Poster Presentation

CCS’18, October 15-19, 2018, Toronto, ON, Canada

POSTER: Adversarial Traces for Website Fingerprinting Defense

Mohsen Imani
University of Texas at Arlington
mohsen.imani@mavs.uta.edu

ABSTRACT

Website Fingerprinting (WF) is a traffic analysis attack that enables
an eavesdropper to infer the victim’s web activity even when en-
crypted and even when using the Tor anonymity system. Using
deep learning classifiers, the attack can reach up to 98% accuracy.
Existing WF defenses are either too expensive in terms of band-
width and latency overheads (e.g. 2-3 times as large or slow) or
ineffective against the latest attacks. In this work, we explore a
novel defense based on the idea of adversarial examples that have
been shown to undermine machine learning classifiers in other do-
mains. Our Adversarial Traces defense adds padding to a Tor traffic
trace in a manner that reliably fools the classifier into classifying
it as coming from a different site. The technique drops the accu-
racy of the state-of-the-art attack from 98% to 60%, while incurring
a reasonable 47% bandwidth overhead, showing its promise as a
possible defense for Tor.

KEYWORDS

Anonymity System; Privacy; Website Fingerprinting; Adversarial
Machine Learning; Defense

1 INTRODUCTION

Tor is known to be vulnerable to traffic analysis attacks. An ad-
versary who observes the both entry and exit sides of the traffic
on a Tor connection is able to correlate the traffic and link the
client to her destination. An adversary needs significant resources
to perform this attack reliably. A branch of traffic analysis that
requires fewer resources is Website Fingerprinting (WF). The goal of
the WF adversary is to identify which websites the client is visiting
by observing only the connection between the client and the guard,
as shown in Figure 1. This local passive adversary could be sniffing
the client’s wireless connection, have compromised her cable/DSL
modem, or gotten access to the client’s ISP or workplace network.

Attacker

Client

Figure 1: Website Fingerprinting Attack Model.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3278493

Mohammad Saidur Rahman
Rochester Institute of Technology
saidur.rahman@mail.rit.edu

2225

Matthew Wright

Rochester Institute of Technology
matthew.wright@rit.edu

The WF attack is a supervised classification problem, in which
the websites are the labels and each traffic trace is an instance to
be classified or trained on. The accuracy rate of the state-of-the-art
WEF attack is 98% in a closed-world test [8].

In response to the threat of WF attacks, there have been several
defenses proposed [1, 2, 5-7, 11]. WF defenses try to change the
pattern of the traffic in a way that confounds the classifier. Tor traffic
is already divided into fixed-sized cells of 512 bytes, and the order
of objects requested from a site is randomized. The remaining ways
to modify traffic are to add padding packets and delay some packets.
The BuFLO family of defenses (including BuFLO [3], CS-BuFLO [1],
and Tamaraw [2]) apply these techniques and are effective, but make
loading a website take two or three times as long as in Tor. WTF-
PAD[4] offers lower overheads, but Sirinam et al. show an attack
that reaches 90% accuracy against it. The more recently proposed
Walkie-Talkie [10] is both effective and efficient, but there are major
challenges to practical deployment.

In this work, we introduce a new defense strategy using adver-
sarial examples generated by a deep neural network. We propose
a new method to modify the website traces that causes misclas-
sification in the classifier with moderate amounts of bandwidth,
even if the attacker is trained on the traces. Our defense drops the
accuracy rate of state-of-the-art attack from 98% to 60% with 47%
bandwidth overhead.

2 A NEW WF DEFENSE

We now introduce a new mechanism to perturb traffic traces such
that the classifier is not able to identify them reliably. We adapt the
idea of targeted adversarial examples [9]. To defend a given trace
(the source sample), our technique randomly picks a target sample
and gradually changes the source sample in a direction to get closer
to the target sample. Eventually, the sample has moved enough to
cause the classifier to misclassify it.

More concretely, assume that we have a set of sensitive sites
S that we want to protect and a model f(x) (called detector) that
is trained on a set of data from S (we will later discuss the cases
whether f(x) should be trained on only sensitive sites or both
sensitive and non-sensitive sites). We consider traffic trace Is as an
instance of source class s € S that we want to alter such that it
is classified to target class ¢, t = f(I;) and t # s. I5 is a sequence
of the bursts, I = [bé, b{, e b,ﬂ] The only allowed operation on
a burst, bg , is to add some positive values, §; >= 0, to that burst,
b{ = b{ + &;. The reason for using §; >= 0 is that we want to
increase the volume of the bursts by sending dummy packets. If
d; < 0, it means that we should drop some packets to reduce the
burst volume, but dropping real packets means losing data.

