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Abstract Recently, Zhang et al. (2016, https://doi.org/10.1002/2016)JD024837) presented

a mathematical framework based on a second-order Taylor series expansion in order to quantify the
plane-parallel homogeneous bias (PPHB) in cloud optical thickness () and effective droplet radius (r.¢)
retrieved from the bispectral solar reflective method. This study provides observational validation of the
aforementioned framework, using high-resolution reflectance observations from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) over 48 marine boundary layer cloud scenes. ASTER
reflectances at a horizontal resolution of 30 m are aggregated up to a scale of 1,920 m, providing retrievals
of = and r at different spatial resolutions. A comparison between the PPHB derived from these retrievals
and the predicted PPHB from the mathematical framework reveals a good agreement with correlation
coefficients of r > 0.97 (for At) and r > 0.79 (for Ar¢). To test the feasibility of PPHB predictions for present
and future satellite missions, a scale analysis with varying horizontal resolutions of the subpixel and
pixel-level observations is performed, followed by tests of corrections with only limited observational
high-resolution data. It is shown that for reasonably thick clouds with a mean subpixel z larger than 5,
correlations between observed and predicted PPHB remain high, even if the number of available subpixels
decreases or just a single band provides the information about subpixel reflectance variability. Only for thin
clouds the predicted Ar become less reliable, which can be attributed primarily to an increased retrieval
uncertainty for rq.

Plain Language Summary Assumptions in the retrieval of cloud optical and microphysical
properties from remote sensing observations can be substantially biased. Only recently, we gained a
better understanding of these biases, aided by a mathematical framework that makes use of the subpixel
variability within an observed pixel. This study uses novel satellite observations at a very high resolution to
provide observational validation of the proposed mathematical framework, which before was mainly tested
on a single synthetic cloud field based on simulations. The presented results illustrate that the mathematical
framework can reliably correct for the observed bias. Moreover, this approach also yields reasonable results
when applied to more common satellite setup, which are usually characterized by lower spatial resolutions
or limited availability of subpixel observations.

1. Introduction

One of the most widely used passive cloud property remote sensing techniques is the so-called bispectral
solar reflectance method, where cloud-top reflectances (R) at two different wavelengths are used to simulta-
neously infer the cloud optical thickness () and effective droplet radius (r) (Nakajima & King, 1990; Nakajima
et al, 1991; Twomey & Seton, 1980). Reflectances at one wavelength are usually sampled in the visible to
near-infrared spectral wavelength range (VNIR), where scattering is dominant and R increases with increas-
ing 7. Conversely, reflectances at the second wavelength are sampled in a dominant bulkwater-absorption
band in the shortwave-infrared spectral wavelength range (SWIR), where R typically decreases with increasing
I The relationships between the cloud variables and the two reflectances R, and R; (in the VNIR and SWIR,
respectively) are usually precomputed for a wide range of possible 7 and r combinations, as well as different
solar and viewing geometries, in so-called lookup tables (LUT). Subsequently, multidimensional interpola-
tion within the respective LUT yields retrieved 7 and r for each Ry and R pair. Global estimates of = and r
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by means of the bispectral solar reflective method are provided by a multitude of past and present satellite
missions, such as Landsat Nakajima etal. (1991), the Moderate Resolution Imaging Spectroradiometer (MODIS,
Platnick et al., 2003), the Visible Infrared Imaging Radiometer Suite (VIIRS, Lee et al., 2006; Walther et al., 2013),
and the Spinning Enhanced Visible and Infrared Imager (SEVIRI, Roebeling et al., 2006).

Retrievals using the bispectral solar reflective method rely on a number of critical assumptions. Of particular
interest of this study is the assumption that clouds within a cloudy pixel are horizontally homogeneous and
their reflectance is interpreted on the basis of one-dimensional (1-D) plane-parallel radiative transfer. Because
in the 1-D plane-parallel model there is no net horizontal photon transport between individual pixels within
a scene, this approach is called the independent pixel approximation (IPA, see Cahalan, Ridgway, Wiscombe,
& Bell, 1994; Cahalan, Ridgway, Wiscombe, Gollmer, & Harshvardhan, 1994). By applying 1-D radiative transfer
to three-dimensional (3-D) cloud structures, the IPA introduces two general 3-D radiative effects. For observa-
tions with a high spatial resolution the resolved horizontal scales are well below the free photon length path
observed in the atmosphere. For such observations, ignoring horizontal photon transport between cloudy
columns yields a breakdown of IPA, which was illustrated by scale breaks in the power spectral densities of
cloud-top reflectances (Davis et al., 1997; Marshak et al., 1995; Oreopoulos et al., 2000), as well as by increased
uncertainties in retrieved r (Barker & Liu, 1995; Chambers et al., 1997). In contrast, for observations with a
low spatial resolution the assumption of horizontally homogeneous cloud structures within a pixel is likely no
longer valid. As a result, IPA introduces large uncertainties in the pixel-level 7 and r retrievals if these cloud
variables change on the unresolved subpixel scale. This is especially true for very inhomogeneous cloud fields,
consisting of precipitating clouds or broken cumulus (Di Girolamo et al., 2010; Liang et al., 2015; Painemal
& Zuidema, 2011). Marine low-level clouds are especially susceptible to changes in aerosol loading and
accurate retrievals of r. are essential in assessing aerosol-cloud interactions on regional and global scales
(Werner et al., 2014; Wood et al., 2016).

Studies by Cahalan, Ridgway, Wiscombe, and Bell (1994) and Marshak et al. (2006) on unresolved variability
discussed biases in retrieved 7 and r., which are caused by the nonlinear relationship between the cloud
variables and the cloud-top reflectances R, and Rs. These studies demonstrated an inequality between the
reflectances and retrievals on the pixel-level scale and the mean values of the higher-resolution subpixel
results. This inequality is called the plane-parallel homogeneous bias (PPHB). One of the considerations in past
studies was that the PPHB for 7 is only a function of R, while the PPHB for r is only determined by the behav-
ior of Rs. Lately, Zhang and Platnick (2011) and Zhang et al. (2012) discussed the bias contributions from the
codependence of the = and r 4 retrievals due to the fact that the respective isolines in the LUT are not orthog-
onal. A unified framework was introduced in Zhang et al. (2016, hereafter Z16), which acknowledges the fact
that = and r are functions of both R, and Rs. That study used a second-order Taylor series expansion of =
and r with respect to both reflectances to illustrate that the PPHB can be predicted from the knowledge of
subpixel reflectance variability.

For present and future satellite missions the Z16 study is significant, as it provides a comprehensive mathemat-
ical explanation for the impact of unresolved cloud variability on cloud property retrievals at different horizon-
tal scales. For example, observed biases due to plane-parallel assumptions in the operational MODIS retrievals
(performed at 1,000-m horizontal resolution) could be mitigated by correcting the retrieved pixel-level cloud
properties. This correction would be based on predicted PPHB values, which are derived from sampled VNIR
and SWIR reflectances at 500 m. This would yield pixel-level retrievals that are close to the subpixel averages
of the respective cloud products, by simultaneously avoiding the practical limitations high-resolution = and
ro retrievals would impose (e.g., increased computational costs and file sizes). However, numerical tests pre-
sented in Z16 were mainly based on synthetic marine boundary layer (MBL) cloud fields generated by large
eddy simulations. Correlations between actually observed and predicted PPHB for an example MODIS scene
were slightly lower and especially for optically thin clouds the prediction seemed to be less reliable. Clearly,
more extensive experimental validation of the prediction framework is necessary.

