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ABSTRACT

The Tor anonymity system is vulnerable to website finger-

printing attacks that can reveal users Internet browsing be-

havior. The state-of-the-art website fingerprinting attacks use

convolutional neural networks to automatically extract fea-

tures from packet traces. One such attack undermines an effi-

cient fingerprinting defense previously considered a candidate

for implementation in Tor. In this work, we study the use of

neural network attribution techniques to visualize activity in

the attack’s model. These visualizations, essentially heatmaps

of the network, can be used to identify regions of particular

sensitivity and provide insight into the features that the model

has learned. We then examine how these heatmaps may be

used to create a new website fingerprinting defense that ap-

plies random padding to the website trace with an emphasis

towards highly fingerprintable regions. This defense reduces

the attacker’s accuracy from 98% to below 70% with a packet

overhead of approximately 80%.

Index Terms— tor, website fingerprinting, deep learning,

convolutional neural network, anonymity

1. INTRODUCTION

Journalists, activists, and privacy conscious individuals look

to anonymization software to protect their identify from po-

tential attackers. Among these tools, Tor [1] is perhaps the

most popular, with over 8 million users [2]. Tor is a low-

latency anonymity network that allows users to conceal their

location and browsing behaviors to protect their online pri-

vacy. As shown in Figure 1, a client using the Tor Browser

passes her traffic through a path of three proxy nodes (the

guard, middle, and exit) on the way to her destination web-

site. The connections are all encrypted, which prevents any

eavesdropper or compromised proxy node from linking the

client with the website or any of the traffic.

Tor is particular popular due to its ability to achieve a

high-degree of security while minimizing negative affects to

user experience when browsing the internet. The prepackaged

Tor Browser Bundle has allowed users with limited techno-

logical backgrounds to securely and conveniently browse the

Fig. 1. The Tor website fingerprinting threat model.

world-wide-web, increasing the technologies accessibility to

the general public.

Unfortunately, Tor is vulnerable to an attack known as

website fingerprinting (WF). In a WF attack, the adversary’s

goal is to determine what website a Tor user has visited in a

browsing session. This attack can be performed by an eaves-

dropper on the connection between the client and the guard –

e.g. an eavesdropper on the the client’s wireless link, a com-

promised cable modem, the user’s Internet service provider,

or any network along the path. Although all content is en-

crypted, the attacker can observe patterns in the direction and

timing of the network packets produced in the communication

between the client and guard. This is often enough to unmask

the client’s activities and remove the privacy protections pro-

vided by Tor. The WF attacker trains a machine learning clas-

sifier on the traffic patterns of a number of websites of interest

(the monitored set) and uses the classifier to predict which site

the user is visiting based on the patterns observed on the net-

work. Recently, a particularly potent WF attack that builds on

convolutional neural networks (CNN) was introduced. This

attack, Deep Fingerprinting (DF) [3], can reach 98% accu-

racy in a closed-world setting.

To defend against WF attacks, Tor can attempt to change

the traffic patterns produced when accessing sites, generally

by adding fake packets (padding) or delaying real packets.

Strong defenses can be prohibitively expensive in terms of

the amount of network bandwidth overhead, due to the use

of many fake packets, and in terms of latency overhead due

to the amount of delay added. Two WF defenses with more

realistic overheads have been proposed: WTF-PAD [4] and
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Walkie-Talkie [5]. However, DF is effective against WTF-

PAD with over 90% accuracy in closed-world tests. DF also

achieved near maximum attacker accuracy against Walkie-

Talkie. The effectiveness of this attack highlights the need

for a new defense that is robust to WF attacks using deep

learning, and is realistic in terms of both overheads and en-

gineering.

In this paper, we explore the use of neural network at-

tribution techniques to better understand why the DF attack

is effective so as to develop an opposing defense. These

attribution techniques are used to explain what features of

the model’s input are responsible for the prediction given by

the model. When applied to conventional image recognition

tasks, these techniques essentially provide heatmaps showing

which parts of a trace are most important to the classification

decisions made by the network.

