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Abstract Recently, Zhang et al. (2016, https://doi.org/10.1002/2016JD024837) presented

a mathematical framework based on a second-order Taylor series expansion in order to quantify the

plane-parallel homogeneous bias (PPHB) in cloud optical thickness (𝜏) and effective droplet radius (reff)

retrieved from the bispectral solar reflective method. This study provides observational validation of the

aforementioned framework, using high-resolution reflectance observations from the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) over 48 marine boundary layer cloud scenes. ASTER

reflectances at a horizontal resolution of 30 m are aggregated up to a scale of 1,920 m, providing retrievals

of 𝜏 and reff at different spatial resolutions. A comparison between the PPHB derived from these retrievals

and the predicted PPHB from the mathematical framework reveals a good agreement with correlation

coefficients of r> 0.97 (for Δ𝜏) and r> 0.79 (for Δreff). To test the feasibility of PPHB predictions for present

and future satellite missions, a scale analysis with varying horizontal resolutions of the subpixel and

pixel-level observations is performed, followed by tests of corrections with only limited observational

high-resolution data. It is shown that for reasonably thick clouds with a mean subpixel 𝜏 larger than 5,

correlations between observed and predicted PPHB remain high, even if the number of available subpixels

decreases or just a single band provides the information about subpixel reflectance variability. Only for thin

clouds the predicted Δreff become less reliable, which can be attributed primarily to an increased retrieval

uncertainty for reff.

Plain Language Summary Assumptions in the retrieval of cloud optical and microphysical

properties from remote sensing observations can be substantially biased. Only recently, we gained a

better understanding of these biases, aided by a mathematical framework that makes use of the subpixel

variability within an observed pixel. This study uses novel satellite observations at a very high resolution to

provide observational validation of the proposed mathematical framework, which before was mainly tested

on a single synthetic cloud field based on simulations. The presented results illustrate that the mathematical

framework can reliably correct for the observed bias. Moreover, this approach also yields reasonable results

when applied to more common satellite setup, which are usually characterized by lower spatial resolutions

or limited availability of subpixel observations.

1. Introduction

One of the most widely used passive cloud property remote sensing techniques is the so-called bispectral

solar reflectance method, where cloud-top reflectances (R) at two different wavelengths are used to simulta-

neously infer the cloudoptical thickness (𝜏) and effective droplet radius (reff) (Nakajima&King, 1990; Nakajima

et al., 1991; Twomey & Seton, 1980). Reflectances at one wavelength are usually sampled in the visible to

near-infrared spectral wavelength range (VNIR), where scattering is dominant and R increases with increas-

ing 𝜏 . Conversely, reflectances at the second wavelength are sampled in a dominant bulkwater-absorption

band in the shortwave-infrared spectral wavelength range (SWIR), where R typically decreaseswith increasing

reff. The relationships between the cloud variables and the two reflectances RV and RS (in the VNIR and SWIR,

respectively) are usually precomputed for a wide range of possible 𝜏 and reff combinations, as well as different

solar and viewing geometries, in so-called lookup tables (LUT). Subsequently, multidimensional interpola-

tion within the respective LUT yields retrieved 𝜏 and reff for each RV and RS pair. Global estimates of 𝜏 and reff
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by means of the bispectral solar reflective method are provided by a multitude of past and present satellite

missions, suchas LandsatNakajimaet al. (1991), theModerateResolution ImagingSpectroradiometer (MODIS,

Platnick et al., 2003), the Visible Infrared Imaging Radiometer Suite (VIIRS, Lee et al., 2006;Walther et al., 2013),

and the Spinning Enhanced Visible and Infrared Imager (SEVIRI, Roebeling et al., 2006).

Retrievals using the bispectral solar reflective method rely on a number of critical assumptions. Of particular

interest of this study is the assumption that clouds within a cloudy pixel are horizontally homogeneous and

their reflectance is interpreted on the basis of one-dimensional (1-D) plane-parallel radiative transfer. Because

in the 1-D plane-parallel model there is no net horizontal photon transport between individual pixels within

a scene, this approach is called the independent pixel approximation (IPA, see Cahalan, Ridgway, Wiscombe,

& Bell, 1994; Cahalan, Ridgway, Wiscombe, Gollmer, & Harshvardhan, 1994). By applying 1-D radiative transfer

to three-dimensional (3-D) cloud structures, the IPA introduces two general 3-D radiative effects. For observa-

tions with a high spatial resolution the resolved horizontal scales are well below the free photon length path

observed in the atmosphere. For such observations, ignoring horizontal photon transport between cloudy

columns yields a breakdown of IPA, which was illustrated by scale breaks in the power spectral densities of

cloud-top reflectances (Davis et al., 1997; Marshak et al., 1995; Oreopoulos et al., 2000), as well as by increased

uncertainties in retrieved 𝜏 (Barker & Liu, 1995; Chambers et al., 1997). In contrast, for observations with a

low spatial resolution the assumption of horizontally homogeneous cloud structures within a pixel is likely no

longer valid. As a result, IPA introduces large uncertainties in the pixel-level 𝜏 and reff retrievals if these cloud

variables changeon the unresolved subpixel scale. This is especially true for very inhomogeneous cloud fields,

consisting of precipitating clouds or broken cumulus (Di Girolamo et al., 2010; Liang et al., 2015; Painemal

& Zuidema, 2011). Marine low-level clouds are especially susceptible to changes in aerosol loading and

accurate retrievals of reff are essential in assessing aerosol-cloud interactions on regional and global scales

(Werner et al., 2014; Wood et al., 2016).

Studies by Cahalan, Ridgway, Wiscombe, and Bell (1994) and Marshak et al. (2006) on unresolved variability

discussed biases in retrieved 𝜏 and 𝑟eff, which are caused by the nonlinear relationship between the cloud

variables and the cloud-top reflectances RV and RS. These studies demonstrated an inequality between the

reflectances and retrievals on the pixel-level scale and the mean values of the higher-resolution subpixel

results. This inequality is called theplane-parallel homogeneous bias (PPHB). Oneof the considerations in past

studieswas that the PPHB for 𝜏 is only a function of RV, while the PPHB for reff is only determined by the behav-

ior of RS. Lately, Zhang and Platnick (2011) and Zhang et al. (2012) discussed the bias contributions from the

codependence of the 𝜏 and reff retrievals due to the fact that the respective isolines in the LUT are not orthog-

onal. A unified framework was introduced in Zhang et al. (2016, hereafter Z16), which acknowledges the fact

that 𝜏 and reff are functions of both RV and RS. That study used a second-order Taylor series expansion of 𝜏

and reff with respect to both reflectances to illustrate that the PPHB can be predicted from the knowledge of

subpixel reflectance variability.

Forpresent and future satellitemissions theZ16 study is significant, as it provides a comprehensivemathemat-

ical explanation for the impact of unresolved cloudvariability on cloudproperty retrievals at different horizon-

tal scales. For example, observed biases due to plane-parallel assumptions in the operationalMODIS retrievals

(performed at 1,000-m horizontal resolution) could bemitigated by correcting the retrieved pixel-level cloud

properties. This correction would be based on predicted PPHB values, which are derived from sampled VNIR

and SWIR reflectances at 500 m. This would yield pixel-level retrievals that are close to the subpixel averages

of the respective cloud products, by simultaneously avoiding the practical limitations high-resolution 𝜏 and

𝑟eff retrievals would impose (e.g., increased computational costs and file sizes). However, numerical tests pre-

sented in Z16 were mainly based on synthetic marine boundary layer (MBL) cloud fields generated by large

eddy simulations. Correlations between actually observed and predicted PPHB for an example MODIS scene

were slightly lower and especially for optically thin clouds the prediction seemed to be less reliable. Clearly,

more extensive experimental validation of the prediction framework is necessary.

This is a follow-up study to Z16, which aims to further evaluate the mathematical framework with

high-resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) observations of

48 inhomogeneous MBL scenes. A newly developed, ASTER-specific retrieval algorithm provides retrievals

of 𝜏 and reff at a horizontal resolution of 30 m Werner et al. (2016). This data set allows for an extensive test

of the PPHBprediction scheme introduced in Z16, aswell as a sensitivity studywith different horizontal resolu-

tions. The manuscript is structured as follows: an overview of ASTER observations and the retrieval algorithm
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is given in section 2. A description of the PPHB, as well as themathematical framework to predict the biases in

𝜏 and reff, is presented in section 3. The prediction framework is applied to high-resolutionASTER data in order

to mitigate the observed PPHB, first in a case study in section 4.1, and subsequently for all 48 MBL scenes in

section 4.2. To test the practical implementation of themathematical framework for present and future satel-

lite missions, a scale analysis for different horizontal resolutions of the subpixel and pixel-level data, followed

by a feasibility study of a correction based on just a single band, is presented in section 5. A summary is given

in section 6.