This is a follow-up study to Z16, which aims to further evaluate the mathematical framework with
high-resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) observations of
48 inhomogeneous MBL scenes. A newly developed, ASTER-specific retrieval algorithm provides retrievals
of 7 and r at a horizontal resolution of 30 m Werner et al. (2016). This data set allows for an extensive test
of the PPHB prediction scheme introduced in Z16, as well as a sensitivity study with different horizontal resolu-
tions. The manuscript is structured as follows: an overview of ASTER observations and the retrieval algorithm
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is given in section 2. A description of the PPHB, as well as the mathematical framework to predict the biases in
T and g, is presented in section 3. The prediction framework is applied to high-resolution ASTER data in order
to mitigate the observed PPHB, first in a case study in section 4.1, and subsequently for all 48 MBL scenes in
section 4.2. To test the practical implementation of the mathematical framework for present and future satel-
lite missions, a scale analysis for different horizontal resolutions of the subpixel and pixel-level data, followed
by a feasibility study of a correction based on just a single band, is presented in section 5. A summary is given
in section 6.

2. ASTER Observations

Data in this study are provided by high-resolution ASTER observations over the 48 MBL scenes detailed in
Werner et al. (2016). These observations are composed of selected altocumulus and broken cumulus scenes,
which were sampled off the coast of California. They are characterized by a wide range of possible r and r
solutions, different scene cloud covers, and varying solar zenith angles.

Detailed information on ASTER are provided by Yamaguchi and Hiroji (1993), Yamaguchi et al. (1998), and
Abrams (2000). ASTER samples in the VNIR are characterized by a spatial resolution of 15 m, increasing to
30 and 90 m in the in the SWIR and thermal infrared spectral wavelength range, respectively. Applying the
equations and coefficients reported in Abrams et al. (2004) on the raw digital ASTER counts yields ASTER
cloud-top reflectances with absolute radiometric uncertainties of <4% (Yamaguchi et al., 1998).

Retrievals of T and r. are facilitated by the ASTER-specific, research-level retrieval algorithm presented in
Werner et al. (2016), which utilizes the same algorithms as the operational MODIS C6 retrievals (King et al.,
1997; Platnick et al., 2003). The use of this well-tested and documented algorithm setup provides reliable
results for cloud-top, optical, and microphysical variables based on ASTER observations, which compare well
with the operational MODIS C6 products (Werner et al., 2016). The mean retrieval uncertainties are 15% for
7 and 23% for r . Although the ASTER reflectance samples in the VNIR have a higher horizontal resolution,
the bispectral retrieval approach utilizes R observations in both the VNIR and SWIR, respectively. Thus, the
highest spatial resolution of R, , and r provided by ASTER measurements is 30 m. Aggregation of measured
R at 30 m within larger pixels, in combination with MODIS-like retrievals based on the ASTER-specific retrieval
algorithm, provides retrievals of © and r for a wide range of horizontal resolutions. In this study pixel sizes
are varied between 30 and 1,920 m, spanning the range of native ASTER resolution to scales larger than the
operational MODIS cloud property retrievals.

From here on Ry indicates the ASTER band 3N (nadir-viewing mode) reflectance centered around a wave-
length of 2 = 0.86 pm (in the VNIR), while R identifies the ASTER band 5 reflectance centered around
A= 2.1 um (in the SWIR).

3. PPHB and Prediction Framework

This section gives a short introduction to the PPHB for = and r retrievals by means of a case study.
Subsequently, a brief summary of the mathematical framework for the PPHB decomposition and prediction,
first reported in Z16, is given. Finally, issues in the definition of the PPHB and the prediction framework for
partially cloudy (PCL) pixels are discussed.

3.1. Plane-Parallel Homogeneous Bias

Figure 1 shows an example LUT composed of precomputed R, and Rs. The solar zenith angle is , = 48.7°,
while the relative azimuth angle (related to the difference between sensor and solar azimuth angle), and sen-
sor zenith angle are close to 0°. This geometry represents ASTER observations on 2 March 2006 at 19:14:44 UTC
(case C1in Werner et al,, 2016).

From the shape of the LUT it can be seen that = and r.4 vary mostly with R, and R, respectively. However, the
curvatures in the 7 and r isolines reveal the nonlinear relationship between cloud variables and cloud-top
reflectances, which define the contributions to the total PPHB that were discussed in Cahalan, Ridgway,
Wiscombe, and Bell (1994) and Marshak et al. (2006). It is also obvious that 7 isolines are not orthogonal to the
1o isolines, which indicates that reflectances in the VNIR and SWIR covary with 7 and r.. In turn, this means
that retrievals of both parameters are not independent from one another. This effect contributes to the total
PPHB (Zhang & Platnick, 2011; Zhang et al., 2012).
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Figure 1. Example lookup table from Advanced Spaceborne Thermal Emission and Reflection Radiometer band 3N
reflectances (Ry) in the visible to near-infrared spectral wavelength range and band 5 reflectances (Rs) in the SWIR.
Black and red circles indicate Advanced Spaceborne Thermal Emission and Reflection Radiometer measurements for
two pixels: one with low and the other with high subpixel reflectance variability, respectively. The black (white) plus
sign indicates the mean value of subpixel reflectances for the more inhomogeneous (homogeneous) example pixel.

The black dots in Figure 1 illustrate 1,024 samples of R, and Rs at 30-m horizontal resolution within a larger
pixel with a horizontal resolution of 960 m (i.e., a MODIS-like horizontal resolution). This example indicates
a pixel containing a rather homogeneous cloud, where there is little variability in R, and Ry and all data
points are grouped closely together. The subpixel cloud variability can be quantified by calculating the
inhomogeneity index H, y:

Hy== (1)

which is defined as the ratio of spatial standard deviation (o) to mean value (Ry, indicated by the horizontal
bar) of the subpixel VNIR reflectance (Cho et al., 2015; Di Girolamo et al., 2010; Liang et al., 2009; Zhang &
Platnick, 2011; Zhang et al., 2012). For this pixel H, y, is 0.02, while for the SWIR band reflectance the respective
inhomogeneity index is H, s = 0.03. The white plus sign, indicating the position of mean reflectances E and
R, is centered right in the middle of the 30-m subpixel values.

Following the definitions of Cahalan and Joseph (1989), Marshak et al. (2006), and Z16, the PPHB for cloud
optical thickness (A7) and effective droplet radius (Ar.) can be expressed as the difference between the
cloud property retrievals based on the mean subpixel reflectances and the mean values of the actual subpixel
retrievals:

At =7 <E,R_S> -7 (RV, RS)

Areff = letf (R_V’R_S> - ; (RV’ RS) . ()]

Using equation (2) to assess the PPHB of the homogeneous pixel shown in Figure 1 yields low PPHB values
of At = —0.07 and Ar,4 = —0.01 pm. Conversely, the red dots illustrate a 960-m pixel containing a rather
inhomogeneous cloud, where a large variability in subpixel Ry and R at 30 m exists. For this example pixel
H,y = 0.41 and H, s = 0.25. As a result, the observed PPHB values of At = —3.59 and Ar; = 1.40 pm are
much larger.
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Figure 2. Example lookup table from Advanced Spaceborne Thermal Emission and Reflection Radiometer band 3N reflectances Ry in the visible to near-infrared
spectral wavelength range and band 5 reflectances R in the shortwave-infrared spectral wavelength range. Colors illustrate the values of the six individual terms

of the matrix of second derivatives in equation (3), namely, (a) —%

62 Teff (R’E)
0Ry0Rg

(e) -

P(RyRs) —2 . Pe(RuRs) — — ; e(RuRs) —a 1 Pres(Rufs) —

—m, P B m = Ry R (O =5 —p— Rs () =3 —p— Ry,

.