To protect source sample I, we pick p random samples from
other classes, P, = [IOTO,I1 Tys e IPT,,, ] Py, is the target pool for
I. IjTi is the j-th sample in the target pool and belongs to target



Poster Presentation

class T; # s. We want to pick a target class and re-cast the source
sample to be classified as that target class. To decrease amount of
change to the source sample, since adding padding adds bandwidth
overhead, we pick the sample from the target pool that is closest to
the source sample. We define closeness using the 3 norm distance.
Formally:

D(x,y) = L(x —y)
It = argminD(Is, I})
Iepy,
Then we modify the source sample to move toward this target
sample.

Our goal is to increase the volumes of selected bursts in the
source sample such that the source sample is not classified as class
s and the amount of change is as small as possible to minimize
the bandwidth overhead. To make the source sample to leave the
source class, we move toward the nearest sample (IT). We define A
as the perturbation vector that we will add to the source sample to
generate its defended form I7¢".

A=1[80,81,-- 6] (Vie[0,--,n]:8; >0)
Y = Ig + A

To find A that minimizes overhead, we should minimize distance
D(I}¢¥, It). To do this, we compute the gradient of the distance
with respect to the input. The gradient points in the direction of
steepest ascent, which would maximize the distance. Therefore, we
compute the gradient of the negative of the distance with respect
to the input, and we move the source sample that direction towards
the target sample. In particular:

OD(LIt) _ | oD, Ir)
o ob;

V(=D(I,1I7)) = -

s
i€0,---,n

where b; is the i-th burst in input I. To modify the source sample, we
change bursts such that their corresponding values in (=D(I, It))
are positive. Our perturbation vector A is:

_ OD(L,IT)
a X 9b; >0

A:{ BDﬁ(’?iI)
51T

where « is paramter that amplifies the output of the gradient. The
choice of a has an impact on the convergence and the bandwidth
overhead. If we pick large value for a, we will take bigger steps
toward the target sample and we will add more overhead. We modify
the source sample by summing it with A, (I#°" = I; + A). We
iterate this process, computing A for each I; and updating the
source sample until we leave the source class, f(I'*") # s or the
number of iterations passes the maximum allowed iterations. In

our experiments, we set this maximum as 200 iterations.
oD, Ir)
b;

_ 8D(,Iy)

Because we only increase the bursts where ——7—= > 0, we
may run into cases that after some iterations V(—D(I, IT)) does not

have any positive values or all the positive values are extremely

small such that they do not make any significant changes to I.

In such cases, if I?¢" — I is smaller than a threshold (we used
threshold 0.001) for a few iterations (we used 10 iterations), and we
are still in the source class, we refill the pool with new samples and
pick a new target sample IT to continue the process.

2226

CCS’18, October 15-19, 2018, Toronto, ON, Canada

EVALUATIONS

Overhead (%)
e
[*)}

S
S

Figure 2: Bandwidth Overhead: the bandwidth overhead of
generated samples as a and target pool size vary. Dashed
lines show the results of Case I and solid lines show the re-
sults of Case II.

In our evaluation, we break the data into two non-overlapping
sets: the Attacker Set and the Defender Set. Each set has a monitored
set of 83 classes, each representing a website of interest to the
attacker, with 360 instances each. Moreover, our dataset contains
an unmonitored set of 40,000 instances from 40,000 different sites,
one instance per site.

We examine the bandwidth overhead and reduction in attacker
accuracy of traces protected by our method. We use traces in the
training data and generated their defended forms by the method
described in the previous section. We first require a detector (f(x))
to identify when the generated samples leave their source class.
Thus, we define the detector, a CNN model, and train it on the traces
in Attacker Set. In our evaluations we examine two cases:

o Case I: We fill the target pool with instances from the At-
tacker Set. In this case, the detector has been trained on the
target classes.

o Case II: We fill the target pool with instances from the un-
monitored. In this case, the detector has not been trained on
the target samples.

We generated defended samples with various settings. We varied
a and p to evaluate their effect on the strength of the defended traces
and the overhead. We measured the detectability of the defended
samples by applying the DF attack [8] on them. Sirinam el al. [8]
suggest using 5,000 packets. Because both Walkie-Talkie and our
method increase the size of the bursts, the number of packets in the
traces increases. We thus use an input size of 10,000 packets, which
is the 80th percentile of packet sequence lengths in our defended
traces.

Figure 2 shows the bandwidth overhead in both Walkie-Talkie
(WT) and our method for Case I (solid lines) and II (dashed lines)
as a and p vary. As shown in the figure, as we increase «a, the
bandwidth overhead increases. Larger o values create longer steps
toward the target samples and less fine-grained searches for an
effective stopping point. Using a larger target pool moderately
decreases bandwidth overhead in most cases.

