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ABSTRACT

Design is essentially a decision-making process, and sys-

tems design decisions are sequentially made. In-depth under-

standing on human sequential decision-making patterns in de-

sign helps discover useful design heuristics to improve existing

algorithms of computational design. In this paper, we develop

a framework for clustering designers with similar sequential de-

sign patterns. We adopt the Function-Behavior-Structure based

design process model to characterize designers’ action sequence

logged by computer-aided design (CAD) software as a sequence

of design process stages. Such a sequence reflects designers’

thinking and sequential decision making during the design pro-

cess. Then, the Markov chain is used to quantify the transitions

between design stages from which various clustering methods

can be applied. Three different clustering methods are tested, in-

cluding the K-means clustering, the hierarchical clustering and

the network-based clustering. A verification approach based on

variation of information is developed to evaluate the effective-

ness of each method and to identify the clusters of designers

who show strong behavioral similarities. The framework is ap-

plied in a solar energy systems design problem – energy-plus

home design. The case study shows that the proposed framework

can successfully cluster designers and identify their sequential

∗Corresponding author: zsha@uark.edu

decision-making similarities and dissimilarities. Our framework

can support the studies on the correlation between potential fac-

tors (e.g., designers’ demographics) and certain design behav-

ioral patterns, as well as the correlation between behavioral pat-

terns and design quality to identify beneficial design heuristics.

Keywords: Cluster analysis, Design thinking, Markov chain, De-

sign process, Sequential Decision Making, Function-Behavior-

Structure.

1 INTRODUCTION

Engineering systems design is a series of interrelated opera-

tions that is driven by designers’ decisions. Systems design de-

cisions are sequential rather than concurrent optimization strate-

gies [1]. While designers are involved in a design process, they

iteratively and sequentially make decisions to explore and ex-

ploit the design space in order to improve their designs. As a

consequence, sequential decision-making has significant impacts

on the quality of design outcomes and the resources needed to

achieve the outcomes. A deeper understanding on designers’ se-

quential decision-making behaviors is critical to the discovery of

generalized design processes and heuristics that can, in turn, be

used to facilitate design process and enhance design automation.

Sequential decision making is an essential component of de-
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sign thinking. Dym et al. [2] defines design thinking as a com-

plex process of inquiry and learning that designers perform in

a systems context, making decisions as they proceed and often

working collaboratively. A deeper understanding of designers’

sequential decision-making behaviors, especially their patterns,

is critical to advancing artificial intelligence in engineering de-

sign, for example, by encoding human intelligence in many com-

putational design frameworks.

However, modeling design decision-making is scientifically

challenging because human decisions are the result of a mental

process that is hidden, implicit, and sometimes tacit [3]. Such

a challenge is even more significant in a systems design context

that consists of a large number of coupling design variables. To

address this challenge, we adopt a data-driven approach and use

unsupervised clustering methods to mine designers’ sequential

design patterns.

The overall objective of this study is to establish a frame-

work that automatically identifies and clusters sequential design

behavioral patterns of a group of designers. To achieve this ob-

jective, the FBS-based design process model is adopted to char-

acterize designers’ action sequence logged by computer-aided

design (CAD) software as a sequence of design process stages.

Then, the Markov chain is used to quantify the transitions be-

tween design stages from which various clustering methods can

be applied. We adopted three different clustering methods in-

cluding the K-means clustering, the hierarchical clustering and

the network-based clustering. Finally, a verification approach

based on information theory is applied to evaluate the effective-

ness of each method and to identify the clusters of designers who

show strong behavioral similarities. Our study is motivated and

driven by answering the following two questions:

• What are the sequential design behavioral patterns that most

designers would follow in systems design?

• If designers behave similarly in sequential design making of

time domain, would their behaviors quantified in frequency

domain are also similar?

This paper is organized as follows. In Section 2, we present

relevant literature. In Section 3, the framework of identifying au-

tomatic clustering design behavioral patterns is introduced and

discussed. The data collection and experiment procedure are de-

scribed in Section 4. In Section 5, the results are discussed and

we conclude the paper with closing thoughts and future work in

Section 6.