Based on our findings with these techniques, we propose

a preliminary approach to create a novel WF defense that

targets specific regions of sensitivity in the trace. We use

neural network attribution techniques to identify the highly

fingerprintable regions of a trace. We then apply a new

padding scheme to conceal patterns in the traffic, focusing on

the highly fingerprintable regions to maximize the impact of

fake packets. Our preliminary results show that this defense

reduces the accuracy of the DF attack to 66% with acceptable

bandwidth and latency overhead.

2. BACKGROUND

WF attacks using handcrafted features. Machine learning-

based WF attacks have shown to be effective with over 90%

accuracy when classifying webpage traces from closed-world

datasets collected by the respective attack’s authors. These

attacks commonly utilized ML techniques such as k-nearest

neighbors (k-NN) [6], support vector machines (CUMUL)

(SVM) [7], and random decision forests (k-FP) [8] to achieve

these high results. All of these attacks first require an attacker

to extract a feature set to be used to train the classifier. Each

attack typically requires its own set of handcrafted features

be used.

WF defenses. In response to these WF attacks, a series of

WF defenses have been proposed. These techniques conceal

known features by adding fake packets and/or delaying real

packets. Early proposed defenses send packets at a constant

rate and insert fake packets such that traffic follows a cer-

tain pattern [9, 10]. While these defense have been shown

to be effective, they come at the cost of huge bandwidth

and latency overheads and are impractical to be deployed

in Tor. Recently, two lightweight WF defenses have been

proposed and were thought to be good candidates for deploy-

ment in Tor due to their efficient overheads. Juarez et al.

proposed WTF-PAD [4], which conceals patterns by filling

gaps between bursts of traffic with fake bursts without adding

delays to real packets. This defense resulted in distortion

to the burst features which are commonly used in the en-

gineered feature sets of earlier WF classifiers [4]. Wang et

al. proposed Walkie-Talkie [5], a defense that aims to effi-

ciently induce collisions—complete overlap in features used

by the classifier—between sensitive and non-sensitive sites.

WTF-PAD is favored by Tor developers [11], as Walkie-

Talkie has significant engineering challenges that have not

been addressed. While effective in laboratory experiments,

Walkie-Talkie requires significantly changes to the underly-

ing communication protocol as well as advanced knowledge

of the traffic patterns of all sites the client might visit [3, 12].

WF attacks using DL. Recently, the breakthroughs of Deep

Learning (DL) in many application domains has motivated re-

searchers to apply DL to the WF domain. Abe and Goto [13]

were the first to investigate the application of DL for a WF

attack. Their attack utilized stacked denoising autoencoders

(SDAE) and achieved 88% accuracy in the closed-world sce-

nario. Rimmer et al. [14] studied and evaluated the use of DL

for automated features extraction with three different models:

SDAE, CNN, and LSTM. They showed that DL can be used

to eliminate the feature engineering process with effective re-

sults. Their CNN model could achieve a 96% accuracy in the

closed-world setting. Most recently, Sirinam et al. [3] pro-

posed Deep Fingerprinting (DF), a sophisticated CNN model

that can achieve over 98% accuracy. Their model was the first

to undermine the WTF-PAD defense with over 90% accuracy

in the closed world.

Neural Network Attribution While DL has shown supe-

rior performance on various tasks, it is difficult to explain its

classification decisions. This has motivated the study of neu-

ral network attribution techniques, which help researchers to

understand visually how DL models make decisions. Tech-

niques include Guided-Backpropagation [15], Integrated Gra-

dients [16], DeepLift [17], and GradCAM [18]. These tech-

niques have traditionally been used to identify features and

the position of subjects in image classification models. One

element of these techniques that makes their application in the

WF domain particularly compelling is the ability to generate

heatmaps that identify discrimantive regions that highly influ-

ence the model’s prediction on a particular instance. Know-

ing these regions would allow a WF defense to focus padding

there and lessen the overhead costs of using padding every-

where.