Case I leads to lower bandwidth overhead compared to Case II.
Therefore, picking target samples from classes that the detector has



Poster Presentation

Accuracy (%)

(a) Case I

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Accuracy (%)

(b) Case I1

Figure 3: Accuracy: the accuracy rate of the generated samples against the DF attack. Dashed lines depict the cases when the
input size to the DF attack is 5,000 packets and solid lines show the results when it is 10,000 packets.

been trained on will drop the overhead. In all the evaluated settings,
the bandwidth overhead of our method is lower than that of Walkie-
Talkie. For @ = 1 and p = 5 in Case I, the bandwidth overhead of
our defense is 27%, 60% lower than for Walkie-Talkie. On the other
end, for ¢ = 15 and p = 5 in Case I, the bandwidth overhead of our
defense is 56%, 18% lower than for Walkie-Talkie.

Figure 3 depicts the accuracy rate of the DF attack as « and p
vary, for input sizes of 5,000 packets and 10,000 packets. Figure 3a
and 3b depict the results of the evaluations in Case I and Case II,
respectively. As a increases in both cases, the accuracy rate drops
to its minimum and then slightly increases. On the other hand,
increasing « raises the bandwidth overhead monotonically. Raising
target pool size p can moderately increase the attacker’s accuracy.
According to Figure 3a, the lowest accuracy rate is 59% when « =
10 and p = 1, and its corresponding bandwidth overhead is 53%. a
=10 and p = 1 in Case II provides the lowest accuracy rate (55%)
with bandwidth overhead of 63%.

Our evaluations show that Case I provides lower bandwidth over-
head than Case II (between 15% to 27% lower) and the detectability
of the generated samples is comparable with Case II. This means
that picking target samples from classes that the detector trained
on reduces bandwidth overhead. According to our results, our best
setting is to pick target samples from the classes that the detector
trained on with p=1 and a=5. Walkie-Talkie still has lower attack ac-
curacy than this setting, 49% to our 60%, but its bandwidth overhead
is 46% higher than our defense.

4 CONCLUSION & FUTURE WORK

In this work, we propose a new defense against WF attacks with
lower bandwidth overhead than Walkie-Talkie, the state-of-the-
art defense, with reasonable reductions in attacker accuracy. The
defense uses a novel mechanism that adapts techniques used to
create adversarial examples against machine learning classifiers,
applying them to website traffic traces. The generated adversarial
traces can limit the adversary even though he is trained on the
adversarial traces. To protect a traffic trace, we add fake packets to
the source trace to shorten the distance between the source sample
and a randomly selected target sample representing another website.

2227

Our defense mechanism results in 47% bandwidth overhead and
drops the accuracy rate of the state-of-the-art WF attack from 98%
to 60%. We emphasize that our tests are conducted in the closed-

world setting, where the attacker knows that the user is visiting one
of the monitored set of websites. In the more realistic open-world

setting, where the user could visit any site on the Web, 60% accuracy
is very likely to lead to many false positives for the attacker. In
future work, we plan to investigate more to improve the defense
and show how to implement it.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science
Foundation under Grants Numbers 1423163, 1722743, and 1816851.

REFERENCES

[1] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. CS-BuFLO: A Congestion
Sensitive Website Fingerprinting Defense. In Workshop on Privacy in the Electronic
Society (WPES).

Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In ACM Conference on Computer and Communications Security (CCS).
Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching from
a Distance: Website Fingerprinting Attacks and Defenses. In ACM Conference on
Computer and Communications Security (CCS).

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright. 2016.
Toward an Efficient Website Fingerprinting Defense. In European Symposium on
Research in Computer Security (ESORICS).

Xiapu Luo, Peng Zhou, EWW Chan, and Wenke Lee. 2011. HTTPOS: Sealing
Information Leaks with Browser-side Obfuscation of Encrypted Flows. In Network
& Distributed System Security Symposium (NDSS).

Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A Bespoke Website
Fingerprinting Defense. In Workshop on Privacy in the Electronic Society (WPES).
Mike Perry. 2011. Experimental Defense for Website Traffic Fin-
gerprinting. Tor Project Blog. https://blog.torproject.org/blog/
experimental-defense-website-traffic-fingerprinting.

Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
arXiv:arXiv:1801.02265

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Tan Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
In International Conference on Learning Representations (ICLR).

Tao Wang and Ian Goldberg. 2017. Walkie-talkie: An efficient defense against
passive website fingerprinting attacks. In USENIX Security Symposium.

CV V Wright, SE E Coull, and Fabian Monrose. 2009. Traffic morphing: An
efficient defense against statistical traffic analysis. In Network & Distributed
System Security Symposium (NDSS).

[2

[10]

(1]



	Abstract
	1 Introduction
	2 A New WF Defense
	3 Evaluations
	4 Conclusion & Future Work
	References

