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Fig. 1. Breaking Bread.We tear a slice of bread with more than 11 million PFF-MPM particles, revealing intricate fracture patterns and natural dynamics.

We present two new approaches for animating dynamic fracture involving
large elastoplastic deformation. In contrast to traditional mesh-based tech-
niques, where sharp discontinuity is introduced to split the continuum at
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crack surfaces, our methods are based on Continuum Damage Mechanics
(CDM) with a variational energy-based formulation for crack evolution. Our
first approach formulates the resulting dynamic material damage evolution
with a Ginzburg-Landau type phase-field equation and discretizes it with the
Material Point Method (MPM), resulting in a coupled momentum/damage
solver rooted in phase field fracture: PFF-MPM. Although our PFF-MPM
approach achieves convincing fracture with or without plasticity, we also
introduce a return mapping algorithm that can be analytically solved for a
wide range of general non-associated plasticity models, achieving more than
two times speedup over traditional iterative approaches. To demonstrate
the efficacy of the algorithm, we also develop a Non-Associated Cam-Clay
(NACC) plasticity model with a novel fracture-friendly hardening scheme.
Our NACC plasticity paired with traditional MPM composes a second ap-
proach to dynamic fracture, as it produces a breadth of organic, brittle
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material fracture effects on its own. Though NACC and PFF can be com-
bined, we focus on exploring their material effects separately. Both methods
can be easily integrated into any existing MPM solver, enabling the simula-
tion of various fracturing materials with extremely high visual fidelity while
requiring little additional computational overhead.
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Additional Key Words and Phrases: Material Point Method (MPM), phase-
field, material damage, ductile fracture
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1 INTRODUCTION
We often have to rush through dinner and a movie, but slow down
and look closer as countless unseen illustrations of material fracture
swim into focus. Warm, fresh bread is torn as hundreds of bubbles
warp and tear, leaving intricate fissures. A saltine falls and shat-
ters as fine debris puffs up, lightly spattering the ground. Later, in
the newest action movie, a car smashes through a fence, leaving a
twisted metal exit. In a final chase, fruit stands explode in rainbows
of supple chunks as a fine mist spreads on the breeze.

Dynamic fracture is ubiquitous to everyday life, but the mechan-
ics underlying these intricate material changes are anything but
simple. In computer graphics, fracture simulation requires methods
for large-scale topological changes at varying rates, as well as robust
procedures for tracking the evolving crack fronts. Existing work
takes on a variety of approaches to fracture depending on the applica-
tion: real time applications prefer procedural [Neff and Fiume 1999]
or example-based methods [Mould 2005], while offline applications
typically adopt physically-based simulation. These physics-based
approaches further deviate in their choice of discretization of the
governing equations: finite element methods (FEMs) were among
the first to be successful [O’Brien et al. 2002; O’Brien and Hodgins
1999], boundary element methods (BEMs) are recently gaining trac-
tion [Da et al. 2016; Hahn and Wojtan 2015, 2016], and meshless
methods showed success for large topology change of solids early
on [Pauly et al. 2005] and are on the rise with the growing versa-
tility and popularity of the Material Point Method (MPM) [Sulsky
et al. 1995]. Though they show great success, mesh-based methods
require computationally intensive re-meshing routines or complex
algorithms like VNA and XFEM [Koschier et al. 2017; Molino et al.
2005] and BEMs in particular have not yet been successfully applied
to ductile fracture. Conversely, meshless methods such as MPM
show great promise due to automatic support for arbitrarily large
topological changes, natural collision handling, and a wide variety
of successfully simulated continuum materials.
Despite the breadth of discretization approaches, most fracture

methods in computer graphics have focused on fracture mechanics
(FM) since it is a natural pairing with finite element fracture. In
FM, cracks are discretely represented and modeled originally by
the separation of nodal points in a mesh [Ngo and Scordelis 1967];
however, this introduced strong mesh dependency, and as such,
many mesh-refinement and remeshing techniques were developed.

Fig. 2. Jello T-Rex. A jello T-rex is shot at high speed with a bullet; here
we compare our PFF-MPM with traditional MPM to show that visually
plausible fracture is unattainable with the latter.

More recently, the extended finite element method (XFEM) obviates
remeshing by instead tracking the crack by iteratively enhancing
mesh node DOFs [Belytschko and Black 1999; Koschier et al. 2017;
Moës et al. 1999; Sukumar et al. 2000].
Though FM has proven a strong method for visually plausible

results in graphics, another approach to fracture saw significant
exploration concurrently with FM: continuum damage mechanics
(CDM) [Rashid 1968]. In contrast with FM, CDM uses a smeared
crack approach in which the cracked material is assumed to remain
a continuum and, instead, the mechanical properties are weakened
based on the evolving stresses and strains of the material to account
for the effects of fracture. Within CDM, damage can be modeled
either locally, such as through computing the ratio of a defined maxi-
mal stress and the current local stress [Cervera and Chiumenti 2006],
or non-locally such as through tracking a scalar field of damage
variables evolving over time, known as phase-field fracture (PFF)
[Borden et al. 2016, 2012]. Local CDM has the advantage of predict-
ing the crack tip more accurately; however, it struggles to produce
all modes of fracture and, when paired with meshed methods like
FEM, the direction and speed of the crack evolution depends on
mesh direction and resolution [Grassl and Jirásek 2004]; conversely,
non-local CDM still predicts the crack tip and has the benefit of
capturing all modes of fracture while producing mesh invariant
crack propagation. As such, we choose to pair the non-local PFF
with MPM based on its robust capturing of all fracture modes and

Fig. 3. Cookie Smash. Our NACC plasticity naturally captures brittle frac-
ture behavior of mixed materials when a cookie is dropped onto the ground.
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Fig. 4. Bar Twist. An elastic bar with 7.79M particles is twisted with traditional MPM (top) and PFF-MPM (bottom) to show the dynamic fracture achievable.

resolution invariance, and for how naturally a scalar field evolution
technique aligns with the grid-based computations of MPM.

While MPM is a natural choice for a meshless fracture discretiza-
tion, it historically suffers from difficulty handling discontinuities
appearing in the material. This was recently addressed with the
compatible particle in cell algorithm (CPIC) for material cutting in
MPM; however, CPIC does not generalize to fracture and cannot
model branching cracks [Hu et al. 2018]. Fortunately, PFF allows for
the continuum to be treated as a whole throughout simulation, and
fracture occurs strictly through the degradation of stress over time
based on the evolving phase-field values. This formulation allows
us to solve the systems for momentum and damage in a staggered
manner, giving a low-overhead augmentation to standard MPM that
allows for a wide variety of material fracture effects: PFF-MPM.

In addition to our PFF-MPM approach to material fracture, we are
also inspired by recent techniques that degrade elastic stress through
their treatments of plasticity [Pradhana et al. 2017; Stomakhin et al.
2013; Yue et al. 2015] and expand upon the Cohesive Cam-Clay plas-
ticity model of Gaume et al. [2018] to present a non-associated and
volume preserving plasticity model that enables materials to dynam-
ically fracture when paired with traditional MPM: Non-Associated
Cam-Clay (NACC). Though PFF-MPM and the NACC plasticity
model can be used together, they each stand as their own unique
approach to dynamically animating fracture effects, and as such, we
predominantly explore them individually (all demos run with either
PFF-MPM or NACC plasticity unless otherwise noted).