2 BACKGROUND AND LITERATURE REVIEW

In this section, we review the relevant studies about sequen-

tial decision-making in the engineering systems design field.

Also, to understand the sequential decision making in a design

process, it is important to have a model at the first place to char-

acterize the design process such that a coding protocol can be

used to encode and computationally extract the sequential design

decisions. Different models hold different assumptions. Identi-

fying an appropriate design process model is thus a critical step

to answering the research questions aforementioned. Therefore,

in Section 2.2, we provide a literature review on existing studies

of design process models.

2.1 Sequential Decision Making in Engineering De-

sign

In engineering design, different models and theories have

been used to study designers’ sequential decision making. To

facilitate the development of sequential guidelines and shorten

design cycle, Smith and Eppinger [4] developed a sequential it-

eration model. The author adopted the design structure matrix

that sequences the design task in an optimized way. Then the ex-

pected execution time for engineering development project can

be predicted. Yukish et al. [5] developed a formal model that de-

scribes the sequential decision process by addressing the issues

of low fidelity model and high fidelity model in engineering de-

sign. The authors also showed how low fidelity model can be

coupled with high fidelity model for ease of detail modeling. In

order to understand the sequential decision-making behaviors in

design under competition, Sha et al. [6] developed a model that

integrates game theory with Bayesian optimization (BO). Us-

ing design crowd sourcing as an example, the authors adopted

the non-cooperative game and Wiener process-based BO to esti-

mate designers’ trade-off preferences in design while two players

compete for wining a monetary award.

Markov chain is a widely used technique in design area to

understand designers’ sequential decisions. Yu et al. [7] applied

the first-order Markov chain and Function-Behavior-Structure

(FBS) ontology to explore the effect of the design knowledge

and experience on design patterns in a parametric design environ-

ment (PDE) and geometric modeling environment (GME). Later

second-order Markov chain was implemented to the same pur-

pose. From the study, it is found that designers exhibit more

design patterns in PDE than GME. Kan and Gero [8] also used

the first-order Markov chain to compare designers’ behaviors in

three different design domains: architectural design, software de-

sign and mechanical design. In a recent study, McComb et al. [9]

find that the first-order Markov chain better represents designers’

sequential decisions than higher-order Markov chain in configu-

ration design problems. Existing studies using Markov chain are

mainly focused on identifying designers’ behaviors at an aggre-

gate level. However, each designer may have different sequential

behavioral strategies. Understanding of individual design strate-

gies is essential to design research in many aspects, such as in-

forming better structure of design teams, developing customized

CAD software, fostering personalized learning, and identifying

design experts vs. novice, which is an important topic of de-

sign knowledge acquisition and management. Therefore, in this
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FIGURE 2: Design process stages distribution of designer A10

sults, it is important to verify the results from different methods.

Therefore, a verification approach is needed to assure the cor-

rectness and the quality of outputs. It’s worth noting that each of

the components in Figure 1 can be programmed and seamlessly

connected to turn the approach into an automatic clustering tool.

In the following subsections, we present the details for each step.

3.2 Characterizing Sequential Decisions Using

Markov Chain

In this study, the first-order Markov chain [23] is adopted

to characterize a design process transitioning from one stage to

the another. A Markov chain is a stochastic process in which

a system transitions between a finite numbers of discrete states.

The traditional definition of Markov chain is regulated by the

Markov property – the future state of the process is solely based

on its present state. This refers to the first-order Markov chain

model [24]. Higher-order Markov models can be developed as-

suming the next state depends on the current state as well as some

number of past states [9]. To define a discrete time Markov chain,

we need three components:

• State space: a finite set S of possible states of the system.

• Transition probabilities: a function π : S×S → R such that

0≤ π(a,b)≤ 1 for all a,b∈ S and ∑b∈S π(a,b) = 1 for every

a ∈ S.