Ry R, and (f) -1 Zov) ref;g:::ﬁs) Rs.
At this point it should be noted that the variability in the reflectances R, and R, as well as the variability in the
respective subpixel 7 and r retrievals, may be caused by 3-D radiative effects instead of actual changes in the
underlying cloud structure (Davis & Marshak, 2010; Marshak et al., 2006). These effects, caused by the indepen-
dent treatment of cloudy columns in the IPA approach, cannot be explained by 1-D plane-parallel radiative
transfer. The PPHB just describes the statistical difference between subpixel and pixel-level retrievals due to an
observed reflectance variability in combination with the nonlinearity of the LUT. However, the high-resolution
subpixel results might be additionally biased due to 3-D radiative effects (e.g., cloud shadows and illuminated
cloud sides).

3.2. Mathematical Framework for PPHB Prediction

The two examples in Figure 1 illustrate that the combined subpixel variability in R, and Ry determines the
PPHB biases Az and Ar. The discussion in Z16 shows that the sign and magnitude of Az and Ar can be
investigated by expanding the respective cloud optical and microphysical properties into two-dimensional
Taylor series of Ry and R, which in matrix form is as follows:

< At >_ T<R_V»R_s>_T(Rv’Rs)
Alett Feff <R_VR_S) —Tets (Rys Rs)

R SRR R ) g
—- - - v
_ 2 o Ry 0R 2~ o7
- 1 o? Teff (%JTS> 0? Teff (E;:) 1 0? Teff (ﬁ’ﬂ) l (R%/’ RS )
T2 Ry T T ORyRs 2 0%R s

 ARE) o _RE) oy l5R) 2| (e,

1 - R. L1 _\"°)

2 %Ry v oRyoRs V'S 2 %R s H 3)
cov *

2

HUS

L Pra(RR) 2 Pra() o ra(RE) 2

2 2Ry v 0RydRs vis T 92Rg S

Here 0\3 and ag are the spatial variances, while cov (RV, RS) is the spatial covariance of the reflectances R, and

Rs. Equation (3) consists of two parts: a vector [02, cov (RV, RS) ,ag]T, which describes the sampled subpixel
variability of R, and Rs, and a matrix containing the second-order derivatives of the LUT. The former can be
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easily calculated from high-resolution measurements, while the latter can be derived from numerical differ-
entiation within the applied LUT. Note that by multiplying each matrix element with the respective mean
reflectances the terms 0\3, cov (RV, RS), and ag can be easily substituted with the commonly used inhomo-

geneity indices Hiv =_G§_/R_V and Hfrs = chZ/R_S following equation (1), as well as the relative covariance term
Heoy = cov (Ry, Rs) /Ry Res.

Figures 2a-2f show an example of each of the six matrix elements. The LUT is derived for the respective solar
and viewing geometry for ASTER observations on 8 March 2005 at 19:08:35 (case C7 in Werner et al., 2016).
The two PPHB contributions discussed in Marshak et al. (2006), illustrated in Figure 2a for At and 2f for Ar,
are almost universally negative, indicating that the retrievals based on aggregated reflectances are smaller
than the actual subpixel mean values. However, the contributions from the respective secondary bands
(Rs in the 7 retrieval and Ry, in the r retrieval) show a more complex behavior and can be strongly positive, as
shown in Figures 2c and 2d. Similar observations hold true for contributions from the covariance term, shown
in Figures 2b and 2e. This means that the sampled subpixel reflectance variability is not the only important
variable determining the PPHB. The retrieval sensitivity and the respective position of the measurements in
the LUT are equally important. Generally, the sign of Az is dominated by the first matrix element and mostly
negative (except for very large 7). In contrast, the sign and magnitude of Ar are influenced by all three
matrix elements and vary strongly, especially for small z. Note that the apparent striping pattern in some of
the matrix elements (e.g., in Figure 2¢) is caused by artifacts in the applied numerical derivation algorithm.
For this work, the numerical derivatives are calculated with a central differences scheme and a reflectance
interval of 0.02. An increase in LUT resolution, a decrease of the reflectance interval and the application of dif-
ferent numerical derivation schemes with lower truncation errors can mitigate these artifacts, while increasing
the computational costs of the derivation algorithm.

3.3. PPHB for PCL Pixels

Two significant factors make it difficult to calculate and predict the PPHB for PCL pixels. The first issue arises
from the definition of At and Ar in equation (2), where the sign and magnitude of, for example, Az, are
determined by a pixel-level (¢ R_v R_S)) and a subpixel term (¢ (RV, RS)). For PCL pixels the two terms are com-
posed of different subpixel populations. Whereas the pixel-level term is retrieved from the mean of all subpixel
reflectances, the subpixel term is only defined for the cloudy part of the pixel (i.e., a clear subpixel has no
defined 7 and r and thus is not represented in the mean value). While it is conceivable that a value of r = 0
could be assigned to a clear subpixel, similar considerations for the effective droplet radius are not valid (i.e.,
a value of r¢ = 0 pm is unphysical).

Moreover, the general characteristics of the Taylor series expansion might prevent a reliable estimate of the
PPHB following equation (3) if a pixel is PCL. The Taylor series is a series expansion of a real function about a
point. Most well-behaved functions can be reliable approximated by a finite number of terms, and the remain-
ing error is comparatively small. However, very complex functions might require a series expansion up to a
large order (0) to reliably approximate the original function. Even then, the remaining error might be sig-
nificant. For PCL pixels, the cloudy subpixels exhibit a reflectance distribution similar to the ones shown in
Figure 1, where R, and R are largely determined by the underlying cloud characteristics. The reflectances from
the clear subpixels, meanwhile, are likely outside the LUT and clustered in the lower left corner (i.e., very low
Ry and Rs). Representing such a distribution with a second-order Taylor series (O = 2) likely yields unreliable
results with a large remaining error.

In order to successfully apply the mathematical framework presented in section 3.2 to PCL pixels, retrievals
based on only cloudy R, and R are required. Studies by Han et al. (1994) and Coakley et al. (2005) discuss the
impact of surface contamination on the retrieval products of PCL pixels and propose methods to estimate the
cloudy part reflectances and cloud variables. High-resolution ASTER data provide the opportunity to evalu-
ate and expand on these approaches in future studies and will allow to further test the PPHB correction for
PCL pixels.

4. Correction of Observed PPHB

In this section ASTER reflectance observations at 30-m horizontal resolution are used to predict the PPHB
based on equation (3). The predicted PPHB results are compared to the actually observed biases, first for a
case study (section 4.1) and subsequently in a statistical analysis for 48 MBL scenes (section 4.2).
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Figure 3. (a) Single-band grayscale image of band 3N reflectances sampled by Advanced Spaceborne Thermal Emission and Reflection Radiometer off the coast
of California on 8 March 2005 at 19:08:35. The horizontal resolution is 30 m. (b) Same as (a) but for the retrieved cloud optical thickness z. (c) Same as (a) but for
the effective droplet radius rq. (d—f) Same as (a)-(c) but for a horizontal resolution of 960 m.

4.1. Case Study

Figure 3a shows a grayscale image of R, at 30-m horizontal resolution. Data were sampled on 8 March 2005 at
19:08:35 UTC. This example depicts a rather complex and inhomogeneous MBL cloud scene with a number of
cloud holes (around 124.60°W, 39.25°N and 124.25°W, 39.25°N), larger areas of thin clouds and three areas of
increased cloud reflectance (located in the southwest, middle, and northeast of the granule). Retrieved = and
I are shown in Figures 3b and 3c. Most of the scene exhibits retrievals ranging from r = 5to 10 and r 4 = 12
to 16 um, whereas the thick cloudy regions are characterized by 7> 11 and r4 = 8 — 10 pm. Some extreme
values of 7> 17 and r < 8 pm (around the thick clouds) and = < 2 and r > 17 pm (around the cloud edges)
can be observed. Decreasing the spatial resolution to 960 m (i.e, a MODIS-like horizontal resolution) yields a
much smoother cloud field, as illustrated in Figures 3d - 3f. Here the lowest and highest retrieval observations
are much less frequent, which is especially obvious for the large optical thickness values shown in Figure 3b.