2. ASTER Observations

Data in this study are provided by high-resolution ASTER observations over the 48 MBL scenes detailed in

Werner et al. (2016). These observations are composed of selected altocumulus and broken cumulus scenes,

which were sampled off the coast of California. They are characterized by a wide range of possible 𝜏 and 𝑟eff

solutions, different scene cloud covers, and varying solar zenith angles.

Detailed information on ASTER are provided by Yamaguchi and Hiroji (1993), Yamaguchi et al. (1998), and

Abrams (2000). ASTER samples in the VNIR are characterized by a spatial resolution of 15 m, increasing to

30 and 90 m in the in the SWIR and thermal infrared spectral wavelength range, respectively. Applying the

equations and coefficients reported in Abrams et al. (2004) on the raw digital ASTER counts yields ASTER

cloud-top reflectances with absolute radiometric uncertainties of <4% (Yamaguchi et al., 1998).

Retrievals of 𝜏 and reff are facilitated by the ASTER-specific, research-level retrieval algorithm presented in

Werner et al. (2016), which utilizes the same algorithms as the operational MODIS C6 retrievals (King et al.,

1997; Platnick et al., 2003). The use of this well-tested and documented algorithm setup provides reliable

results for cloud-top, optical, and microphysical variables based on ASTER observations, which compare well

with the operational MODIS C6 products (Werner et al., 2016). The mean retrieval uncertainties are 15% for

𝜏 and 23% for reff. Although the ASTER reflectance samples in the VNIR have a higher horizontal resolution,

the bispectral retrieval approach utilizes R observations in both the VNIR and SWIR, respectively. Thus, the

highest spatial resolution of R, 𝜏 , and reff provided by ASTERmeasurements is 30m. Aggregation ofmeasured

R at 30mwithin larger pixels, in combination with MODIS-like retrievals based on the ASTER-specific retrieval

algorithm, provides retrievals of 𝜏 and 𝑟eff for a wide range of horizontal resolutions. In this study pixel sizes

are varied between 30 and 1,920 m, spanning the range of native ASTER resolution to scales larger than the

operational MODIS cloud property retrievals.

From here on RV indicates the ASTER band 3N (nadir-viewing mode) reflectance centered around a wave-

length of 𝜆 = 0.86 μm (in the VNIR), while RS identifies the ASTER band 5 reflectance centered around

𝜆 = 2.1 μm (in the SWIR).

3. PPHB and Prediction Framework

This section gives a short introduction to the PPHB for 𝜏 and reff retrievals by means of a case study.

Subsequently, a brief summary of the mathematical framework for the PPHB decomposition and prediction,

first reported in Z16, is given. Finally, issues in the definition of the PPHB and the prediction framework for

partially cloudy (PCL) pixels are discussed.

3.1. Plane-Parallel Homogeneous Bias

Figure 1 shows an example LUT composed of precomputed RV and RS. The solar zenith angle is 𝜃0 = 48.7∘,

while the relative azimuth angle (related to the difference between sensor and solar azimuth angle), and sen-

sor zenith angle are close to0∘. This geometry representsASTERobservations on2March2006 at 19:14:44UTC

(case C1 in Werner et al., 2016).

From the shape of the LUT it can be seen that 𝜏 and reff vary mostly with RV and RS, respectively. However, the

curvatures in the 𝜏 and reff isolines reveal the nonlinear relationship between cloud variables and cloud-top

reflectances, which define the contributions to the total PPHB that were discussed in Cahalan, Ridgway,

Wiscombe, and Bell (1994) andMarshak et al. (2006). It is also obvious that 𝜏 isolines are not orthogonal to the

reff isolines, which indicates that reflectances in the VNIR and SWIR covary with 𝜏 and reff. In turn, this means

that retrievals of both parameters are not independent from one another. This effect contributes to the total

PPHB (Zhang & Platnick, 2011; Zhang et al., 2012).
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Figure 1. Example lookup table from Advanced Spaceborne Thermal Emission and Reflection Radiometer band 3N

reflectances (RV) in the visible to near-infrared spectral wavelength range and band 5 reflectances (RS) in the SWIR.

Black and red circles indicate Advanced Spaceborne Thermal Emission and Reflection Radiometer measurements for

two pixels: one with low and the other with high subpixel reflectance variability, respectively. The black (white) plus

sign indicates the mean value of subpixel reflectances for the more inhomogeneous (homogeneous) example pixel.

The black dots in Figure 1 illustrate 1,024 samples of RV and RS at 30-m horizontal resolution within a larger

pixel with a horizontal resolution of 960 m (i.e., a MODIS-like horizontal resolution). This example indicates

a pixel containing a rather homogeneous cloud, where there is little variability in RV and RS and all data

points are grouped closely together. The subpixel cloud variability can be quantified by calculating the

inhomogeneity index H𝜎,V:

H𝜎,V =
𝜎V

RV

, (1)

which is defined as the ratio of spatial standard deviation (𝜎V) to mean value (RV, indicated by the horizontal

bar) of the subpixel VNIR reflectance (Cho et al., 2015; Di Girolamo et al., 2010; Liang et al., 2009; Zhang &

Platnick, 2011; Zhang et al., 2012). For this pixelH𝜎,V is 0.02, while for the SWIR band reflectance the respective

inhomogeneity index is H𝜎,S = 0.03. The white plus sign, indicating the position of mean reflectances RV and

RS, is centered right in the middle of the 30-m subpixel values.

Following the definitions of Cahalan and Joseph (1989), Marshak et al. (2006), and Z16, the PPHB for cloud

optical thickness (Δ𝜏) and effective droplet radius (Δreff) can be expressed as the difference between the

cloud property retrievals based on themean subpixel reflectances and themean values of the actual subpixel

retrievals:

Δ𝜏 = 𝜏

(
RV, RS

)
− 𝜏

(
RV, RS

)

Δreff = reff

(
RV, RS

)
− reff

(
RV, RS

)
. (2)

Using equation (2) to assess the PPHB of the homogeneous pixel shown in Figure 1 yields low PPHB values

of Δ𝜏 = −0.07 and Δreff = −0.01 μm. Conversely, the red dots illustrate a 960-m pixel containing a rather

inhomogeneous cloud, where a large variability in subpixel RV and RS at 30 m exists. For this example pixel

H𝜎,V = 0.41 and H𝜎,S = 0.25. As a result, the observed PPHB values of Δ𝜏 = −3.59 and Δreff = 1.40 μm are

much larger.
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Figure 2. Example lookup table from Advanced Spaceborne Thermal Emission and Reflection Radiometer band 3N reflectances RV in the visible to near-infrared

spectral wavelength range and band 5 reflectances RS in the shortwave-infrared spectral wavelength range. Colors illustrate the values of the six individual terms

of the matrix of second derivatives in equation (3), namely, (a) −
1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RV
RV

2
, (b) −

𝜕2𝜏

(
RV ,RS

)

𝜕RV𝜕RS
RV RS , (c) −

1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RS
RS

2
, (d) −

1

2

𝜕2reff

(
RV ,RS

)

𝜕2RV
RV

2
,

(e) −
𝜕2reff

(
RV ,RS

)

𝜕RV𝜕RS
RV RS , and (f ) −

1

2

𝜕2reff

(
RV ,RS

)

𝜕2RS
RS

2
.

At this point it should be noted that the variability in the reflectances RV and RS, as well as the variability in the

respective subpixel 𝜏 and reff retrievals,may be caused by 3-D radiative effects instead of actual changes in the

underlying cloud structure (Davis &Marshak, 2010;Marshak et al., 2006). These effects, causedby the indepen-

dent treatment of cloudy columns in the IPA approach, cannot be explained by 1-D plane-parallel radiative

transfer. The PPHB just describes the statistical differencebetween subpixel andpixel-level retrievals due to an

observed reflectance variability in combinationwith the nonlinearity of the LUT. However, the high-resolution

subpixel resultsmight be additionally biased due to 3-D radiative effects (e.g., cloud shadows and illuminated

cloud sides).

