


class Ti , s . We want to pick a target class and re-cast the source

sample to be classiied as that target class. To decrease amount of

change to the source sample, since adding padding adds bandwidth

overhead, we pick the sample from the target pool that is closest to

the source sample. We deine closeness using the l2 norm distance.

Formally:

D(x ,y) = l2(x − y)

IT = argmin
It ∈PIs

D(Is , It )

Then we modify the source sample to move toward this target

sample.

Our goal is to increase the volumes of selected bursts in the

source sample such that the source sample is not classiied as class

s and the amount of change is as small as possible to minimize

the bandwidth overhead. To make the source sample to leave the

source class, we move toward the nearest sample (IT ). We deine ∆

as the perturbation vector that we will add to the source sample to

generate its defended form Inews .

∆ = [δ0,δ1, · · · ,δn ] (∀i ∈ [0, · · · ,n] : δi ⩾ 0)

Inews = Is + ∆

To ind ∆ that minimizes overhead, we should minimize distance

D(Inews , IT ). To do this, we compute the gradient of the distance

with respect to the input. The gradient points in the direction of

steepest ascent, which would maximize the distance. Therefore, we

compute the gradient of the negative of the distance with respect

to the input, and we move the source sample that direction towards

the target sample. In particular:

∇(−D(I , IT )) = −
∂D(I , IT )

∂I
=

[

−
∂D(I , IT )

∂bi

]

i ∈0, · · · ,n

,

wherebi is the i-th burst in input I . To modify the source sample, we

change bursts such that their corresponding values in (−D(I , IT ))

are positive. Our perturbation vector ∆ is:

∆ =

{

−α ×
∂D(I, IT )

∂bi
−
∂D(I, IT )

∂bi
> 0

0 −
∂D(I, IT )

∂bi
⩽ 0

where α is paramter that ampliies the output of the gradient. The

choice of α has an impact on the convergence and the bandwidth

overhead. If we pick large value for α , we will take bigger steps

toward the target sample andwewill addmore overhead.Wemodify

the source sample by summing it with ∆, (Inews = Is + ∆). We

iterate this process, computing ∆ for each Is and updating the

source sample until we leave the source class, f (Inews ) , s or the

number of iterations passes the maximum allowed iterations. In

our experiments, we set this maximum as 200 iterations.

Because we only increase the bursts where −
∂D(I, IT )

∂bi
> 0, we

may run into cases that after some iterations ∇(−D(I , IT )) does not

have any positive values or all the positive values are extremely

small such that they do not make any signiicant changes to Is .

In such cases, if Inews − Is is smaller than a threshold (we used

threshold 0.001) for a few iterations (we used 10 iterations), and we

are still in the source class, we reill the pool with new samples and

pick a new target sample IT to continue the process.

3 EVALUATIONS

0 2 4 6 8 10 12 14

0.4

0.6

α

O
v
er
h
ea
d
(%
)

p = 1 p = 3

p = 5 WT

Figure 2: Bandwidth Overhead: the bandwidth overhead of

generated samples as α and target pool size vary. Dashed

lines show the results of Case I and solid lines show the re-

sults of Case II.

In our evaluation, we break the data into two non-overlapping

sets: the Attacker Set and the Defender Set. Each set has amonitored

set of 83 classes, each representing a website of interest to the

attacker, with 360 instances each. Moreover, our dataset contains

an unmonitored set of 40,000 instances from 40,000 diferent sites,

one instance per site.

We examine the bandwidth overhead and reduction in attacker

accuracy of traces protected by our method. We use traces in the

training data and generated their defended forms by the method

described in the previous section. We irst require a detector (f (x))

to identify when the generated samples leave their source class.

Thus, we deine the detector, a CNNmodel, and train it on the traces

in Attacker Set. In our evaluations we examine two cases:

• Case I: We ill the target pool with instances from the At-

tacker Set. In this case, the detector has been trained on the

target classes.

• Case II: We ill the target pool with instances from the un-

monitored. In this case, the detector has not been trained on

the target samples.

We generated defended samples with various settings. We varied

α andp to evaluate their efect on the strength of the defended traces

and the overhead. We measured the detectability of the defended

samples by applying the DF attack [8] on them. Sirinam el al. [8]

suggest using 5,000 packets. Because both Walkie-Talkie and our

method increase the size of the bursts, the number of packets in the

traces increases. We thus use an input size of 10,000 packets, which

is the 80th percentile of packet sequence lengths in our defended

traces.

Figure 2 shows the bandwidth overhead in both Walkie-Talkie

(WT) and our method for Case I (solid lines) and II (dashed lines)

as α and p vary. As shown in the igure, as we increase α , the

bandwidth overhead increases. Larger α values create longer steps

toward the target samples and less ine-grained searches for an

efective stopping point. Using a larger target pool moderately

decreases bandwidth overhead in most cases.

Case I leads to lower bandwidth overhead compared to Case II.

