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ABSTRACT

Design thinking is often hidden and implicit, so empirical approach based on experiments and data-driven methods
has been the primary way of doing such research. In support of empirical studies, design behavioral data which
reflects design thinking becomes crucial, especially with the recent advances in data mining and machine learning
techniques. In this paper, a research platform that supports data-driven design thinking studies is introduced based
on a computer-aided design (CAD) software for solar energy systems, Energy3D, developed by the team. We
demonstrate several key features of Energy3D including a fine-grained design process logger, embedded design
experiment and tutorials, and interactive CAD interfaces and dashboard. These features make Energy3D a capable

testbed for a variety of research related to engineering design thinking and design theory, such as search
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strategies, design decision-making, Al in design, and design cognition. Using a case study on an energy-plus home
design challenge, we demonstrate how such a platform enables a complete research cycle of studying designers’
sequential decision-making behaviors based on fine-grained design action data and unsupervised clustering
methods. The results validate the utility of Energy3D as a research platform and testbed in supporting future design
thinking studies and provide domain-specific insights into new ways of integrating clustering methods and design
process models (e.g., the function-behavior-structure model) for automatically clustering sequential design
behaviors.

Keywords: Sequential design decision, design thinking, computer-aided design, unsupervised learning, and data

clustering

1. RESEARCH BACKGROUND AND PAPER OVERVIEW
1.1 Engineering Design and Design Thinking

Design is a purposeful activity that aims to meet a set of requirements for an artifact [1,
2]. It typically involves defining problems and solving them [3]. The former stage usually
transforms design from ill-defined problems to well-defined ones, from which both design
variables and constraintscan be identified, and the design space is determined. This step often
requires design ideation, conceptualization, and requirement analysis. The later stage relies on
different strategies of searchingto find the most appropriate solutions within the identified

design space. In both stages, design heavilyrelies on a designer’s knowledge consisting of not
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from experience [4]. In addition, designers are bounded rational due to human’s limited
information processing capability [5]. In this process, engineering design thinking (EDT), as
shown in Figure 1, plays an importantrolein bridging design knowledge and design problems,
given the bounded rationality of designers, to guide designers’ operations to navigate through
the design space in a stepwise but iterative manner (a.k.a. sequential decision-making), in order
to achieve the design objective. According to Dym et al. [6], EDT is a complex process of inquiry
and learningthat designers performin a systems context, making decisions as they proceed and
often working collaboratively.
1.2 The Significance and Challenges

A deeper understandingon designers’ thinkingand decision-makingis critical to the
discovery of generalized design processes and heuristics that can, in turn, be used to facilitate
design process and enhance design automation. This is particularly useful to the development
of computational design methods. Forexample, evidence has shown that human beings are
quite successful, in heuristically solving design problems with large solutions space and often
nonconvex objectives. Recent studies [7, 8] also show that human search displays a different
pattern as compared to computational algorithms. Therefore, integrating human intelligence
into current computational design frameworks can initiate a new paradigm of human-
intelligence computational design.

However, the challenges of studying EDT naturally follow because thinking often resides
tacitly inside the mind of designers and is difficult to make it explicit [9]. Therefore, empirical
study and data-driven approaches are common pathways to study EDT. Existing literature has

demonstrated the use of various types of data (e.g., texts, drawings, and videos) for design
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thinking studies, such as design knowledge acquisition [10], design creativity assessment [11-
13], and search patterns [14]. Sha et al. [15] also demonstrated the effectiveness of using
behavioral data for studying designers’ sequential decision-making strategies under
competition. Even if extensive research has been conducted in thisfield, significant challenges
remain. For example, design problems are often complex and must be decomposed into
subtasks. Therefore, systems thinking plays a critical role in organizingand iterating through
tasks across different design stages. The essence of system thinkingand itsrolein EDT are
rarely studied due to the lack of research platform that supports the collection of quality
behavioral datain acomplete system design cycle (see Table 1 for details). The insights drawn
from those studies cannot be easily transferred to practical engineering design context. In
addition, current research pays little attentionto the temporal granularity of the behavioral
data, yet, thisis critical to probeinto the dynamics of EDT. Valuable informationthat could
reflect design strategies might have been overlooked if datais only collected after large time
intervals.

To address these challenges, this paperintroduces a new research platform based ona
computer-aided design (CAD) software, Energy3D [16]. Energy3D is originally developed by Xie
(one of the team members of this project) for CAD of solar energy systems. But, it has been
recently adapted and unique features (e.g., built-in experiment modules) have been added to
transformit to a research platform and testbed for EDT studies and data-intensive design
research. See more detailed discussionin Section 3.

1.3 Overview of The Paper
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The primary objective of this studyis to develop a research platform based on Energy3D
in support of fine-grained data-drivenresearch of designers’ thinkingand decision-making.
With a case study on automatically clustering designers’ sequential decision-making behaviors,
we demonstrate how this new platform enables a complete research cycle in studying EDT, and
facilitates the development of an integrated approach to automatically clustering designers’
sequential design behaviors.

The contribution of this work lies in three aspects: 1) the identification of a set of data
requirements thatis critical to the validity of EDT research; 2) a new open-source research
platform that facilitates researchers to conduct design experiments and collect high-quality
design behavioral datain support of EDT studies; and 3) an integrated approach based on three
unsupervised learningand clustering methods (i.e., K-means clustering, hierarchical
agglomerative clustering, and network-based clustering) for automaticclustering of sequential
design behaviors.