• Initial distribution: a function µ : S → R such that 0 ≤
µ(a)≤ 1 for every a ∈ S and ∑a∈S µ(a) = 1

In order to use Markov chain to study the sequential

decision-making in design, some treatments are needed to adapt

TABLE 1: The FBS-based design process model

Name of the process Design process

Formulation R → F & F → Be

Synthesis Be → Bs

Analysis S → Bs

Evaluation Bs → Be

Reformulation 1 S → S

Reformulation 2 S → Be

Reformulation 3 S → F

Documentation S → D

the concepts of Markov chain. While designers explore a design

space, design actions performed at different time spots may cor-

respond to the same design process stage. The sequence of how

the design space is explored (design action space) can, therefore,

be mapped to a design process (design thinking space), where the

Markov chain can be established to model the sequential decision

making as a time series of design stages. In such a configuration,

the system states in the Markov chain corresponds to design pro-

cess stages, and the ‘system’ is, therefore, the sequential design

thinking being studied. To support the mapping of design ac-

tions to design process stages, a coding scheme (see Section 4.3)

is developed based on the FBS-based design process model.

Based on the five FBS ontological variables mentioned in

Section 2.2, such a design process model consists of eight

process stages: Formulation, Analysis, Evaluation, Synthesis,

Documentation and Re f ormulation 1, 2 and 3. Table 1 defines

how these design process stages are derived from FBS ontology.

Formulation transforms Requirement (R) into Function (F) and

from Function to Expected Behavior (Be). Synthesis generates

and tunes Structure based on the Expected Behavior. Analysis

is defined as the process which is generated from Structure (S).

Evaluation is the comparison between the Expected Behavior

and the behavior enabled by the actual structure (Bs). The design

process that transitions from Structure is called Re f ormulation.

Depending on which state the process transitions to, three dif-

ferent process stages can be defined. Re f ormulation 1 is the

process transitioning from one structure to a different structure.

Re f ormulation 2 describes the transitions from Structure to Ex-

pected Behavior; and Re f ormulation 3 is the process from Struc-

ture to Function. Documentation (D) is the description of the

whole process.

Motivated by the second research question, in addition to

using Markov chain to study the sequential patterns in design

process, we also investigate the design process in frequency do-
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TABLE 2: The design requirements

Item Requirements

Story 1

Roof style Pitched

Number of windows ≥ 4

Size of window ≥1.44 m2

Number of doors ≥1

Size of door ( Width × Height) ≥1.2 m × 2 m

Height of wall ≥2.5 m

Solar panel placement On roof only

Distance between ridge to solar panel ≥0

solar panel, etc.), and complex coupling relations among the vari-

ables. Therefore, the design space is very large. This is why the

requirements and the constraints are developed to reduce design-

ers’ action space to a manageable level.

In design problem, designers make trade-off decisions. For

example, there is no restriction on the area of the house. But if

the area is too small, designers will not be able to place enough

solar panel on the roof. As a result, the ANE will be insignificant.

On the other hand, if the area is too large, the cost may exceed

the budget. So, designers follow their own strategies during the

design process to sequentially make decisions guiding the explo-

ration and exploitation of design space so as to improve the ANE

as much as possible.

4.2 Experiment Procedure

In order to collect the design action data, a human-subject

field experiment [37] is conducted. The energy-plus home de-

sign project is performed based on Energy3D – a full-fledged

computer-aided design (CAD) tool for solar energy systems [38].

Energy3D has built-in modules of engineering analysis, science

simulation and financial evaluation. This ensures the collection

of inter-stage design iteration data, e.g., how designers make de-

cisions on a scientific basis (e.g., the ANE analysis results) and

economic considerations (e.g., the overall cost), without disrupt-

ing the design process and designer’s thoughts. Energy3D can

automatically log and sort all user actions, at an extremely fine-

grained level. All these features enable us to collect high-fidelity

data which reflects designers’ rational behaviors.

