the two-dielectric model whose EDC value for the present
setting is calculated as ε̂2 = 79.0171. If we choose σ = 1.0, it can be seen that ε̂sG
could approach ε̂2 whenm → ∞. Again, this justifies our theory that the two-dielectric
model is a limiting case of the proposed super Gaussian model as m goes to infinity.
For practical computations, a finite m shall be used. For the parameter combinations
shown in Fig. 8b, ε̂sG produces a good approximation to ε̂2 when (σ,m) = (1.2, 1),
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Fig. 8 a Four-atom system in water solvent, where each atom-center is placed at the vertex of a regular
tetrahedron of side D = 7Å. b Effective Dielectric Constant ε̂sG for different m and σ with εgap = 80. c
Cross-section of εsG for the model 8(a) which contains only two atoms

Fig. 9 Comparison of EDC curves for ε̂sG (super Gaussian model based on MMS), ε̂2 (two-dielectric
model based on MSMS) and ε̂G (Gaussian model)

(1.1, 2) or (1.1, 3). Nevertheless, for m = 1, the dielectric function actually does not
reach 80 in the interior region, see Fig. 8c. Instead, associated with σ = 1.1, m = 2
or 3 would be a better choice.

Next, we study the super Gaussian model with varying D and εgap values. As
shown in the previous studies, with the presence of the hypersurface function S(�r),
the changes of m and σ do not alter the EDC ε̂sG too much, especially for compactly
packed regions. Hence, we will simply fix σ = 1.1 andm = 3 in the following, which
are optimal values for D = 7Å. By considering εgap = {2, 20, 40, 60, 80}, the EDC
curves of ε̂sG with respect to D are depicted in Fig. 9. For a comparison, the EDC
results of the two-dielectric and Gaussian models are also shown in Fig. 9. Here the
Gaussian results are generated with the optimal σ = 0.9.

Model I: In the two dielectric model, we have ε2 = 1 within the four atoms and
inside theMSMS surface in between the atoms, and ε2 = 80 otherwise. The EDC ε̂2 is
actually determined by the total volume of the solute domain. Therefore, the change of
ε̂2 in Fig. 9 can be related to the volume change in Fig. 6a. In particular, as D increases
from 4 to 5Å, ε̂2 becomes smaller initially and achieves a minimum around D = 5Å.
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Fig. 10 Gaussian dielectric model εG with σ = 0.9 for 4-atom cross section which consists of two atoms
only. D varies from 4 to 7Å

This is because the volume of solute domain becomes larger in this period. Note that
the volume increment is simply because the dimension of the system is larger, while
the torus surface actually becomes thinner and thinner. Thus, the volume becomes
smaller later, despite of the further increment of the dimension D. Consequently, ε̂2
bounces up, and reaches a constant level for D = 6.5Å and D = 7Å, for which the
volumes are almost the same.

Model II: In the Gaussian model, the dielectric function εG defined in (9) only
depends on the position and radii of the atoms, and there is nomolecular surface behind
it. Thus, as one can see in Fig. 9, when D increases, the EDC ε̂G is monotonically
and slowly decreasing. To gain an in-depth understanding, we plot εG along a line
passing two atom centers, see Fig.10. With fixed radii, the Gaussian distributions for
two atoms are unchanged as D increases. Hence, the increment of D only affects the
dielectric value in between two atoms, which is higher and higher. This is why the
EDC ε̂G behaves monotonically. For a very large D value, the Gaussian distribution
is very close to the one for the one-atom system, for which σ = 0.9 is known to be
the optimal value. Consequently, for D = 6.5Å and D = 7Å, ε̂G is quite close to ε̂2.

Model III: The EDC ε̂sG of the super Gaussian model displays a similar pattern as
ε̂2 of the two-dielectric model for most εgap values except the limiting case εgap = 80.
However, the pattern of ε̂sG is not solely determined by the volume inside the MMS
isosurface, because εsG is a function of space—changing in between the minimal
value εm = 1 and the maximal value εgap inside the solute domain. As Fig. 6b
shows that the MMS generated isosurfaces are connected for D = 4, 4.5 and 5 (in
Å). Then from D = 5.5Å, the surfaces are disconnected and the four atoms are
just isolated balls. Due to this topological change in the 4-atom system, there is a
significant change in ε̂sG from D = 5Åto D = 5.5Å. Before 5.5Å, as D increases
from 4 to 5Å, the volume of solute domain enclosed by theMMS isosurface increases,
while the connecting surfaces along the edges of the tetrahedron shrink inward. This
volume increment induces the decrement of ε̂sG . It is interesting to note that ε̂sG keeps
decreasing from D = 5Åto D = 5.5Å. This does not necessarily mean the isolated
balls at D = 5.5Åhave larger volumes than the connected MMS region at D = 5Å.

123



A super-Gaussian Poisson–Boltzmann model for electrostatic… 651

In fact, the volume at D = 5.5Åis still large, because four balls are much fatter than
those for a bigger D value. Moreover, with a fat enough ball, εsG has the potential
to approximately reach its maximum, i.e. εgap. The combining effect of volume and
εsG distribution determines the minimum of ε̂sG in Fig. 9 for most εgap values. As D
becomes even bigger, the radii of MMS balls decreases so that ε̂sG becomes larger.
Also, for all εgap values, the EDC ε̂sG is almost the same for both D = 6.5Åand
D = 7Å. For the limiting case εgap = 80, it turns out that particular MMS shape does
not affect ε̂sG , because εgap = εs = 80. Basically, ε̂sG just takes two values, one for
a connected region and another for isolated balls.

In comparison of the EDC results of three models, we found that the Gaussian
model is significantly different from the other two, because it is a surface free model.
Two-dielectric and superGaussianmodels share similar physics: the volume of solvent
accessible region is determined by the size of the cavity in a convex manner, so that
the dependence of the EDC on the cavity size is concave. Moreover, besides the MMS
hypersurface function S(�r), the εsG is also affected by the adjustable parameters m,
σ , and εgap. If one changesm or σ , the EDC lines of ε̂sG in Fig. 9 will be shifted up or
down, and the concave feature shall be the same. If one wishes to match ε̂sG with ε̂2,
Fig. 9 suggests that a larger εgap should be employed for a larger D. In other words,
the optimal εgap depends on the size of the cavity.

2.4.3 Effective dielectric constant analysis in both water and vacuum phases

In our last EDC analysis, we consider both water and vacuum states in the solvent
region. As we know, the electrostatic solvation free energy is calculated as the energy
difference of the macromolecule in between the water and vacuum. Physically, the
homogeneous or inhomogeneous dielectric distribution of the protein should remain
unchanged in both states so that the energy difference makes sense. Consequently, the
difference of ε(�r) should not depend on a particular dielectric model for the solute,
but relates to the solvent domain and property.