The remainderofthe paperis organized as follows. Section 2 presents state-of-the-art
research on EDT and data collection methods. In this section, we also summarize the major
differences between the proposed platform and existingones, and present the data
requirements for EDT studies. In Section 3, we introduce the Energy3D-based research platform
andits unique features for EDT studies. In Section 4, a case study on clustering designers’
sequential design behaviors based on such a research platformis presented. Section 5
concludes the paper with closing insights, broaderimpacts, and our future work. An earlier
version with preliminaryresults on the case study was presented at the ASME 2018 Computers

and Information in Engineering Conference in Quebec City, Canada [17].
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2. BACKGROUND AND LITERATURE REVIEW

In this section, we first present a review of existing literature on EDT studies. Then, we
give a particularemphasis on the studies based on CAD software and non-intrusive data logging
because these topics are relevant to the proposed research platform. Atthe end, we provide a
summary of the typical data collection methodsin these studies, from which we identify the
limitations of current research and present our view on a set of new data requirements that
shall be considered in the EDT studies.
2.1 Existing Research on Engineering Design Thinking

Existingliterature on EDT can be primarily categorized into the following three
directions®. A more comprehensive review of state-of-the-art research on designer thinkingis
providedin [18].

e Protocolstudies: protocol analysis relies on observation and can be categorized intoin-

vivo studies (e.g., the think-aloud method [19]) and in-vitro studies (e.g., interviews with
designer [20]). The observational data needs to be transcribed, segmented and coded,
and then post-analyses can be performed to generate insightsinto design thinking.
Typical topics of studyinclude design creativity [13, 21-23] and fixation [24-26], example
modality [11, 27, 28], therole of sketches [29-32], and differences of thinking patterns

between experts and novices [33-36]. Since the coding scheme is a critical step,

! Brain-mapping techniques, mainlytheelectroencephalogram and the functional magneticresonanceimaging, have
been adopted to investigate the neurological basis of design thinking. These studies are particularly interested in
understanding how cognitive functions are supported by different brain areas. However, this research stream is not

comparable to our research thus is not summarized.

Zhenghui Sha Paper #: MD-19-1141 6

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 08/06/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ASME Jourral of Mechanical Design Manuscript for Production

extensive research is carried out in evaluating different coding methods (e.g., the FBS
scheme [37, 38]), and sketch coding methods (e.g., the C-sketch method [39]).

e Controlled experiment: controlled lab experiments are very effective for validatingthe

causality between factors of interest and design outcomes. As experimental settings
need to be well designed beforehand, controlled experiments often offer greater
intrinsicvalidity [18]. The results are often generalizable and extensible [40]. Typical
subjects of study in this area include the effects of design cost [7, 15] and designers’
expertise [41-44] on design outcomes, team effects in design [12, 45, 46], analogical
reasoning [47, 48], and provocative stimuli [49, 50]. The design field recently has a trend
of using gamified design scenarios [15, 51-55] to study design behaviors and thinking.

e Simulation trials: Recently, research has been pursued to “replay” designer thinking,

particularly the sequential decision-making, using computer simulations. For example,
McComb et al. study designers’ sequential learning abilities using Markov chain [14, 56]
and simulated annealing [46, 57, 58]. Gero and Peng [59] also use Markov chain to study
the behaviors of a constructive memory agent. Sexton and Ren [8] leverage human
searching capability to fine-tune the parameters in Bayesian optimization for enhanced
performance. Panchal and Sha [7] integrates Gaussian Process model and game theory
to study designers’ strategies in sequential decision-making under competition.
2.2 Design Thinking Studies Using CAD Software and Non-Intrusive Data Logging

Non-intrusive dataloggingis a method that automatically logs a designers’ actionsin

real time as they use aninteractive simulation or design environment without interrupting their

design process. On one hand, this can be realized by commercial CAD software which often has

Zhenghui Sha Paper #: MD-19-1141 7

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 08/06/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ASME Jourral of Mechanical Design Manuscript for Production

an explicit data schema for logging designers’ actions and relevant metadata, e.g., timestamps,
and structures of design artefacts, e.g., geometry hierarchy, in generic data storage formats
such as XML. Data captured through these platforms can be processed and sometimes analyzed
computationally to accelerate research. For example, Jin and Ishino [60] proposed a data-
mining framework, DAKA, which can extract designers’ design activity and knowledge from
CAD event data. Gopsill et al. [61] used CAD as a sensor to collect design action logs and studied
micro design patterns which showed the implications of operations, such as “deletion” and
“reversing”, in designiteration. Sen et al. [62] presented a non-intrusive protocol study with the
aid of a software on measuringinformation content when designers perform free-hand
sketching of design concepts. On the other hand, many researchers have developed their own
appletsfordata collection. For example, in order to explore design heuristics and sequential
design patterns, McComb et al. [56] collect design behavioral data with two configuration
design experiments with the aid of self-developed applets for truss design and cooling systems
design.Sha et al. [15] developed an economicdecision game applet based on z-Tree and
studied the effects of design cost on designers’ sequential decision-making under competition.
Additionally, logged data may be processed in real time to offer designersimmediate
feedback or suggestions for advancing their design process [63, 64]. Sivanathan et al. [65]
extend the data logging method to what they call ubiquitous multimodal capture that
incorporates CAD logging, keyboard and mouse logging, eye tracking, screen and environment
video, galvanicskin resistance, electroencephalogram, and electrocardiogram. They
demonstrate the feasibility of this collection scheme through case examples of bracket design

and collaborative design review. While ubiquitous multimodal capture collects extensive data
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from a designer, it comes at the cost of being disruptive for the designer and expensive to
implement.

In summary, CAD-based non-intrusive data collection method offers a great opportunity
to EDT research. However, many self-develop applets have limited functionalities and only
address a particular design phase, e.g., conceptual design. In addition, commercial CAD
softwareis a tool and not designed for research purpose per se. The data collected from such
software are typically drawing or sketch commands (e.g., circle, extruding), and are not ableto
produce a continuous flow of research data in a complete design process. Yet, design has a life
cycle and contains many design stages, such as concept generation, preliminary design,
embodiment design, engineering analysis, design validation, etc. Many facets of EDT due to the
systems design essences (often require systems thinking) can be hardly assessed. Therefore,
the insights obtained from the research based on those platforms are difficult to draw generic
insights. The data collected from self-developed appletis also ill-structured without using
standard data structure and schema. This creates burdens for data processingand sometimes
causes missingdata, which inevitably hinders the major effort at the core of research. More
importantly, these applets are often in closed form and not accessible from public, which
causes barriersin repeatingand reproducing the research findings for cross-validation. In Table
1, we summarize the representative research platforms used in design literature. While existing
work sets standards and guidelines for many ongoingresearch projects, our proposed research
platform addresses the above limitations and therefore, well complements the existing ones,
and thus provides an alternative engineering system design testbed where many new and

developed approachesfor EDT studies can be investigated and tested. In the following section,
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we introduce the unique features of the proposed research platform and show how those

features complement current platforms and how they can ease the research cycle of design

thinking studies.