1.1 Contributions
Our major contributions within CD-MPM lie in the development
of PFF-MPM, an augmented MPM adopting continuum damage
mechanics and phase-field theory for dynamic brittle and ductile
fracture. We formulate crack propagation as a variational energy
minimization problem through representing the damage state of
the material with continuous phase-field variables. By proposing a
novel incremental potential for backward Euler integration of the
phase-field, our governing equation resembles a Ginzburg-Landau
type equation widely adopted in structural engineering. We de-
velop a novel weak form discretization of the phase-field evolution
equation using MPM. Similar to the heat equation, the phase-field

discretization results in a symmetric positive-definite linear system,
which is efficiently solvable together with the momentum.

We additionally present as part of CD-MPM a backward Euler
based finite strain plasticity scheme that enables a highly efficient
analytic return mapping for a wide range of general non-associated
(plastic volume preserving) plasticity models. In addition to the
widely adopted von Mises and Drucker-Prager plasticity, we in-
troduce a Non-Associated Cam-Clay (NACC) model with a novel
strain hardening scheme for capturing a breadth of material fracture
behaviors with superior performance and ease of implementation.
Overall, our phase-field solver and new constitutive models can
be easily integrated into any existing MPM framework with mi-
nor modifications and each presents a novel approach to dynamic
fracture animation. We demonstrate the efficacy of each method by
simulating various elastoplastic materials undergoing fracture.

2 RELATED WORK

2.1 Fracture Simulation
Since Terzopoulos and Fleischer’s [1988] seminal work on viscoelas-
tic fracture in graphics, research has taken a variety of approaches to
simulating this notoriously difficult physical phenomenon. Within
graphics, these methods range from those seeking to simulate the
physical systems behind fracture mechanics as we understand them,
to approximation approaches formulated to obviate physics and
accuracy in favor of speed and visual plausibility. However, these
latter approaches are limited in three ways: they are not physically
accurate, can require lengthy data acquisition, and lack successful
simulation of dynamic ductile fracture (historically, these exclu-
sively focus on quasistatic or dynamic brittle fracture). Though
these are still widely explored, physically based methods now com-
prise the bulk of fracture simulation approaches. Mass-spring mod-
els were among the first and represented continuum materials as
point masses connected by springs with stress-based yield thresh-
olds [Aoki et al. 2004; Hirota et al. 1998, 2000; Norton et al. 1991].
However, these models are severely limited: sudden spring removal
causes notable visual artifacts [Norton et al. 1991]; shearing and
bending are not directly handled by spring systems and require
further engineering [Hirota et al. 1998; Norton et al. 1991]. Most
notably, the exact fracture surfaces themselves are not known but
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Fig. 5. Watermelon Smash. A mixed material watermelon is smashed on the ground illustrating dynamic, organic fracture and debris spray using NACC.

are instead approximated based on the mass spring configuration
and, as such, crack visualization is not only limited by the con-
figuration and resolution, but also often require computationally
intensive tetrahedral marching algorithms [Hirota et al. 1998, 2000].
Contrary to mass-spring methods, more recent physical approaches
alleviate some of these problems through the use of modal analysis
to simulate real-time brittle fracture [Glondu et al. 2013, 2014], mov-
ing cellular automata (MCA) to discretize the fracturing material
[Ning et al. 2013], or even careful conversion of fracture energy
into kinematic energy during rigid body simulation [Li et al. 2018].
However, these newer, more complex approaches have their own
limitations: modal analysis is limited to brittle fracture, and the use
of MCA brings with it intensive computational costs.

While these other approaches have gained some recent traction,
finite element methods (FEMs) for simulating fracture have been
shown to be among the most successful for brittle [Bao et al. 2007;
Müller and Gross 2004; O’Brien and Hodgins 1999], ductile [Bao
et al. 2007; Müller and Gross 2004; O’Brien et al. 2002], and thin shell
[Busaryev et al. 2013] materials; successful FEMs achieve this by
representing materials as tetrahedral meshes with elements that are
individually deformed and cut during simulation. However, FEMs
pose difficult geometric and computational challenges, including
remeshing near cracks, representing topological discontinuities, and
mesh cutting; as such, most subsequent works in FEM fracture ad-
dress these challenges. Numerous remeshing approaches have been
explored ranging from dynamic local mesh refinement [Wicke et al.
2010], to remeshing based on gradient descent flow [Chen et al.
2014], to remeshing for thin sheet fracture [Pfaff et al. 2014]. Topo-
logical discontinuities are often addressed through augmenting FEM
with new schemes such as Discontinuous Galerkin FEM (DGFEM)
[Kaufmann et al. 2008] or the level set method used to minimize
Griffith’s energy for ductile fracture in Hegemann et al. [2013].
Fortunately, FEM mesh cutting improved greatly with the vir-

tual node algorithm (VNA) [Molino et al. 2005] which duplicates
elements that intersect with crack topology rather than splitting
them. Though limited at first, VNA has been expanded to allow
for cutting at resolutions lower than mesh resolution [Sifakis et al.
2007] and to robustly handle degenerate intersections [Wang et al.
2014]. Most recently, eXtended FEM (XFEM), a remesh-free cutting
algorithm, was shown to better conserve mass and preserve material
stiffness of simulated materials [Koschier et al. 2017]. Despite these

recent advances in remeshing and cutting, VNA and XFEM pose ad-
ditional complexities such as floating point arithmetic in degenerate
configurations and self-collision on their embedded meshes.

While FEMs focus on processing fracture with a volume discretiza-
tion, boundary element methods (BEMs) simply discretize fracture
mechanics across material surfaces. First introduced in graphics by
James and Pai [1999] for the formulation of elastostatic deformable
objects, BEMs have more recently been paired with linear elastic
fracture mechanics to successfully simulate brittle fracture while
utilizing Lagrangian crack fronts [Hahn and Wojtan 2015] and local
triangle mesh operations [Zhu et al. 2015] for the tracking of highly
detailed cracks. Further study has been devoted to fast approxi-
mations for BEM brittle fracture to mitigate high computational
overhead [Hahn and Wojtan 2016]. Though very successful for brit-
tle materials, BEMs have not yet produced successful ductile fracture
nor have they been paired with CDM to track fracture.

Though most recent study has focused on FEMs, meshless meth-
ods have gained great traction recently with the Material Point
Method (MPM) [Sulsky et al. 1995]. MPM is a powerful choice for
simulating a breadth of materials and behaviors, going so far as to
enter the realm of VFX in major motion pictures [Stomakhin et al.
2013]. Meshless fracture approaches represent materials as sets of
particle masses with no connectivity and, as such, obviate the com-
plex remeshing and cutting procedures of FEMs. Early approaches
to meshless fracture simulation include element-free Galerkin (EFG)
[Belytschko et al. 1995; Lu et al. 1995; Sukumar et al. 1997] which
requires node-visibility algorithms; CRAMP which augments MPM
to track cracks with massless particles and requires grid nodes to
have multiple velocity fields near crack geometry [Nairn 2003];
Moving Least Squares with volume sampling [Müller et al. 2004];
and, expanding on the latter, resampling during crack propagation
and adapting the shape functions dynamically [Pauly et al. 2005]
to simulate both brittle and ductile fracture. More recent works in-
corporate clustered shape matching for ductile fracture [Jones et al.
2016]; the local Petrov-Galerkin method (MLPG) to avoid lengthy
neighbor searches [Liu et al. 2011]; and, similarly, smoothed particle
hydrodynamics (SPH) has shown success in simulating brittle frac-
ture [Chen et al. 2013]. Though successful, some of these methods
produce notable directional artifacts due to element removal.

Most recently, MPM has shown great potential for fracture simu-
lation due to its automatic handling of extreme topological changes
(including material split and merge, which are both difficult for
FEM) as well as its lack of boundary difficulties typically associated

ACM Trans. Graph., Vol. 38, No. 4, Article 119. Publication date: July 2019.



CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation • 119:5

Fig. 6. Armadillo Stretch. A jello armadillo’s limbs are ripped off to illus-
trate the intricate fractures achievable with PFF-MPM; phase-field values
are shown in world space to show damaged regions.

with kernel techniques like SPH. Typically, MPM alone is incapable
of modeling sharp discontinuities, and past approaches to MPM
fracture have relied on pre-fracture to handle this [Wretborn et al.
2017]. However, Hu et al. [2018] recently introduced the Compatible
Particle-in-Cell (CPIC) algorithm, which allows these discontinuities
and achieves dynamic material cutting with sharp boundaries.
Though CPIC with MPM shows great potential for dealing with

sharp discontinuities, it does not in any way seek to simulate dy-
namic fracture behaviors. However, strong examples of MPM frac-
ture have been explored and focus on the viscoplastic models in-
trinsic to fracture in geological materials (soil and rocks) and com-
plex viscous fluids (such as foam). These works explore fracture
animation through the lens of plasticity weakening. Stomakhin et
al. [2013] modeled snow fracture by decreasing elastic stiffness as
expansive plastic strain accumulates. Pradhana et al. [2017] used
a saturation-dependent cohesion parameter in the Drucker-Prager
plasticity model to support wet sand breakage. Yue et al. [2015] mod-
eled foam tearing through introducing weak particles during plastic
yielding. The Non-Associated Cam-Clay (NACC) model we propose
in this paper lies in the same category. Independent from whether a
phase-field damage evolution is active, our model captures many
fracture phenomena due to localized shear and tensile deformation.

2.2 Continuum Damage Mechanics and Phase-Field
Fracture

Fracture theory has two main numerical modeling approaches: dis-
continuous methods that allow fracture surfaces to be represented
in the displacement field as discontinuities, and continuous methods
that model the displacement as being continuous everywhere (here,
fracture occurs by gradually decreasing stresses to model degra-
dation). Discontinuous methods are typically composed of either
linear elastic fracture mechanics, pioneered by Griffith [1921] and Ir-
win [1957], or the cohesive zone model [Barenblatt 1962]. The most
widely used continuous method is continuum damage mechanics
(CDM) which seeks to evolve some damage variable throughout
simulation to model the evolution of fracture [Kachanov 1999]. How-
ever, two emergent continuous methods have shown success since
their introduction: peridynamics (PD) [He et al. 2018; Levine et al.

2014; Silling 2000; Silling and Askari 2005], and phase-field frac-
ture (PFF) [Aranson et al. 2000; Bourdin et al. 2000; Francfort and
Marigo 1998]. In PD models, the usual partial differential equations
are replaced with integral ones such that derivative computation is
avoided, and recently, combining PFF for brittle fracture with the
integral framework of PD showed great success [Roy et al. 2017], as
the two combined achieved effects unattainable by one or the other
model (such as the splitting of individual particles).
Though PD models have shown success, PFF methods are cur-

rently under deeper exploration within the engineering community.
For brittle fracture, PFFs have gained traction with a more straight-
forward reformulation that has shown to be more accessible to the
engineering community [Miehe et al. 2010b]. Recent PFF works
seek to design better degradation functions and use the length scale
parameter l0 in order to better model the transition region of the
damagedmaterial over time [Wu 2017, 2018]. Ductile fracture within
the framework of PFF has also garnered interest and shown suc-
cess for quasistatic configurations and finite strains by relying on a
multiplicative decomposition of the stress into its elastic and plastic
parts as well as an additive decomposition of the constitutive models
into tensile and volumetric components [Ambati et al. 2016; Borden
et al. 2016; Miehe et al. 2015]. Most recently, geologically-inspired
work has explored whether return mapping routines should include
plastic degradation functions since they may break assumptions
about which stress is used to evaluate the yield condition [Choo and
Sun 2018]. Though PFF is still nascent, it has clearly shown success
within the engineering community at predicting crack initiation
and propagation, and as such, we propose to explore its use within
graphics for both its high visual fidelity and predictive accuracy.

2.3 Material Point Method
MPM is a generalization of the hybrid Fluid Implicit Particle (FLIP)
method [Brackbill and Ruppel 1986; Zhu and Bridson 2005] from
computational fluid dynamics to solid mechanics. Since its introduc-
tion by Sulsky et al. [1994; 1995], MPM has proven to be a promising

Fig. 7. Octocat Collision. Two fragile-armed octocats’ tentacles break as
they collide mid-air using PFF-MPM;material space phase-field propagation
is visualized to show where damage occurs.
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Fig. 8. Candy Crab. The brittle fracture of fallen candy is shown propagating in material space by visualizing the NACC hardening parameter, α , in green.

discretization choice for simulating many solid and fluid materials.
In the field of physics-based animation, the existing works include
snow [Stomakhin et al. 2013], foam [Ram et al. 2015; Yue et al. 2015],
sand [Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Yue
et al. 2018], cloth [Fei et al. 2018; Guo et al. 2018; Jiang et al. 2017]
and solid-fluid mixtures [Gao et al. 2018a; Pradhana et al. 2017;
Stomakhin et al. 2014]. Echoing recent works, our treatment of the
damage state is similar to how Gao et al. [2018b] treats heat con-
duction, since we also discretize the governing parabolic PDE using
Moving Least Squares MPM [Hu et al. 2018].

2.4 Phase-Field Modeling
Phase-field modeling began as a popular approach in computational
physics for simulating complex multi-phase effects like solidifica-
tion; however, its ability to continuously model an interface between
different material phases has also proven useful in computer graph-
ics for simulating the formation of ice crystals by pairing phase-field
with diffusion limited aggregation [Kim et al. 2004] and the mixing
of fluids [He et al. 2015]. Similarly, Yang et al. [2015] achieved fast
multiphase fluid simulation by evolving mass concentration vari-
ables using the Cahn-Hilliard equation [Cahn and Hilliard 1958].
Most recently, Yang et al. [2017] attained complex multi-material
simulation, expanding on this work by introducing a phase pro-
portion variable evolved over time with the Allen-Cahn equation
[Allen and Cahn 1972], which is quite similar in formulation to our
damage evolution governing equation.

3 GOVERNING EQUATIONS

3.1 Variational Formulation
For an elastic body with material space Ω0 and deformed space Ωt

under deformation map x = ϕ(X , t) where x and X are world and
material coordinates respectively, Griffith’s theory of fracture [Grif-
fith and Eng 1921] defines the total free energy to be the summation
of the elastic potential and the released energy at crack surfaces:

E(F ,T) =

∫
Ω0

Ψ̂(F )dX +

∫
T

GdX , (1)

where F =
∂ϕ
∂X is the deformation gradient, Ψ̂(F ) is a degraded

(damaged) finite-strain hyperelastic energy density function (see
§3.2), T denotes the internal discontinuous boundary due to frac-
ture, and G is the critical energy release rate (also called fracture
toughness) of the material, denoting the energy released when a
unit area fractures. In a quasistatic case, solving the minimization

of E predicts the crack propagation [Francfort and Marigo 1998]
under given external loads. In computer graphics, Hegemann et al.
[2013] used a level set to separate the continuum into a healthy
region and a damaged region (with interface T ). This approach
requires frequent re-initialization of a signed distance function and
cannot resolve non-manifold topology without more complex rep-
resentation [Mitchell et al. 2015]. Thus, we instead use a phase-field
approximation to the surface integral [Bourdin et al. 2008]:∫

T

GdX ≈

∫
Ω0

(
(c − 1)2

4l0
+ l0 |∇

X c |2
)
GdX , (2)

where l0 is a discretization dependent length scale parameter (l0 → 0
causes the volume integral to converge to the surface integral),
c(X , t) ∈ [0, 1] is the smooth phase-field throughout the continuum
material, where c = 1 corresponds to healthy material and c = 0 to
fully damaged material. We found that for MPM discretization, a
length scale of l0 = 0.5∆x was sufficient for most of our demos.