Maps of observed Az and Ar, based on equation (2) and shown in blue and red colors (depending on
sign and magnitude), are provided in Figures 4a and 4d, respectively. Here the mean values ¢ (RV, RS) and
re_ff(RV,Rs) are calculated from the high-resolution retrievals based on 30-m ASTER observations, while
T (R_V R_S) and r <R_VR_S) are the retrievals based on aggregated reflectances at 960 m. Following the dis-
cussion in section 3.3, the PPHB is only calculated for pixels with a subpixel cloud cover of C,,, = 1.0.
Pixels with C,,,, < 1.0 are shown in gray colors and are not included in the analysis. For this MBL scene
Az and Ar are almost exclusively negative and positive, respectively, with —0.55 < Ar < —0.01 and
—0.03 pm < Arg < 0.92 pm. The largest Az (in magnitude) are obtained for pixels containing thick clouds
(see Figure 3 for comparison), while the thin cloud regions exhibit the largest Ar. The predicted PPHB results,
derived from equation (3) and the matrix elements illustrated in Figure 2, are shown in Figure 4b for Az and
Figure 4e for Ar. It is obvious that both the sign and magnitude of the predicted PPHB results agree well
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Figure 4. (a) Observed plane-parallel homogeneous bias (PPHB), derived from subpixel data with a horizontal resolution of 30-m and pixel-level data with a
horizontal resolution of 960 m, for the cloud optical thickness = for the Advanced Spaceborne Thermal Emission and Reflection Radiometer cloud scene sampled
off the coast of California on 8 March 2005 at 19:08:35. Colors indicated the magnitude and sign of the PPHB; gray colors indicate pixels with a subpixel cloud
cover Gy, < 1. (b) Same as (a) but for the predicted PPHB based on equation (3). (c) Scatter plot of observed versus predicted PPHB for 7 for all pixels with

Csub = 1. Colors indicate the respective pixel value of the inhomogeneity index of Advanced Spaceborne Thermal Emission and Reflection Radiometer 3B
reflectances Hyy. (d—f) Same as (a)-(c) but for the effective droplet radius reg.

with the actually observed values shown in Figures 4a and 4d. A pixel-level comparison between the pre-
dicted and observed PPHB is shown in Figures 4c and 4f for Az and Ar.g, respectively. Colors indicate the
value of the subpixel inhomogeneity index H, . The objectively good agreement between predicted and
observed PPHB seen in the maps in Figure 4 is confirmed, with data points close to the 1:1 line and high values
of Pearson’s product-moment correlation coefficient of r > 0.88. For Az there seems to be no dependence
on H, y; however, there is an increase of Ar with an increase in H, .. Overall, the prediction works better for
At than for Ar, which can be attributed to the more complex distribution of the matrix elements shown in
Figures 2d-2f. All three matrix elements have a strong contribution to the total Ar., while small changes in
Ry or R can switch the sign of Ar 4 from positive to negative, especially for small optical thicknesses (e.g., illus-
trated by the thin negative stripe in Figure 2d). Such significant changes in sign and magnitude do not exist in
the three matrix elements for Az, which makes the predicted Ar more sensitive to uncertainties in the sam-
pled R, and R. For small reflectances (i.e., thin clouds) there is also an overall decrease in retrieval sensitivity
for r¢ due to the convergence of the respective LUT isolines (Cho et al., 2015; Werner et al,, 2013, 2016). As a
result, the increased retrieval uncertainty for r. (R_V R_5> and 7 (Ry, Rs) impacts not only the calculation of
the numerical derivatives but also the actually observed Ar.
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Figure 5. (a) Scatter plot of observed versus predicted plane-parallel homogeneous bias (PPHB) for the cloud optical thickness 7, derived from subpixel data with
a horizontal resolution of 30 m and pixel-level data with a horizontal resolution of 960 m. Data are from 48 marine boundary layer scenes sampled off the coast
of California, amounting to n = 59, 876 pixels with a subpixel cloud cover Cy,,, = 1. Colors indicate the respective pixel value of = (RV, RS). (b) Same as (a) but

for the effective droplet radius rqg. (c) Joint probability density (PDF) function of the ratio of predicted to observed PPHB for = and the ratio of predicted to
observed PPHB for ru.

4.2, Statistics

The results in Figure 4 reveal a good agreement between observed PPHB and the predicted values based on
the framework presented in section 3. To confirm these findings and test the viability of the framework for
a wide array of inhomogeneous cloud cases, similar analysis is performed for the 48 MBL scenes introduced
in Werner et al. (2016). As for the case study, only pixels with C,,, = 1.0 are included, which yields a data set
of n = 59,876 pixels. The pixel-level comparison between observed and predicted Ar and Ar. is shown in
Figures 5a and 5b, where colors indicate the mean subpixel cloud optical thickness = (RV, Rg).

The observed PPHB for all scenes, as derived from ASTER retrievals using equation (2), is in the range of
—6.05 < A7 < 0.05and —0.78 pm < Ar4 < 2.86 um, respectively. Similar to the case study in Figure 4, there
is a good agreement between observed and predicted PPHB with high correlation coefficients of r = 0.98
(Ar)andr = 0.79 (Ar¢). The prediction based on equation (3) seems to be particularly good for thicker clouds
with 7 (Ry, Rs) > 5.Similar to the case study, the correlation between observed and predicted PPHB gets lower
for clouds with a low optical thickness = (RV, RS) < 5, which is especially obvious for Ar. Excluding these
thin clouds from the analysis increases the correlation coefficient between observed and predicted Ar 4 from
r = 0.79 tor = 0.87. A clear relationship between cloud optical thickness and PPHB exists, as the highest
Ar exist for pixels with low 7 (R, Rs). For At the behavior is not as pronounced, but generally, there is an
increase in the absolute values of the PPHB with an increase in r (RV, RS). Figure 5c shows the joint probability
density function (PDF) of the ratios of predicted to observed Az and Ar . Most observations show ratios of
unity, confirming the good agreement between predicted and observed PPHB. About 70% of all data points
are characterized by a ratio of observed to predicted Az in the range of 0.8-1.2. The spread for the ratio of
observed to predicted Ar is larger, with 80% of all data points covering the range 0.5-1.5.

The results presented in Figures 4 and 5 show that knowledge about the subpixel reflectance variability, in
combination with equation (3), can be applied to successfully predict Az and Ar for the 48 MBL scenes in
this study. This also means, that the difference between the actually obtained mean values of the subpixel
retrievals 7 (R, Rs) and g (Ry. Rs) at a horizontal resolution of 30 m and the pixel-level retrievals based on

aggregated reflectances at 960 m, can be mitigated by correcting = (R_VR_5> and r (R_VR_S> with the pre-
dicted A7 and Ar. Figure 6a shows the joint PDF of the ratio of observed = (R_V R_S) to 7 (Ry. Rs) (i.e, the

ratio of retrievals based on aggregated reflectances to the mean subpixel retrievals) and (RV, RS). A ratio
of 1 indicates that there is no PPHB, while ratios smaller (larger) than 1 indicate a negative (positive) PPHB.
The primarily negative Az, illustrated in Figure 5a, leads to an obvious negative bias in the  retrievals based
on aggregated reflectances, with underestimations of up to 7% for thin clouds. With increasing = (RV,RS)
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Figure 6. (a) Joint probability density function (PDF) of the ratio of observed ¢ (R_VR_S) tor (RV, RS) and 7 (RV, RS). Values have been derived from subpixel data

with a horizontal resolution of 30 m and pixel-level data with a horizontal resolution of 960 m. (b) Same as (a) but for the observed (EE) which has been

corrected by the predicted Az, based on equation (3). (c) PDFs of the ratio of observed = (ER_S) tor (RV, RS) (black) and the ratio of observed ¢ (ER_S), which

has been corrected by the predicted Az, to ¢ (RV, RS) (blue). (d-f) Same as (a)-(c) but for the effective droplet radius rq.