Table 1. Representative research platforms for EDT studies based on the literature review

Design System or Design Built-in
Design Data
Reference platform/ component information | experiment
problem format
software design data materials
Self- External
System -
McComb, et developed Not tutorial; No
Truss design configuration | Not reported
al. 2015 [57] and closed reported built-in
design
source materials
Desalination Self- Design External
System -
Yu, et al. system/sea developed Not parameter tutorial; No
parametric
2016 [66] water reverse | and closed reported values; built-in
design
0osmosis source timestamp materials
Self- External
System — Text; Design
Egan, etal. developed Not tutorial; No
Myosin design parametric parameter
2015 [67] and closed reported built-in
design values
source materials
Truss design Self-
System —
McComb, et | and home developed Not No built-in
configuration | Design actions
al. 2017 [14] | cooling and closed reported materials
design
system source
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Commercial
Jin, et al. Not Component | CAD drawing No built-in
Carfrontdoor | and open
2006 [60] reported | design commands materials
source
Commercial
Gopsill, et al. Not Component | CAD drawing No built-in
Pulley and open
2016 [61] reported | design commands materials
source
Cable Commercial Design actions
Ritchie, et al. Component No built-in
organization and closed Yes (XML) in virtual
2008 [68] design materials
system source reality
Self- Component
Design
Sha, et al. Function developed Not or System - No built-in
parameter
2015[15] minimize and closed reported | parametric materials
values
source design
Sivanathan, Commercial
Bracket Component | Design actions | No built-in
et al. 2015 and open Yes (XML)
support design and video materials
[65] source
Commercial System — Design
Sen, et al. Yes No built-in
Burger maker | and closed conceptual sketches;
2017 [62] (Excel) materials
source design timestamp
System —
Toh, et al. Milk froth No software | Not No built-in
conceptual Sketches
2014 [11] device platform reported materials
design
System —
Gero, et al. Wheelchair No software | Not Sketches and No built-in
conceptual
2018 [21] assist device platform reported video materials
design
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Design actions,
System — Built-in
This paper Solar energy CAD-based Yes design config.,
multiple experiment
(Energy3D) systems platform (JSON) text, artifact,
design stages materials
etc.

3. THE RESEARCH PLATFORM

In this section, we introduce our research platform for EDT studies based on Energy3D
and discuss the key features that make it a suitable and powerful toolin supporting ETD
research. Before demonstratingthe details, we first summarize ourview on the data
requirements that shall be met for EDT research in order to address the limitations of existing
methods identifiedin Sections 2.2 and 2.3.
3.1 Data Requirements for EDT Research

To successfully execute the proposed research and achieve the objective, the datais
critical and specific requirements deserves careful attention. We identified five requirements
based on our literature review performed in Section 2.

1) Intra-stage andinter-stage design iteration. Design iteration does not only occur within

each stage but also between stages [69]. For example, designers often utilize science
simulationto refine their designs in concepts generation [70]. The decisions made
duringsuch aniteration playavital role in assuringa successful design. A tool that
supportsthe collection of design process data and design actionsin both intra-stage and
inter-stage iterationsis needed.

2) High fidelity. In a design process, ad-hocdecisions are often made. Unnoticeable actions

could be nontrivial information reflecting useful decision-making strategies. It would be
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ideal if every single movement of designers can be recorded. The data should bea
collective memory of the complete output and all iterationsin design.

3) Non-intrusive. Intrusive data collection (e.g., interviews) is time-consuming, and thus
restricts research scale [52, 71]. Such a process could easily add cognitive load to
designers, thus possibly contributing biases toward the observed behaviors [72]. These
limitations can diminish the validity of the data.

4) Rational behavior. Most decision theories assume rational behaviors, but designers have

bounded rationality [73]. When collecting design behavioral data, designers’ irrationality
should be accounted for and decision-supportingtools (e.g., simulations) shall be
leveraged to inform rational decisions to improve the quality of design data.

5) Multipleforms. The data should be a combination of operational, textual and even

video data to support the cross-validation of research approaches or methodologies.
3.2 Using Energy3D as a Research Platform for EDT Studies

With the aim of meetingthese requirements, we introduce a new research platform
based on Energy3D, a computer-aided design software developed by Xie [16], one of our team
members. It was developed as a tool for solar energy systems design and analysis as well as for
K-12 education research. To make it applicable to support engineering design research, specific
features, such as built-in experimentation, tutorial and templates, new computational modules,
and additional data collection methods, have been added. In summary, as a platform for design
research, Energy3D has unique featuresin three aspects:

a) Features for data collection
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First, Energy3D can continuously and automatically logand sort every user action and
design snapshots (computer models, not images?) in a fine-grained resolution. These data
represent the smallest transformation possible on a design object that changes how it looks or
performs. That means the design process and even the design artifact can be entirely
reconstructed without losing any important details. Therefore, it works asa “sensor” of design
behaviors so as to capture the design processes in detail, and in a non-intrusive manner, i.e.,
designers are not aware of the data collection and can concentrate on their design activities
without any hindrance to their design thinking.

Second, Energy3D logs the datain JavaScript Object Notation (JSON) format.JSON is a
generic machine-readable datastorage format that relies on two common data-structures,
arrays and key-value pairs, to encode a variety of data schemas. In Energy3D, each logged
action contains the actionitself, e.g. addinga wall, and metadata about the time and date when
the action was taken. Central design attributes associated with each action are recorded as
well, such as the size of a window or the results of an energy simulation. Such a standard data
format makes it possible to translate any design activity, logic, or strategy into computer code
and vice versa. JSON data can be readily processed by most programminglanguages and
statistical platformslike R, making it convenient for researchers to analyze the data with their
preferred toolset. Standardization and automation make the design research cost-effective and

scalable.

2 Energy3D has a design replay feature. The design artifacts are saved as Energy3D files and later can be used for

replaying the entire design process. This allows researchers to check designers’ design processes in detail and will

help validate against mined design knowledge and strategies from log data.
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Third, Energy3D stores a rich blend of both qualitative and quantitative data. Inthe

JSON file, textual design actions are stored as qualitative data and values of design parameters

Energy3D as a

are stored as quantitative data. For Research Platform
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where both quantitative and Figure 2. Unique features of Energy3D in supporting engineering
design thinking research

qualitative skills are required [74].