Therefore, picking target samples from classes that the detector has

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2226



0 5 10 15

0.4

0.6

0.8

α

A
cc

u
ra

cy
(%

)

p = 1 p = 3

p = 5 WT

(a) Case I

0 5 10 15

0.4

0.6

0.8

α

A
cc

u
ra

cy
(%

)

p = 1 p = 3

p = 5 WT

(b) Case II

Figure 3: Accuracy: the accuracy rate of the generated samples against the DF attack. Dashed lines depict the cases when the

input size to the DF attack is 5,000 packets and solid lines show the results when it is 10,000 packets.

been trained on will drop the overhead. In all the evaluated settings,

the bandwidth overhead of our method is lower than that of Walkie-

Talkie. For α = 1 and p = 5 in Case I, the bandwidth overhead of

our defense is 27%, 60% lower than for Walkie-Talkie. On the other

end, for α = 15 and p = 5 in Case I, the bandwidth overhead of our

defense is 56%, 18% lower than for Walkie-Talkie.

Figure 3 depicts the accuracy rate of the DF attack as α and p

vary, for input sizes of 5,000 packets and 10,000 packets. Figure 3a

and 3b depict the results of the evaluations in Case I and Case II,

respectively. As α increases in both cases, the accuracy rate drops

to its minimum and then slightly increases. On the other hand,

increasing α raises the bandwidth overhead monotonically. Raising

target pool size p can moderately increase the attacker’s accuracy.

According to Figure 3a, the lowest accuracy rate is 59% when α =

10 and p = 1, and its corresponding bandwidth overhead is 53%. α

= 10 and p = 1 in Case II provides the lowest accuracy rate (55%)

with bandwidth overhead of 63%.

Our evaluations show that Case I provides lower bandwidth over-

head than Case II (between 15% to 27% lower) and the detectability

of the generated samples is comparable with Case II. This means

that picking target samples from classes that the detector trained

on reduces bandwidth overhead. According to our results, our best

setting is to pick target samples from the classes that the detector

trained on with p=1 and α=5. Walkie-Talkie still has lower attack ac-

curacy than this setting, 49% to our 60%, but its bandwidth overhead

is 46% higher than our defense.

4 CONCLUSION & FUTURE WORK

In this work, we propose a new defense against WF attacks with

lower bandwidth overhead than Walkie-Talkie, the state-of-the-

art defense, with reasonable reductions in attacker accuracy. The

defense uses a novel mechanism that adapts techniques used to

create adversarial examples against machine learning classiiers,

applying them to website traic traces. The generated adversarial

traces can limit the adversary even though he is trained on the

adversarial traces. To protect a traic trace, we add fake packets to

the source trace to shorten the distance between the source sample

and a randomly selected target sample representing another website.

Our defense mechanism results in 47% bandwidth overhead and

drops the accuracy rate of the state-of-the-art WF attack from 98%

to 60%. We emphasize that our tests are conducted in the closed-

world setting, where the attacker knows that the user is visiting one
of the monitored set of websites. In the more realistic open-world

setting, where the user could visit any site on theWeb, 60% accuracy

is very likely to lead to many false positives for the attacker. In

future work, we plan to investigate more to improve the defense

and show how to implement it.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science

Foundation under Grants Numbers 1423163, 1722743, and 1816851.

REFERENCES
[1] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. CS-BuFLO: A Congestion

SensitiveWebsite Fingerprinting Defense. InWorkshop on Privacy in the Electronic
Society (WPES).

[2] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In ACM Conference on Computer and Communications Security (CCS).

[3] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching from
a Distance: Website Fingerprinting Attacks and Defenses. In ACM Conference on
Computer and Communications Security (CCS).

[4] Marc Juárez, Mohsen Imani, Mike Perry, Claudia Díaz, and MatthewWright. 2016.
Toward an Eicient Website Fingerprinting Defense. In European Symposium on
Research in Computer Security (ESORICS).

[5] Xiapu Luo, Peng Zhou, EWW Chan, and Wenke Lee. 2011. HTTPOS: Sealing
Information Leaks with Browser-side Obfuscation of Encrypted Flows. InNetwork
& Distributed System Security Symposium (NDSS).

[6] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A BespokeWebsite
Fingerprinting Defense. In Workshop on Privacy in the Electronic Society (WPES).

[7] Mike Perry. 2011. Experimental Defense for Website Traic Fin-
gerprinting. Tor Project Blog. https://blog.torproject.org/blog/
experimental-defense-website-traic-ingerprinting.

[8] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
arXiv:arXiv:1801.02265

[9] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
In International Conference on Learning Representations (ICLR).

[10] Tao Wang and Ian Goldberg. 2017. Walkie-talkie: An eicient defense against
passive website ingerprinting attacks. In USENIX Security Symposium.

[11] CV V Wright, SE E Coull, and Fabian Monrose. 2009. Traic morphing: An
eicient defense against statistical traic analysis. In Network & Distributed
System Security Symposium (NDSS).

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2227


	Abstract
	1 Introduction
	2 A New WF Defense
	3 Evaluations
	4 Conclusion & Future Work
	References