these underestimations converge to a value of about 2%. Figure 6b shows the results of a correction of the
retrieved 7 ( Ry, Rs ) with the predicted PPHB values based on equation (3). The overall negative bias illustrated
in Figure 6a is gone after the correction and most observations (red colors) show a ratio of 1, indicating that
the mean of the subpixel retrievals and = (R_V R_5> are in close agreement. The maximum A~z for thin clouds is

reduced to about +3%. PDFs of the ratio of  ( Ry, Rs ) to (Ry. Rs) are shown in Figure 5¢ for both the uncor-
rected (black) and corrected (blue) data set. It is clear that by correcting = retrievals based on aggregated
reflectances with the predicted Az the mean of the subpixel retrievals can be successfully reproduced. A ratio
close to 1 (i.e., no PPHB) is obtained for over 50% of all pixels, while the overall negative bias for r <ER_S
is removed. Without a PPHB correction the normalized root-mean-square deviation between pixel-level and
subpixel retrievals (nRMSD, defined as the RMSD normalized by the mean of the subpixel results) is 1.4%, while
the 1st and 99th percentiles of the ratio of 7 ( Ry, R_S> toz (Ry, RS) are 0.960 and 1.003, respectively. After a cor-
rection of the pixel-level retrievals with the predicted Az the nRMSD =0.25% and the 1st and 99th percentiles
are 0.991 and 1.010.

Similar analysis for Ar is presented in Figures 6d-6f. A positive PPHB of up to 12% exists and overall strong
overestimations in the range of 5% exist over the whole observable 7 (R, Rs) range. The correction of the
PPHB with predicted Ar again yields considerable improvements, as most observations (red colors) exhibit
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a ratio of r (R_VR_S) to Ty (RV, Rs) close to 1. Most pixels are characterized by a good agreement between
subpixel means and pixel-level retrievals in the range of +2%. An area of strong overestimations of up to
12% remains (around 7 (Ry. Rs) = 8 — 10 um), which is associated with low 7 (Ry, Rs) < 5. Excluding pixels
with t (RV, RS) < 5 from the analysis yields a joint PDF were considerably less of these pixel-level overestima-
tions remain. Figure 6d shows PDFs of the ratio of pixel-level retrievals (based on aggregated reflectances) to
Tet (Ry» Rs ), again for the data set with and without the applied corrections with predicted Ar. Similar to the
cloud optical thickness results, over 40% of pixels show a ratio of 1 and the 1st and 99th percentiles change
from 0.998 and 1.047 to 0.992 and 1.025, respectively. Again, the nRMSD is significantly reduced from 1.4%
to 0.87%. This indicates that the correction based on equation (3) yields an improved agreement between
e (RV, RS> and 7 (Ry» Rs)-

The liquid water path (LWP), while not an input parameter for the radiative transfer simulations to generate
the LUT for the retrievals, is the primary parameter that determines cloud shortwave radiative forcing and is
an essential variable in the evaluation of climate models (Jiang et al.,, 2012). It can be derived as the product
of retrieved 7 and r (Miller et al., 2016):

LWP=T"-p;-7 I, (4)

where p, is the density of liquid water and T is a coefficient linked to assumptions about the vertical cloud
profile (hereI" = 2/3, assuming vertically homogeneous clouds). Similar to Az and Ar¢, ALWP was derived for
all pixels and compared to the predicted values from the mathematical framework presented in section 3.2.
Since the pixel-level retrievals = (R_V R_5> and rqg (R_\,R_S are usually biased low and high, respectively, and
both biases are comparable in magnitude, ALWP is rather small. The 1st and 99th percentiles of the ratio of
uncorrected pixel-level to mean subpixel LWP for all analyzed pixels are 0.974 and 1.037, while about 18% of
data exhibit a ratio of 1 (i.e., the distribution is centered around 1). The correction of the pixel-level results
with predicted ALWP slightly reduces these maximum deviations to 0.979 and 1.036, respectively, and about
29% of pixels show a ratio of 1. Moreover, the nRMSD changes from 1.79% to 0.93%. Thus, the correction of
pixel-level LWP with ALWP yields results that are closer to the mean subpixel observations. The correlation
between observed and predicted ALWP is r = 0.86, which is comparable to the correlation for Ar .

The statistical analysis from over n= 59,876 pixels, sampled over 48 MBL cloud scenes, illustrates that the
mathematical framework presented in section 3 can be successfully applied to predict and subsequently
mitigate the PPHB. As mentioned in section 3.1, the correction of R_VR_SP and rg (R_\,R_S (i.e., the
lower-resolution, pixel-level retrievals) with the predicted Az and Ar values yields retrievals that are in close
agreement with the mean subpixel results. However, 7 (Ry, Rs) and r (Ry. Rs) might be biased due to 3-D
radiative effects and therefore may not represent the true, high-resolution cloud properties.

5. Practical Implementation

The analysis in section 4 demonstrates that samples of high-resolution VNIR and SWIR reflectances on the sub-
pixel scale can be applied to explain and correct the observed PPHB of the pixel-level retrievals ¢ (R_V R_S> and

Tott (R_V R_S) However, most satellite missions only provide limited subpixel reflectance information, affecting
the determination of the vector of subpixel reflectance variability in equation (3). While retrievals of = and
ro¢ by MODIS are based on aggregated reflectances at a similar horizontal resolution of 1,000 m, subpixel
reflectance data in the VNIR and SWIR are sampled at 250- and 500-m horizontal resolutions, respectively.
Similarly, VIIRS provides 4 x 4 subpixel VNIR and SWIR reflectances at 375-m horizontal resolution, while the
cloud property retrievals are performed for larger pixels with a horizontal resolution of 750 m. Finally, the
SEVIRI includes just a single high-resolution visible band (centered around 4 = 0.75 pm) with a horizon-
tal resolution of 1,000 m that yields subpixel reflectances within each (3,000 x 3,000)-m pixel. It is therefore
essential to study the implications of different horizontal resolutions, as well as limitations in the availability
of high-resolution bands, on the viability of the PPHB prediction. The analysis in section 5.1 provides infor-
mation about the behavior of the elements of the subpixel variability vector in equation (3) with changes in
pixel-level and subpixel horizontal resolution, while section 5.2 presents statistics of Az and Ar for different
combinations of subpixel and pixel-level scales. Section 5.3 discusses the result of a PPHB correction with only
high-resolution VNIR band reflectances.
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Figure 7. (a) Median (dots) and interquartile range of the standard deviation of 30-m visible to near-infrared spectral wavelength range (VNIR) reflectances

(oy) as a function of pixel-level horizontal resolution. Data are from 48 marine boundary layer scenes sampled off the coast of California. The gray diagonal

line represents a linear regression through the data in log-log space (the first data point at 60-m horizontal resolution is omitted in the calculation of the
regression). The correlation coefficient (r) between data and regression, as well as the slope (i.e., relative susceptibility SGV), are given. (b) Same as (a) but for the
covariance of 30-m VNIR and shortwave-infrared spectral wavelength range reflectances (cov (RV, RS)). (c) Same as (a) but for the standard deviation of 30-m
shortwave-infrared spectral wavelength range reflectances (o5). (d) Derived oy from subpixel VNIR reflectances at different horizontal resolutions. The pixel-level
scale is 1,920 m. The gray diagonal line represents a linear regression through the data in log-log space (the last data point at 960-m horizontal resolution is
omitted in the calculation of the regression). (e) Same as (d) but for cov (RV, Rs). (f) Same as (d) but for 5.