3. WF DEFENSE BASED ON ATTRIBUTION

3.1. Neural Network Attribution in WF

We now examine how different neural network attribution

techniques work in the WF setting. We evaluate four tech-

niques: Guided-Backpropagation [15], Integrated Gradi-

ents [16], DeepLift [17], and GradCAM [18].



Fig. 2. Visual explanation of Extend Bursts and Break Bursts

padding. The direction of the arrow represents the direction

of the packet, incoming or outgoing.

When comparing the attribution charts we found that the

Guided-Backpropagation, Integrated Gradients, and DeepLift

techniques all produced similar, fine-grained explanations.

These maps mark the individual bursts and packets that sig-

nificantly affected the model’s final classification. On the

other-hand, GradCAM produces coarse-grain maps. These

maps instead indicate which regions of the trace contained

the features to which the classifier responded positively. As

such, maps produced by GradCAM can effectively be used

as heatmaps indicating which portion of the trace is more

fingerprintable. In our experience, we found that the regional

importance captured by GradCAM is naturally applicable to

a website fingerprinting defense.

With this understanding, we focused further on the Grad-

CAM charts. To identify the important regions examined by

the classifier, we divide all the traces in our dataset into sub-

sets of similar length. For each set, we then average the packet

sequence importance scores across trace instances within the

same set. This allows us to create one global importance map

for each group of similarly sized traces. These maps show

which regions in the trace are of global importance to classi-

fying sites.

3.2. Defense Design

The key idea of our defense is simple: we apply random

padding to the traffic, where the frequency of the padding is

set to match the relative importance of that part of the trace

as indicated in the attribution maps. Purely random padding

is unlikely to be very effective, however, as that would essen-

tially add a noisy mask over parts of the trace. DL models

have been shown to remain effective despite random noise,

except when the amount of noise is very high, which would

require high levels of padding overhead. Furthermore, some

random packets could be detected as obvious padding if they

do not follow the usual patterns of web traffic.

Since bursts of traffic have been used in several attacks

as the primary basis for creating effective hand-crafted fea-

tures, we assume that burst characteristics remain important

to DL-based attacks. We thus apply padding such that it di-

rectly effects bursts in the trace. As in prior work, we define

a burst as a set of consecutive packets in a single direction,

incoming or outgoing. A website trace can then be thought

of a sequence of bursts, outgoing followed by incoming fol-

lowed by outgoing and so on until the trace ends. To modify a

burst B, we can either extend the burst by adding padding to

B or break the burst by adding a fake burst F in the opposite

direction that splits B into two real bursts B1 and B2, with F

in between them.

To evaluate these techniques, we have developed a sim-

ulator which operates in two modes: Random Extend Bursts

(REB) and Random Break Bursts (RBB). A visual description

of these algorithms is shown in Figure 2.

The REB and RBB algorithms evaluate padding on a

packet-by-packet basis. In order to determine when padding

should be applied, we compare the importance score for the

current packet sequence number to a uniformly generated

random value between zero and one. If the random value is

below the importance score of the packet in the GradCAM

chart, a burst of dummy packets is sent. To avoid back-to-

back padding, we skip padding on several packets after each

evaluation. The number of packets ignored is determined by

sampling from a uniform distribution for a selected interval

f . When the algorithm decides to pad, the number of dummy

packets sent is determined by sampling from a uniform dis-

tribution for a selected interval l; the direction of padding is

determined by the mode of operation. The optimal intervals

for f and l were determined by sweeping a reasonable range

of possible values for one while keeping the other constant.

REB can be implemented with minimal additional over-

head, since packets need only be added at the end of a burst.

For RBB, however, delay must be added during the original

burst B to enable the new fake burst F to arrive during the

break. Despite being a relatively simple concept, our work

is the first to examine this explicit mechanism for a padding

defense.