3.2 Elasticity Degradation
Supposing the traditional hyperelastic energy density ΨE can be
additively decomposed into a tensile contribution Ψ+(F ) and a com-
pressive contribution Ψ−(F ), it is common in phase-field fracture
theory [Amor et al. 2009; Miehe et al. 2010a,b] to degrade the tensile
part with a monotonic degradation function д(c) so that material
separation is permitted along cracked regions. Specifically,

Ψ̂(F ) = д(c)Ψ+(F ) + Ψ−(F ), (3)

where д(c) = (1 − r )c2 + r is chosen to be a quadratic function for
simplicity. Setting r = 0.001 in all of our examples allows a tiny
residual tensile stress even for fully damaged regions. This avoids
the potential unbounded growth of the deformation gradient for a
fully damaged material and the ensuing floating point overflow.
Combining the above, the free energy functional can be written

as E(F , c) =
∫
Ω0 Ψ(F , c)dX , where

Ψ(F , c) = д(c)Ψ+(F ) + Ψ−(F ) +

(
(c − 1)2

4l0
+ l0 |∇

X c |2
)
G (4)

is the free energy density function accounting for the balance be-
tween elasticity degradation and energy release. See §5 and Fig. 14
to visualize this degradation concept for our elasticity.

3.3 Momentum Conservation
Here we move from the quasistatic setting into strongly nonlinear
dynamics problems. We focus on the response of hyper-elastoplastic
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Fig. 9. Smashing Pumpkins. Two jack’o’lanterns collide using NACC plasticity to achieve complex, organic fractures and debris spread; NACC α is visualized
in material space at right to better visualize crack propagation.

solids, where the backward Euler time integration from tn to tn+1
can be recast into a variational problem [Radovitzky and Ortiz 1999]
minimizing an incremental potential. This is ideal, as approaches
with optimization-based integrators have shown great success for
efficient dynamics computations in computer graphics [Bouaziz et al.
2014; Liu et al. 2013, 2017; Narain et al. 2016; Wang and Yang 2016].
For our degraded hyperelastic object, the Lagrangian momentum
conservation from tn to tn+1 is given by:

R

∆t2
ϕn+1 − ∇X · Pn+1 = f ext +

R

∆t2
(ϕn + ∆tV n ), (5)

where R is density, Pn+1 = ∂Ψ
∂F (Fn+1) is the first Piola-Kirchhoff

stress (see supplemental document [Wolper et al. 2019]). Note that
with implicit Euler, we have ϕn+1 = ϕn + ∆tV n+1, which also
allows us to reformulate Eqn. (5) in terms of velocities. Note that
our derivation has assumed pure hyperelasticity since the implicit
treatment of plasticity cannot be easily formulated as a minimization
problem [Klár et al. 2016]. For plastic materials, we follow Jiang
et al. [2016] and treat the plastic flow explicitly through a return
mapping of the elastic deformation gradient at the end of each time
step. The discretization of Eq. 5 can be accomplished with a slightly
modified version of standard MPM as detailed in §4.1.

3.4 Phase-Field Evolution
In CDM, there are different strategies for evolving the damage state.
In this section, we first introduce a simple, yet problematic damage
evolution approach based on local damage mechanics. Then, we
propose a novel incremental potential energy function for coupled
phase-field and deformation evolution (deformation and damage
affect one another). We show that our incremental potential leads
to a Ginzburg-Landau type phase-field evolution equation that is
consistent with existing literature on dynamic phase-field theory.

3.4.1 Local Damage Mechanics. Local damage mechanics assumes
the damage state of each material point is only locally dependent
on its own stress history. One of the most simplistic models of this
kind is the linear strain-softening Rankine damage model [Cervera
and Chiumenti 2006; Homel and Herbold 2017], where the mate-
rial damage is linearly related to the maximum eigenvalue of the
Cauchy stress, σ . If the principal stress is σM and the failure stress
threshold is σf , then whenever σM > σf , the phase-field is updated

as cn+1 = min(cn , 1−Hs (1− σMσf )), whereHs is an empirical param-
eter controlling the brittleness. Although such local damage models
are simple and efficient, they tend to cause undesired artifacts even
on simple examples. Moreover, the crack propagation produced by
local models has strong mesh direction and resolution dependency
[Grassl and Jirásek 2004], which severely decreases the efficacy
of offline simulation, since a satisfactory behavior at low resolu-
tion likely does not persist at high resolution. We experimentally
compare local CDM to PFF-MPM in [Wolper et al. 2019].

3.4.2 Parabolic Phase-field Evolution. To avoid the problems with
local damage mechanics, we target a phase-field evolution rule
that is constructed using Ginzburg-Landau theory [Landau and
Lifshitz 1971] following general thermodynamics and kinetics. By
augmenting the traditional incremental potential with additional
inertia terms related to c (see [Wolper et al. 2019] for more details),
the Euler-Lagrangian equation for cn+1(X ) reveals:(

4l0Mc (1 − r )Ψ+

G
+Mc +

1
∆t

)
cn+1 − (4l20Mc )∇

2cn+1 = r , (6)

where r = Mc+(c
n/∆t) is the right hand side scalar,Mc = G/(2Rc l0)

is a material parameter, and ∇2 is the Laplace operator with respect

Fig. 10. PFF-MPM Parameters. The breadth of fracture behavior attain-
able through phase-field parameters is illustrated here, showcasing the
effects of changing the energy release rate, G, and mobility constant, Mc .
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Fig. 11. Shooting Cake. A cake-like material is shot with an elastic bullet
and simulated with both PFF-MPM and NACC plasticity; we compare
against traditional MPM to show the efficacy of our CD-MPM methods.

to X (see Fig. 10 to see the impact of Mc and G). Note that Yang
et al. [2017] also used a similar Allen-Cahn equation to evolve
phase-field variables for their unified multi-phase multi-material
simulations. Further, we need to impose the crack irreversibility
condition Tn ⊆ Tn+1. This can be done by replacing Ψ+ in Eqn.
(6) with its history dependent version ΨH , which is only updated
when a new maximum Ψ+ is achieved at the corresponding material
point. In Fig. 11 we show the efficacy of our PFF-MPM formulation
and its successful pairing with NACC plasticity.

4 PFF-MPM SPATIAL DISCRETIZATION
Here we discuss the MPM discretization of Eqn. (5) and Eqn. (6).
MPM uses meshless quadrature particles to carry Lagrangian physi-
cal quantities, and a background grid to evaluate spatial derivatives.
A distinct feature of MPM, compared to FEM, is the view of Up-
dated Lagrangian (UL) in contrast to the view of Full Lagrangian
(FL). With UL, MPM treats the time tn configuration as the ma-
terial space and seeks to approximate the deformation map from
tn to tn+1. As such, spatial derivatives with respect to X ∈ Ω0 in
previous sections can be modified into derivatives with respect to
xn ∈ Ωn . Note that we use the same symbol c to denote Eulerian
and Lagrangian phase-field quantities, with the understanding that
all Lagrangian quantities are pushed forward into their Eulerian
counterparts to enable an MPM discretization. We list for clarity
which quantities are tracked per particle, which are transferred to
the grid, and which are constant simulation parameters in Table 1.