For the following experiments, we calculate the EDC values in both water and
vacuum phases. For this purpose, we need to explicitly specify the dependence of
ε on the solvent dielectric constant for the three models. In both two-dielectric and
Gaussian models, we thus have ε2(�r , εs) and εG(�r , εs), respectively, while the super
Gaussian model takes the form εsG(�r , εout ). The EDC difference is defined as


ε̂ =
∫
�

[
ε(�r , 80) − ε(�r , 1)

]
d�r

∫
�
d�r =

∫
�

ε(�r , 80)d�r∫
�
d�r −

∫
�

ε(�r , 1)d�r∫
�
d�r , (22)

where ε ∈ {ε2, εG , εsG}. We note that because one solves different PDEs, i.e., the PB
equation inwater phase and the Poisson equation in vacuum phase, the EDC difference
may not have directly influence the electrostatic solvation free energy. Nevertheless,

ε̂ is still a useful quantity for investigating different dielectric models.

In Fig. 11, illustrations of three models in both states are depicted. For the two-
dielectric model, ε2(�r , 80) is discontinuous, while ε2(�r , 1) is continuous because
εm = 1 in the present study. If εm > 1, ε2(�r , 1) is discontinuous too in the vac-
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Fig. 11 Dielectric models a ε2: discontinuous in water phase and continuous in vacuum phase, b εG :
continuous in water phase and discontinuous in vacuum phase (“surface-cut”), c εsG : continuous in both
water and vacuum states

uum. For the Gaussian dielectric model, εG(�r , 80) is continuous in the water phase,
but it is discontinuous in the vacuum phase, due to a surface-cut. In the proposed
super Gaussian model, both εsG(�r , 80) and εsG(�r , 1) are continuous, respectively, in
the water and vacuum states. Another thing that can be observed in Fig. 11 is that
inhomogeneous solute dielectric models will impact solvent region nearby. In particu-
lar, for the Gaussian model, the dielectric values near the protein are influenced by the
parameter σ in the water phase. In the super Gaussian model, such values are affected
by both m and σ for both water and vacuum phases.

We will consider the same four atom system of the previous study. For simplicity,
we test only one case with D = 7Åfor computing 
ε̂.

Model I: In the two-dielectric model, the molecular surface is generated by the
MSMS package. Since ε2(�r , 1) = 1 throughout the domain �, we have simply


ε̂2 =
∫
�

[
ε2(�r , 80) − 1

]
d�r

∫
�
d�r =

∫
�

ε2(�r , 80)d�r∫
�
d�r − 1 = ε̂2 − 1. (23)

For D = 7Å, we have 
ε̂2 = 78.0171 numerically, which is exactly one unit less
than the EDC ε̂2 studied in the previous study.

Model II: For the Gaussian model, we consider several σ values, i.e., σ =
0.7, . . . , 1.3. According to (22), the EDC difference could be calculated by consider-
ing the water and vacuum phases separately. In the water phase, based on εG(�r) given
in (9), the EDC value is within (77.13635, 79.54655). In the vacuum phase, when
εG(�r) exceeds 20, a surface-cut is conducted to set dielectric constant as zero (Li et al.
2013b), see Fig. 11b. The EDC for the vacuum case is within (1.00738, 1.04756). By
taking the difference, 
ε̂G is within the range of (76.08879, 78.53918). Moreover,

ε̂G depends on σ significantly, see Fig.12b. In the same figure, 
ε̂2 = 78.0171
is shown as a constant line. From the parameter selection point of view, this figure
shows again σ = 0.9 is an optimal value for the Gaussian model. This is because with
D = 7Å, four atoms are completely separated, so that the present result is consis-
tent with a single atom study. However, from a different perspective, the dependence
of 
ε̂G on σ indicates that the Gaussian model negatively impacts on the dielectric
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Fig. 12 a EDC difference 
ε̂sG for different m ∈ {1, 2, . . . , 8} and σ ∈ {0.7, 0.8, . . . , 1.3}, b 
ε̂G for
different σ and 
ε̂2. In both the cases, D = 7Å

value in the solvent region. The inhomogeneous model here is designed for the protein
and should be confined within the solute. Unfortunately, this is not the case for the
Gaussian model.

Model III: In the super Gaussian model, we also fix εgap = 80 for D = 7Å. Dif-
ferent parameter values are tested for m ∈ {1, 2, . . . , 8} and σ ∈ {0.7, 0.8, . . . , 1.3}.
By taking εout = 80 in the water and εout = 1 in the vacuum, we note that in Eq. (15),
S(�r)εin(�r) is simply canceled out when computing the EDC difference:


ε̂sG =
∫
�

[
εsG(�r , 80) − εsG(�r , 1)

]
d�r

∫
�
d�r =

∫
�
79

[
1 − S(�r)

]
d�r

∫
�
d�r . (24)

This is confirmed numerically. In Fig. 12a, 
ε̂sG is plotted against σ for different m
values. The vertical values change from 77.2054392274750 to 77.2054392279961, for
which the difference takes place at the tenth decimal place. Thus, the EDC difference
is solely dominated by the MMS hypersurface function S(�r). With S(�r), the impact of
the super Gaussian model is confined within the solute, as shown by the present EDC
analysis.

Both the two-dielectric and the super Gaussian models yield a constant
ε̂. But this
does not mean that the change of parameter values will have no impact on electrostatic
solvation free energy in the super Gaussian model. For example, a different choice
of (m, σ ) pair will produce a different “bump” in the vacuum case in Fig. 11c. Such a
bump near solute-solvent boundary is driven by a combined mechanism: away from
atom centers εin becomes larger, while away from the protein, it will damp out ε to one.
Because εin depends on (m, σ ), the height and width of the bump depend on (m, σ )

too. Moreover, since different PDEs will be solved in water and vacuum phases, the
electrostatic solvation free energy will rely on (m, σ ) in practice.
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2.4.4 Discussions

In this subsection, we have carried out an effective dielectric constant (EDC) analysis
for three cases, which helps us to understand the role of each parameter, including m,
σ , and εgap, in the super Gaussian dielectric function εsG(�r). For the EDC difference
studied in the third case, it is independent of these parameters, and just relies on the
MMS hypersurface function S(�r). For the first case without involving S(�r), the impact
of m and σ on the EDC ε̂sG has been identified. A comprehensive EDC analysis has
been conducted for the second case, which tells us more about parameters. Basically,
with a fixed εgap , optimalm and σ can be established.Moreover, due to the influence of
S(�r), the super Gaussian model behaves robustly with respect tom and σ , in the sense
that the EDC will not change too much for different m and σ values. Furthermore,
our analysis indicates that εgap, which determines the maximum of εsG(�r) inside the
solute, should be larger when the size or volume of the cavity increases. For proteins
without cavities, we usually recommend a small value, such as εgap = 2, which does
not deviate too much from εm = 1 of the two-dielectric model. On the other hand, the
selection of εgap for proteins with cavities is not an easy task in practical computations.
In our opinion, physical considerations have to be taken into account, so that the super
Gaussian PB model can capture as many atomic details as possible in the continuum
electrostatics modeling.