3.2. Mathematical Framework for PPHB Prediction

The two examples in Figure 1 illustrate that the combined subpixel variability in RV and RS determines the

PPHB biases Δ𝜏 and Δreff. The discussion in Z16 shows that the sign and magnitude of Δ𝜏 and Δreff can be

investigated by expanding the respective cloud optical and microphysical properties into two-dimensional

Taylor series of RV and RS, which in matrix form is as follows:

(
Δ𝜏

Δreff

)
=

⎛
⎜⎜⎝

𝜏

(
RV, RS

)
− 𝜏

(
RV, RS

)

reff

(
RV, RS

)
− reff

(
RV, RS

)
⎞
⎟⎟⎠

=

⎛⎜⎜⎜⎝

−
1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RV
−

𝜕2𝜏

(
RV ,RS

)

𝜕RV𝜕RS
−

1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RS

−
1

2

𝜕2reff

(
RV ,RS

)

𝜕2RV
−

𝜕2reff

(
RV ,RS

)

𝜕RV𝜕RS
−

1

2

𝜕2reff

(
RV ,RS

)

𝜕2RS

⎞⎟⎟⎟⎠
⋅

⎛⎜⎜⎝

𝜎2
V

cov
(
RV, RS

)
𝜎2
S

⎞⎟⎟⎠

=

⎛
⎜⎜⎜⎝

−
1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RV
RV

2
−

𝜕2𝜏

(
RV ,RS

)

𝜕RV𝜕RS
RV RS −

1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RS
RS

2

−
1

2

𝜕2reff

(
RV ,RS

)

𝜕2RV
RV

2
−

𝜕2reff

(
RV ,RS

)

𝜕RV𝜕RS
RV RS −

1

2

𝜕2reff

(
RV ,RS

)

𝜕2RS
RS

2

⎞
⎟⎟⎟⎠
⋅

⎛
⎜⎜⎜⎝

H2
𝜎V

Hcov

H2
𝜎S

⎞
⎟⎟⎟⎠
. (3)

Here 𝜎2
V
and 𝜎2

S
are the spatial variances, while cov

(
RV, RS

)
is the spatial covariance of the reflectances RV and

RS. Equation (3) consists of two parts: a vector
[
𝜎2
V
, cov

(
RV, RS

)
, 𝜎2

S

]T
, which describes the sampled subpixel

variability of RV and RS, and a matrix containing the second-order derivatives of the LUT. The former can be
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easily calculated from high-resolution measurements, while the latter can be derived from numerical differ-

entiation within the applied LUT. Note that by multiplying each matrix element with the respective mean

reflectances the terms 𝜎2
V
, cov

(
RV, RS

)
, and 𝜎2

S
can be easily substituted with the commonly used inhomo-

geneity indices H2
𝜎V

= 𝜎2
V
∕RV

2
and H2

𝜎S
= 𝜎2

S
∕RS

2
following equation (1), as well as the relative covariance term

Hcov = cov
(
RV, RS

)
∕RV RS.

Figures 2a–2f show an example of each of the six matrix elements. The LUT is derived for the respective solar

and viewing geometry for ASTER observations on 8 March 2005 at 19:08:35 (case C7 in Werner et al., 2016).

The two PPHB contributions discussed in Marshak et al. (2006), illustrated in Figure 2a for Δ𝜏 and 2f for Δreff,

are almost universally negative, indicating that the retrievals based on aggregated reflectances are smaller

than the actual subpixel mean values. However, the contributions from the respective secondary bands

(RS in the 𝜏 retrieval and RV in the reff retrieval) show amore complex behavior and can be strongly positive, as

shown in Figures 2c and 2d. Similar observations hold true for contributions from the covariance term, shown

in Figures 2b and 2e. This means that the sampled subpixel reflectance variability is not the only important

variable determining the PPHB. The retrieval sensitivity and the respective position of the measurements in

the LUT are equally important. Generally, the sign of Δ𝜏 is dominated by the first matrix element and mostly

negative (except for very large 𝜏). In contrast, the sign and magnitude of Δreff are influenced by all three

matrix elements and vary strongly, especially for small 𝜏 . Note that the apparent striping pattern in some of

the matrix elements (e.g., in Figure 2c) is caused by artifacts in the applied numerical derivation algorithm.

For this work, the numerical derivatives are calculated with a central differences scheme and a reflectance

interval of 0.02. An increase in LUT resolution, a decrease of the reflectance interval and the application of dif-

ferent numerical derivation schemeswith lower truncationerrors canmitigate these artifacts,while increasing

the computational costs of the derivation algorithm.

3.3. PPHB for PCL Pixels

Two significant factors make it difficult to calculate and predict the PPHB for PCL pixels. The first issue arises

from the definition of Δ𝜏 and Δreff in equation (2), where the sign and magnitude of, for example, Δ𝜏 , are

determined by a pixel-level (𝜏
(
RV, RS

)
) and a subpixel term (𝜏

(
RV, RS

)
). For PCL pixels the two terms are com-

posedof different subpixel populations.Whereas thepixel-level term is retrieved from themeanof all subpixel

reflectances, the subpixel term is only defined for the cloudy part of the pixel (i.e., a clear subpixel has no

defined 𝜏 and reff and thus is not represented in the mean value). While it is conceivable that a value of 𝜏 = 0

could be assigned to a clear subpixel, similar considerations for the effective droplet radius are not valid (i.e.,

a value of reff = 0 μm is unphysical).

Moreover, the general characteristics of the Taylor series expansion might prevent a reliable estimate of the

PPHB following equation (3) if a pixel is PCL. The Taylor series is a series expansion of a real function about a

point.Mostwell-behaved functions canbe reliable approximatedby a finite number of terms, and the remain-

ing error is comparatively small. However, very complex functions might require a series expansion up to a

large order () to reliably approximate the original function. Even then, the remaining error might be sig-

nificant. For PCL pixels, the cloudy subpixels exhibit a reflectance distribution similar to the ones shown in

Figure 1,whereRV andRS are largelydeterminedby theunderlying cloudcharacteristics. The reflectances from

the clear subpixels, meanwhile, are likely outside the LUT and clustered in the lower left corner (i.e., very low

RV and RS). Representing such a distribution with a second-order Taylor series ( = 2) likely yields unreliable

results with a large remaining error.

In order to successfully apply the mathematical framework presented in section 3.2 to PCL pixels, retrievals

based on only cloudy RV and RS are required. Studies by Han et al. (1994) and Coakley et al. (2005) discuss the

impact of surface contamination on the retrieval products of PCL pixels and proposemethods to estimate the

cloudy part reflectances and cloud variables. High-resolution ASTER data provide the opportunity to evalu-

ate and expand on these approaches in future studies and will allow to further test the PPHB correction for

PCL pixels.

4. Correction of Observed PPHB

In this section ASTER reflectance observations at 30-m horizontal resolution are used to predict the PPHB

based on equation (3). The predicted PPHB results are compared to the actually observed biases, first for a

case study (section 4.1) and subsequently in a statistical analysis for 48 MBL scenes (section 4.2).
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Figure 3. (a) Single-band grayscale image of band 3N reflectances sampled by Advanced Spaceborne Thermal Emission and Reflection Radiometer off the coast

of California on 8 March 2005 at 19:08:35. The horizontal resolution is 30 m. (b) Same as (a) but for the retrieved cloud optical thickness 𝜏 . (c) Same as (a) but for

the effective droplet radius reff. (d–f ) Same as (a)–(c) but for a horizontal resolution of 960 m.

4.1. Case Study

Figure 3a shows a grayscale image of RV at 30-m horizontal resolution. Data were sampled on 8March 2005 at

19:08:35 UTC. This example depicts a rather complex and inhomogeneousMBL cloud scenewith a number of

cloud holes (around 124.60∘W, 39.25∘N and 124.25∘W, 39.25∘N), larger areas of thin clouds and three areas of

increased cloud reflectance (located in the southwest, middle, and northeast of the granule). Retrieved 𝜏 and

reff are shown in Figures 3b and 3c. Most of the scene exhibits retrievals ranging from 𝜏 = 5 to 10 and reff = 12

to 16 μm, whereas the thick cloudy regions are characterized by 𝜏 > 11 and reff = 8 − 10 μm. Some extreme

values of 𝜏 > 17 and reff < 8 μm (around the thick clouds) and 𝜏 < 2 and reff > 17 μm (around the cloud edges)

can be observed. Decreasing the spatial resolution to 960 m (i.e., a MODIS-like horizontal resolution) yields a

much smoother cloud field, as illustrated in Figures 3d–3f. Here the lowest and highest retrieval observations

are much less frequent, which is especially obvious for the large optical thickness values shown in Figure 3b.

Maps of observed Δ𝜏 and Δreff, based on equation (2) and shown in blue and red colors (depending on

sign and magnitude), are provided in Figures 4a and 4d, respectively. Here the mean values 𝜏
(
RV, RS

)
and

reff
(
RV, RS

)
are calculated from the high-resolution retrievals based on 30-m ASTER observations, while

𝜏

(
RV, RS

)
and reff

(
RV, RS

)
are the retrievals based on aggregated reflectances at 960 m. Following the dis-

cussion in section 3.3, the PPHB is only calculated for pixels with a subpixel cloud cover of Csub = 1.0.