4.1 Newtonian Dynamics
The momentum equation is solved following standard MPM, with
the exception that the stress is influenced by the phase-field. Here
we list the main steps (see [Jiang et al. 2016] and [Hu et al. 2018]
for more details). We use subscripts p,q for particle quantities and
i, j,k for grid node quantities. Superscript n,n + 1 are for quantities
at discrete time tn and tn+1 where ∆t = tn+1 − tn .

(1) Particles to grid. Mass and momentum are transferred to
the grid with APIC [Jiang et al. 2015]:mn

i =
∑
pmpw

n
ip and

(mv)ni =
∑
pmpw

n
ip

(
vn
p + C

n
p (xi − xnp )

)
, where Cnp is the

Table 1. ParticleQuantities. Here we list which quantities are tracked per
particle, transferred to grid nodes, and constant throughout simulation.

Tracked Particle mp , xp , vp , APIC Cp ,
Quantities Fp , PFF cp , NACC αp

Transferred Grid xi , vi , Fi , fi , PFF ci
Quantities
Simulation E , ν , PFF (G, Mc ),
Parameters NACC (α0, β, ξ , M )

APIC velocity gradient andwn
ip is the quadratic B-spline in-

terpolation weight between particle p and node i .
(2) Grid update. Grid velocity is updated with MLS-MPM forces

f ∗i = −
∑
p V

0
pw

n
ipM

−1
p

∂Ψ
∂F (F ∗p , c

n+1
p )Fnp

T (xni −xnp ), whereV 0
p

is the original volume of particlep,M−1
p =

4
∆x 2 for a quadratic

particle-grid kernel, ∗ = n or n + 1 for symplectic Euler and
implicit Euler respectively. For implicit integration, we further
use the force differential in [Hu et al. 2018] to evaluate the
action of the global stiffness matrix.

(3) Grid to particles. Particle velocities are updatedwithvn+1
p =∑

i v
n+1
i wn

ip followed by position advection. Velocity gradi-
ents are updated with Cn+1p = M−1

p
∑
i w

n
ipv

n+1
i (xni − xnp )

T .
(4) Strain update. Particle deformation gradients are updated

with MLS-MPM as Fn+1p = (I + ∆tCn+1p )Fnp and processed
according to proper plasticity projection (§6).

Note that in step (2), the energy density function Ψ depends on the
updated damage state cn+1p due to the elasticity degradation (§3.2).

4.2 Phase-Field Evolution
We develop a novel MPM-based discretization scheme for the phase-
field governing Eqn. (6). Similarly to the velocities, the phase-field
variable, c , advects with the MPM particles and needs to be trans-
ferred back and forth between the particles and the grid. We present
in Fig. 12 a visualization of how we represent continuum cracks
within this MPM discretization of phase-field evolution.

4.2.1 Phase-field Transfers. The phase-field is a physical intrinsic
property of the object. The transfer from particles to grid is therefore

Fig. 12. Continuum crack representation and discretization. (Left) In
material space, discontinuity is approximated with a continuous phase-field
ranging from 0 to 1 while particle-based discretization uses finite-sized
particles to track material attributes including phase; (Right) MPM uses
particles to carry the phase-field in Eulerian world space while the phase-
field evolution equation is discretized on a background grid in MPM.
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similar to the velocity: cni = (
∑
p w

n
ipc

n
p )/(

∑
p w

n
ip ). After solving

for cn+1i on the grid, we transfer the phase-field back to particles as
cn+1p = max(0,min(cnp , cnp +

∑
i (c

n+1
i − cni )w

n
ip ). Note that we com-

pare the new phase-field value against its current value to prevent
any material healing. The phase-field is also explicitly restricted to
the range [0, 1] to eliminate accumulated noise from the FLIP-like
transfer. We choose FLIP to avoid the numerical diffusion associated
with PIC as this would lead to constant and uniform material degra-
dation even when unloaded; furthermore, we leave the exploration
of bound-preserving APIC/PolyPIC-style transfers for future work.

4.2.2 MLS Weak Form Discretization on the Grid. Starting with our
backward Euler phase-field equation, Eqn. (6), we expand continuous
quantities with the grid node-wise MLS shape function Θi (x) and
its gradient ∇Θi (xp ) = M−1

p wn
ip (xi − xnp ) to achieve a symmetric

positive definite linear system for the unknown cn+1i at grid nodes:

(M +H )c = r (7)

where c is the vector of all nodal unknowns,

M = [Mii ] =
∑
p

V n
p

(
4l0Mc (1 − r )ΨH

p

G
+Mc +

1
∆t

)
wn
ip

is the diagonal lumped mass matrix (V n
p is the current volume of p),

H =
[
Hi j

]
=

∑
p

V n
p (4l20Mc )(∇Θi (x

n
p ))

T (∇Θj (x
n
p ))

is the MPM-based discrete Laplace operator, and

r = [ri ] =
∑
p

V n
p (Mc +

cnp

∆t
)wn

ip

is the corresponding right hand side (see [Wolper et al. 2019] for
detailed derivation). We solve this system using conjugate gradient
(CG). In practice, we found that the Jacobi preconditioner works well
and no more than 4 CG iterations are usually required to reach near-
roundoff accuracy. Note that the weak form based discretization
naturally satisfies a Neumann boundary condition at the free surface
and no special treatment is needed at collision object boundaries.

4.3 Staggered Integration
Although it is possible to couple the system solves for momentum
and phase-field into one monolithic solve, this is typically prohibi-
tively long. Instead, we choose a staggered integration scheme that
involves two linear solves. In Fig. 13, we show two crucial relation-
ships that arise in this staggered scheme: the particle deformation
gradients, Fnp , are used in the phase solve on the grid, and the results
of the phase solve, cn+1p , are used in the grid force computation. We
find that the phase solve is often adequately converged within a
few CG iterations, and as such this contributes very little extra time
to the overall algorithm (see Fig. 20). Note that multiple staggered
iterations will be necessary for global convergence of the nonlinear
problem; however, our experiments and the mechanics literature
agree that 1-2 iterations is enough for close convergence and visually
plausible results [Amor et al. 2009; Miehe et al. 2010a, 2015].

Fig. 13. PFF-MPM Data Flow. PFF-MPM utilizes a staggered integration
scheme with two system solves on the grid: one for momentum and one for
phase. The colored arrows show key details in our data flow; the blue shows
the dependence of the grid phase solve on particle deformation gradients,
and the red shows the use of the updated phases in the grid force update.

5 HYPERELASTICITY
In computer graphics, the hyperelastic energy density function is
usually designed to simplify certain computations or to enable cer-
tain configurations. For example, the St. Venant-Kirchhoff energy
with logarithmic strain was adopted for simplified derivation of
plasticity [Klár et al. 2016], the fixed corotated energy was designed
for robust treatment of inversion [Stomakhin et al. 2012], and the
stable Neo-Hookean energy was designed for nice behaviors near
the incompressbility limit [Smith et al. 2018]. For our purposes we
want to achieve simple decomposition of the tensile and compres-
sive contributions as well as simple derivation of plasticity return
mapping (§6); as such, we adopt a variation of the Neo-Hookean
model which was recently used by Yue et al. [2018]:

ΨE (F ) = Ψµ (JaF ) + Ψκ (F ), (8)

Ψµ (F ) =
µ

2
(tr(FT F ) − d) and Ψκ (F ) =

κ

2
(
J2 − 1
2

− logJ ), (9)

where Ψµ and Ψκ separate the energy into independent penalties
on shearing and volume change. Here a = − 1

d , d is the problem
dimension, J = det(F ), µ is the shearing modulus, and κ is the bulk
modulus. The Kirchhoff stress associated with this model is

τ = µJ−
2
d dev(b) + JΨκ ′(J )I , (10)

where b = FFT is the left Cauchy-Green strain, and dev(A) =
A −

tr(A)

d I is the deviatoric part of any tensor A. See [Wolper et al.
2019] for the stress derivations for implicit integration.
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Fig. 14. Split Energy Density. (Left) Total energy, ΨE , plotted for three
damage values; note the overlapping energies when principal stretches
σ1 and σ2 are below 1. (Right) Decomposition of ΨE into components,
Ψdegraded = д(c)Ψ+ and Ψ−.