Fourth, in additionto CAD modeling, Energy3D has built-in modules of engineering
analysis, scientific simulation, and financial evaluation that realize a seamless design
environment. This ensures the collection of design data duringintra-and inter-stageiterations,
for example, how designers make decisions with economic considerations, i.e., design with
rationality. These data are important to the study on designers’ thinkingin complex systems
design and the role of system thinkingin engineering design.

b) Features for engineering systems design

The interface of Energy3D is intuitive to operate [75]. Energy3D encompasses several
pre-designed components (i.e., doors, window, solar panel, etc.) that ease the design difficulty

such as drawing components from scratch. This ensures participants can focus on the design

Zhenghui Sha Paper #: MD-19-1141 15

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 08/06/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ASME Jourral of Mechanical Design

Tuto%'lals for lysis Example of

design and solar system
. result :

experiment design

Engineering
Analysis

File Edit|View Analysis Examples Tutorials Help

Workspace

Manuscript for Production

Notepad  Project detail Cost analysis

N~ = | | | e
RRCRE HSS e-H o[B8 0530
¥imulation Settings... n User Interface Basics Benchnjarks > !
Weather > Building Science Basics > Simpleguildings >
Solar Science Basics > Complex Buildings > ‘
Buildings >
Photovoltaic Systems >
Solar Panels > Methods of Scientific Induiry >
" = Concentrated Solar Power Systems - <
Heliostats > |__Methods of Engincering Design >} & solar Water Heater
M i Miscellaneous >
S Photovoltaic Solar Powe > $ e
Parabolic Dish >
R Concentrated Solar Power > =
Linear Fresnel Reflectors > %
Parabolic Trough
Sensors >
i h
oo > \5 Parabolic Dis}
& Linear Fresnel Reflector

Show Costs... 124

I Annual Energy: Building(2) (Construction cost: $185879)
Options Types Runs
Energy analysis data from dallas, TX

Solar Panel Rack
Single Solar Panel

ov€ mouse OO qa
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photovoltaic system for Boeing's South Carolina factory. (c) Parabolic troughs in Hawaii

process and employing design thinkinginstead of time-consuming drawing process. In addition,

easy operation will help shorten participants’ learning curve, which often influences the validity

of behavioral data in design research.

It is worth notingthat, simulationsin Energy3D are very accurate and trustworthy as it

provides real-world design configuration and materials [76]. For example, the building

simulationengineis calibrated with DOE's BESTEST benchmarks. This feature ensures authentic

and high-fidelity design practice. Moreover, during simulations, Energy3D graphically illustrates
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the results through interactive visualization and animation, which allows designers to easily and
efficiently get formative and immediate feedback. This is critical to their rational decision-
making and exploration of design space in engineering systems design.

Energy3D supports various solar energy system designs (see Figure 3). Design can be
conducted in various contexts with different options of solar harvesting devices includingsolar
panel, heliostat, and parabolictrough, and different solar panel brands. With these capabilities,
researchers can create different experiments coveringa wide range of design scenariosin
different levels of design complexity, such as single component design, geometric design, layout
design, material design, and architectural design.

c) Features for human-subject experiments in design research

To facilitate experiments for design research, Energy3D contains many built-in tutorials
for designers to get acquainted with the domain knowledge of solar science, building science,

and engineering design. These tutorials can be used as pre-session before experimentin order

to account for the variation of learning curves among Formulation of research
hypothesis and research

participants. In addition to these tutorials, a set of design questions

[ Design of research J

experiments have also been made publicly available experiment

= !
through the authors’ websites [77, 78]. The researchers § Design behavioral
5 data collection
. o I
>
can easilyadaptthese examples to create new ones for g Research
2 methodologies,
their own research purpose and data collection. approaches and tools
. . Results and
With all the above featuresin three aspects, as [ observations ]
!
summarized in Figure 2, Energy3D can supportthe Insights and
conclusions
collection of a large volume of fine-grained design Figure 4. A typical cycle for data-driven

engineering design thinking research
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behavioral data which is essential to big data miningand machine learning of EDT. Such fine-
grained data possess all four characteristics of big data [79]: 1) High volume. A large amount of
design process data will be generated. 2) High velocity. One of the characteristics of big data is
velocity which means how fast the data is collected. Energy3D collects, processes and visualizes
datain real time at the scale of seconds. Such animprovement on the continuity of behavioral
data can help improve the understanding of the flow of design thinking. 3) High variety. The
data encompasses multiple formsinvolving design actions, parameters, analyses and
simulations. 4) High veracity. The datais comprehensive to ensure fairand trustworthy
assessments of designer performance. These big data have the potential to yield direct,
measurable evidence of design thinking at a statistically significant level. This is fundamentally
different from existing studies [60, 61, 63, 64] using CAD logs that contain merely drawing
commands. Xie and colleagues’ prior work [80-82] has shown that the data collected from
Energy3D is capable of measuringthe level of engagement, revealing gender differences, and
distinguishingtheiterative and non-iterative cyclesin design.

With Energy3D as the platform, we follow a typical scientificresearch cycle as shownin
Figure 4 to conduct EDT research. As indicated in the figure, the step of research experiment
and data collection are critical links in this cycle yet theirrigor and validity have received little
attention. Asintroduced above, those unique features of Energy3D will provide researchers
with strongsupport.
4. AUTOMATICALLY CLUSTERING SEQUENTIAL DESIGN BEHAVIORS: A CASE STUDY

In this section, we demonstrate a case study using Energy3D as the research platform

where each of the research stepsin Figure 4 is followed. First, we present our research problem
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and the research question we investigated in this particular study. Then we discuss how
Energy3D is used to set up the experiment for design behavioral data collection. In this study,
we develop an approach based on unsupervisedlearning based approach that integrates
Markov chain model to automatically cluster designers’ sequential design behaviors. Finally,
based on the results, we answer the question and conclude the case study.
4.1 The research problem and the research question

Engineering system design is a decision-making process where a series of inter-related
operations are determined by designers. Duringa design task, designers sequentially make
decisionsin orderto explore the design space, and iteratively improve their designs’ quality.
Therefore, sequential decision makingisan important factorin achieving quality design
outcomes. In-depth understanding of sequential behaviors, especially their design patterns,
help to uncover useful design heuristics to improve existingalgorithms of computational
design, design automation, and advance Alin engineering design

However, modeling design decision-making s scientifically challenging because human
decisions arethe result of a mental process thatis hidden, implicit, and sometimes tacit [9].
Such a challengeis even more complexin a system design context that consists of a large
number of coupling design variables. To address the challenge, we adopt a data-driven
approach and use unsupervised clustering methods to mine designers’ sequential design
patterns. This case study is motivated by answeringthe following research question: What are
the sequential design behavioral patterns that most designers would follow in systems design?