For proteins containing cavities and channels, one critical issue on selecting εgap
is whether a cavity is empty or filled with water molecules. Trapped water molecules
tend to interact with the protein via either hydrogen bonds or Van der Walls forces. As
a consequence of these interactions, the water molecules are considered to lose their
flexibility. Thus, the cavitywater could have a smaller dielectric constant in comparison
to the bulk water, but it is still larger than that of the amino acids. Moreover, the size or
volume of the cavity is also important. Depending on the cavity size, confined water
molecules exhibit a different ability to reorient in response to the local electrostatic
fieldwhich affects their rotational polarizability. This further alters the dielectric value.
Furthermore, the situation becomes more complicated in the ion channel modeling, in
which the Poisson equation is used to calculate the force encountered by permanent
ions. In this scenario, besides dielectric values for the protein and bulky water, one
also needs to specify ε for water in the pore even in classical models. Physically,
the dielectric value in the ion-channel shall be higher than that in regular cavities,
owing to the mobility of ions. Therefore, the optimal εgap has to be determined based
on a particular macromolecule, and varies for different systems. Ideally, in-depth
physical investigationor biological simulation shall be carried out for selecting aproper
dielectric value for cavities and pores. For instance, Brownian dynamics simulations
have been conducted in Ng et al. (2008) to decide ε values for protein channels to be
used in solving the PB equation.

3 Numerical algorithms

In this section, we discuss how to discretize the PB equation (16) and Poisson equation
(17) in the proposed super Gaussian model. In solving the two-dielectric PB equation
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(1), special interface treatments (Zhou et al. 2006;Chen et al. 2011;Qiao et al. 2006) are
required for high order spatial discretizations, in order to handle the non-smoothness
of the solution across the dielectric interface. Such a difficulty is simply bypassed in
the smooth PB equation (16), because the solution now is C∞ continuous throughout
the domain. However, the nonlinearity term (1 − S)κ̄2 sinh(u) in (16) introduces
additional challenges numerically. In particular, near the solute-solution boundaries,
the MMS characteristic function S is changing from one for solute to zero for solvent
(see Fig. 3a for an illustration). Thus (1 − S) is not completely zero at some places
for which the two-dielectric model will treat them as solute domain. If such a place
happens to be close to an atom center, the magnitude of the potential u is not small
then. Consequently, sinh(u) will be exponentially large. Even though (1 − S) is very
close to zero, sinh(u) could still be dominant in many cases. This yields the so-called
nonlinear instability,which has been observed in other smoothPBmodels before (Zhao
2011, 2014). In present study, we will employ the analytical treatment introduced in
Zhao (2014), Geng and Zhao (2013) to overcome the nonlinear instability within a
pseudo-time framework.

Consider a uniform mesh in both space and time. Without the loss of generality,
we assume the grid spacing h in all x , y, and z directions to be the same. Denote the
time increment as 
t . For a function u at a grid point (xi , y j , zk) and time instant tn ,
we denote uni, j,k = u(xi , y j , zk, tn).

3.1 Pseudo-time solution of the Poisson–Boltzmann equation

In the pseudo-time approach, a pseudo-time derivativewill be added to the PB equation
(Zhao 2011). Consequently, (16) becomes a time dependent PB equation

∂u

∂t
= ∇ · (εsG∇u) − (1 − S)κ̄2 sinh(u) + Sρm, in �, (25)

with the same boundary condition (3). By using a trivial initial value u = 0, one
numerically integrates (25) for a sufficiently long time period to stable state. The
solution to the original nonlinear PB equation (16) is essentially recovered by the
steady state solution of the pseudo-time dependent process (25).

A first order time splitting scheme (Zhao 2014; Geng and Zhao 2013) will be
employed for solving (25). The time stepping of (25) over the time interval [tn, tn+1]
can be carried out in two stages

∂w

∂t
= −(1 − S)κ̄2 sinh(w), with wn = un (26)

∂v

∂t
= ∇ · (εsG∇v) + Sρm, with vn = wn+1 (27)

We then set un+1 = vn+1. The numerical solution un+1 differs from the direct
solution of (25) by an error on the order one, i.e., O(
t). A second order time splitting
has also been developed inZhao (2014),Geng andZhao (2013), by dividing the process
into three stages.
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The nonlinear sub-system (26) is integrated analytically. For the region inside VdW
balls with S(�r) = 1, we do not need to solve this equation. We will just simply set
wn+1 = wn . When S(�r) < 1, the nonlinear term is calculated as (Zhao 2014)

wn+1 = ln
[cosh( 12 (1 − S)κ̄2
t) + exp(−wn) sinh( 12 (1 − S)κ̄2
t)

exp(−wn) cosh( 12 (1 − S)κ̄2
t) + sinh( 12 (1 − S)κ̄2
t)

]
. (28)

In theMMSgeneration, we have carefully filtered the results from the fast algorithm
(Tian and Zhao 2014), so that the hypersurface function is strictly between 0 and 1,
i.e., S ∈ [0, 1]. Together with (28), this guarantees that the present PB algorithm is
free of nonlinear instability.