5.1. Scale Dependence of Subpixel Variability

The results presented in sections 4.1 and 4.2 are based on subpixel ASTER observations with a horizontal
resolution of 30 m and pixel-level data with a horizontal resolution of 960 m. If 1 is the number of available
subpixels, there are n = 32 - 32 = 1, 024 pixels with a horizontal resolution of 30 m within each (960 x 960)-m
pixel. For a fixed pixel-level horizontal resolution the matrix of second-order derivatives in equation (3) is not
dependent on 7, while the subpixel variability vector [0\3, cov (RV, RS) , ag]T might change significantly with a
change in 5. Conversely, for a fixed subpixel horizontal resolution the matrix of second-order derivatives (due
toachangein R_Vand R_S), as well as the subpixel variability vector, are affected by a change in pixel-level scale.

Figure 7a shows the behavior of 6, at 30 m (i.e., the first element of the subpixel variability vector) for
pixel-level resolutions between 60 m (5 = 2-2 = 4) and 1,920 m (y = 64-64 = 4, 096), respectively. Dots show
the median of all overcast pixels for each pixel-level scale, while vertical bars indicate the interquartile range
(75th-25th percentile of all pixels). Because the increase of ¢, with increasing pixel-level scale seems to fol-
low a power law (as reported by Cahalan, Ridgway, Wiscombe, & Bell, 1994, for fractal clouds), the relationship
between the two variables is illustrated in a log-log diagram, where the logarithmic behavior becomes almost
linear. Similar relationships between cov (R, Rs) and o; (i.e,, the second and third elements of the subpixel
variability vector) and pixel-level scale are evident in Figures 7b and 7c. However, the power law behavior
seems to break down for # = 4 (i.e., 30-m observations within a 60-m pixel) and the median values are further
from the linear fit (o5 even increases when transitioning from a pixel-level scale of 120 to 60 m). This is most
likely a statistical issue, where the four available subpixels are not sufficient to describe the actual subpixel
reflectance distribution.
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Linear regressions through the data in log-log space yield the relative susceptibilities S, , Sy, and Sogr which
describe a relative change in the variability parameters oy, cov (Ry,Rs), and o5 with a relative change in
pixel-level horizontal resolution, respectively (Feingold et al., 2001; Werner et al., 2014):

scale  doy dlngy
50. = . =
v oy dscale dInscale
s scale dcov (Ry,Rs) dIncov(Ry,Rs)
T cov (Ry,Rs) " dscale  dlInscale
g _ scale dos  dlnog “

" o6, dscale  dlInscale’

The linear regressions, which determine these susceptibility parameters, are indicated by gray diagonal lines
in Figure 7. Due to the breakdown of the power law behavior for = 4, the regression parameters were derived
without this specific data point. There is a high correlation between observed data and the respective linear
regressions, with correlation coefficients of r > 0.92. The relative susceptibilities are S, = 0.383, S, = 0.691
and S, = 0.184, which means that there is almost a factor of 2 between S, and S, , as well as S, and S,
However, even though cov (Ry, Rs) is most susceptible to a change in pixel-level horizontal resolution, it is
several orders of magnitude smaller than the respective oy and o5 values.

While an increase in pixel-level scale yields an increase in subpixel variability, the opposite relation is observed
for changes in subpixel scale. Figures 7d-7f show a logarithmic decrease in oy, cov (RV, RS), and o, which
were derived from sampled subpixel reflectances at increasing horizontal resolutions between 30 and 960 m.
Here the pixel-level scale is fixed at 1,920 m. Similar to the pixel-level relationships, there is a breakdown of the
power law behavior for = 4 (i.e., 960-m observations within a 1,920-m pixel). These observations are charac-
terized by an increase in interquartile range and significant deviations from the linear regressions. Omitting
this last data point from the regression analysis yields r >0.92 and relative susceptibilities of S, = 0.137,
Scov =0.311,and S, = 0.107. Again, S, > S, > S, although the susceptibilities toward changes in subpixel
scale are smaller than toward changes in pixel-level horizontal resolution.

5.2. PPHB Correction for Different Scales

The analysis in section 5.1 illustrates that elements of the subpixel variability vector [s2, cov (Ry.Rs) ,aSZ]T
in equation (3) vary significantly, depending on the respective horizontal resolution of the subpixel and
pixel-level observations. However, increased subpixel variabilities do not automatically imply an increase in
magnitude of Az and Ar. For one, the susceptibility parameters S, , S, and S, exhibit the same sign. This
is significant since the analysis in Figure 2 suggests that the sign of the second and third elements of the
second-order derivative matrix is generally opposite to the sign of the first matrix element, which (at least
partially) mitigates the impact of an increased or decreased subpixel variability on the PPHB. Moreover, the
magnitude of Az and Ar depends on the position of R, and Rg within the LUT and thus the magnitude of
the respective second-order derivatives. To study the impact of scale on the reliability of the PPHB predic-
tions, the horizontal resolutions of both the subpixel and pixel-level ASTER observations are varied between
30 and 960 m. Subsequently, Az and Ar are derived for each scale combination following equation (3) and
compared to the actually observed results.

Figure 8a shows PDFs of theratio (R_VR_S> to 7 (Ry, Rs ), both with (blue) and without (black) a correction with
calculated Az, for subpixel ASTER observations with a horizontal resolution of 480 m and pixel-level data with
a horizontal resolution of 960 m. This scenario means that both the VNIR and SWIR reflectances exhibit 7 = 4,
which closely resembles measurements by the MODIS instrument. Similar to the results shown in Figure 6a
for the 30 m subpixel resolution, the correction can successfully mitigate the mainly negative PPHB and for
most observations the ratio is close to 1. This is also true for the correction of r 4 (R_V R_5> with calculated Ar g,
which is shown in Figure 6b.

The correlation coefficient r between predicted and observed Az and Ar for all combinations of subpixel and
pixel-level horizontal resolutions is illustrated in Figure 8c. This analysis yields a multitude of combinations for
most ;7 values. As an example, # = 64 is achieved by 30-m subpixel data within 240-m pixels, 60-m data within
480-m pixels, and 120-m data within 960-m pixels. The white line in Figure 8c represents the mean r for each
n value, enclosed by a shaded area indicating plus/minus one standard deviation. Because of the decreased
correlation for low optical thickness 7 (Ry, Rs) < 5 (see section 4.2), both the Az results for the complete data
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set (gray) and for ¢ (RV, RS) > 5 (black) are shown. Similarly, Ar results from all pixels (cyan) and from pixels
with 7 (Ry,Rs) > 5 (blue) are shown individually. For reasonably thick clouds mean correlation coefficients
show only a weak dependence on 7, with r = 0.96 — 0.98 for Az and r = 0.77 — 0.87 for Ar. Especially
for the Az correlations the standard deviations are very small, illustrating that all scale combinations for the
respective n yield basically the same result. This illustrates that even if there is only a small number of available
subpixels to calculate the variability vector [62, cov (Ry. Rs) ,ag]T in equation (3), the predicted Az and Ar
still are a reliable estimate of the actually observed PPHB.