To answerthe research question, a human-subject experiment is conducted and sequential
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design behavioral data are collected based on the research platform, Energy3D. In the following
sections, we present this case studyin detail.
4.2 Design Experiment and Data Collection using Energy3D

In this section, we first give a brief description of the design problem. Next, we
introduce our experiment procedure, and the sequential design action data collected.
4.2.1 The Design Problem

The design problem in this case study is to build a solarized energy-plus home fora
clientin Dallas. See anillustrative example in Figure 5. The design objective is to maximize the
annual net energy (ANE). The budget for the house is $200,000. The house should havea
minimum height of 2.5 m, and the roof must be pitched. The building needs to have at least
four windows and one door. The solar panel must be placed on the roof. The other constraints

are shown in Table 2.

Table 2. The requirements of the energy-plus home design project

Items Requirements
Story 1
Build height
Height of wall =>25m
Roof Roof style Pitched
Number of windows =>4
Window
Size of window > 1.44 m?
Number of doors >1
Door
Size of door (WidthxHeight) >12mx2m
Solar panel Distance between edge/ridge and solar panel =>0m
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This design is a system design problem that involves many components (e.g., windows,
roof, solar panel, etc.), many design variables (e.g., the number of solar panels, the cell
efficiency of solar panel, etc.), and complex coupling relations amongthe variables. Therefore,
the design space is very large. Thisis why the requirements and the constraints are developed
to reduce designers’ action space to a manageable level.

During the design process, designers make trade-off decisions. For example, thereis no
restriction on the area of the house. But if the area is too small, designers will not be ableto
place enough solar panel on the roof. As a result, the ANE will be insignificant. On the other
hand, if the area is too large, the cost may exceed the budget. So, designers follow their own
strategies duringthe design process to sequentially make decisions guidingthe explorationand
exploitation of the design space so as toimprove the ANE as much as possible.

4.2.2 The Experiment Procedure and Data Collection

A human-subject experiment was conducted where in total 38 students from the
University of Arkansas participated. The participants were indexed based on which session they
were in and which laptop they used; thus, AO2 means the participant was in Session A and sit in
laptop #2.

Each session consists of two phases: pre-
session and in-session. The pre-session is 30 minutes®

for participantsto practice Energy3D with the built-in

Figure 5. An energy-plus home design from
one of the participants

3 Our pilot study has shown that participants are able to master the operations of Energy3D for the energy-plus

home design project in 30 minutes with the aid of the tutorial.
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design tutorials. The pre-session is designed to account for the learning curves of humans. The
data generated in pre-session is not used for analysis. At the end of the pre-session, the
participantsare guided to transitionto the in-session stage. The in-session stage lasts about 1.5
hours. The design statement and the design requirements are provided at the beginning of this
session, and a record sheet is provided for participants to record the ANE and cost whenever
they iterate their designs.

Many of the Energy3D features, especially the CAD design features and the design
experiment features, allow designers to explore the design space effectively and efficiently. For
example, the graphical representation of construction cost and ANE analysis helpsthemto
interpret their underlying tradeoff. Moreover, the interactive visualization shows heat fluxand
sun path, which aid designers in making effective decisions on the location of solar panelsand
the orientation of the buildings.

Monetary rewards are provided at the end of the session to incentivize the participants
to search the design space as much as they can. The participants are rewarded based on the
amount of time they spend as well as the quality of their final designs, which are quantified by
the ANE value and the construction cost. In this study, we are able to collect design behavioral
data usingEnergy3D at a fine-grained level. For example, the design artifact logger collects 220
intermediate Energy3D files and the design action logger collects 1500 line of actions per
participant on average. This ensures a sufficient amount of data for later statistical analysis and
data analytics. The JSON file includes entriesin the following format: time-stamps, design
action, and its corresponding parameters and/or analysis values, such as the coordinate of an

objectand/or ANE output. An example of the data entriesis shown below:
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e '"Timestamp": "2017-11-14 12:51:27", "File": "EnergyPlusHome.ng3", "Add Rack": \("Type":
"Rack"”, "Building": 2, "ID": 23, "Coordinates": [\("x":-28.863, "y": -49.8, "z": 20.799)].

e "Timestamp": "2019-02-22 09:07:44", "File": "EnergyPlusHome.ng3", "Edit Window": \("Type":
"Window", "Building": 1, "ID": 66, "Coordinates": [\("x": -33.647, "y": -3.783, "z": 19)].

4.3 The research approach

Raw design
. . behavioral dat
A general approach to automatically clustering fe aviora’ data
\_ from Energy3D )
sequential design behaviorsis presented in Figure 6. FBS design process | [ Sequential design )
model actions )
From the raw design in JSON format, 115 unique design _ |
Markov chain Design process
. . . model stages )
actions are identified based on the data from 38 ~ I
Quantified
participants®. Analysis of such a high dimension action sequential design
L behaviors )
space wouldyield results hard to interpret. In order to - I
Clustering
. . . L methods
reduce the dimensionality and to better understand I
( Variation of
designers’ sequential design thinking, the FBS-based (___information
'd l Y
process model is adopted to transform the action space Final clusters
g J
) ) ' Figure 6. Overview of the approach to
into a design process space that consists of seven automatically clustering sequential design
behaviors

design process stages.
The FBS is constructed with three classes of ontological variables: Function, Behavior,
and Structure. Later, two additionalvariables are added for better representation of the design

process: Requirements and Descriptions. Based on the five FBS ontological variables, a design

*1n this study, only design actions, e.g., “Add Rack”, “Edit Wall”, etc. are considered for analysis. Trivial actions

that do not affect the design quality, such as “Camera”, “Edit human” etc., are ignored.
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process can be characterized by eight process stages: Formulation, Analysis, Evaluation,
Synthesis, Documentation and Reformulation 1, 2 and 3. The definition and interpretation of
each design process stage are listed in Table 3. Accordingto the FBS model, a codingscheme is
established (third column of Table 3) to transcribe different types of design actions to the
corresponding design process stages (see detailsin [17] about how each type of design actions

correspondsto the design process stages in the FBS model).