3.2 Alternating direction implicit (ADI) scheme

ADouglas–Rachford type alternating direction implicit (ADI) scheme will be applied
to solve the linear diffusion equation (27). To this end, an implicit Euler spatial-
temporal discretization of (27) is formulated first

vn+1
i, j,k = vni, j,k + 
t(δ2x + δ2y + δ2z )v

n+1
i, j,k + 
t Si, j,k Qi, j,k (29)

where Qi, j,k is the fractional charge at grid point (xi , y j , zk), which is obtained by
using the trilinear interpolation to distribute all charges in the charge density ρm . Here
δ2x , δ

2
y and δ2z are the central difference operators along x ,y and z directions respectively,

δ2xv
n
i, j,k = 1

h2

(
ε(xi+1/2, y j , zk)(v

n
i+1, j,k − vni, j,k) + ε(xi−1/2, y j , zk)(v

n
i−1, j,k − vni, j,k)

)

δ2yv
n
i, j,k = 1

h2

(
ε(xi , y j+1/2, zk)(v

n
i, j+1,k − vni, j,k) + ε(xi , y j−1/2, zk)(v

n
i, j−1,k − vni, j,k)

)

δ2z v
n
i, j,k = 1

h2

(
ε(xi , y j , zk+1/2)(v

n
i, j,k+1 − vni, j,k) + ε(xi , y j , zk−1/2)(v

n
i, j,k−1 − vni, j,k)

)

where we have dropped the subscript sG in the ε function for simplicity. In these finite
difference discretizations, the dielectric function is needed on half grid nodes, such as
ε(xi+1/2, y j , zk). Because the MMS hypersurface function is obtained numerically,
we only know S function on grid nodes, i.e., Si, j,k = S(xi , y j , zk). In the present,
we will first generate εsG on (xi , y j , zk) grid nodes. Then a linear interpolation at
(xi , y j , zk) and (xi+1, y j , zk) is conducted for determining ε(xi+1/2, y j , zk).

In the ADI scheme, instead of solving a three-dimensional (3D) linear system, (29)
is solved in x , y, and z directions alternatively

(1 − 
tδ2x )v
∗
i, j,k = [1 + 
t(δ2y + δ2z )]vni, j,k + 
t Si, j,k Qi, j,k

(1 − 
tδ2y)v
∗∗
i, j,k = v∗

i, j,k − 
tδ2yv
n
i, j,k

(1 − 
tδ2z )v
n+1
i, j,k = v∗∗

i, j,k − 
tδ2z v
n
i, j,k (30)
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By eliminating the intermediate solutions v∗ and v∗∗, one can show that the Douglas–
Rachford ADI Scheme (30) is a higher order perturbation of the implicit Euler scheme
(29) (Zhao 2014). The overall temporal order is one, because both the time splitting
and ADI schemes are first order accurate in time. For smooth solutions, the finite
difference discretization has order two in space.Moreover, since only one-dimensional
(1D) linear systems shall be solved in each stage of the ADI scheme (30) and such
1D systems are tridiagonal, the algebraic computation is very efficient based on the
Thomas algorithm. The complexity of each time step is on the order of O(N ), where
N is the degree of freedom in all of x , y, and z directions.

We note that the same ADI scheme has been previously applied to solve the PB
equation in a two-dielectric setting with a sharp interface (Geng and Zhao 2013) and in
a coupled system (Zhao 2014), in which the MMS hypersurface S(x, y, z) is evolved
in time as well. However, such an ADI scheme is conditionally stable for real proteins,
even though the scheme is fully implicit. As to be illustrated in our numerical studies,
with a C∞ dielectric setting, the ADI scheme now becomes unconditionally stable in
protein studies.

3.3 Poisson equation in the vacuum phase

For the vacuum phase, εsG is calculated by (15) with εout = 1. With inhomogeneous
dielectric values inside the protein, the Poisson equation (17) cannot be solved by the
fast Poisson solver as in the two-dielectric PB model. Instead of solving the Poisson
equation (17) as a boundary value problem,wewill solve it via a pseudo-time approach
too. This is motivated by the fact that there is usually a systematic error cancellation,
when one applies the same algorithm for solving the PB equation in water phase and
the Poisson equation in vacuum phase (Deng et al. 2018). Thus, we rewrite the Poisson
equation (17) in the vacuum phase into a time dependent one

∂u0
∂t

= ∇ · (εsG∇u0) + Sρm, in �. (31)

Then, the ADI discretization of (31) is exactly the same as that for Eq. (27).
However, we note that the convergence of the pseudo-time algorithm ismuch slower

in the Poisson case in comparing with the PB case. This is probably because of the
boundary condition (3). In the PB case, there is an exponential term in (3), which
decays exponentially away from the protein. For the Poisson case, such decay is slow,
because κ̄ = 0 in (3) for the vacuum. Consequently, for the same domain size, the
boundary data in the vacuum case is actually larger than that in the PB case. Hence,
for the super-Gaussian studies with initial potential values being zero, the CPU time
for solving the time dependent Poisson equation (31) is usually much larger than that
for the time dependent PB equation (25).
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3.4 Electrostatic free energy

After solving the time dependent PB and Poisson equations until the steady state,
we denote the convergent solution, respectively, to be u(xi , y j , zk) and u0(xi , y j , zk),
where (xi , y j , zk) is a grid node. To calculate the electrostatic free energy defined in
(5), we first note that this definition is valid in super Gaussian model too, i.e.,


G = 1

2

∫

�

ρm(u(�r) − u0(�r))d�r = 1

2

∫

�

Sρm(u(�r) − u0(�r))d�r . (32)

This is because the charge density ρm is nonzero only inside the VDW atoms, for
which S always equals to one. In the present study, the electrostatic free energy is
calculated based on grid node values


G = 1

2

∑

i

∑

j

∑

k

Qi, j,k(u(xi , y j , zk) − u0(xi , y j , zk)), (33)

where the summation is conducted for all (i, j, k) nodes for which Qi, j,k is nonzero,
i.e., surrounding the singular charges in ρm . Moreover, electrostatic potentials u and
u0 are usually rescaled by a constant 0.592183 corresponding to room temperature
(298K) so that they are in units of kcal/mol/ec.

4 Numerical validations

In this section, we will solve the PB equation on a sphere, for which an analytical solu-
tion of electrostatic free energy is available in a two-dielectric setting. This enables us
to validate the proposed super Gaussian dielectric model and select model parameters,
by an approach different from the EDC analysis. Numerically, we will also verify the
convergence and stability of the pseudo-time ADI method.

4.1 Benchmark problem

Consider a single charge q at the center of a sphere with radius r0. Here we take
q = 1ec and r0 = 2Å, and assume the center being the origin of our coordinate
system. An analytical solution of electrostatic free energy 
G is admissible if we
assume a two-dielectric setting: ε = εm inside the sphere and ε = εs outside. By
taking εm = 1 and εs = 80, we have


G = −q2

2

(
1

εm
− 1

εs

)
1

r0
e2c/Å

= −q2

2

(
1

εm
− 1

εs

)
1

r0
× 332.06364 kCal/mol

= −81.9782 kCal/mol (34)
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Fig. 13 Solvation free energy (in KCal/mol) for σ ∈ {0.9, 1.0, . . . , 1.3} and m ∈ {1, 2, . . . , 8} with
h = 0.5Å

4.2 Modal validation and parameters

In the super Gaussian model, we take εout = 80 for the water phase. Then the ADI
method is employed for solving the pseudo-time PB equation (25). The computational
domain is taken as � = [−8, 8]3. On the boundary ∂�, the Dirichlet boundary con-
dition (3) is assumed in a single charge setup. By using a initial condition u = 0,
Eq. (25) will be numerically integrated until the steady state. Similarly, in the vacuum
state with εout = 1, the pseudo-time Poisson equation (31) will be solved by the
ADI method with the corresponding boundary condition. Then, the electrostatic free
energy can be computed by (33). Numerically, the same spacing is used in all three
directions h = 
x = 
y = 
z. We will take h = 0.5 as in most PB computations.