Total 38 people, including both students and faculty mem-

bers from the University of Arkansas participated in the experi-

ment in five sessions. The participants come from different de-

partments, and the demographics is diverse1 . The participants

are indexed based on which session they were in and which lap-

top they used. We use letters A to E for the session names, thus

A02 means the participant was in Session A and sit in laptop #2.

Each session consists of two phases: pre-session and in-

session. The pre-session is thirty minutes long and allotted for

participants to practice Energy3D. The design of this pre-session

is to account for the learning curve of humans. The data gen-

erated in pre-session was not be used for analysis. To further

mitigate the learning effects, a tutorial on key operations and ter-

minologies of Energy3D is provided to make sure the partici-

pants are familiar with the software environment2. At the end

of the pre-session the participants will be guided to transition to

in-session phase. In-session phase lasts about one hour and half.

The design statement and the design requirements are provided

at the beginning of this session. A record sheet is provided for

participants to record the ANE and cost whenever they iterate

their designs.

Monetary rewards are provided at the end of the session

to incentivize the participants to explore and exploit the design

space as much as possible. The participants are rewarded based

on the amount of time they have spent as well as the quality of

their final design outcomes, which are related to the ANE and

construction cost.

4.3 Data Collection and the FBS-based Coding

Scheme
Energy3D logs every performed action and intermediate

artifacts (as Energy3D files) every 2 seconds [39]. In our

experiment, 220 intermediate files are collected on average and

the action log file contains on average 1500 lines of data. The

action log file is saved in JSON format and includes time-stamps,

design action and its corresponding parameters and/or analysis

values, such as the coordinate of an object and/or ANE output.

See an example as below:

{”Timestamp”: ”2017-11-14 12:51:27”, ”File”: ”Energy-

PlusHome.ng3”, ”Add Rack”: {”Type”: ”Rack”, ”Building”:

2, ”ID”: 23, ”Coordinates”: [{”x”: -28.863, ”y”: -49.8, ”z”:

20.799}]}}

In this study, only the design actions, e.g., “Add wall”, “Edit

wall”, “Show heliodon”, etc. are extracted for analysis. Trivial

actions that do not affect the design quality, such as “Camera”,

“Add human”, “Edit human” etc., are ignored. The participants

have tried 115 different types of actions. After collecting the

1We conducted questionnaire and collected the demographics and other basic

information about participants. Due to the length of the paper and its main focus,

the statistics of the questionnaire is not reported.
2Our pilot study has shown that participants are able to master the operations

of Energy3D for the energy-plus home design project in 30 minutes with the aid

of the tutorial.7 Copyright c© 2018 by ASME



TABLE 3: FBS coding scheme for design action data

Design process-stage Design action

Formulation Add any component

Analysis Analysis of annual net energy

Synthesis Edit any component

Evaluation Cost analysis

Reformulation 1 Remove structure

Reformulation 2 Remove solar device

Reformulation 3 Remove other components

action data, we develop a coding scheme (Table 3) based on the

FBS-based design process model to transform the design action

data to the design process data in support of the cluster analysis.

In FBS ontology, Formulation is the process to generate

Function from requirement. In our design problem, with the

provided design requirements, designers start to generate house

functions by adding new components, e.g., wall and window. So,

we define these actions as Formulation. In Energy3D, to increase

solar energy (i.e., the expected behavior), modification of differ-

ent fictional components is required. So, Synthesis in our con-

text corresponds to editing actions, e.g., change height, edit wall,

etc. Analysis indicates the process of generating behavior from

structure. In Energy 3D, such a process refers to ANE analysis

of a given house structure. During the design, designers evalu-

ate the overall design quality by comparing the ANE per dollar

cost of different design alternatives. Therefore, give the same

ANE, the action of doing cost analysis indicates the Evaluation

process. Finally, in Energy3D, designers recreate structure by re-

moving old structural components. Solar panels are sometimes

removed to more precisely adjust the roof space in order to put

more solar panels so as to profuce more solar energy. Therefore,

in our design problem, Reformulation 1, 2 and 3 refers to remov-

ing structure, solar devices, and other miscellaneous components

(e.g., roof, tree, etc.), respectively. A complete coding scheme

for this study in shown in Table 3.