Table 3. The FBS model and the proposed coding scheme for design actions

Design process Definition and interpretation Types of design action

Generate Function from Requirement and from
Formulation Add any components
Function to Expected Behavior.

Analysis The process generated from Structure. Analysis of annual net energy

Generate and tune Structure based on the Expected
Synthesis Edit any components
Behavior.

The comparison between the Expected Behavior
Evaluation Cost analysis
and the behavior enabled by the actual Structure.

The transition from one Structure to a different

Reformulation 1 Remove structure
Structure.
Reformulation 2 The transitions from Structure to Expected Behavior. | Remove solar device
Reformulation 3 The transition from Structure to Function. Remove other components
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With the FBS-based transcription, the sequence of how the design space is explored
(design action space) can be therefore mapped to a design process (design thinking space).
Then, the first-order Markov chain model [83] is adopted to quantitatively characterize the

sequential design process of each participantinto a transition probability matrix. An entry ()

of this matrix defines the probability that design process i transitions to j, which is calculated

bym;; = %, where n;; is the number of times design process j is followed by process i, and n;
L

is the total counts of the design process i occurs duringthe entire design. An example of the

transition probability matrix of the first-order

. .. . . Synthesis { NOMSN 033 BOMOR 0 038 018 -
Markov Chain for participant C14 is shown in
Reformulation 3 0 0 0.04 0 0 027 004 |
Figure 7. The max probabilityis 0.75, indicating @aFoanuaton 21 002 0 002 o Y o 008 | '05
g_ Reformulation 0 0 0 . 0.08 0 0 04
that the most occurred design pattern for this p——— 015.012 | W
00

Evaluatior 0.12 0 0.02 0 0 0 004 |
designeris Reformulation 1 - Reformulation 1.

Thisimplies that the designer C14 was involved in

removingstructure (wall, window) significantly Last process
Figure 7. Transition matrix of the first-order

L4 Markov chain for participant C14
more frequent than other transitions. The value

zero meansthatthe designer never made that transition in his/her design. For example, the
value from Synthesis to Reformulation 1 is zero. Thisindicates that after editing or changingthe
parameters of any structural components (such as walls), this designer never removed those
components.

Once the quantified design behavior, i.e.,the 7 X 7 transition probability matrix, is
obtained, it can be converted to a 49 X 1 vector. For n designers, a new 49 X n matrix will be

formed, thus different clustering methods can be applied to these n designers to group those
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with similar sequential behavioral patterns. In this study, we apply three different clustering
methods: K-means clustering [84], hierarchical agglomerative clustering (HAC) [84], and
network-based clustering [85]. These clustering methods are selected as representatives from
three different clustering categories, i.e., hard clustering, flat clusteringand network clustering
[86], that covers most commonly-used clustering methods. K-means clustering works on
Euclidean distance between data pointsand partitions datasetinto Kseparate, non-overlapping
clusters such that the total within-cluster variation, summed over all the clusters, is minimum
[84]. Since K-means requires the number of clusters as input, a separate algorithm (e.g., elbow
plot method [87]) is often needed to determine the optimal number of clusters. The number of
clusters obtained fromthe elbow plot method is used to guide the implementation of the other
two clustering methods for fair comparison. Different from K-means, HAC produces a tree-
based representation of the data, called dendrogram, from which a researcher can “cut” itinto
the desired number of clusters.

In [17], we developed a network-based clusteringapproach based on network
community detection techniques [85]. In this method, a similarity network of designers is first
constructed, in which, nodes represent designers and links represent the distance between
designers. In this study, two common distance metrics, residual sum of squares (RSS) [88] and
cosine similarity (CS) [88], are adopted. In order to retain the strong similarities, a threshold
valueis selected to binarize the similarity network. Once the network s ready, different
network community detection algorithmscan be applied. We utilize the most popularand
robust method [89], modularity maximization algorithm [90] to partitionthe networkinto

different communities. Since the algorithm will automatically cluster the networkinto an
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Hierarchical

. . K-means clustering Network-based clustering
Agglomerative clustering
Clustering ) (" Optimal number (Network is generated from )
algorithm applied | ofclusters (N) Cosine similarity and
_on distance matrix ) obtained from | residual sum of square |

\__elbowplot )

v v

N\ 4 N\ ( R N\
Dendrogram N Clusters Cut-off value is selected to
L produced ) obtained from K- | binarize the network
(_ means clustering )

( ( )
Dendrogram cuts N Clusters obtained from
into N clusters ) L modularity maximization )

Figure 8. Cluster analysis using three different unsupervised clustering methods

optimized number of clusters, no pre-determined number of clusters are needed. To enable the
comparison between the three clustering methods, we trial and error the threshold value of
similarities (i.e., the RSS and the CS values) until the number of clusters in the network matches
the one obtained from K-means elbow plot. Figure 8 illustrates the whole process and the
connection between the network-based and K-means clustering methods.

Since different clusteringmethods could produce different clustering results, a
verification approach is needed. In this study, a method based on the metric of variation of
information (VI) [91] is developed for the verification and generation of the final clusters. VI
measures the informationlost and gained when it changes from one cluster to another. The
lower a Vl valueis, the betteris the partial agreement between two clusters. After obtaining
the VI values for each pair of the clusteringmethods, the methods that have significantly large
partial agreement can be identified, and the designers who have been always grouped together
regardless of the clustering methods can be found and therefore similar behavioral patterns
can be mined from the data. In the following sections, we apply our approach to cluster

designers’ sequential decision-making behaviorsin the solar energy system design project
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presentedin Section 4.2.1. It’s worth notingthat each step shown in Figure 6 can be

programmed and seamlessly connected to turn the approach into an automaticclusteringtool.

4.4 Clustering Analysis Results and Discussion

With the first-order Markov chain model

cluster
1

introduced above, all the 38 participants'

transition probability matrices are obtained, and

Principal component 2

can be converted to a 49 X 38 matrix on which

different clusteringmethods are applied. The
Principal component 1
Figure 9. K-means clustering of four groups plotted

optimum numbers of clusteringare 4, 5, and 6, . o . .
in two principal dimensions

which are obtained from the elbow plot method. In this study, we evaluate the performance of
all the different clustering methods (i.e., K-means, HAC, network-based clustering with RSS, and
network-based clustering with CS) at each of these cluster numbers. In total, we come up with
12 different ways of doingthe clustering analysis.