In the previous section, we have discussed about the choice of m, σ and εgap
through theEffectiveDielectricConstant (EDC) analysis. The availability of exact free
energy value for a sphere in a two-dielectric setting provides anothermeans to examine
these parameters. We note that with a different dielectric setting, our super Gaussian
results will not converge to the analytical value, which is based on a two-dielectric
setting. However, it makes sense to adjust parameters so that the new dielectric model
could produce energy values that are comparable to the two-dielectric model. This is
particularly convenient if one wants to use it to replace an existing two-dielectric PB
solver in a software package. For this reason, we will simply take εgap = 2, which
gives the least difference in comparing with εm = 1 within the sphere.

By considering m ∈ {1, 2, . . . , 8} and σ ∈ {0.9, 1.0, . . . , 1.3} for the super
Gaussian function εsG , the steady state energies are shown in Fig. 13. The exact
value −81.9782 kCal/mol is also shown for a reference. A few pairs of (m, σ )

are found to produce good approximations to the two dielectric model, i.e.,
(1.2, 5), (1.2, 6), (1.2, 7), (1.2, 8) and (1.3, 3). Among them, we will mainly focus
on m = 3 and σ = 1.3 in the following free energy calculations, to avoid using a
large m.
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Fig. 14 Pseudo-timeADI algorithm for one atom system. a Steady state convergence; bTemporal accuracy;
c Stability. The unit of solvation free energy is KCal/mol

4.3 Numerical convergence and stability

By fixing m = 3, σ = 1.3, and εgap = 2, we investigate the performance of the
pseudo-time ADI algorithm. By taking 
t = 0.01, we first examine the steady state
convergence. The time history given in Fig. 14a shows that
G is increasingmonoton-
ically before the steady state is reached. The stopping criterion issue of the pseudo-time
ADI algorithm has been discussed in Zhao (2014) for two-dielectric PB equation. The
same stopping criteria will be adopted in the present study. In parciular, the computa-
tion will stop if either t ≥ Te or the absolute energy difference in between two time
steps is less than a tolerance TOL. For the present inhomogeneous dielectric medium,
the steady state is reached fairly quick, around Te = 5, which is consistent with the
existing pseudo-time PB studies based on two-dielectric media (Zhao 2014; Geng and
Zhao 2013; Wilson and Zhao 2016). We will take Te = 10 and TOL=10−3 in the
following studies, unless specified otherwise.

We next examine the temporal accuracy of the ADI algorithm. With Te = 10, free
energies are generated by using different 
t , see Fig. 14b. Obviously, as 
t becomes
smaller and smaller, the free energy approaches certain limiting value. The vertical
range is actually quite small. In practice, 
t = 0.01 is enough to produce a reliable
energy estimate.

We finally examine the stability of the pseudo-time ADI algorithm. We note that
in a two-dielectric setting, this ADI algorithm does not achieve the unconditional
stability, even though it is fully implicit (Geng and Zhao 2013). In particular, to fulfill
the stability requirement, one has to choose 
t ≤ h2/20 in protein studies (Geng and
Zhao 2013). Because 
t is small, the resulting algorithm could be inefficient, when
Te is large. With the C∞ continuous ε function in both water and vacuum states, the
pseudo-time ADI algorithm is unconditionally stable in the super Gaussian model.
We demonstrate this by taking some large 
t values and conduct each computation
with 10, 000 time steps. As can be seen in Fig. 14c, the free energy value with a large

t could be slightly different. Nevertheless, the ADI algorithm remains stable for any
large 
t .
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5 Biological application

In this section, we further explore the performance of the superGaussian PBmodel and
ADI algorithm by studying free energies of protein systems.We first discuss how a real
protein is implemented in the super Gaussian model. Then, we test different parameter
values for a particular protein.With a reasonable choice of domain and parameters, we
study solvation free energies for a set of proteins. We finally consider a protein with
cavities to demonstrate how cavities can be represented via inhomogeneous dielectric
distributions. In all studies, a large enough computational domain � is assumed and a
uniform mesh with h = 
x = 
y = 
z = 0.5 is adopted.

5.1 Protein structure preparation and simulation setup

We have collected a set of proteins from the RCSB protein data bank (PDB). In this
collection, the proteins consist of at least 500 atoms. Usually, we download the PDB
format which is a standard representation for macromolecular structure data obtained
from X-ray diffraction or NMR studies. This format preserves the details of water
molecules, ions, nucleic acids, ligands etc. With the aid of the PDB2PQR program
from the APBS package, we extract three important data for each atom involved
in the protein, i.e., centers �ri = (xi , yi , zi ), radius Ri , and partial charge qi , for
i = 1, 2, . . . Nm . These data are stored in two files, one with extension .xyzr which
contains numerical values for �ri and Ri in four columns. Another file with extension
.xyzq contains numerical values for �ri and qi .

The density function of the super-Gaussian model defined in (11) and (12) depends
on the centers and radii of all atoms. It is time-consuming if one computes the density
of every atom by using the entire domain �. In fact, the density of the i th atom gsi (�r)
decays quickly away from its center �ri , so that one does not need to calculate this
function in the far field. By carefully examining the numerical truncation so that it

Fig. 15 Influence domain
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will not affect the subsequent computations, we have introduced an influence domain
for each atom, which is defined as a cubic box with dimension [−d, d]3 and centered
at �ri . See Fig.15 for an illustration. In particular, in our computations, we consider
maximum relative variance σ as 1.3. The influence domain dimension depends on
the radius Ri and the order of the super-Gaussian function m. An empirical function

is found to be satisfactory in our computations: d = 2Ri

(
1 + m

−m
2

)
, which takes its

maximum d = 4Ri at m = 1. As a monotonically decreasing function, d will be very

close to its asymptotic value lim
m→∞ 2Ri

(
1 + m

−m
2

)
= 2Ri when m is large. In other

words, for m = 1 (in Gaussian density function), the dimension of the influence cube
is four times of the atomic radius (Ri ) and as m → ∞, the cube’s dimension shrinks
down to double of the radius.