5 RESULTS AND DISCUSSION

5.1 Clustering Sequential Decision Making based on

Markov Chain Model

To quantify designers’ sequential decision-making behav-

iors, the first order Markov chain transition probability [9] is cal-

culated. An entry of the matrix πi j defines the probability that

design process i transitions to j, which is calculated by the fol-

FIGURE 6: Transition matrix of the first-order Markov chain for

participant C14

lowing equation,

πi j =
ni j

ni

(1)

,where ni j is the number of times design process j is followed by

process i. ni is the total counts of the process i during the entire

design.

As an example, Figure 6 shows the transition probability of

designer C14. It shows that the most occurred transition is Re-

formulation 1 → Reformulation 1 and the value is 0.75. This

indicates that the designer C14 was involved in removing struc-

ture (wall, window) significantly more frequent than other tran-

sitions. The value zero means that the designer never used that

transition in the design. For example, the value from Synthesis

to Reformulation 1 is zero. This indicates that after editing or

changing the parameters of any structural components (such as

walls), this designer would never removed those components.

Once all the 38 participants’ transition probability matrices

are obtained, they are converted to a 49×38 matrix that captures

the sequential design process features, from which different clus-

tering methods are applied. The optimal numbers of clusters for

K-means clustering are 4, 5 and 6, which is obtained from the el-

bow plot technique. This means these three points correspond to

the transition region where the change of the slope on the elbow

plot curve is the largest. In this paper, we evaluate different clus-

tering methods at each of the three clustering settings. Figure 7

shows the K-means clustering results with 4 groups. The clusters

are indicated by four different symbols (1, 2, 3, and 4). The num-

ber of designers in each cluster is 15, 11, 10 and 2, respectively.
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FIGURE 7: K-means clustering plot of four groups

The plot shows the data points in two principle dimensions. From

the figure, it is observed that designers B13 and C06 in Cluster 3

are situated far from the other clusters in the Euclidean space. It

is inferred that their sequential behaviors are quite different from

the other designers.

Hierarchical method clusters the designers by forming a

dendrogram, as shown in Figure 8. The height of the dendrogram

indicates the designers’ behavioral similarity. To get 4 clusters,

the dendrogram is cut at the height of 2.1. The resulting clusters

contains 15, 14, 9 and 2 members, respectively. Figure 8 indi-

cates that designer A12 and D08 meet at the lowest distance (the

lowest height) on the dendrogram than any other pairs. There-

fore, they share the most similarity in sequential behaviors. Like

K-means-4 clustering, Hierarchical-4 (HAC-4) clustering proves

the similarity between B13 and C06 as well. While in K-means-4

clustering, A10 and A14 are in the same group, but in the HAC-4

clustering they are located at two different groups. This reveals

that the inconsistency among different clustering methods.

For the network-based clustering, we calculate the RSS and

CS similarities between each pair of designers using the vectors

obtained from the transition probability matrix. This process pro-

duces two 38×38 similarity matrices from which the RSS-based

network and the CS-based network can be obtained, respectively.

To obtain the desired number of clusters (i.e., 4, 5 and 6 deter-

mined by elbow plot method), we trial and error the RSS and

CS values together with the modularity-maximization algorithm

to determine the threshold. The results suggest that the values

1.24, 1.23 and 1.22 of RSS similarity are able to create 4, 5 and

6 clusters, respectively for RSS-based network. In the CS-based

network, it is found that the values of 0.7, 0.75 and 0.77, are the

FIGURE 8: Dendrogram produced by hierarchical agglomerative

algorithm

appropriate threshold values to produce the desired number of

clusters 4, 5, and 6.