Figure 9 represents the K-means clusteringresult with four clusters. The clusters are
indicated by four different symbols (1, 2, 3, and 4). The number of designersin each clusteris
15, 11, 10 and 2, respectively. The plot shows the data pointsin two principal dimensions. From
the figure, it isobserved that designers B13 and C06 in Cluster 3 are situated far from the other
clustersin the Euclidean space. It is inferred that their sequential behaviors are quite different
from the other designers.

HAC method clusters the designers by forming a dendrogram, as shown in Figure 10.
The height of the dendrogram indicates the designers' behavior similarity. To get 4 clusters, the

dendrogramis cut atthe height of 2.1. The resulting clusters contain 15, 14, 9 and 2 members,
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respectively. Figure 8 indicates that designers A12 and D08 have at the lowest height than any
other pairs on the dendrogram. Therefore, they share the most similarity in sequential
behaviors. Like K-means-4 clustering, HAC-4 clustering proves the similarity between B13 and
CO06. While in K-means-4 clustering, A10 and A14 are in the same group, they are located at two
different groups in the HAC-4 clustering. This reveals the inconsistency between different
clustering methods.

For the network-based clustering, we

] calculate the RSS and CS similarities between
each pair of designers using the vectors
obtained from the transition probability
matrix. This process producestwo 38 X 38

i similarity matrices from which the RSS-based

- network and the CS-based network can be
Figure 10. Dendrogram produced by hierarchical

agglomerative algorithm obtained, respectively. To obtain the desired

number of clusters (i.e., 4, 5 and 6 determined by elbow plot method), we trial and error the
RSS and CS values together with the modularity-maximization algorithm to determine the
threshold. The results suggest that the values 1.24, 1.23 and 1.22 of RSS similarity are able to
yield 4, 5 and 6 clusters, respectively for RSS-based network. In the CS-based network, itis
found that thevalues of 0.7, 0.75 and 0.77, are the threshold values of producing the desired
number of clusters 4, 5, and 6.

Figure 11 shows the result of RSS-based network clustered in four groupsindicated by

different colors. The four groups consist of 14, 11, 11 and 2 members, respectively. But in this
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method, the clusteringresults are different P &

from K-means-4 and HAC-4. For example, E06

A02
and E14 belongtothe same group in K-means- 808 5,
co7

4 and HAC-4, butin RSS-4, they are in separate

groups. But results from different methods do B13

Co6

have consistency. For example, B13 and C06 Figure 11. The network-based clustering using

residual sum of square similarity
have been always grouped together in all

three methods. Followingthe same approach of generating RSS-based network clustering,
clusters can also be generated using CS-based network clustering method, which shows both
similarities and dissimilarities as well. For example, B13 and C06 are clustered together in K-
means-4, HAC-4 and RSS-4 methods, but are separated in CS-6 method.

Since clusteringresults are not always consistent from different clustering methods, the
VI-based metric (introduced in Section 4.3) is adopted to measure the mutual agreement
between any pair of clustering methods so as to find the one thatyields the largest agreement
with all the other methods. The VI values are summarized in Table 4. By analyzingthe
distribution of VI values shown in the table, the threshold of 0.7 (correspondingto the top 25%
quantile) is selected as the cutoff to filter out the clusteringmethods that have less consistent
results. During this process, we are able to a) find the most efficient clustering method and its
corresponding number of clusters, and b) find the designers that have always been clustered
togetherso as to identify their sequential behavioral patterns. Here the efficiency of a

clustering method is defined in Equation (1),

efficiency = L, f(VIY), (1)
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where f(VI; = 1) if VI; < 0.7,and 0 otherwise.i = 1, 2, ..., k isthe number of clustering
methods used in this case study, i.e., k = 12.

Table 4. Variation of information between each pair of the clustering methods

KM- | KM- | KM- | HAC- | HAC- | HAC- | RSS- | RSS- [ RSS- | CS-4 | CS-5 | CS-6

4 5 6 4 5 6 4 5 6
KM-4 - - - 0.55 0.69 0.71 | 0.45| 1.20 | 0.95 | 0.76 | 0.27 | 0.31
KM-5 - - - 0.89 0.82 0.75 | 0.79 | 0.85 | 0.59 | 0.92 | 0.60 | 0.63
KM-6 - - - 1.25 1.17 1.11 [ 099 | 0.74 | 0.89 | 0.86 | 0.94 | 0.96
HAC-4 0.55 | 0.89 | 1.25 - - - 098 | 1.47 | 1.13 | 1.25 | 0.70 | 0.73
HAC-5 0.69 | 0.82 | 1.17 - - - 1.12 | 1.39 | 1.05 | 1.39 | 0.82 | 0.86
HAC-6 0.71 | 0.75 | 1.11 - - - 1.14 | 1.33 | 0.84 | 1.41 | 0.76 | 0.79
RSS-4 0.45 | 0.79 | 0.99 | 0.98 1.12 1.14 - - - 0.95 | 0.85 | 1.33
RSS-5 1.20 | 0.85 | 0.74 | 0.47 1.39 1.33 - - - 0.65 | 1.42 | 0.67
RSS-6 0.95 | 0.59 | 0.89 | 0.13 1.05 0.84 - - - 0.68 | 1.42 | 0.71
Cs-4 0.76 | 0.92 | 0.86 | 1.25 1.39 1.41 | 0.95 | 0.65 | 0.68 - - -
CS-5 0.27 | 0.60 | 0.94 | 0.70 0.82 0.76 | 0.82 | 1.42 | 1.42 - - -
CS-6 0.31 | 0.63 | 0.96 | 0.73 0.86 0.79 | 1.33 | 0.67 | 0.71 - . -
efficiency 5 3 0 2 1 0 1 2 2 2 3 3

*Note: the VI between the same clustering methods but different cluster numbers (e.g. K-means-4 vs. K-
means-5) is not worth comparing, thus the corresponding VI are not available and denoted as “-”.