5.2 Solvation free energies of proteins

For studying our super Gaussian model on proteins, we first experiment the ADI
algorithm with εsG on a sample protein, say 1ajj (PDB id) for different m and σ .
Since 1ajj does not contain any cavity inside the molecular surface, we set εgap = 2.
The performance of the pseudo-time ADI with εsG is recorded in Fig. 16. Here we
considered 
t = 0.01 and Te = 30. The solvation free energy for 1ajj at different
(m, σ ) values ranges from [−1457.2,−1230.6]. For a fixed σ , the increment of m
from 1 to 3 gives rise to a higher energy, while the energy declines slowly as m is
even larger. Numerically, the energy difference between m = 3 and m > 3 is not
significant, which justifies our usual choice of m = 3. Nevertheless, the choice of
σ does have a strong impact on energies, as shown in Fig. 16. Without comparing
with results from other computational models, we will continue to use σ = 1.3 for
simplicity.

We next investigate the pseudo-time ADI algorithm by fixing m = 3, σ = 1.3 and
εgap = 2. We first consider the steady state convergence by using 
t = 0.01. The
time-lapse data is displayed in Fig. 17a. Here the stopping criteria of the numerical
computation are the same as those described in Sect. 4.3. The solvation free energy for
the protein 1ajj reaches the steady state after Te = 8. Next, for the temporal accuracy

Fig. 16 Solvation free energy (in KCal/mol) for protein 1ajj, m ∈ {1, 2, . . . , 8} and σ ∈ {0.9, 1.0, . . . , 1.3}
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Fig. 17 Pseudo-time ADI algorithm for the protein 1ajj. a Steady state convergence; b Temporal accuracy;
c Stability; d Spatial convergence. The unit of solvation free energy is KCal/mol

Table 1 Impact of domain-size to free energy computation for the protein 1ajj

Size of domain 
x 
t 
G in KCal/mol

[−9, 28] × [−13.5, 26] × [−19, 24] 0.5 0.01 − 1428.66

[−11, 30] × [−15.5, 28] × [−21, 26] 0.5 0.01 − 1428.49

[−13, 32] × [−17.5, 30] × [−23, 28] 0.5 0.01 − 1428.33

in protein 1ajj case, we consider Te = 30 and different time steps in Fig. 17b. As 
t
decreases the solvation free energy clearly approaches certain limiting value. We also
experiment the stability of the pseudo-time dependent ADI scheme with εsG for the
protein 1ajj. For this purpose, we take
t ∈ {0.1, 0.25, 0.5, 1, 2, 4, 8} and Te = 104
t
to validate stability in Fig. 17c. The result shows that the super-Gaussian ADI scheme
is unconditionally stable for the protein 1ajj case. At last, we examine the spatial
convergence in 17d for different h values. Again, the convergence is obvious under
the limit of h goes to zero. The limiting value is of course different from the one at
h = 0.5 as in other PB algorithms, but they are fairly close in the present study. So,
we follow the convention in this field to choose a coarse mesh with h = 0.5 to avoid
a large computational cost.

Another parameter which could affect the free energy calculations is the domain
size (Hage et al. 2018). We considered different domain sizes in Table 1, in which the
first one is generated automatically by our PB package. Apparently, the domain size
does not affect the solvation free energy calculation for the PBmodel with appropriate
boundary conditions. Here, a large enough Te = 30 is used so that the steady state
solutions are reached in all three tested domain sizes.

We next study a set of 23 proteins with the size (number of atoms) ranging from 519
to 2809. These proteins do not contain any cavity either. Therefore, we fix εgap = 2.
Regarding the (m, σ ) pair, we keep (3, 1.3) in εsG . The pseudo-time dependent ADI
experiment is conducted with 
t = 0.01 and Te = 10. The free energies calculated
by the super-Gaussian model are listed in Table 2. For a reference, we also show
two literature results, i.e., the pseudo-time coupled nonlinear solvation (CNS) model
(Zhao 2014) with 
t = h2

18 and h = 0.5Å, and the two-component regularized PB
(RPB) model (Geng and Zhao 2017) with h = 0.25Å. In the CNS model (Zhao
2014), the solvation free energy including both polar and apolar parts is reported,
while in the RPB model (Geng and Zhao 2017), electrostatic free energy of the two-
dielectric PB equation is reported. Thus, these energy results are not necessarily close
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Table 2 Solvation free energy for proteins in kCal/mol

No. of atoms PDB ID Total partial charge Ref. Zhao (2014) Ref. Geng and Zhao (2017) Present

519 1ajj − 5 − 1260.6 − 1139.48 − 1428.66

573 2erl − 6 − 919.8 − 952.36 − 1013.59

576 1bbl 1 − 977.2 − 988.40 − 1186.34

596 1vii 2 − 893.6 − 902.31 − 1031.52

648 1cbn 0 − 255.5 − 303.33 − 398.27

667 2pde 3 − 881.6 − 820.97 − 992.62

702 1sh1 0 − 819.2 − 753.99 − 962.02

729 1fca − 7 − 1221.8 − 1204.44 − 1337.86

795 1ptq 3 − 869.6 − 873.32 − 1057.50

809 1uxc 4 − 1151.7 − 1139.25 − 1363.33

824 1fxd − 15 − 3347.0 − 3321.39 − 3073.39

832 1bor − 3 − 928.8 − 853.47 − 1120.57

858 1hpt − 1 − 790.4 − 811.56 − 1019.58

898 1bpi 6 − 1283.4 − 1304.37 − 1450.90

903 1mbg 6 − 1328.7 − 1353.31 − 1501.26

997 1r69 4 − 1048.2 − 1088.62 − 1225.83

1187 1neq 4 − 1710.3 − 1731.71 − 1991.43

1216 451c − 1 − 978.5 − 1025.66 − 1219.22

1272 1a2s − 9 − 1842.5 − 1921.20 − 1951.26

1435 1svr − 2 − 1750.6 − 1711.11 − 2039.08

1478 1frd − 11 − 2881.3 − 2862.50 − 2867.16

2065 1a63 − 1 − 2423.9 − 2374.41 − 2881.10

2809 1a7m 7 − 2141.3 − 2160.34 − 2527.79

to the present ones. For example, for larger protein size, if the number of atoms
exceed 2000 then the absolute energy difference between the super-Gaussian and RPB
exceeds 350kcal/mol. Nevertheless, as can be observed from Fig. 18, the energies of
three models are quite consistent with each other. We also note that in Fig. 18, one
protein behaves significantly different from other proteins of the similar size, i.e.,
1fxd. This is because this protein has the lowest total partial charge, as shown in
Table 2.