The use of Ψµ and Ψκ further allows the decomposition of ΨE

into tensile (Ψ+) and compressive (Ψ−) parts [Amor et al. 2009]:

Ψ+ =

{
Ψµ (JaF ) + Ψκ (F ) J ≥ 1
Ψµ (JaF ) J < 1

, Ψ− =

{
0 J ≥ 1
Ψκ (F ) J < 1

.

This decomposition is then combined with Eqn. (3) to get the final
damaged Ψ̂. We visualize this split energy density scheme in Fig. 14
for different values of damage and with the components separated
to show the role each plays in the total energy. Furthermore, we
find that the split scheme we adopt is visually comparable to both
the fixed corotated and Neo-Hookean energy densities (see Fig. 15).

6 PLASTICITY
We present a method to form an approximate analytic solution of
plasticity treatment for a wide range of plasticity models whose
yield surfaces, denoted y, can be expressed as a function of the
Kirchhoff stress τ . This treatment corresponds to performing a
plastic projection to fulfill y(τ ) ≤ 0. We will first explain the general
framework, and then introduce a novel Non-Associated Cam-Clay
model (NACC) with a new strain hardening scheme that is able to
capture many fracture behaviors. Our method also renders analytic
solutions to the von Mises and Drucker-Prager plasticity models.

6.1 Generalized Non-associated Return Mapping
We adopt the multiplicative decomposition of F into elastic and
plastic parts F = FEFP , where only FE contributes to the elastic
potential energy. Introducing bE = FEFE

T and CP = FP
T
FP ,

plastic flow becomes a rule on the evolution of bE [Klár et al. 2016]:

DbE

Dt
=

DF

Dt
CP

−1
FT + FCP

−1DFT

Dt
+ F

DCP−1

Dt
FT . (11)

Operator splitting can be applied to the integration of bE [Simo
1988]. The first step only considers the first two terms, which corre-
spond to a “trial” elastic step going from bE,n to bE, tr. In practice,
this can be done by evolving the deformation gradient from tn to
tn+1 assuming no plasticity. After that, we integrate from bE, tr to
bE,n+1 by choosing a proper projection directionG , whereG = ∂y

∂τ

for associated plasticity, andG = dev( ∂y∂τ ) for non-associated plas-
ticity. This projects the trial state back into the yield surface. The

Fig. 15. Armadillo Fall. Three realistic jello armadillos fell down the stairs
using three different energy densities, demonstrating the comparable elastic
behavior of the split energy density scheme we adopt.

ODE to be integrated from bE, tr to bE,n+1 is then

DbE

Dt
= −2γGbE , (12)

where γ is an unknown scalar. Klár et al. [2016] solve the ODE using
an exponential integrator and their method gives an analytic solu-
tion for the Drucker-Prager plasticity model under their choice of
elasticity. Unfortunately, applying their approach to more complex
plasticity models such as the Cohesive Cam-Clay model would re-
sult in a local Newton solve per particle [Gaume et al. 2018], which
largely affects the efficiency and ease of implementation. Inspired
by the treatment of von Mises plasticity by Borden et al. [2016],
we use a backward Euler solver for the ODE, and seek to show the
existence of an approximate analytic solution for a wide range of
general yield surfaces. We also focus our study on non-associated
plasticity due to the geometric correctness of its enforcement of
volume preserving plastic deformation [Wolper et al. 2019]. With
δγ = γ∆t , the backward Euler discretization of Eqn. (12) is:

bE,n+1 − bE, tr = −2δγG(bE,n+1)bE,n+1. (13)

As proved in [Klár et al. 2016], for isotropic materials, it becomes
much more convenient to solve Eqn. (13) in the diagonal space ob-
tained from the singular value decomposition of the deformation
gradient. Similar to the elastic potential energy which can be rewrit-
ten as Ψ(F ) = Ψ(F̂ ) for isotropic materials, the yield surface can
also be re-expressed as y(τ ) = y(τ̂ ). Notice we use Â to denote the
corresponding quantities in the diagonal space for any tensor A.
We can further decompose τ̂ into two parts: τ̂ = ŝ + p1, where 1
represents the all-ones vector, ŝ = dev(τ̂ ) is the deviatoric portion
and p = − 1

d tr(τ̂ ) is the pressure portion. As their names indicate, ŝ
essentially encodes the shearing information while p encodes the
dilation information. Although in 3D ŝ seems to have three degrees
of freedom, it can be deduced from its definition that ŝ must be
trace free (or the sum of the three diagonal space entries is zero).
Most common yield surfaces have symmetry w.r.t the pressure axis,
further removing another degree of freedom. As a result, we can

simply use a scale of its magnitude q =
√

6−d
2 | |ŝ | | to describe the

yield surface as y(p,q) = 0.
With our hyperelasticity model defined in Eqn. (10), it can be

shown that for stiff materials (which is indeed the case for most
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ductile materials like metal), ŝn+1 and ŝtr are approximately in the
same direction. For a non-associated flow rule, we further have
pn+1 = ptr. Thus, in our framework, the only essential unknown for
plastic projection is qn+1 (greatly simplifies return mapping).
In the following subsections, we apply our general return map-

ping algorithm to different plasticity models, including Cam-Clay,
von Mises and Drucker-Prager. Each of them defines a specific form
for y(p,q). For brevity, we omit the discussion of cases when plas-
ticity projection is not required, i.e. the trial state is already inside
the yield surface. We refer to [Wolper et al. 2019] for more details.

6.2 Non-Associated Cam-Clay (NACC)
In 1968, Roscoe et al. [1968] proposed the Modified Cam-Clay yield
surface to model clay and soil plasticity; though this model is much
used today, the model lacks cohesion and thus has no stress under
tension (useful for dry, granular materials). Gaume et al. [2018]
augmented MCC by adding cohesive forces to form the Cohesive
Cam-Clay (CCC) model which is shown to produce physically accu-
rate anti-crack propagation in snow. Inspired by this successful soft-
ening based fracture behavior, we seek to expand CCC by adopting
a non-associated flow rule that preserves volume during plasticity
projection to generalize this model to other materials.

In general, an associated flow rule enforces that the plastic strain
rate is parallel to the gradient of the yield surface; conversely, any
non-orthogonal plastic flow rule can be said to be non-associated.
BothMCC and CCC are associated flow rules and neither are volume
preserving; thus, we design a non-associated flow rule inspired by
CCC to enforce isochoric plastic behavior. Here we present details
for NACC (derivations and pseudocode in [Wolper et al. 2019]).

6.2.1 NACC Yield Surface. We begin with the CCC yield surface
used by Gaume et al. [2018]:

y(p,q) = q2(1 + 2β) +M2(p + βp0)(p − p0).

where β is the cohesion coefficient,M controls the friction, and p0
relates to the hardening behavior intrinsic to different materials.
Furthermore, p0 = Ksinh(ξmax(−α , 0)) where K = 2

3 µ + λ is the
bulk modulus, ξ is the hardening factor, and the variable α is used to
track hardening (see Fig. 16 to see parameter effects). Note we use
α0 to denote the initial input state of α before it has been updated.