Including cloudy pixels with = (RV, RS) < 5in the analysis barely changes the correlation coefficients for Az,
except for n = 4. Here the results show a larger spread (illustrated by the larger standard deviation) and a
smaller mean r = 0.88 (a decrease of about 0.09). For thin clouds a much stronger dependence of r on 7
is found for Ar. While for n = 1,024, correlation coefficients reach a similar value as for the data set with
7 (Ry, Rs) > 5, there is a significant decrease from r = 0.82to r = 0.36 for 7 = 4. A similar behavior of Az
and Ar for decreasing 7 exists for the nRMSD. This dependence of r on 7 for thin clouds is mainly caused by
the reduced retrieval sensitivity due to the convergence of the r isolines in the LUT (see Figure 1 and the
discussion in Zhang & Platnick, 2011; Werner et al., 2013). This behavior of the LUT yields substantially higher
uncertainties in the retrievals of r (R_V R_S> and T (Ry. Rs) for low 7, which affects both the actually observed
Ar. and the calculation of the matrix of second-order derivatives in equation (3). The effect of increased
uncertainties in the derived matrix elements is further magnified because for thin clouds with = (RV, RS) <5
thereis considerable variability in the sign and value of each matrix element, asillustrated in Figures 2d and 2e,
and even the covariance and cross-reflectance terms have a large contribution to Ar. Conversely, uncertainty
contributions from the truncation error in the derivation of equation (3) are found to be negligible. This was
tested by calculating the relative third-order subpixel variabilities 5\-’; and 5;, which are defined as follows:

n 3
AR3 . n Z(RW_RV)
83 =100 —= =100 ————
\ RV
n 3
ARZ p Z(Rs.—Rs)
§3=100- = =100 ————"—, ©)
S RS

for both VNIR and SWIR reflectances. Both terms exhibit very low values in the range of 0.04-0.6%, regard-
less of the spatial resolution of the observations. Given these small contributions, it is not surprising that
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predicted Az and Ar¢, which are based on a form of equation (3) that includes third-order derivatives, yields
indistinguishable results from the second-order PPHB predictions (not shown).

5.3. PPHB Correction With a Single High-Resolution Band

To evaluate the feasibility of a PPHB correction based on a single high-resolution reflectance band in the VNIR,
the relative contributions of individual matrix elements to the overall PPHB are quantified for all 48 MBL cloud
scenes. For the cloud optical thickness the individual contributions 6z, (with i = 1,2, 3 indicating the three
respective matrix elements) to the total Az are defined as follows:

y 02e(RyRs) —2

- — R .H?
2 "
57, =100 —— R il
At
P(RyRs) — —
_W RV RS ' Hcov
61, =100 -
At
_1 BZT(fV‘RS) R_52 . H?
2 9%R o
673 =100 - (7)
At

In a similar way the relative contributions ér. ; are defined as follows:

1 dzreff (EsE) —2

LA WA . H?
2 \Y o
Oreq = 100 - 2 aRLrﬁ i
e
PralFFE) o
~orar RvRs - Heoy
Sry, = 100- v
eff
1 Pre(Refs) .12
2 02Rg S Mo
Brysr3 =100 - v (8)
eff

Figure 9a shows PDFs of 67,, 67,, and d73, which are derived from all n = 59, 876 overcast pixels that make
up the statistical PPHB comparison in Figure 5. For the 48 MBL scenes most §7; are in the range of 80-130%,
with a median value of 107%. This indicates a slight overestimation in predicted PPHB for most data points,
if just the first matrix element is used to derive Az. Both 67, and 673 have mostly negligible contributions, with
median values of —6% and —1%, respectively. The negative sign indicates that the second and third matrix
elements have a mostly positive sign, whereas the total PPHB for the cloud optical thickness is almost exclu-
sively negative (see Figure 5a). The illustrated importance of the first matrix element to the overall negative
7 bias confirms the findings in Figures 2a-2c. In this example LUT the first matrix element yields the main
contribution to the overall Az, except for very large .

Figure 9b shows the PDFs of 81 1, 61t 5, and 6r 3 for the same n = 59, 876 overcast pixels. As predicted in
Figures 2d - 2f, all three matrix elements have a sizeable impact on Ar¢, with median values of 161%, 16%, and
—89% for the first, second, and third matrix element, respectively. Similar to 67, 61« | has the same sign as the
overall PPHB, while exceeding 100%. Conversely, 6. , is centered around 0% and ér. 3 is highly negative.

To understand the combination of individual elements better, a joint PDF of 6ry  and 6re 5 is shown in
Figure 9c. It is obvious that the second matrix element is usually much smaller than the first. The few pix-
els with larger ér. , contributions are characterized by comparable ér. ;. There is a thin stripe of negative
dre 1, Which is associated with very low effective droplet radius observations. A similar thin stripe is apparent
in Figure 2d, right at the upper boundary of the LUT. In this region the LUT starts to overlap with itself and the
I retrievals become ambiguous. As a result, the predicted PPHB for these pixels is not very reliable. A similar
joint PDF of 6ru y and 6r. 5 is shown in Figure 9d. For most observations, 6r. ¢ is about twice as large as
the absolute value of ér ;. Again, a thin stripe of highly positive (negative) 6r ¢ (61 3) is visible in the
upper right quadrant, associated with the multiple-solution space in the LUT (see Figures 2e and 2f). The dis-
tribution of 6r. ; illustrates that a prediction based on just the first matrix element in equation (3) yields an
overestimated Ar. However, these results are still useful as an estimate of the upper PPHB limit for r .
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Figure 9. (a) Probability density function (PDF) of the relative contributions 6z; of the first (i = 1, black), second (i = 2,
blue), and third (i = 3, red) matrix elements to the overall plane-parallel homogeneous bias Az. Data are from 48 marine
boundary layer scenes sampled by Advanced Spaceborne Thermal Emission and Reflection Radiometer off the coast of
California. (b) Same as (a) but for the effective droplet radius bias Arg. (c) PDF of the first and second matrix element
contributions éreg 1 and dreg 5. (d) Same as (c) but for the first and third matrix element contributions reg 1 and 6rgg 3.

The correlation between observed and predicted PPHB, based on only the first matrix elements in equation (3),
is shown in Figures 10a and 10b for At and Ar, respectively. The number of overcast pixels in the analy-
sis is slightly increased, from n = 59,876 in Figure 5 to n = 60, 943, because only the first matrix element

needs to be derived successfully. When calculating the complete PPHB based on all elements the calculation
i ) Pra(Rs) o tail at th fth
ORyoRs ~non, can fail at the edge of the LUT, because a

higher number of step points are necessary to calculate the mixed numerical derivatives and there is a higher

of the second (cross-correlation) terms —

chance of points falling outside the solution space. There is still a high correlation between observed and
predicted Az with r = 0.98, while the nRMSD slightly increases from 0.25% to 0.29%. Figure 10c shows the
results of a correction of the pixel-level retrievals with these new Az values. Here similar to Figure 6¢, PDFs of
the ratio of corrected and uncorrected ¢ R_v R_S) tor (RV, RS) are shown. There is a close agreement between
the fully corrected results (blue), which use all three matrix elements, and the ones using only the first matrix
element (red). A slight overestimation in the magnitude of predicted Az, already indicated by the PDF in
Figure 9a, is visible and as a result the corrected pixel-level retrievals are slightly larger than the ones from
the correction with all three matrix elements. Similar results are achieved for Ar.g, as shown in Figure 10b.
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Figure 10. (a) Scatter plot of observed versus predicted plane-parallel homogeneous bias for the cloud optical thickness
7, derived from subpixel data with a horizontal resolution of 30 m and pixel-level data with a horizontal resolution of
960 m. The prediction is only based on the first matrix element, shown in Figure 2a. Data are from 48 marine boundary
layer scenes sampled off the coast of California, amounting to n = 60, 943 pixels with a subpixel cloud cover Cg, = 1.

Colors indicate the respective pixel value of ¢ (RV, RS). (b) Same as (a) but for the effective droplet radius reg. The
prediction is only based on the first matrix element, shown in Figure 2d. (c) Probability density function (PDF) of the
ratio of observed = (ER_S) (uncorrected in black, corrected with the full matrix in blue, corrected with only the first

matrix element in red) to ¢ (RV, RS). (d) Same as (c) but for reg. VNIR indicates the visible to near-infrared spectral
wavelength range.