Pixels with Csub < 1.0 are shown in gray colors and are not included in the analysis. For this MBL scene

Δ𝜏 and Δreff are almost exclusively negative and positive, respectively, with −0.55 < Δ𝜏 < −0.01 and

−0.03 μm < Δreff < 0.92 μm. The largest Δ𝜏 (in magnitude) are obtained for pixels containing thick clouds

(see Figure 3 for comparison), while the thin cloud regions exhibit the largestΔreff. The predicted PPHB results,

derived from equation (3) and the matrix elements illustrated in Figure 2, are shown in Figure 4b for Δ𝜏 and

Figure 4e for Δreff. It is obvious that both the sign and magnitude of the predicted PPHB results agree well
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Figure 4. (a) Observed plane-parallel homogeneous bias (PPHB), derived from subpixel data with a horizontal resolution of 30-m and pixel-level data with a

horizontal resolution of 960 m, for the cloud optical thickness 𝜏 for the Advanced Spaceborne Thermal Emission and Reflection Radiometer cloud scene sampled

off the coast of California on 8 March 2005 at 19:08:35. Colors indicated the magnitude and sign of the PPHB; gray colors indicate pixels with a subpixel cloud

cover Csub < 1. (b) Same as (a) but for the predicted PPHB based on equation (3). (c) Scatter plot of observed versus predicted PPHB for 𝜏 for all pixels with

Csub = 1. Colors indicate the respective pixel value of the inhomogeneity index of Advanced Spaceborne Thermal Emission and Reflection Radiometer 3B

reflectances H𝜎,V . (d–f ) Same as (a)–(c) but for the effective droplet radius reff.

with the actually observed values shown in Figures 4a and 4d. A pixel-level comparison between the pre-

dicted and observed PPHB is shown in Figures 4c and 4f for Δ𝜏 and Δreff, respectively. Colors indicate the

value of the subpixel inhomogeneity index H𝜎,V. The objectively good agreement between predicted and

observed PPHB seen in themaps in Figure 4 is confirmed, with data points close to the 1:1 line and high values

of Pearson’s product-moment correlation coefficient of r ≥ 0.88. For Δ𝜏 there seems to be no dependence

on H𝜎,V; however, there is an increase ofΔreff with an increase in H𝜎,V. Overall, the prediction works better for

Δ𝜏 than forΔreff, which can be attributed to the more complex distribution of the matrix elements shown in

Figures 2d–2f. All three matrix elements have a strong contribution to the total Δreff, while small changes in

RV or RS can switch the sign ofΔreff frompositive to negative, especially for small optical thicknesses (e.g., illus-

trated by the thin negative stripe in Figure 2d). Such significant changes in sign andmagnitude do not exist in

the threematrix elements forΔ𝜏 , whichmakes the predictedΔreff more sensitive to uncertainties in the sam-

pled RV and RS. For small reflectances (i.e., thin clouds) there is also an overall decrease in retrieval sensitivity

for reff due to the convergence of the respective LUT isolines (Cho et al., 2015; Werner et al., 2013, 2016). As a

result, the increased retrieval uncertainty for reff

(
RV, RS

)
and reff

(
RV, RS

)
impacts not only the calculation of

the numerical derivatives but also the actually observedΔreff.
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Figure 5. (a) Scatter plot of observed versus predicted plane-parallel homogeneous bias (PPHB) for the cloud optical thickness 𝜏 , derived from subpixel data with

a horizontal resolution of 30 m and pixel-level data with a horizontal resolution of 960 m. Data are from 48 marine boundary layer scenes sampled off the coast

of California, amounting to n = 59, 876 pixels with a subpixel cloud cover Csub = 1. Colors indicate the respective pixel value of 𝜏
(
RV, RS

)
. (b) Same as (a) but

for the effective droplet radius reff. (c) Joint probability density (PDF) function of the ratio of predicted to observed PPHB for 𝜏 and the ratio of predicted to

observed PPHB for reff.

4.2. Statistics

The results in Figure 4 reveal a good agreement between observed PPHB and the predicted values based on

the framework presented in section 3. To confirm these findings and test the viability of the framework for

a wide array of inhomogeneous cloud cases, similar analysis is performed for the 48 MBL scenes introduced

in Werner et al. (2016). As for the case study, only pixels with Csub = 1.0 are included, which yields a data set

of n = 59,876 pixels. The pixel-level comparison between observed and predicted Δ𝜏 and Δreff is shown in

Figures 5a and 5b, where colors indicate the mean subpixel cloud optical thickness 𝜏
(
RV, RS

)
.

The observed PPHB for all scenes, as derived from ASTER retrievals using equation (2), is in the range of

−6.05 < Δ𝜏 < 0.05 and −0.78 μm < Δreff < 2.86 μm, respectively. Similar to the case study in Figure 4, there

is a good agreement between observed and predicted PPHB with high correlation coefficients of r = 0.98

(Δ𝜏) and r = 0.79 (Δreff). The prediction based on equation (3) seems to be particularly good for thicker clouds

with 𝜏
(
RV, RS

)
> 5. Similar to the case study, the correlationbetweenobserved andpredicted PPHBgets lower

for clouds with a low optical thickness 𝜏
(
RV, RS

)
< 5, which is especially obvious for Δreff. Excluding these

thin clouds from the analysis increases the correlation coefficient between observed and predictedΔreff from

r = 0.79 to r = 0.87. A clear relationship between cloud optical thickness and PPHB exists, as the highest

Δreff exist for pixels with low 𝜏
(
RV, RS

)
. For Δ𝜏 the behavior is not as pronounced, but generally, there is an

increase in the absolute values of the PPHBwith an increase in 𝜏
(
RV, RS

)
. Figure 5c shows the joint probability

density function (PDF) of the ratios of predicted to observed Δ𝜏 and Δreff. Most observations show ratios of

unity, confirming the good agreement between predicted and observed PPHB. About 70% of all data points

are characterized by a ratio of observed to predicted Δ𝜏 in the range of 0.8–1.2. The spread for the ratio of

observed to predictedΔreff is larger, with 80% of all data points covering the range 0.5–1.5.

The results presented in Figures 4 and 5 show that knowledge about the subpixel reflectance variability, in

combination with equation (3), can be applied to successfully predict Δ𝜏 and Δreff for the 48 MBL scenes in

this study. This also means, that the difference between the actually obtained mean values of the subpixel

retrievals 𝜏
(
RV, RS

)
and reff

(
RV, RS

)
at a horizontal resolution of 30 m and the pixel-level retrievals based on

aggregated reflectances at 960 m, can be mitigated by correcting 𝜏

(
RV, RS

)
and reff

(
RV, RS

)
with the pre-

dicted Δ𝜏 and Δreff. Figure 6a shows the joint PDF of the ratio of observed 𝜏

(
RV, RS

)
to 𝜏

(
RV, RS

)
(i.e, the

ratio of retrievals based on aggregated reflectances to the mean subpixel retrievals) and 𝜏
(
RV, RS

)
. A ratio

of 1 indicates that there is no PPHB, while ratios smaller (larger) than 1 indicate a negative (positive) PPHB.

The primarily negative Δ𝜏 , illustrated in Figure 5a, leads to an obvious negative bias in the 𝜏 retrievals based

on aggregated reflectances, with underestimations of up to 7% for thin clouds. With increasing 𝜏
(
RV, RS

)
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Figure 6. (a) Joint probability density function (PDF) of the ratio of observed 𝜏

(
RV, RS

)
to 𝜏

(
RV, RS

)
and 𝜏

(
RV, RS

)
. Values have been derived from subpixel data

with a horizontal resolution of 30 m and pixel-level data with a horizontal resolution of 960 m. (b) Same as (a) but for the observed 𝜏

(
RV, RS

)
, which has been

corrected by the predicted Δ𝜏 , based on equation (3). (c) PDFs of the ratio of observed 𝜏

(
RV, RS

)
to 𝜏

(
RV, RS

)
(black) and the ratio of observed 𝜏

(
RV, RS

)
, which

has been corrected by the predicted Δ𝜏 , to 𝜏
(
RV, RS

)
(blue). (d–f ) Same as (a)–(c) but for the effective droplet radius reff.

these underestimations converge to a value of about 2%. Figure 6b shows the results of a correction of the

retrieved 𝜏
(
RV, RS

)
with thepredictedPPHBvaluesbasedonequation (3). Theoverall negativebias illustrated

in Figure 6a is gone after the correction and most observations (red colors) show a ratio of 1, indicating that

themean of the subpixel retrievals and 𝜏

(
RV, RS

)
are in close agreement. ThemaximumΔ𝜏 for thin clouds is

reduced to about±3%. PDFs of the ratio of 𝜏
(
RV, RS

)
to 𝜏

(
RV, RS

)
are shown in Figure 5c for both the uncor-

rected (black) and corrected (blue) data set. It is clear that by correcting 𝜏 retrievals based on aggregated

reflectances with the predictedΔ𝜏 themean of the subpixel retrievals can be successfully reproduced. A ratio

close to 1 (i.e., no PPHB) is obtained for over 50% of all pixels, while the overall negative bias for 𝜏
(
RV, RS

)

is removed. Without a PPHB correction the normalized root-mean-square deviation between pixel-level and

subpixel retrievals (nRMSD, defined as the RMSDnormalizedby themeanof the subpixel results) is 1.4%,while

the 1st and 99th percentiles of the ratio of 𝜏
(
RV, RS

)
to 𝜏

(
RV, RS

)
are 0.960 and 1.003, respectively. After a cor-

rection of the pixel-level retrievals with the predictedΔ𝜏 the nRMSD= 0.25% and the 1st and 99th percentiles

are 0.991 and 1.010.