Figure 9 shows the result of RSS-based network clustered in

4 groups indicated by different colors. The four groups consist of

14, 11, 11 and 2 members, respectively. But in this method, the

clustering results are different from K-means-4 and HAC-4. For

example, E06 and E14 belong to the same group in K-means-4

and HAC-4, but in RSS-4, they are in separate groups. But results

from different methods do hold consistency. For example, B13

FIGURE 9: The network-based clustering using residual sum of

square similarity groups the designers in four clusters
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TABLE 4: Comparison of different clustering methods using variation of information. The row and column names indicate the cluster

method and corresponding number of clusters.

KM-4 KM-5 KM-6 HAC-4 HAC-5 HAC-6 RSS-4 RSS-5 RSS-6 CS-4 CS-5 CS-6

KM-4 ˜ ˜ ˜ 0.546 0.687 0.710 0.449 1.200 0.946 0.760 0.273 0.310

KM-5 ˜ ˜ ˜ 0.894 0.815 0.752 0.785 0.847 0.594 0.919 0.596 0.633

KM-6 ˜ ˜ ˜ 1.250 1.170 1.107 0.985 0.737 0.886 0.862 0.936 0.955

HAC-4 0.546 0.894 1.250 ˜ ˜ ˜ 0.978 1.469 1.130 1.250 0.696 0.733

HAC-5 0.687 0.815 1.170 ˜ ˜ ˜ 1.120 1.389 1.050 1.392 0.820 0.857

HAC-6 0.710 0.752 1.107 ˜ ˜ ˜ 1.142 1.334 0.836 1.414 0.757 0.794

RSS-4 0.449 0.785 0.985 0.978 1.120 1.142 ˜ ˜ ˜ 0.953 0.821 1.331

RSS-5 1.200 0.847 0.737 1.469 1.389 1.334 ˜ ˜ ˜ 0.647 1.419 0.673

RSS-6 0.946 0.594 0.886 1.130 1.050 0.836 ˜ ˜ ˜ 0.684 1.419 0.710

CS-4 0.760 0.919 0.862 1.250 1.392 1.414 0.953 0.647 0.684 ˜ ˜ ˜

CS-5 0.273 0.596 0.936 0.696 0.820 0.757 0.821 1.419 1.419 ˜ ˜ ˜

CS-6 0.310 0.633 0.955 0.733 0.857 0.794 1.331 0.673 0.710 ˜ ˜ ˜

Efficiency 5 3 0 2 1 0 1 2 2 2 3 3

and C06 have been always grouped together in all three methods.

Following the same approach of generating RSS-based network

clustering, clusters can also be produced using CS-based network

clustering method. CS-based clustering shows some similarities

and dissimilarities as well. For example, B13 and C06 are clus-

tered together with K-means-4, HAC-4 and RSS-4 methods, but

they are separated with CS-6 method.

Since clustering results are inconstant from different clus-

tering methods, the results need to be verified. The variation

of information (VI) is used to compare each pair of clustering

methods to evaluate the partial agreement between the clusters

obtained from each method. The VI values are summarized in

Table 4. Please note that the VI between the same clustering

methods but different cluster numbers (e.g. K-means-4 vs. K-

means-5) is not worth comparing, thus the corresponding VI are

not available in Table 4. From Table 4, we can observe that the

VI between K-means-4 clustering and CS-6 clustering is 0.31.

On the other hand, the VI between HAC-5 and CS-5 clustering

have is 0.82. So, K-means-4 clustering and CS-6 clustering have

more overlapping cluster members than that HAC-5 and CS-5

clustering has.

By analyzing the distribution of VI (see Figure 10), the value

of 0.7 (corresponding to the top 25 % quantile) is chosen as a

cutoff value to filter out the clustering methods that have more

consistent results. During this process, we are able to a) find the

most efficient clustering method and its corresponding number of

clusters, and b) find the designers that have been always clustered

together and identify their sequential behavioral patterns. In Ta-

ble 4, the VI values below 0.7 are highlighted in yellow color and

their corresponding clustering methods are selected for further

FIGURE 10: Distribution of the VI shown in Table 4
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consideration. The values which are below 0.7 are considered as

efficient. This can be expressed as the following way:

Efficiency =
k

∑
i

f (V Ii) (2)