5.3 Protein with cavities

In this section, we investigate a protein with interior cavities and discuss how εgap
should be adjusted to compensate the cavity impact on the electrostatic free energy.
It is known in the literature that the cavities in protein could be filled with water
molecules. Experimentally, it is very challenging to identify thewatermolecules inside
the protein cavities with the crystallographic analysis. Computationally, these cavity
water molecules play very important roles in solvation analysis. It is thus of great
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Fig. 18 Comparing the super-Gaussian results with coupled nonlinear solvation (CNS) and regularized PB
(RPB) models. Along x-axis, the proteins are listed according to the order of Table 2 and along y-axis the
solvation free energies (in KCal/mol) are plotted

Fig. 19 Inserting 6 water molecules in the protein IL-1β (PDB ID 2nvh)

interest to numerically test the impact of cavity water molecules on electrostatic free
energy in the present super Gaussian PB model.

In our numerical experiment, we focus on a protein IL-1β (PDB ID 2nvh), whose
cavity structure has been well studied in the literature. It has been confirmed by using
the electron density experiments that water molecules are present in several cavities
of IL-1β (Quillin et al. 2006). In particular, there are a few cavities with volumes in
the range of 16–45Å3 containing a total of 6 water molecules (Quillin et al. 2006).
Moreover, there is a cavity with volume 39Å3, for which electron density could not
determine if water molecules exist in this cavity or not.

To study cavities with and without water molecules, we will process the protein
IL-1β as illustrated in Fig. 19. We first note that in the protein preparation procedure
discussed above, all water molecules will be removed in the final files, i.e., in .xyzr
and .xyzq files, while all water molecules are included in the .pqr file produced by
the PDB2PQRweb server http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/. Furthermore, the
atom IDs of six cavity water molecules are reported in David (2015). This enables us to
identify these six molecules in the .pqr file and insert the corresponding hydrogen and
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Fig. 20 The super-Gaussian dielectric distribution with εgap = 7. a 2nvh, b 2nvh-w

Table 3 Energy gain in 2nvh-w in kcal/mol


G for 2nvh 
G for 2nvh-w Energy gain

Super-Gaussian

εgap = 2 − 2718.29 − 2712.59 5.70

εgap = 3 − 2571.37 − 2568.22 3.15

εgap = 4 − 2451.26 − 2448.38 2.88

εgap = 5 − 2347.51 − 2345.69 1.82

εgap = 6 − 2256.74 − 2255.82 0.92

εgap = 7 − 2176.10 − 2175.96 0.14

εgap = 8 − 2103.60 − 2104.16 − 0.56

2-dielectric − 2960.40 − 2957.34 3.06

oxygen atoms (located in the cavities) into 2nvh.xyzr and 2nvh.xyzq. These modified
fileswill be called 2nvh-w.xyzr and 2nvh-w.xyzq. Computationally, we have generated
two sets of workable files: one without water in cavities (2nvh) and another with 6
water molecules in some cavities (2nvh-w).

After adding water molecules, we note that one cavity with volume 39Å3 is still
empty. To see this, we compare the super-Gaussian dielectric function εsG of 2nvh and
2nvh-w in Fig. 20. Here we take εgap = 7. By choosing a zoomed x-y cross section,
we are able to capture three cavities of 2nvh in one contour plot (left figure). After
adding water molecules, two of three cavities are filled so that ε values are reduced in
these two locations (right figure). The cavity in the center remains unchanged in both
2nvh and 2nvh-w cases, which is the only one visible for 2nvh-w.

We then study the energy difference between two structures 2nvh and 2nvh-w
based on the super-Gaussian PBmodel. A methodical mutation analysis (Takano et al.
2003) indicates that inserting one water molecule into cavities generally produces 1–
2kcal/mol energy gain. This helps us to quantitatively examine our inhomogeneous
dielectric model with cavity modeling. By using the same parameter pair (m, σ ) =
(3, 1.3), we first take εgap = 2. The energy gain of 2nvh-w over 2nvh is around
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Table 4 CPU time (in hours) in free energy calculation of 2nvh and 2nvh-w

2nvh 2nvh-w
Poisson PB Total Poisson PB Total

Super-Gaussian

εgap = 2 1.70 0.38 2.08 1.67 0.22 1.89

εgap = 3 1.66 0.22 1.88 1.71 0.22 1.93

εgap = 4 1.72 0.23 1.95 1.74 0.23 1.97

εgap = 5 1.79 0.22 2.01 1.68 0.24 1.92

εgap = 6 1.79 0.23 2.02 1.67 0.24 1.91

εgap = 7 1.72 0.22 1.94 1.68 0.23 1.91

εgap = 8 1.93 0.24 2.17 1.71 0.23 1.94

2-dielectric 0.05 1.70 1.75 0.03 1.85 1.88

6kcal/mol for inserting sixwatermolecules, which agreeswith the theoretical estimate
very well.

We have further studied the energy difference for εgap = 2, 3, . . . , 8. Because the
energy gain is on the order of a few kcal/mol, a large stopping time is chosen in the
ADI algorithm so that numerical precisionwill not influence the present conclusion. In
particular, we take Te = 100, 
t = 0.01, and TOL = 10−3. Table 3 shows the energy
gains of 2nvh and 2nvh-w in kcal/mol for different εgap. The idea behind this study
is that we can compensate the absence of water molecules in cavities by raising the
dielectric value εgap of the cavity water in the super Gaussian model. Consequently,
one can represent the water molecules without physically adding them by just using
a larger εgap value in the dielectric model. Indeed, as can be shown in Table 3, the
energy gain becomes smaller and smaller as εgap is increased. At round εgap = 7,
the difference between the solvation free energies of 2nvh and 2nvh-w is almost zero,
i.e., around 0.1 kcal/mol. Our recommendation is that for proteins with cavities but
one does not know if there are water molecules inside or not (such as the one shown
in Fig. 20), one can model water molecules computationally by setting εgap = 7 or
higher. We also believe that the magic number εgap = 7 for this example relates to the
cavity size or volume. This parameter setup works well if the volume of the cavities is
approximately less than or equal to 40Å3. If we have large volume cavities, we may
need to increase the value of εgap.

For a comparison, the classical two-dielectric PB model is employed to solve 2nvh
and 2nvh-w as well. The energy gain by using εm = 1 and εs = 80 is found to be 3.06
in Table 3. We note that the two-dielectric model does not have a modeling power
to alter the energy gain for cavities. The use of a different εm value will affect all
atoms, not just the cavity regions. This is different from the case of the super Gaussian
dielectric model. In the super Gaussian case, we can change εgap for cavities without
affect dielectric values of other atoms too much. This is an advantage of the super
Gaussian model over the traditional PB models.