Similar analysis forΔreff is presented in Figures 6d–6f. A positive PPHB of up to 12% exists and overall strong

overestimations in the range of 5% exist over the whole observable reff
(
RV, RS

)
range. The correction of the

PPHB with predictedΔreff again yields considerable improvements, as most observations (red colors) exhibit
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a ratio of reff

(
RV, RS

)
to reff

(
RV, RS

)
close to 1. Most pixels are characterized by a good agreement between

subpixel means and pixel-level retrievals in the range of ±2%. An area of strong overestimations of up to

12% remains (around reff
(
RV, RS

)
= 8 − 10 μm), which is associated with low 𝜏

(
RV, RS

)
< 5. Excluding pixels

with 𝜏
(
RV, RS

)
< 5 from the analysis yields a joint PDF were considerably less of these pixel-level overestima-

tions remain. Figure 6d shows PDFs of the ratio of pixel-level retrievals (based on aggregated reflectances) to

reff
(
RV, RS

)
, again for the data set with andwithout the applied corrections with predictedΔreff. Similar to the

cloud optical thickness results, over 40% of pixels show a ratio of 1 and the 1st and 99th percentiles change

from 0.998 and 1.047 to 0.992 and 1.025, respectively. Again, the nRMSD is significantly reduced from 1.4%

to 0.87%. This indicates that the correction based on equation (3) yields an improved agreement between

reff

(
RV, RS

)
and reff

(
RV, RS

)
.

The liquid water path (LWP), while not an input parameter for the radiative transfer simulations to generate

the LUT for the retrievals, is the primary parameter that determines cloud shortwave radiative forcing and is

an essential variable in the evaluation of climate models (Jiang et al., 2012). It can be derived as the product

of retrieved 𝜏 and reff (Miller et al., 2016):

LWP = Γ ⋅ 𝜌l ⋅ 𝜏 ⋅ reff, (4)

where 𝜌l is the density of liquid water and Γ is a coefficient linked to assumptions about the vertical cloud

profile (hereΓ = 2∕3, assuming vertically homogeneous clouds). Similar toΔ𝜏 andΔreff,ΔLWPwasderived for

all pixels and compared to the predicted values from the mathematical framework presented in section 3.2.

Since the pixel-level retrievals 𝜏
(
RV, RS

)
and reff

(
RV, RS

)
are usually biased low and high, respectively, and

both biases are comparable in magnitude, ΔLWP is rather small. The 1st and 99th percentiles of the ratio of

uncorrected pixel-level to mean subpixel LWP for all analyzed pixels are 0.974 and 1.037, while about 18% of

data exhibit a ratio of 1 (i.e., the distribution is centered around 1). The correction of the pixel-level results

with predictedΔLWP slightly reduces these maximum deviations to 0.979 and 1.036, respectively, and about

29% of pixels show a ratio of 1. Moreover, the nRMSD changes from 1.79% to 0.93%. Thus, the correction of

pixel-level LWP with ΔLWP yields results that are closer to the mean subpixel observations. The correlation

between observed and predictedΔLWP is r = 0.86, which is comparable to the correlation forΔreff.

The statistical analysis from over n= 59,876 pixels, sampled over 48 MBL cloud scenes, illustrates that the

mathematical framework presented in section 3 can be successfully applied to predict and subsequently

mitigate the PPHB. As mentioned in section 3.1, the correction of 𝜏
(
RV, RS

)
and reff

(
RV, RS

)
(i.e., the

lower-resolution, pixel-level retrievals) with the predictedΔ𝜏 andΔreff values yields retrievals that are in close

agreement with the mean subpixel results. However, 𝜏
(
RV, RS

)
and reff

(
RV, RS

)
might be biased due to 3-D

radiative effects and therefore may not represent the true, high-resolution cloud properties.

5. Practical Implementation

The analysis in section 4demonstrates that samples of high-resolutionVNIR and SWIR reflectances on the sub-

pixel scale can be applied to explain and correct the observed PPHB of the pixel-level retrievals 𝜏
(
RV, RS

)
and

reff

(
RV, RS

)
. However, most satellite missions only provide limited subpixel reflectance information, affecting

the determination of the vector of subpixel reflectance variability in equation (3). While retrievals of 𝜏 and

𝑟eff by MODIS are based on aggregated reflectances at a similar horizontal resolution of 1,000 m, subpixel

reflectance data in the VNIR and SWIR are sampled at 250- and 500-m horizontal resolutions, respectively.

Similarly, VIIRS provides 4 × 4 subpixel VNIR and SWIR reflectances at 375-m horizontal resolution, while the

cloud property retrievals are performed for larger pixels with a horizontal resolution of 750 m. Finally, the

SEVIRI includes just a single high-resolution visible band (centered around 𝜆 = 0.75 μm) with a horizon-

tal resolution of 1,000 m that yields subpixel reflectances within each (3,000 × 3,000)-m pixel. It is therefore

essential to study the implications of different horizontal resolutions, as well as limitations in the availability

of high-resolution bands, on the viability of the PPHB prediction. The analysis in section 5.1 provides infor-

mation about the behavior of the elements of the subpixel variability vector in equation (3) with changes in

pixel-level and subpixel horizontal resolution, while section 5.2 presents statistics ofΔ𝜏 andΔreff for different

combinations of subpixel and pixel-level scales. Section 5.3 discusses the result of a PPHB correctionwith only

high-resolution VNIR band reflectances.
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Figure 7. (a) Median (dots) and interquartile range of the standard deviation of 30-m visible to near-infrared spectral wavelength range (VNIR) reflectances

(𝜎V) as a function of pixel-level horizontal resolution. Data are from 48 marine boundary layer scenes sampled off the coast of California. The gray diagonal

line represents a linear regression through the data in log-log space (the first data point at 60-m horizontal resolution is omitted in the calculation of the

regression). The correlation coefficient (r) between data and regression, as well as the slope (i.e., relative susceptibility S𝜎V ), are given. (b) Same as (a) but for the

covariance of 30-m VNIR and shortwave-infrared spectral wavelength range reflectances (cov
(
RV, RS

)
). (c) Same as (a) but for the standard deviation of 30-m

shortwave-infrared spectral wavelength range reflectances (𝜎S). (d) Derived 𝜎V from subpixel VNIR reflectances at different horizontal resolutions. The pixel-level

scale is 1,920 m. The gray diagonal line represents a linear regression through the data in log-log space (the last data point at 960-m horizontal resolution is

omitted in the calculation of the regression). (e) Same as (d) but for cov
(
RV, RS

)
. (f ) Same as (d) but for 𝜎S.

5.1. Scale Dependence of Subpixel Variability

The results presented in sections 4.1 and 4.2 are based on subpixel ASTER observations with a horizontal

resolution of 30 m and pixel-level data with a horizontal resolution of 960 m. If 𝜂 is the number of available

subpixels, there are 𝜂 = 32 ⋅ 32 = 1, 024 pixels with a horizontal resolution of 30mwithin each (960× 960)-m

pixel. For a fixed pixel-level horizontal resolution the matrix of second-order derivatives in equation (3) is not

dependent on 𝜂, while the subpixel variability vector
[
𝜎2
V
, cov

(
RV, RS

)
, 𝜎2

S

]T
might change significantly with a

change in 𝜂. Conversely, for a fixed subpixel horizontal resolution thematrix of second-order derivatives (due

to a change in RV and RS), as well as the subpixel variability vector, are affected by a change in pixel-level scale.