4. EVALUATION

4.1. Dataset

When evaluating the effectiveness of a ML-based attack it is

important to discuss the dataset used to train the model. The

large dataset collected by Sirinam et al. [3] was chosen for

this purpose. This dataset contains traces collected from the

homepages of the top 100 websites ranked by Alexa. From

each site, 1,250 traces instances were collected. After dis-

carding traces with corrupt traffic, the final dataset includes

95,000 instances from 95 sites.

Like previously proposed defenses, the REB and RBB de-

fenses are executed in a simulator. The simulator was run on



Fig. 3. GradCAM attribution charts for four webpages. Left: importance scores of several undefended trace classes. Right:

importance scores of the trace classes with RBB.

Defense
Overheads

Accuracy
Bandwidth Latency

Undefended 0% 0% 98.3%

Tamaraw 328% 242% 11.8%

WTF-PAD 64% 0% 90.7%

Walkie-Talkie 31% 34% 49.7%

REB 83% 0% 95.3%

RBB 83% 28% 66.7%

Table 1. Deep Fingerpinting attack accuracy against WF de-

fense. Results for all expect REB and RBB are sourced from

Sirinam et al. [3].

trace instances in the previously described dataset. Given a

website trace, our simulator adds fake packets and delays ac-

cording to the defense’s random choices. Delaying a packet

by δ leads to adding δ delay to all subsequent packets to en-

sure that the order remains the same. We note that this may

lead to more delay than what would be seen in a real-world

implementation.

4.2. Results

We discovered that REB is largely ineffective against the DF

model at reasonable overheads. REB can only increase the

size of existing bursts; the number of bursts does not change

and every large burst remains a large burst in the same se-

quence as the original trace. On the other hand, RBB changes

the burst sequence more dramatically. It not only adds fake

bursts to the trace, it can also split long bursts into multiple

smaller bursts. Assuming that long bursts are important to the

classifier, RBB removes them as a possible feature and masks

their location relative to each other. This explains why RBB

can reduce classification accuracy significantly with reason-

able overheads.

To further understand the effect of our defense on trace

patterns, we examine the GradCAM visualizations of sev-

eral trace classes before and after our defense has been ap-

plied. Figure 3 shows the importance scores for four web-

pages. For each webpage, the importances scores for 800

trace instances are generated and superimposed to show con-

sistency of patterns seen in the trace instances. After the de-

fense has been applied the signal is noticeably more diffuse,

indicating that the model has struggled to find consistent pat-

terns in the traces of the same webpage.

Compared to WTF-PAD, RBB is much more effective.

However, this security comes at the cost of 19% additional

bandwidth overhead and 28% additional latency overhead.

We will further explore the trade-offs in security and over-

heads in future work.

5. DISCUSSION AND FUTURE WORK

In this work, we have presented the design for a novel web-

site fingerprinting defense for Tor that utilizes deep learning

attribution techniques to combat the recent success of deep

learning based attacks. We find that our Random Break Bursts

algorithm is effective against the current state-of-the-art clas-

sifier, reducing accuracy from 98% to 66%. These prelimi-

nary results suggest that this approach is competitive against

other efficient defenses, though further work is still necessary.

At present, we have evaluated our simulated defense un-

der what is known as the closed-world assumption. In the

closed-world assumption, the attacker assumes that their tar-



get only visits webpages on which the WF model has been

trained. This assumption differs from the more realistic open-

world evaluation in which the target may visit any unmoni-

tored website where many webpages are not known by the

attacker. Results seen in the closed-world assumption repre-

sents the upper-bound of attacker accuracy. Going forward,

it will be necessary to evaluate our defense in an open-world

scenario. Furthermore, moving this defense out of the realm

of simulation to real implementation is necessary to show the

full effectiveness of our proposed defense.

Additionally, the defense currently requires knowing the

expected trace of the site the client is visiting, much like

Walkie-Talkie. We plan to investigate how to perform the

defense without this assumption.
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