Here the predicted PPHB is slightly higher than the observed one, especially for small = (RV, RS), and
NRMSD = 1.19% (up from nRMSD = 0.87%). However, the correlation coefficient is comparable to the predic-
tion based on all three matrix elements and equation (3) yields a reliable estimate of Ar, which can be inter-
preted as the upper limit of the PPHB. This indicates that there are pixel where a correction of 4 (R_VR_S> with
the new Ar ¢ values yields results that are slightly lower than the respective r (Ry ., Rs) (i.., an overestimation
of the PPHB). However, as shown in Figure 10d, this overestimation of Ar yields pixel-level retrievals that are
still closer to the mean subpixel results than the uncorrected ones. Not only is the percentage of observations
with a ratio of 1 higher, the maximum deviations are also smaller than for the uncorrected results. Because
ALWPis determined by both A7 and Ar, all three matrix elements are important in determining the PPHB for
the LWP. Similar to Arg, the first matrix element alone yields an overestimation of the actually observed PPHB.
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There is a reduced correlation of r = 0.662 between ALWP from only a single band and the full correction
matrix. However, despite using only the first matrix element, the median ratio of corrected pixel-level to mean
subpixel LWP is 0.999.

6. Summary and Discussion

This study provides experimental validation and further evaluation of the mathematical framework intro-
duced in Z16, which expands the subpixel = and r. retrievals into two-dimensional Taylor series of cloud-top
reflectances. This method decomposes the contributions from the retrieval sensitivity, determined by the
shape of the LUT, and from the subpixel reflectance variability to the sign and magnitude of the PPHB.
The framework is tested with ASTER observations at horizontal scales between 30 and 1,920 m sampled over
48 MBL cloud scenes with varying degrees of heterogeneity.

ASTER cloud-top reflectances R, and Ry sampled at 30 m are used to retrieve high-resolution = and r.,
which subsequently yield the mean values of the subpixel results z (Ry, Rs) and g (Ry. Rs ). Ry and R sam-
ples are aggregated to a horizontal resolution of 960 m and provide the pixel-level retrievals = (R_VR_S) and

Iott (R_V R_S> The difference between the pixel-level and mean high-resolution results yields the observed
PPHB, which reaches values of up to —6.05 and 2.86 pm for At and Arg, respectively. For all analyzed pixels,
the 1st percentile of observed At is —4.0%, while the 99th percentile of observed Ar g is +4.7%. Compared
to the retrieval uncertainties the observed PPHB is about 27% (A7) and 20% (Ar.¢) in magnitude. While the
impact of the PPHB seems small in comparison, it is important to note that both Az and Ar 4 represent a bias
that systematically affects the cloud property retrievals, independent from the retrieval uncertainty.

A comparison between the observed Az and Ar and predicted PPHB based on the framework introduced
in Z16 reveals a good agreement, with correlation coefficients of r > 0.97 for Az and r > 0.79 for Ar. Similar
results are found for the bias in LWP (ALWP), which can be derived as the product of = and r. For all analyzed
pixels —20.90 g m? < ALWP < 10.96 g m?, while the correlation between observed and predicted ALWP is
r = 0.86. However, no systematic low or high PPHB is found for the LWP. A correction of the retrievals based on
aggregated reflectances with predicted Az, Ar¢, and ALWP mitigates the observed PPHB and yields a closer
agreement between the pixel-level results and the mean values of the subpixel retrievals.

The reliability of the PPHB prediction is studied for the following: (i) varying horizontal resolutions of sub-
pixel and pixel-level observations, which determines the number of available pixels # to calculate the
subpixel reflectance variability; (i) a limited mathematical framework with reflectances from only a single
high-resolution band in the VNIR. Analysis (i) is necessary, because it is found that an increase in pixel-level
(subpixel) horizontal resolution yields an increase (decrease) in subpixel reflectance variability, which together
with the LUT shape determine the sign and magnitude of the PPHB. While no dependence of r on 7 is found
for pixels with 7 (Ry, Rs) > 5, a reduction of r for Ar exists for pixels with low optical thickness. The increased
uncertainty in the Ar prediction can be explained by an increased retrieval uncertainty due to the shape of
the LUT, which impacts r (R_V R_5> and 7g (Ry, R, as well as the distribution of the numerical derivatives in
the Taylor series within the LUT. In contrast, contributions from higher-order terms, which are ignored in the
Taylor expansion of = and r.g, are found to be negligible. Analysis (ii), meanwhile, is important because not
all satellite-borne imagers provide high-resolution samples in the respective SWIR band. PPHB predictions
based on just the VNIR band contributions show a slight overestimation of the observed PPHB, but overall,
there is a good agreement between predicted and observed Az, Ar, and ALWP. The fact that even limited
observations of the subpixel reflectance variability are sufficient to mitigate the PPHB in pixel-level retrievals
has important implications for the common satellite missions that provide operational cloud retrievals, such
as MODIS, VIIRS, and SEVIRL. It can also guide the instrument design for future satellite missions.

Further studies will help to improve the predictions of Az and Ar4. An expansion of the analysis from 48
MBL scenes to hundreds of scenes is planned in the near future. This larger data set will allow for better
statistics, as well as the opportunity to study the PPHB for different cloud types, environmental condi-
tions, and viewing geometries. Including higher-order terms in the Taylor expansion of = and r might
provide even more reliable PPHB estimates. However, numerical approximations of higher-order derivatives
not only require a high-resolution LUT; the increased number of step points in the numerical derivation
proves problematic at the edge of the LUT. The mathematical framework to predict the PPHB can also be
expanded to the retrievals of cirrus cloud properties, which are usually derived by the split-window technique
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(Inoue, 1985; Parol et al., 1991). Here variabilities in the applied brightness temperatures are likewise induc-
ing uncertainties in the retrieved cirrus variables (Fauchez et al., 2015), which requires a Taylor expansion
by means of thermal infrared observations and the analysis of second-order derivatives in completely
different LUTs.

Finally, it is important to note that the framework presented in Z16 and this study merely provides the means
to reliably derive pixel-level retrievals that are in close agreement with the mean high-resolution subpixel =
and r retrievals. The possible impact of 3-D radiative effects due to resolved variability (e.g., cloud shadows,
illuminated cloud sides, photon leaking, and radiative smoothing and scale breaks) mightinduce a reflectance
variability that is wrongfully attributed to changes in the underlying cloud properties. In these circumstances,
the mean high-resolution subpixel retrievals might not be representative of the true cloud properties. Follow-
ing the discussion in Zhang et al. (2012), Z16, and this study, the pixel-level = and r. retrievals based on IPA
are predominantly smaller and larger than the mean subpixel properties, respectively. However, 3-D radiative
effects can impact higher-resolution retrievals and introduce significant biases to the true cloud variables.
As reported by Varnai and Marshak (2001, 2002) and Marshak et al. (2006), the sign and magnitude of these
biases are dependent on the solar geometry, cloud brightness, and the distribution of shadowed and illumi-
nated cloud elements within a scene, among others. Using a number of assumptions, these studies conclude
that 3-D radiative effects induce a net overestimation in both = and r, while the bias for individual cloud
elements can exhibit opposite signs and widely varying magnitudes. If both 3-D effects and the PPHB have a
positive sign, mitigating Ar.¢ by means of equation (3) potentially yields results that are closer to the true r.
Conversely, negative Az and positive biases from 3-D radiative effects might (at least to a degree) offset each
other. In this case, the uncorrected pixel-level 7 retrievals might be good estimates of the true cloud prop-
erties. While the focus of this study is on the PPHB, a future study aims at applying the methods described
in Varnai and Marshak (2002) to ASTER data to study biases for high-resolution remote sensing observations.
However, to truly quantify the relative contributions of PPHB and 3-D radiative effects, a ground truth is neces-
sary (i.e., knowledge of the true subpixel cloud properties), which could be achieved by future studies applying
a combination of large eddy simulations and both 1-D and 3-D radiative transfer solvers.
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