Figure 7a shows the behavior of 𝜎V at 30 m (i.e., the first element of the subpixel variability vector) for

pixel-level resolutions between 60m (𝜂 = 2 ⋅2 = 4) and 1,920m (𝜂 = 64 ⋅64 = 4, 096), respectively. Dots show

the median of all overcast pixels for each pixel-level scale, while vertical bars indicate the interquartile range

(75th–25th percentile of all pixels). Because the increase of 𝜎V with increasing pixel-level scale seems to fol-

low a power law (as reported by Cahalan, Ridgway,Wiscombe, & Bell, 1994, for fractal clouds), the relationship

between the two variables is illustrated in a log-log diagram,where the logarithmic behavior becomes almost

linear. Similar relationships between cov
(
RV, RS

)
and 𝜎S (i.e., the second and third elements of the subpixel

variability vector) and pixel-level scale are evident in Figures 7b and 7c. However, the power law behavior

seems to break down for 𝜂 = 4 (i.e., 30-m observations within a 60-m pixel) and themedian values are further

from the linear fit (𝜎S even increases when transitioning from a pixel-level scale of 120 to 60 m). This is most

likely a statistical issue, where the four available subpixels are not sufficient to describe the actual subpixel

reflectance distribution.
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Linear regressions through the data in log-log space yield the relative susceptibilities S𝜎V , Scov, and S𝜎S , which

describe a relative change in the variability parameters 𝜎V, cov
(
RV, RS

)
, and 𝜎S with a relative change in

pixel-level horizontal resolution, respectively (Feingold et al., 2001; Werner et al., 2014):

S𝜎V =
scale

𝜎V
⋅

d 𝜎V

d scale
=

d ln 𝜎V

d ln scale

Scov =
scale

cov
(
RV, RS

) ⋅

d cov
(
RV, RS

)
d scale

=
d ln cov

(
RV, RS

)
d ln scale

S𝜎S =
scale

𝜎S
⋅

d 𝜎S

d scale
=

d ln 𝜎S

d ln scale
. (5)

The linear regressions, which determine these susceptibility parameters, are indicated by gray diagonal lines

in Figure 7.Due to thebreakdownof thepower lawbehavior for 𝜂 = 4, the regressionparameterswerederived

without this specific data point. There is a high correlation between observed data and the respective linear

regressions, with correlation coefficients of r> 0.92. The relative susceptibilities are S𝜎V = 0.383, Scov = 0.691

and S𝜎S = 0.184, which means that there is almost a factor of 2 between Scov and S𝜎V , as well as S𝜎V and S𝜎S .

However, even though cov
(
RV, RS

)
is most susceptible to a change in pixel-level horizontal resolution, it is

several orders of magnitude smaller than the respective 𝜎V and 𝜎S values.

While an increase in pixel-level scale yields an increase in subpixel variability, the opposite relation is observed

for changes in subpixel scale. Figures 7d–7f show a logarithmic decrease in 𝜎V, cov
(
RV, RS

)
, and 𝜎S, which

were derived from sampled subpixel reflectances at increasing horizontal resolutions between 30 and 960m.

Here the pixel-level scale is fixed at 1,920m. Similar to the pixel-level relationships, there is a breakdownof the

power law behavior for 𝜂 = 4 (i.e., 960-m observations within a 1,920-m pixel). These observations are charac-

terized by an increase in interquartile range and significant deviations from the linear regressions. Omitting

this last data point from the regression analysis yields r> 0.92 and relative susceptibilities of S𝜎V = 0.137,

Scov = 0.311, and S𝜎S = 0.107. Again, Scov > S𝜎V > S𝜎S , although the susceptibilities toward changes in subpixel

scale are smaller than toward changes in pixel-level horizontal resolution.

5.2. PPHB Correction for Different Scales

The analysis in section 5.1 illustrates that elements of the subpixel variability vector
[
𝜎2
V
, cov

(
RV, RS

)
, 𝜎2

S

]T
in equation (3) vary significantly, depending on the respective horizontal resolution of the subpixel and

pixel-level observations. However, increased subpixel variabilities do not automatically imply an increase in

magnitude ofΔ𝜏 andΔreff. For one, the susceptibility parameters S𝜎V , Scov, and S𝜎S exhibit the same sign. This

is significant since the analysis in Figure 2 suggests that the sign of the second and third elements of the

second-order derivative matrix is generally opposite to the sign of the first matrix element, which (at least

partially) mitigates the impact of an increased or decreased subpixel variability on the PPHB. Moreover, the

magnitude of Δ𝜏 and Δreff depends on the position of RV and RS within the LUT and thus the magnitude of

the respective second-order derivatives. To study the impact of scale on the reliability of the PPHB predic-

tions, the horizontal resolutions of both the subpixel and pixel-level ASTER observations are varied between

30 and 960 m. Subsequently,Δ𝜏 andΔreff are derived for each scale combination following equation (3) and

compared to the actually observed results.

Figure8a showsPDFsof the ratio 𝜏
(
RV, RS

)
to 𝜏

(
RV, RS

)
, bothwith (blue) andwithout (black) a correctionwith

calculatedΔ𝜏 , for subpixel ASTER observations with a horizontal resolution of 480m and pixel-level data with

a horizontal resolution of 960m. This scenario means that both the VNIR and SWIR reflectances exhibit 𝜂 = 4,

which closely resembles measurements by the MODIS instrument. Similar to the results shown in Figure 6a

for the 30 m subpixel resolution, the correction can successfully mitigate the mainly negative PPHB and for

most observations the ratio is close to 1. This is also true for the correction of reff

(
RV, RS

)
with calculatedΔreff,

which is shown in Figure 6b.

The correlation coefficient r betweenpredictedandobservedΔ𝜏 andΔreff for all combinationsof subpixel and

pixel-level horizontal resolutions is illustrated in Figure 8c. This analysis yields amultitude of combinations for

most 𝜂 values. As an example, 𝜂 = 64 is achieved by 30-m subpixel data within 240-m pixels, 60-m data within

480-m pixels, and 120-m data within 960-m pixels. The white line in Figure 8c represents the mean r for each

𝜂 value, enclosed by a shaded area indicating plus/minus one standard deviation. Because of the decreased

correlation for low optical thickness 𝜏
(
RV, RS

)
< 5 (see section 4.2), both theΔ𝜏 results for the complete data
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Figure 8. (a) Probability density function (PDFs) of the ratio of observed 𝜏

(
RV, RS

)
to 𝜏

(
RV, RS

)
(black) and the ratio of observed 𝜏

(
RV, RS

)
, which has been

corrected by the predicted Δ𝜏 based on equation (3), to 𝜏
(
RV, RS

)
(blue). Values have been derived from subpixel data with a horizontal resolution of 480 m and

pixel-level data with a horizontal resolution of 960 m. (b) Same as (a) but for the effective droplet radius reff. (c) Pearson’s product-moment correlation coefficient

r for the correlation between observed and predicted Δ𝜏 and Δreff as a function of the number of available subpixels. White lines indicate the mean r for all

possible combinations of subpixel and pixel-level horizontal resolution, while shaded areas indicate the mean plus/minus one standard deviation. The data set is

separated into observations with 𝜏

(
RV, RS

)
, 𝜏

(
RV, RS

)
> 5 (black and blue for Δ𝜏 and Δreff , respectively) and 𝜏

(
RV, RS

)
, 𝜏

(
RV, RS

)
> 0 (gray and cyan for Δ𝜏

and Δreff, respectively).

set (gray) and for 𝜏
(
RV, RS

)
> 5 (black) are shown. Similarly, Δreff results from all pixels (cyan) and from pixels

with 𝜏
(
RV, RS

)
> 5 (blue) are shown individually. For reasonably thick clouds mean correlation coefficients

show only a weak dependence on 𝜂, with r = 0.96 − 0.98 for Δ𝜏 and r = 0.77 − 0.87 for Δreff. Especially

for the Δ𝜏 correlations the standard deviations are very small, illustrating that all scale combinations for the

respective 𝜂 yield basically the same result. This illustrates that even if there is only a small number of available

subpixels to calculate the variability vector
[
𝜎2
V
, cov

(
RV, RS

)
, 𝜎2

S

]T
in equation (3), the predicted Δ𝜏 and Δreff

still are a reliable estimate of the actually observed PPHB.