We expand on CCC [Gaume et al. 2018] by replacing their associ-
ated flow rule with our non-associated flow rule that ensures the
plasticity projections preserve volume, JP,n+1 = JP, tr, avoiding the
volume gain inherent to CCC (see Fig. 17). As discussed in §6.1, our

Fig. 16. NACC Parameters. The NACC parameters α and β are shown to
strongly control fracture behavior, giving significant artistic control.

plasticity projection also leaves the pressure unchanged giving the
following relationships: JE,n+1 = JE, tr and pn+1 = ptr. With this
we may rewrite the yield surface as follows:

y(ptr,q) = q2(1 + 2β) +M2(ptr + βp0)(p
tr − p0) = 0. (14)

Eqn. (14) gives an analytic way to compute the desired q using ptr ;
however, this equation does not have a solution for q when the
trial pressure renders the second term negative. This discontinuity
requires that our return mapping be broken down into cases.

6.2.2 NACC Return Mapping. Once ptr is computed from bE,tr ,
we compare it with the known minimum and maximum p values
that lie on the yield surface: pmax = p0 and pmin = −βp0. Our return
mapping is therefore broken down into three distinct cases based on
the value of ptr in relation to pmax and pmin: Case 1 is when ptr > p0,
Case 2 is when ptr < −βp0, and Case 3 is when ptr is in the valid
range of yield surface values, −βp0 < ptr < p0.

In the first two cases ptr is found to be entirely outside the range
of valid p values within the yield surface (rendering Eqn. (14) un-
solvable), and as such we must project to the tips of the ellipsoid.
This projection is as simple as setting pn+1 = p0 in case 1 or
pn+1 = −βp0 in case 2 and q = 0 in both cases; we can then com-

pute JE,n+1 =
√

−2pn+1
κ + 1 and use the result to reconstruct the

principal stretch with ΣE,n+1 = (JE,n+1)
1
d I . Conversely, in case 3,

Eqn. (14) is trivially solvable with two solutions; however, since q
represents a magnitude, only the positive solution is valid.

6.2.3 Fracture-Friendly Hardening. In order to track hardening we
update the volumetric and shear plastic deformation with a harden-
ing parameter α . For the first two cases, dilational motion is domi-
nant and α encodes changes in log(JP ); this is achieved by using the
relationship between the decomposed deformation gradient before
and after the second ODE solve: F = FE, trFP,n = FE,n+1FP,n+1.
Through taking the determinant of both sides, we find that in case
1 and 2, the change in α can be simply computed as log( J

E, tr

J E,n+1 ).
However, in case 3 we have plastic flow enduring pure shear-

ing and our non-associated flow rule does not change JP , making
this simple hardening inapplicable. Instead, we propose a novel
approach that allows volume-preserving fractures to occur under
pure shearing while still updating the yield surface with appropriate

Fig. 17. Volume Gain. We compare a sand column collapse using CCC
and NACC (both with hardening disabled) to demonstrate the volume gain
improvement attained through adopting a non-associated flow rule.
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hardening. We observe that on the larger p side of the ellipsoid we
need to enforce material hardening, and on the other side, material
softening (allowing natural fracture). Therefore, we define the in-
tersection point, (p×,q×), to be the common point shared both by
the yield surface ellipsoid and by the line connecting the trial state,
(ptr,qtr), and the ellipsoid center, (pc ,qc ), (an illustrative figure is
provided in [Wolper et al. 2019]). Specifically, this line is:

(p×,q×) = (pc ,qc ) + l
(pc ,qc ) − (ptr,qtr)

| |(pc ,qc ) − (ptr,qtr)| |
,

where l is a scalar deciding where the point (p×,q×) resides. Further,
since the intersection point is also on the yield surface, we can get
q×2(1 + 2β) +M2(p× + βp0)(p× − p0) = 0. We combine these two
equations to get a quadratic equation: Al2 + Bl +C = 0 with A, B
and C being some constants, allowing us to solve for two solutions
to l . We choose the l such that (ptr − pc )(p× − pc ) > 0, i.e. p× is
on the same side of the center as ptr. Choosing the correct side of
the ellipsoid captures the damage caused by shearing, and triggers
more intensive softening when the shearing happens quickly. From
p× we can compute JE,×, which is employed to perform the update
to α similar to the first two cases as log( J

E, tr

J E,× ).
We introduce the variable α due to this hardening case because

α is no longer the true log(JP ), just the hardening state we track.
Further, note that NACC plasticity causes fracture to occur strictly
throughmaterial softening and, as such, does not fully reduce tensile
stress to zero, but instead allows fracture to occur at high stress
while obeying plasticity rules and flow as defined.

6.3 Non-associated von Mises and Drucker-Prager
We demonstrate the great versatility of our general return mapping
approach by presenting straightforward reformulations of both the
von Mises (VM) and Drucker-Prager (DP) yield criteria. Here we
concisely present the key differences of the two surfaces. In the case
of VM, the yield surface is defined byy(ptr,q) =

√
2

6−d (q−τy )where
τy is the yield strength. Thus, qn+1 is simply the yield strength.
In Fig. 18 we demonstrate the efficacy of our VM general return
mapping by pairing phase-field damage with our non-associated
VM plasticity. Similarly, DP has a specific yield surface defined as
y(ptr,q) = −dcf p

tr +
√

2
6−d q − cc . We demonstrate in Fig. 19 the

visually indistinguishable appearance of our non-associated DP
plasticity compared to [Klár et al. 2016] for a sand column collapse.

Fig. 18. Fence Smash. A getaway car smashes through a metal fence leav-
ing intricate ductile debris and demonstrating the results attainable through
pairing von Mises plasticity with PFF-MPM (τy = 35).

Fig. 19. Column Collapse. Our Drucker-Prager plasticity paired with our
split energy density gives nearly identical visual results when compared
with the exponential return mapping of Klár et al. [2016].

6.4 Ductile Fracture
Combining phase-field evolution and plasticity models allows us to
model various ductile fracture phenomena. However, note that Choo
and Sun [2018] recently highlighted a key implementation detail:
an “effective stress” (the stress without degradation) should be used
to evaluate the yield function and perform the return mapping. This
choice comes from the hypothesis of strain equivalence in damage
mechanics that states the strain associated with a damaged state
under the applied stress is equivalent to the strain associated with its
undamaged state under the effective stress. Fortunately, this greatly
simplifies the generalization of PFF-MPM, since incorporating an
existing plasticity model into our framework does not require any
modification to the existing return mapping implementation.

7 RESULTS
We present a breadth of demos to demonstrate the robust fracture
achievable with NACC and PFF. All demos were run on an Intel
Core i7-8700K CPU with 12 threads at 3.70 GHz, and all timings
and material parameters are organized in Table 2. We did not note
any significant qualitative or performance differences when using
implicit or explicit integration for these demos, but we list these for
completeness. All code will be open-sourced on authors’ homepages.
We first demonstrate the diversity of fracture attainable with

NACC alone. We explore the effect of the parameters in Fig. 16 with
a pumpkin smash, demonstrating the rich artistic control. Then
we present the same simulation in Fig. 9 with a visualization of
α to represent crack growth. In Fig. 8 we show brittle fracture of
a crab-shaped candy alongside a material space crack visual. We
further demonstrate brittle behavior in Fig. 3 with a cookie smash by
using a stiffer material for the cookie and a softer one for the cream,
achieving complex debris. Finally, we present in Fig. 5 a watermelon
smash (again with a stiffer material for the rind), illustrating the
robust organic material fracture possible with NACC. Note that
these demos do not utilize PFF-MPM. Furthermore, we performed
a performance test by smashing a pumpkin and found that the
plasticity kernel of CCC took 111.61 seconds while NACC took
47.96 seconds, achieving more than 2× speedup.