,where f (V Ii) = 1 if V Ii < 0.7; and 0 otherwise. i= 1, 2.... k

and k = 12 in this case study. It is observed that K-means-4

clustering has the largest number of times in overlapping with

other clustering methods. Therefore, K-means-4 clustering is the

most efficient method among all the three methods in consider-

ation. Detailed results of K-means-4 clustering is presented ear-

lier. By checking the occurrence of the VI values being below the

threshold 0.7, we identify K-means (4, 5), HAC (4, 5), RSS-(4, 5,

6) and CS-(5, 6) for consideration to identify the designers who

have been always clustered together irrespective to the methods

being used. The results are shown in Table 5. Note that each row

of designers are grouped together without any pre-knowledge.

With the clustering results, we revisit the first question we

aim to answer in this study: What are the most frequent sequen-

tial design behavioral patterns that most designers would follow

in systems design? By analyzing the clusters, it found that, for

most of the cases, the highest transition probability for each de-

signer in a group is similar. The sequential design behaviors that

most designers follow are listed and discussed below.

• Synthesis → Synthesis

This transition of design stages is the most frequently oc-

curred pattern. For example, the highest transition probabil-

ity of all the designers of the third group (A06, A12, A13,

C13, D08, and E15) is Synthesis → Synthesis. Again, the

fifth group (B11, C06) also uses this pattern very often. It

indicates that the designers of these groups kept modifying

the parameters of the components. The possible reason for

this deign pattern is that designers are incentivized by the re-

TABLE 5: Clustering results of design sequences irrespective of

the clustering methods

A02, A05, B08, C01, C07

A03, A15, B07,C08, D02, D10,E14

A06, A12, A13, C13, D08, E15

A07, A08, C10

B06, C11

B09, D09

warding mechanism in the experiment, thus they tried their

best to exploit the design space by sequentially changing the

design parameters.

• Reformulation → Formulation

Designers also used this pattern very frequently. We found

that, the highest transition probability of the second group

(A03, A15, B07, C08, D02, D10, and E14) is Reformulation

2 → Reformulation. This pattern indicates that designers in

this group spent significant amount of time to remove so-

lar panels and again adding them back. It may be due to

that they were trying to adjust the solar panel on the roof to

a perfect condition. Again, the last group (B09, D09) fol-

lowed the Reformulation 3 → Formulation design pattern.

Designers in this group spent most of the time to remove the

existing roof or others component (excluding solar panels

and structural components) and again adding it.

5.2 Clustering Design Behaviors based on the Distri-

bution of Design Process Stages

The second question we’d like to answer is that, If design-

ers behave similarly in sequential design-making of time domain,

would they also have similar behaviors in frequency domain? To

answer this question, we apply the same approach in Figure 1 to

identify the designers who use similar number of design process

stages during their designs. The only difference between this

analysis and the one in the previous section is that the behav-

ioral data used in this section in a 7×1 vector. Each element of

this vector is the frequency of each design process stage. There-

fore, this analysis capture similarities of designers who have sim-

ilar preferences of leveraging certain design processes in systems

design. Figure 11 shows the examples of the distributions of the

design process stages from four designers. These results verify

that our approach is able to successfully cluster the similar design

behaviors together.

Table 6 shows the designers who have been always grouped

together based on their design process distribution irrespective

of the clustering methods. Among all the participants, it is found

that Synthesis is the most frequently used design process stage.