Including cloudy pixels with 𝜏
(
RV, RS

)
< 5 in the analysis barely changes the correlation coefficients for Δ𝜏 ,

except for 𝜂 = 4. Here the results show a larger spread (illustrated by the larger standard deviation) and a

smaller mean r = 0.88 (a decrease of about 0.09). For thin clouds a much stronger dependence of r on 𝜂

is found for Δreff. While for 𝜂 = 1, 024, correlation coefficients reach a similar value as for the data set with

𝜏
(
RV, RS

)
> 5, there is a significant decrease from r = 0.82 to r = 0.36 for 𝜂 = 4. A similar behavior of Δ𝜏

andΔreff for decreasing 𝜂 exists for the nRMSD. This dependence of r on 𝜂 for thin clouds is mainly caused by

the reduced retrieval sensitivity due to the convergence of the 𝑟eff isolines in the LUT (see Figure 1 and the

discussion in Zhang & Platnick, 2011; Werner et al., 2013). This behavior of the LUT yields substantially higher

uncertainties in the retrievals of reff

(
RV, RS

)
and reff

(
RV, RS

)
for low 𝜏 , which affects both the actually observed

Δreff and the calculation of the matrix of second-order derivatives in equation (3). The effect of increased

uncertainties in the derived matrix elements is further magnified because for thin clouds with 𝜏
(
RV, RS

)
< 5

there is considerable variability in the sign andvalueof eachmatrix element, as illustrated in Figures 2d and2e,

andeven the covarianceandcross-reflectance termshavea large contribution toΔreff. Conversely, uncertainty

contributions from the truncation error in the derivation of equation (3) are found to be negligible. This was

tested by calculating the relative third-order subpixel variabilities 𝛿3
V
and 𝛿3

S
, which are defined as follows:

𝛿3
V
= 100 ⋅

ΔR3
V,i

RV

= 100 ⋅

1

n

n∑
i=1

(
RV,i − RV

)3

RV

𝛿3
S
= 100 ⋅

ΔR3
S,i

RS

= 100 ⋅

1

n

n∑
i=1

(
RS,i − RS

)3

RS

, (6)

for both VNIR and SWIR reflectances. Both terms exhibit very low values in the range of 0.04–0.6%, regard-

less of the spatial resolution of the observations. Given these small contributions, it is not surprising that
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predictedΔ𝜏 andΔreff, which are based on a form of equation (3) that includes third-order derivatives, yields

indistinguishable results from the second-order PPHB predictions (not shown).

5.3. PPHB Correction With a Single High-Resolution Band

To evaluate the feasibility of a PPHB correction based on a single high-resolution reflectance band in the VNIR,

the relative contributions of individualmatrix elements to the overall PPHB are quantified for all 48MBL cloud

scenes. For the cloud optical thickness the individual contributions 𝛿𝜏i (with i = 1, 2, 3 indicating the three

respective matrix elements) to the totalΔ𝜏 are defined as follows:

𝛿𝜏1 = 100 ⋅
−

1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RV
RV

2
⋅ H2

𝜎V

Δ𝜏

𝛿𝜏2 = 100 ⋅
−

𝜕2𝜏

(
RV ,RS

)

𝜕RV𝜕RS
RV RS ⋅ Hcov

Δ𝜏

𝛿𝜏3 = 100 ⋅
−

1

2

𝜕2𝜏

(
RV ,RS

)

𝜕2RS
RS

2
⋅ H2

𝜎S

Δ𝜏
. (7)

In a similar way the relative contributions 𝛿reff, i are defined as follows:

𝛿reff, 1 = 100 ⋅
−

1

2

𝜕2reff

(
RV ,RS

)

𝜕2RV
RV

2
⋅ H2

𝜎V

Δreff

𝛿reff, 2 = 100 ⋅
−

𝜕2reff

(
RV ,RS

)

𝜕RV𝜕RS
RV RS ⋅ Hcov

Δreff

𝛿reff, 3 = 100 ⋅
−

1

2

𝜕2reff

(
RV ,RS

)

𝜕2RS
RS

2
⋅ H2

𝜎S

Δreff
. (8)

Figure 9a shows PDFs of 𝛿𝜏1, 𝛿𝜏2, and 𝛿𝜏3, which are derived from all n = 59, 876 overcast pixels that make

up the statistical PPHB comparison in Figure 5. For the 48 MBL scenes most 𝛿𝜏1 are in the range of 80–130%,

with a median value of 107%. This indicates a slight overestimation in predicted PPHB for most data points,

if just the firstmatrix element is used to deriveΔ𝜏 . Both 𝛿𝜏2 and 𝛿𝜏3 havemostly negligible contributions, with

median values of −6% and −1%, respectively. The negative sign indicates that the second and third matrix

elements have a mostly positive sign, whereas the total PPHB for the cloud optical thickness is almost exclu-

sively negative (see Figure 5a). The illustrated importance of the first matrix element to the overall negative

𝜏 bias confirms the findings in Figures 2a–2c. In this example LUT the first matrix element yields the main

contribution to the overallΔ𝜏 , except for very large 𝜏 .

Figure 9b shows the PDFs of 𝛿reff, 1, 𝛿reff, 2, and 𝛿reff, 3 for the same n = 59, 876 overcast pixels. As predicted in

Figures 2d–2f, all threematrix elements have a sizeable impact onΔreff, withmedian values of 161%, 16%, and

−89% for the first, second, and thirdmatrix element, respectively. Similar to 𝛿𝜏1, 𝛿reff, 1 has the same sign as the

overall PPHB, while exceeding 100%. Conversely, 𝛿reff, 2 is centered around 0% and 𝛿reff, 3 is highly negative.

To understand the combination of individual elements better, a joint PDF of 𝛿reff, 1 and 𝛿reff, 2 is shown in

Figure 9c. It is obvious that the second matrix element is usually much smaller than the first. The few pix-

els with larger 𝛿reff, 2 contributions are characterized by comparable 𝛿reff, 1. There is a thin stripe of negative

𝛿reff, 1, which is associated with very low effective droplet radius observations. A similar thin stripe is apparent

in Figure 2d, right at the upper boundary of the LUT. In this region the LUT starts to overlap with itself and the

reff retrievals become ambiguous. As a result, the predicted PPHB for these pixels is not very reliable. A similar

joint PDF of 𝛿reff, 1 and 𝛿reff, 3 is shown in Figure 9d. For most observations, 𝛿reff, 1 is about twice as large as

the absolute value of 𝛿reff, 3. Again, a thin stripe of highly positive (negative) 𝛿reff, 1 (𝛿reff, 3) is visible in the

upper right quadrant, associated with the multiple-solution space in the LUT (see Figures 2e and 2f). The dis-

tribution of 𝛿reff, i illustrates that a prediction based on just the first matrix element in equation (3) yields an

overestimatedΔreff. However, these results are still useful as an estimate of the upper PPHB limit for reff.
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Figure 9. (a) Probability density function (PDF) of the relative contributions 𝛿𝜏i of the first (i = 1, black), second (i = 2,

blue), and third (i = 3, red) matrix elements to the overall plane-parallel homogeneous bias Δ𝜏 . Data are from 48 marine

boundary layer scenes sampled by Advanced Spaceborne Thermal Emission and Reflection Radiometer off the coast of

California. (b) Same as (a) but for the effective droplet radius bias Δreff . (c) PDF of the first and second matrix element

contributions 𝛿reff, 1 and 𝛿reff, 2. (d) Same as (c) but for the first and third matrix element contributions 𝛿reff, 1 and 𝛿reff, 3.

ThecorrelationbetweenobservedandpredictedPPHB,basedononly thefirstmatrix elements in equation (3),

is shown in Figures 10a and 10b for Δ𝜏 and Δreff, respectively. The number of overcast pixels in the analy-

sis is slightly increased, from n = 59, 876 in Figure 5 to n = 60, 943, because only the first matrix element

needs to be derived successfully. When calculating the complete PPHB based on all elements the calculation

of the second (cross-correlation) terms −
𝜕2𝜏

(
RV ,RS

)

𝜕RV𝜕RS
and −

𝜕2reff

(
RV ,RS

)

𝜕RV𝜕RS
can fail at the edge of the LUT, because a

higher number of step points are necessary to calculate themixed numerical derivatives and there is a higher

chance of points falling outside the solution space. There is still a high correlation between observed and

predicted Δ𝜏 with r = 0.98, while the nRMSD slightly increases from 0.25% to 0.29%. Figure 10c shows the

results of a correction of the pixel-level retrievals with these newΔ𝜏 values. Here similar to Figure 6c, PDFs of

the ratio of corrected and uncorrected 𝜏
(
RV, RS

)
to 𝜏

(
RV, RS

)
are shown. There is a close agreement between

the fully corrected results (blue), which use all three matrix elements, and the ones using only the first matrix

element (red). A slight overestimation in the magnitude of predicted Δ𝜏 , already indicated by the PDF in

Figure 9a, is visible and as a result the corrected pixel-level retrievals are slightly larger than the ones from

the correction with all three matrix elements. Similar results are achieved for Δreff, as shown in Figure 10b.
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Figure 10. (a) Scatter plot of observed versus predicted plane-parallel homogeneous bias for the cloud optical thickness

𝜏 , derived from subpixel data with a horizontal resolution of 30 m and pixel-level data with a horizontal resolution of

960 m. The prediction is only based on the first matrix element, shown in Figure 2a. Data are from 48 marine boundary

layer scenes sampled off the coast of California, amounting to n = 60, 943 pixels with a subpixel cloud cover Csub = 1.

Colors indicate the respective pixel value of 𝜏
(
RV, RS

)
. (b) Same as (a) but for the effective droplet radius reff. The

prediction is only based on the first matrix element, shown in Figure 2d. (c) Probability density function (PDF) of the

ratio of observed 𝜏

(
RV, RS

)
(uncorrected in black, corrected with the full matrix in blue, corrected with only the first

matrix element in red) to 𝜏
(
RV, RS

)
. (d) Same as (c) but for reff . VNIR indicates the visible to near-infrared spectral

wavelength range.