The computational costs of the super Gaussian and two-dielectric models are
reported in Table 4. Here we report the CPU time for solving time-dependent Poisson
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equation in vacuum phase and time-dependent nonlinear PB equation in water phase,
as well as the total CPU time. In general, the two-dielectric PB model is faster than
the super-Gaussian model, and a few remarks are in order. First, the same pseudo-time
ADI algorithm is employed in the both models for simplicity. For the super Gaussian
computation, we set h = 0.5, TOL = 10−3, Te = 100, and 
t = 0.01. However, for
the two-dielectric setting, the ADI algorithm is conditionally stable so that a smaller

t = 0.0025 has to be chosen. Consequently, for solving the PB equation only, the
CPU time of the two-dielectric model is larger than that of the super Gaussian model.
Second, we note that for the super Gaussian model, because of the smooth dielectric
profile, a nonlinear instability could be experienced (Zhao 2014). That is why the
pseudo-time ADI algorithm is used in the present study, which treats the nonlinear
term analytically. However, a different numerical algorithm can be utilized for the two-
dielectric model. In that case, the two-dielectric model could be much more efficient
than super Gaussian model. Third, for the super Gaussian dielectric model, more CPU
time is spend on the vacuum phase than on the water phase. As discussed previously,
this should be because of the boundary condition (3). In the water phase, the potential
decays exponentially away from the protein, while in the vacuum phase, such decay is
much slower. Thus, it takes a long time to converge in the vacuum phase for the super
Gaussian model. For two-dielectric model with εm = 1, we have ε = 1 throughout the
domain� so that the FFT based fast Poisson solver can be applied. The corresponding
computational cost is negligible.

6 Conclusion

In this paper, a super-Gaussian dielectric model is proposed for the electrostatic sol-
vation free energy calculation. As an extension of the existing Gaussian dielectric
Poisson–Boltzmann (PB) model, the dielectric property of protein cavity regions is
modeled explicitly. Moreover, the super-Gaussian dielectric distributions are kept to
be smooth when the protein is transferred from water state to vacuum state. A geo-
metrical analysis based on the effective dielectric constant (EDC) theory is conducted
to study the parameters of the super-Gaussian PB model, and compare the new model
with two-dielectric and Gaussian dielectric models. Free energy calculations of a one-
atom system and various proteins are carried out to validate the new model. Particular
attention is paid on a protein system with multiple cavities.

Comparingwith the existingmodels, one advantage of the super-Gaussian dielectric
model is that it guarantees the ε function to be C∞ continuous in both water and
vacuum states in free energy computation. Computationally, a pseudo-time alternating
direction implicit (ADI) algorithm is employed for solving the nonlinear PB equation
of the super-Gaussian model. This ADI algorithm is fully implicit, but was found to
be conditionally stable in dealing with two-dielectric media (Geng and Zhao 2013).
Thanks to the smooth dielectric distributions of the super-Gaussian model, the same
ADI algorithm is unconditionally stable in the present study.

Another advantage of the super-Gaussian model is an explicit definition of εgap,
which opens new avenues to study proteins with internal cavities. An appropriate εgap
mimics water molecules in empty cavities, because the corresponding energy will
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be the same as the one obtained by putting actual water molecules inside cavities.
This compensate the cavity uncertainty which is commonly faced in experiments, i.e.,
to detect whether a particular cavity is empty or filled will water. In future studies,
we plan to investigate more cavity proteins and study even large cavity size, e.g. 64–
108Å3.With these studies, we hope to provide a better range of cavity water dielectric
constant. Also, it is desired to establish a relation between the volume of the interior
cavities and maximal dielectric constant for the cavity water molecules.
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Appendix

Theorem The density function for the i th atom is defined by

gsi (�r) = exp

[
−

(
|�r − ri |2
σ 2R2

i

)m]

where ri and Ri are the center and radius of the i th atom, respectively. Also, here �r is
the position vector, σ is the relative variance and m is the power of super-Gaussian
function. Suppose σ = 1 for simplicity. Next, the total density function of a biomolec-
ular system is defined as gs0 = 1 − ∏

(1 − gsi (�r)) and the dielectric function of that
system is modeled as

εsG = εmg
s
0 + εs(1 − gs0).

Here εm and εs are the dielectric constants of the solute and solvent respectively. Then
we have that lim

m→∞ εsG = ε2 at the solute and solvent regions where ε2 is the dielectric

function of the classical two-dielectric model.

Proof Let us consider three cases where the position vector is either inside or outside
the solute, or on the Van der Walls (VDW) molecular surface.

• Case I: There exists an atom (say i th atom) such that |�r−ri | < Ri or,
|�r − ri |

Ri
< 1.

In this case lim
m→∞

( |�r − ri |
Ri

)2m = 0. Hence lim
m→∞ exp

[
−

( |�r − ri |
Ri

)2m]
= 1,

which means gsi (�r) = 1 and gs0(�r) = 1. Therefore, if |�r − ri | < Ri for some i
(inside the VDW surface), εsG = εm .

• Case II: For all atoms, we have |�r − ri | > Ri or
|�r − ri |

Ri
> 1 for any i . In this case

lim
m→∞

( |�r − ri |
Ri

)2m = ∞. So, lim
m→∞ exp

[
−

( |�r − ri |
Ri

)2m]
= 0, which means

that gsi (�r) = 0 for all i . Hence gs0(�r) = 0. Therefore, if |�r − ri | > Ri for all i
(outside the VDW surface), εsG = εs .
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• Case III: In the last case, the position vector �r has to be located on the VDW
surface. Without the loss of generality, we assume that �r is on the sphere bound-
ary of the i th atom and does not locate inside any other atoms. So, we have

|�r − ri | = Ri or
|�r − ri |

Ri
= 1. And, for any j �= i , |�r − r j | > R j . In

this case lim
m→∞ exp

[
−

( |�r − ri |
Ri

)2m]
= 1

e
, which means gsi (�r) = 1

e
. For any

j �= i , gsj (�r) = 0. Hence, gs0(�r) = 1

e
. Therefore, on the VDW surface, we

have εsG = εmg
s
0 + εs(1 − gs0) = εm

1

e
+ εs(1 − 1

e
) = 50.9375 for εm = 1 and

εs = 80.
In all cases, the new dielectric model converges to a two-dielectric model based
on the VDW surface

lim
m→∞ εsG(�r) = ε2(�r) =

⎧
⎨

⎩

εm , �r is inside the VDW surface
εm/e + εs(e − 1)/e, �r is on the VDW surface
εs , �r is outside the VDW surface.

(35)
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