It is observed that K-means-4 clustering has the largest number of times in having
greater partial agreement with other clustering methods. Therefore, K-means-4 clusteringis the

most efficient method amongall the three methodsin consideration. In Table 4, those VI values

thatare below 0.7 are highlighted in yellow. By checking the occurrence of the VI values being

Zhenghui Sha Paper #: MD-19-1141 31

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 08/06/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ASME Jourral of Mechanical Design Manuscript for Production

belowthe threshold 0.7, we put K-means (4, 5), HAC (4, 5), RSS (4, 5, 6) and CS (5, 6) in
considerationto identify the designers who have been always clustered togetherirrespective to
the methods beingused (see the resultsin Table 5). It's worth notingthat each row of
designersis grouped together without any labelingor prior knowledge.

Table 5. Clustering results of design sequences irrespective of the clustering methods

A02, AO5, BOS8, C01, CO7

A03, A15, BO7, C08, D02, D10, E14

AO6, A12, A13, C13,D08, E15

A07, A0g, C10

BO6, C11

B09, D09

4.5 Insights and Conclusions

With the clustering results, we revisit the research question we aim to answer in this
case study: What are the most frequent sequential design behavioral patterns that most
designers would follow in systems design? By analyzingthese clusters, itis found that the
highest transition probability for every designerin one group is similar for most of the cases.
These behaviors are listed and discussed below.

e Synthesis = Synthesis

This transition between design stages is the most frequently occurred pattern. For

example, the highest transition of all the designers of the third group (A06, A12, A13,

C13, D08, and E15) Synthesis = Synthesis. Also, the fifth group (B11, C06) uses this

pattern very often. It indicates that the designers of these groups kept modifyingthe

parameters of the components. The possible reason for this design patternis that

Zhenghui Sha Paper #: MD-19-1141 32

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 08/06/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ASME Jourral of Mechanical Design Manuscript for Production

designersin the experiment were trying their best to exploit the design space by
sequentially changing and tuning the design parameters. Such a behavioral
phenomenon could the reflection of the reward mechanism used in the experiment.
e Reformulation > Formulation
Thisis another pattern that has shown frequently in many designers’ data. We found
that the highest transition probability of the second group (A03, A15, B07, C08, D02,
D10, and E14) is Reformulation 2 > Formulation. This pattern indicates that designersin
this group spent a significant amount of time removing solar panels and addingthem
back, again. It may be dueto the reason that they were trying to adjust the solar panel
on theroof to a perfect condition. Also, the last group (B09, D09) followed the
Reformulation 3 = Formulation design pattern often. Thisimplies that designersin this
group spent most of the time adjustingthe house structure by frequently removing the
existingroof or others components and addingit back, again.
As a summary for this case study, with the data collected through Energy3D, we develop
a general framework that can accommodate various clustering methods foridentifying design
behavioral patterns. Successful identification of similar behaviors as well as their design
patterns has significant benefits in discovering efficient design heuristics and guidingteam-
based design. For example, useful design process stage frequencies and design patterns that
lead to better design outcomes can beidentified by correlating design quality with different
behavioral groups. Also, in team-based design, to maximize the working efficiency,
similar/dissimilar designers could be paired up to improve the communication and /or diversity

within a group.
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5. CLOSING REMARK AND FUTURE WORK

With the growing trend of leveraging data analytics and machine learningapproachesin
engineering design research, thereis a need to create a research platform that enables the
sharingof benchmark problems and testbeds, and ensures the quality of datasets for valid,
repeatable and reproducible research. In this paper, we identify the challengesin data-driven
engineering design thinking EDT studies and propose five important data requirements for
design-driven EDT studies that must be satisfied in the first place in order to support the
scientificrigor. Towards addressingthese challenges and requirements, the authors take a few
modest stepsin this direction by creating and distributing a research platform using Energy3D —
a computer-aided energy systems design software. We demonstrate the key features of
Energy3D inthree aspects: 1) features for data collection, 2) features for engineering systems
design, and 3) features for human-subject experiments. The blending of these features can
effectively help researchers obtain datasets that satisfy those critical data requirementsand
exhibit the 4V features of big data, thus make Energy3D a competitive candidate platform for
data-driven EDT research.

Through a case study on clusteringhuman sequential design behaviors, this paper
demonstrates the capability of Energy3D as a research platform to support a typical research
process of answeringresearch questions thatare of interest. We show how the design action
logger, the design artifact log, and various CAD features and modelinginterfaces, work together
facilitate design activities in experiments and the collection of design behavioral datainanon-

intrusive manner. The design examples created from this study have been made publicly
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available online [78] as a testbed for other researchers to adapt and test for their own research
purposes.

Despite many strengths of Energy3D, the authors respect certain limitations that this
platform may haveif it is not properly used for design research, especiallyin the study of design
thinking. For example, the majority of the data collected from Energy3D is in the format of
design operations/actionsin a CAD environment, but not the data directly describing designers’
mental process. While certain behavioral patterns do reflect design thinking, essentially the
actions a person takes does not necessarily indicate what that person thinks. Experiment shall
be systematically designed and additional forms of data need to be collected in support of the
verification and validation so that valid conclusions can be drawn from the analysis of the fine-
grained design activity data. In addition, currently Energy3D does not support team design
through a web-based interface. Several web-based features, e.g., the peer-to-peer or client-
server communication could be enabled for designers to communicate and exchange
information for large system design project. This will help in the research on design behaviorsin
team-based design. Moreover, Energy3D is developed mainly for solar energy system design, so
the type of design activities that can be studied and the capability of studying the effect of
domain knowledge on design behaviors are limited.

Our future work will be geared towards addressing these limitations. Forexample, one
important feature we recently added to Energy3D is a built-in artificial intelligent (Al) design
agent. This feature can support the study of human decision-makingbehaviorsin the presence
of Al design assistant and human-Al interactions. For example, one question we are working on

is to investigate how Al assistant can help designers handle design uncertainties by augmenting
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theirinformation-processingskills, thus betterinforming their design decision-making. In
addition, Xie et al. have developed an auxiliary tool of Energy3D especially for aiding design
behavioral research, called Visual Process Analytics [92]. With this tool, researchers can directly
analyze their collected behavioral datain JSON to generate quick insightsinto the data. Based
on the case study, we are also working to embed the clusteringalgorithmsinto Energy3D that
will be beneficial to supportingteam formation and collaboration. Such a feature can facilitate
potential research on team-based design.
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