Out of the 10 similar behavioral groups, 9 groups follow this

trend. That means, in their design processes most of the time

they are involved in editing various component of the energy-

plus home. Such a behavior is again a reflection of the reward

incentive created in the experiment. However, as shown in Fig-

ure 11, B08 and B09 do not follow this trend. Instead, the most

frequent design process stage is Formulation which signifies that

their design was much involved adding components to meet the

design requirements. Participants B13 and E06 have a unique

distribution of the design process stages. Instead of using all

seven design processes, they are mainly involved in Formulation,

Synthesis, Analysis, and Evaluation process. They almost never

performed any actions related to reformulation. This indicates

11 Copyright c© 2018 by ASME



(a) (b)

FIGURE 11: Design process stage distribution of two groups where designers in the same group show similar patterns of distribution

whereas the behavioral patterns are different between groups

that different designers have different patterns and designers do

have preferences in selecting certain types of design actions to

explore the design space. The resulting distribution of design ac-

tions is therefore not uniform. It is observed that Reformulation

is overall used less frequently than other process stages on av-

erage. This implies that designers are incline to improving the

design quality by editing the artifacts that are already established

rather than removing and restructuring the house. Some of the

TABLE 6: Clustering results of design process distribution irre-

spective of the clustering methods

A02, A14, C15, D02

B02, C01

A06, B06, B07, C02, C10, C13,D03

A10, D10

A12, E15

A05, C05

A08, C09, C11

B08, B09

A13, C14

B13,E06

designers (e.g., A05, C05) performed Analysis almost the smae

number of times as Synthesis and Formulation. This behavior

indicates that they were exploring the effects of changing cer-

tain parameters because any changes made in Energy3D can be

immediately assessed.

By comparing Table 5 and Table 6 it is found that only A12

and E15 grouped together in both sequential behavioral analysis

and distribution analysis of design process stages. This indicates

that, for most designers, even if they behave similarly in sequen-

tial design-making of time domain, they do not necessarily have

similar behaviors in frequency domain.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a framework of automatically cluster-

ing designers with similar design behaviors. Fine-grained de-

sign action data are collected using Energy3D in an non-intrusive

way. Then, the first-order Markov chain is used to generate the

sequential behavioral data after applying the FBS-based coding

scheme. On the other hand, based on the distribution of design

process stages, we analyzed the designers’ behaviors quantified

in frequency domain. We utilized three representative cluster-

ing methods, K-means, the hierarchical agglomerative, and the

network-based clustering methods in this study. The elbow plot

method indicates that 4, 5 and 6 are preferred clustering num-

bers. In order to verify the clustering results, variation of infor-

mation method is used and we find that K-means with 4 clusters

is the most efficient clustering method. Finally, by comparing

the obtained clusters, designers with similar sequential behav-

12 Copyright c© 2018 by ASME



ioral patterns are identified. We find that, Synthesis → Synthesis

and Reformulation → Formulation are the design patterns that

were followed by a large number of designers. In addition, we

find that designers who used the same number of process stages

do not necessarily follow the same sequence in their design.

The overall contribution of this paper is the development of

a general framework that can accommodate various clustering

methods for identifying design behavioral patterns. Moreover,

the network-based clustering approach developed in this study

provides a new way for clustering design behaviors by leverag-

ing network community-detection algorithms. Successful identi-

fication of similar behaviors as well as their design patterns has

significant benefits in discovering efficient design heuristics and

guiding team-based design. For example, useful design process-

stage frequencies and design patterns that lead to better design

outcomes can be identified by correlating design quality with dif-

ferent behavioral groups. Also, in team-based design, to maxi-

mize the working efficiency, similar/dissimilar designers could

be paired up to improve the communication and /or diversity

within a group.

In the future work, more concrete validation study will be

performed. On the one hand, the potential factors, such as de-

signers’ demographics and expertise, which result in the ob-

served clusters will be studied. This helps further validate the

correctness of the clustering results and identify the influential

factors that drive the formation of clusters. On the other hand,

the clustering results obtained from this study can be used in

other applications, for example in the prediction of sequential

design behaviors, to further demonstrate the usefulness of the

cluster information. In addition, we plan to evaluate the corre-

lation between design sequences and design quality in order to

identify beneficial sequential decision strategies. Also, to under-

stand sequential behavior more precisely, higher-order Markov

chain will be applied to study the memory effects in sequential

design behaviors. Finally, we are interested in exploring other

possible models in addition to the Markov chain to quantify the

sequential decisions so that the robustness of the proposed clus-

tering framework can be evaluated.
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