We now present various results using PFF-MPM to show the
breadth of fracture achievable. We exploreits rich parameters in
Fig. 10. The comparison between values of G illustrates the sensi-
tivity of the energy release rate and the achievable fracture effects.
Similarly, various settings of the fracture mobility constantMc show
the (less dramatic) effect fracture speed has on the ensuing fracture
patterns. We further present experiments inspired by standard me-
chanics tests to show the advantages of our non-local CDM over
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Table 2. Parameters and Timings. Seconds per frame is provided as an average with all demos run on an Intel i7-8700K CPU with 12 threads at 3.70 GHz.
All parameters are reported in standard CGS units.

Example Scheme s/frame ∆tf rame ∆x ∆tstep N ρ E ν PFF-(G, Mc ) NACC-(α0, β, ξ , M )

(Fig. 3) Cookie explicit 634.5 1/48 4 × 10−3 1.15 × 10−5 1.67M 2 2 × 104/1000 0.4/0.35 - (-0.01/-0.03, 0.5/1, 0.8/1, 2.36)

(Fig. 9) Pumpkin explicit 176.7 1/24 7 × 10−3 5.64 × 10−5 1.02M 2 2000 0.39 - (-0.04, 2, 3, 2.36)

(Fig. 5) Melon explicit 313.4 1/24 7 × 10−3 5.44 × 10−5 1.75M 2 2000/1000 0.4/0.3 - (-0.01/-0.03, 2/1, 3, 2.36)

(Fig. 8) Crab explicit 96.8 1/120 4 × 10−3 1.71 × 10−5 918K 2 2 × 104 0.35 - (-0.01, 0.5, 1, 2.36)

(Fig. 7) Octocat implicit 17.6 1/24 3.91 × 10−3 2 × 10−3 690K 2 20 0.4 (3.43 × 10−2 , 10) -

(Fig. 4) Bar Twist explicit 548.6 1/24 1 × 10−2 1 × 10−3 7.79M 2 50 0.4 (3.79 × 10−2 , 1) -

(Fig. 18) Fence implicit 175.2 1/120 6 × 10−3 8 × 10−3 1.45M 2 2 × 104 0.4 (1.35 × 10−2 , 15) -

(Fig. 2) T-Rex implicit 538.8 1/30 1.2 × 10−2 1 × 10−4 1.43M 0.1 20 0.4 (3.43 × 10−2 , 15) -

(Fig. 1) Bread explicit 331.7 1/480 2.82 × 10−3 3.82 × 10−5 11.5M 2 500 0.4 (3.79 × 10−1 , 1) -

(Fig. 6) Stretch explicit 118.3 1/120 5 × 10−3 3 × 10−4 8.27M 2 50 0.4 (3.79 × 10−2 , 1) -

local CDM; we find that PFF-MPM not only more adequately cap-
tures all modes of fracture, but also produces resolution invariant
crack propagation (see [Wolper et al. 2019]).

We compare PFF-MPM against numerical fracture in Fig. 2, where
a jello T-rex is shot with a bullet; the fracture path is visibly formed
when PFF is used, and conversely, numerical fracture produces
unrealistic behavior. Similarly, we perform the same comparison
using a jello bar twist in Fig. 4 to further show the importance of the
phase-field. In Fig. 6, we tear the limbs off the armadillo and visualize
the phase-field. To further illustrate the material space phase-field
propagation, we show in Fig. 7 two colliding elastic "octocats," each
with fragile tendril-like arms prone to fracture. We also pair our
phase-field with von Mises plasticity (τy = 35) to perform a metal
fracture simulation in Fig. 18 where a getaway car smashes through
a metal fence, leaving an intricate hole with plastically deformed
edges and debris. Finally, in Fig. 1 we illustrate the hyper-realistic
fracture effects attainable through using PFF-MPM to capture the
intricate behavior intrinsic to tearing fresh bread. In Fig. 20 we
present a timing breakdown for a single substep of the implicit
jello T-rex in PFF-MPM; the proportionally-small compute time
added by our phase-field augmentation highlights that PFF-MPM is
an extremely efficient augmentation of traditional MPM that adds
comparatively little overhead to the existing computations.
Note that in many of our demos pieces of the material separate

and come back together without actually reconnecting; however, at
times there appears to be a stickiness to this interaction.We note that
this is not intrinsic to the augmentations that make up CD-MPM,
but actually this interpolation induced stickiness is unfortunately a
known limitation of the MPM algorithm itself.

8 LIMITATIONS AND FUTURE WORK
Although our two approaches are robust and resolve intricate cracks
with extremely high visual fidelity, CD-MPM has limitations related
to rendering and parameter tuning. Specifically, MPM simulations
are often rendered using meshed particles followed by smoothing
(we used OpenVDB [Museth et al. 2013]); however, rendering debris
is difficult due to the delicate balance between surface smoothness
and sharpness. Smoothing too much removes the intricate crack
patterns, but smoothing too little leaves the surface undesirably

textured. Due to these difficulties, CD-MPM is an opportune target
for augmentation through surface tracking and reconstruction tech-
niques, such as the level-set method of Bhatacharya et al. [2011]
or other triangle mesh approaches [Da et al. 2014; Yu et al. 2012].
Similarly, to achieve detailed cracks, the grid resolution must be
sufficiently high; however, this is mitigated by the length scale pa-
rameter l0, since we set it based on grid resolution. Fortunately,
we found that phase-field crack propagation speed is resolution
invariant, while for local CDM it is not [Wolper et al. 2019].

While both PFF-MPM and NACC have rich artistic control capa-
bilities due to their many parameters, tuning does have a notable
learning curve. We show the breadth of effects possible simply
through changing parameters, but the parameters themselves are
admittedly esoteric and at first difficult to tune due to the high sensi-
tivity of parameters like G. We believe the rich control is worth the
difficulty, but it is clear that a more intuitive parameter formulation
would much better assist artists and practitioners alike. Furthermore,
there are some visual effects that are still hard to capture (such as
controlling/predicting the amount of debris).
CD-MPM provides a new generalized return mapping that en-

ables myriad material effects and, as such, presents a unique and
robust framework to explore other fracture effects such as brittle
and anisotropic fracture. We explored brittle fracture and found
that PFF-MPM somewhat struggles to produce fast and rigid shatter
effects; however, we did find some success, specifically with our

Fig. 20. PFF-MPM Substep Timing Breakdown. Decomposing a single
substep of PFF-MPM into its subroutines shows the comparatively low com-
pute time our phase computations (blue) add to traditional MPM (purple).
Timing was performed on an implicit demo (see Fig. 2) to show that the
phase solve takes less than half the time of the Backward Euler solve.
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NACC model (see Fig. 8). Conversely, anisotropic fracture requires
further modeling of grain patterns and their effect on the fracture
of materials such as wood, biological tissues, and crystal.

As discussed, the parameters within CD-MPM could be expanded
to be more intuitive, and the development of reformulated parame-
ters may assist with enabling such an interface. Furthermore, the
robust behaviors producible by changing the sensitive G parameter
show great promise for artistically controllable fracture patterns
through clever initializations of G (for example using Voronoi tes-
sellation). Early exploration of alternative initializations produced
promising results. Finally, some orthogonal extensions: a rigorous
study of the convergence of staggered iterations, a thorough investi-
gation of the effects possible through coupling PFF and NACC, and
the incorporation of particle resampling (such as that of Yue et al.
[2015]) to mitigate the undesirable effects of undersampled regions.
This last extension is noteworthy due to the visual similarity of
numerical fracture and the true fracture behavior we desire.
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