Here the predicted PPHB is slightly higher than the observed one, especially for small 𝜏
(
RV, RS

)
, and

nRMSD = 1.19% (up from nRMSD = 0.87%). However, the correlation coefficient is comparable to the predic-

tion based on all threematrix elements and equation (3) yields a reliable estimate ofΔreff, which can be inter-

preted as the upper limit of the PPHB. This indicates that there are pixel where a correction of reff

(
RV, RS

)
with

the newΔreff values yields results that are slightly lower than the respective reff
(
RV, RS

)
(i.e., an overestimation

of the PPHB). However, as shown in Figure 10d, this overestimation ofΔreff yields pixel-level retrievals that are

still closer to themean subpixel results than the uncorrected ones. Not only is the percentage of observations

with a ratio of 1 higher, the maximum deviations are also smaller than for the uncorrected results. Because

ΔLWP is determinedbybothΔ𝜏 andΔreff, all threematrix elements are important in determining the PPHB for

the LWP. Similar toΔreff, the firstmatrix element alone yields an overestimation of the actually observed PPHB.
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There is a reduced correlation of r = 0.662 between ΔLWP from only a single band and the full correction

matrix. However, despite using only the firstmatrix element, themedian ratio of corrected pixel-level tomean

subpixel LWP is 0.999.

6. Summary and Discussion

This study provides experimental validation and further evaluation of the mathematical framework intro-

duced in Z16, which expands the subpixel 𝜏 and reff retrievals into two-dimensional Taylor series of cloud-top

reflectances. This method decomposes the contributions from the retrieval sensitivity, determined by the

shape of the LUT, and from the subpixel reflectance variability to the sign and magnitude of the PPHB.

The framework is tested with ASTER observations at horizontal scales between 30 and 1,920 m sampled over

48 MBL cloud scenes with varying degrees of heterogeneity.

ASTER cloud-top reflectances RV and RS sampled at 30 m are used to retrieve high-resolution 𝜏 and reff,

which subsequently yield the mean values of the subpixel results 𝜏
(
RV, RS

)
and reff

(
RV, RS

)
. RV and RS sam-

ples are aggregated to a horizontal resolution of 960 m and provide the pixel-level retrievals 𝜏
(
RV, RS

)
and

reff

(
RV, RS

)
. The difference between the pixel-level and mean high-resolution results yields the observed

PPHB, which reaches values of up to −6.05 and 2.86 μm for Δ𝜏 and Δreff, respectively. For all analyzed pixels,

the 1st percentile of observed Δ𝜏 is −4.0%, while the 99th percentile of observed Δreff is +4.7%. Compared

to the retrieval uncertainties the observed PPHB is about 27% (Δ𝜏) and 20% (Δreff) in magnitude. While the

impact of the PPHB seems small in comparison, it is important to note that bothΔ𝜏 andΔreff represent a bias

that systematically affects the cloud property retrievals, independent from the retrieval uncertainty.

A comparison between the observed Δ𝜏 and Δreff and predicted PPHB based on the framework introduced

in Z16 reveals a good agreement, with correlation coefficients of r> 0.97 for Δ𝜏 and r> 0.79 for Δreff. Similar

results are found for the bias in LWP (ΔLWP), which can be derived as the product of 𝜏 and reff. For all analyzed

pixels −20.90 g m2 < ΔLWP < 10.96 g m2, while the correlation between observed and predicted ΔLWP is

r = 0.86. However, no systematic lowor high PPHB is found for the LWP. A correction of the retrievals based on

aggregated reflectances with predictedΔ𝜏 ,Δreff, andΔLWPmitigates the observed PPHB and yields a closer

agreement between the pixel-level results and the mean values of the subpixel retrievals.

The reliability of the PPHB prediction is studied for the following: (i) varying horizontal resolutions of sub-

pixel and pixel-level observations, which determines the number of available pixels 𝜂 to calculate the

subpixel reflectance variability; (ii) a limited mathematical framework with reflectances from only a single

high-resolution band in the VNIR. Analysis (i) is necessary, because it is found that an increase in pixel-level

(subpixel) horizontal resolution yields an increase (decrease) in subpixel reflectance variability,which together

with the LUT shape determine the sign and magnitude of the PPHB. While no dependence of r on 𝜂 is found

for pixels with 𝜏
(
RV, RS

)
> 5, a reduction of r forΔreff exists for pixels with low optical thickness. The increased

uncertainty in theΔreff prediction can be explained by an increased retrieval uncertainty due to the shape of

the LUT, which impacts reff

(
RV, RS

)
and reff

(
RV, RS

)
, as well as the distribution of the numerical derivatives in

the Taylor series within the LUT. In contrast, contributions from higher-order terms, which are ignored in the

Taylor expansion of 𝜏 and reff, are found to be negligible. Analysis (ii), meanwhile, is important because not

all satellite-borne imagers provide high-resolution samples in the respective SWIR band. PPHB predictions

based on just the VNIR band contributions show a slight overestimation of the observed PPHB, but overall,

there is a good agreement between predicted and observed Δ𝜏 , Δreff, and ΔLWP. The fact that even limited

observations of the subpixel reflectance variability are sufficient to mitigate the PPHB in pixel-level retrievals

has important implications for the common satellite missions that provide operational cloud retrievals, such

as MODIS, VIIRS, and SEVIRI. It can also guide the instrument design for future satellite missions.

Further studies will help to improve the predictions of Δ𝜏 and Δreff. An expansion of the analysis from 48

MBL scenes to hundreds of scenes is planned in the near future. This larger data set will allow for better

statistics, as well as the opportunity to study the PPHB for different cloud types, environmental condi-

tions, and viewing geometries. Including higher-order terms in the Taylor expansion of 𝜏 and reff might

provide even more reliable PPHB estimates. However, numerical approximations of higher-order derivatives

not only require a high-resolution LUT; the increased number of step points in the numerical derivation

proves problematic at the edge of the LUT. The mathematical framework to predict the PPHB can also be

expanded to the retrievals of cirrus cloud properties, which are usually derived by the split-window technique

WERNER ET AL. 4256



Journal of Geophysical Research: Atmospheres 10.1002/2017JD027916

(Inoue, 1985; Parol et al., 1991). Here variabilities in the applied brightness temperatures are likewise induc-

ing uncertainties in the retrieved cirrus variables (Fauchez et al., 2015), which requires a Taylor expansion

by means of thermal infrared observations and the analysis of second-order derivatives in completely

different LUTs.

Finally, it is important to note that the framework presented in Z16 and this studymerely provides themeans

to reliably derive pixel-level retrievals that are in close agreement with the mean high-resolution subpixel 𝜏

and reff retrievals. The possible impact of 3-D radiative effects due to resolved variability (e.g., cloud shadows,

illuminated cloud sides, photon leaking, and radiative smoothing and scale breaks)might induce a reflectance

variability that is wrongfully attributed to changes in the underlying cloud properties. In these circumstances,

themean high-resolution subpixel retrievalsmight not be representative of the true cloud properties. Follow-

ing the discussion in Zhang et al. (2012), Z16, and this study, the pixel-level 𝜏 and reff retrievals based on IPA

are predominantly smaller and larger than themean subpixel properties, respectively. However, 3-D radiative

effects can impact higher-resolution retrievals and introduce significant biases to the true cloud variables.

As reported by Varnai and Marshak (2001, 2002) and Marshak et al. (2006), the sign and magnitude of these

biases are dependent on the solar geometry, cloud brightness, and the distribution of shadowed and illumi-

nated cloud elements within a scene, among others. Using a number of assumptions, these studies conclude

that 3-D radiative effects induce a net overestimation in both 𝜏 and reff, while the bias for individual cloud

elements can exhibit opposite signs and widely varying magnitudes. If both 3-D effects and the PPHB have a

positive sign, mitigatingΔreff bymeans of equation (3) potentially yields results that are closer to the true reff.

Conversely, negativeΔ𝜏 and positive biases from 3-D radiative effects might (at least to a degree) offset each

other. In this case, the uncorrected pixel-level 𝜏 retrievals might be good estimates of the true cloud prop-

erties. While the focus of this study is on the PPHB, a future study aims at applying the methods described

in Varnai and Marshak (2002) to ASTER data to study biases for high-resolution remote sensing observations.

However, to truly quantify the relative contributions of PPHB and 3-D radiative effects, a ground truth is neces-

sary (i.e., knowledgeof the true subpixel cloudproperties),which couldbeachievedby future studies applying

a combination of large eddy simulations and both 1-D and 3-D radiative transfer solvers.
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