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Abstract

In this paper, we investigate the construction and identification of a new random field model for representing the constitutive
behavior of laminated composites. Here, the material is modeled as a random hyperelastic medium characterized by a spatially
dependent, stochastic and anisotropic strain energy function. The latter is parametrized by a set of material parameters, modeled as
non-Gaussian random fields. From a probabilistic standpoint, the construction is first achieved by invoking information theory and
the principle of maximum entropy. Constraints related to existence theorems in finite elasticity are, in particular, accounted for in
the formulation. The identification of the parameters defining the random fields is subsequently addressed. This issue is attacked
as a two-step problem where the mean model is calibrated in a first step, by imposing a match between the linearized model and
nominal values proposed in the literature. The remaining parameters controlling the fluctuations are next estimated by solving an
inverse problem in which principal component analysis and the maximum likelihood method are combined. The whole framework
is illustrated considering an experimental database where multi-axial measurements are performed on a carbon-epoxy laminate.
This work constitutes a first step towards the development of an integrated framework that will support decision making under
uncertainty for the design, certification and qualification of composite materials and structures.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Notation

The notations listed in Tables 1–4 will be used throughout this paper.

2. Introduction

Characterization of the constitutive behavior of laminated polymer matrix composites (PMCs) via the solution of
deterministic inverse problems, has been pioneered and pursued by the U.S. Naval Research Laboratory (US-NRL) for
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Table 1
Notation related to vectors and matrices.

a, a and [A] Deterministic scalar, vector and matrix
A, A and [A] Random scalar, vector and matrix
⟨·, ·⟩ Euclidean inner product, ⟨a,b⟩ =

∑n
i=1 ai bi

∥ · ∥
2 Euclidean norm, ∥a∥

2
= ⟨a, a⟩

a ⊗ b Outer product of vectors a and b
[I3] Identity matrix of rank 3
Tr(·) Trace of a matrix, Tr([A]) =

∑n
i=1 Ai i

∥ · ∥F Frobenius norm of [A], ∥[A]∥F = Tr([A]T [A])
M3

+ Set of (3 × 3) matrices with strictly positive determinants

Table 2
Notation related to kinematics.

B and B(r ) Reference configuration of the composite and ply r
x Generic point in the reference configuration
ϕ Deformation map
[Fϕ ] Deformation gradient associated with ϕ, [Fϕ (x)] = ∇ϕ(x)
[F] Any deformation gradient in M3

+

Table 3
Notation related to deterministic constitutive equations.

w and w(r ) Strain energy function in the composite and ply r
[P] First Piola–Kirchhoff stress tensor
(f(r ), f(r )

⊥
) Local basis of ply r

µ
(r )
i , 1 ⩽ i ⩽ 5 Material parameter defining w(r )

[M (r )] Structural tensor in ply r

Table 4
Notation related to stochastic constitutive equations.

W and W(r ) Random strain energy function in the composite and ply r
Wϵ Regularized random strain energy function in the composite
{{G(r )

i (x), x ∈ B(r )
}}

5
i=1 Random fields of material parameters defining W(r )

[M(r )] Random structural tensor in ply r
{{Ξ

(r )
i (x), x ∈ B(r )

}}
5
i=1 Normalized Gaussian random fields, associated with ply r

η ↦→ R(η) Covariance function defining the Gaussian fields
L1 and L2 Correlation lengths along f(r ) and f(r )

⊥
, defining R

δ Coefficient of variation for the random material parameters

at least the last five decades [1–4]. These approaches utilize dense data sets generated by custom made multi-degree
of freedom robotic testing machines capable of applying multiaxial loading in order to activate rich sets of strain
states in the tested materials. In addition, these approaches utilized formalisms of the recoverable and irrecoverable
parts of the strain-energy density to construct proper objective functions in conjunction with the multiaxial data for
determining the material properties of the bulk lamina participating into these laminates by minimizing these objective
functions via optimization methodologies. In the context of the infinitesimal strains approximation these properties
(including the elastic moduli) essentially appear as coefficients of monomials of strain components that make up the
respective strain energy density functionals [3,4]. An operationally useful assumption utilized in these studies was that
the elastic properties of each lamina were assumed to remain constant throughout the domain of the plies consisting
the laminates. However, the mechanical response of actual composites is very prone to uncertainties, both in the
linear and the nonlinear regime and prior to final failure. This variability is essentially induced by complex material
processing conditions during manufacturing (generating, for instance, topological imperfections usually in the form
of local defects, such as voids, fiber bundling, fiber-matrix debonds, resin rich pockets etc.) and strongly impacts the
performance of structural parts. One possible way to assess such uncertainties is to develop stochastic constitutive
models that enrich physical models with a probabilistic description of all relevant uncertainties. While parametric
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models involving a few random elastic parameters have been used for many years, information-theoretic modeling
approaches in which the elasticity tensor can be treated in full as a random matrix were proposed only recently. Such
an approach was first introduced in [5] for triclinic materials, and was latter extended to all symmetry classes in [6,7].
Based on this formalism, statistical dependences between elastic moduli were also derived in [8]. In contrast, the case
of nonlinear constitutive laws has received much less attention to date. The proper randomization of Ogden’s strain
energy functions was first addressed in [9,10] for homogeneous materials (see also [11]), and the case of spatially
dependent behaviors was treated in [12]. Studies reporting on the identification of such models can be found in, e.g.,
[13,14] for homogeneous biological tissues. In this context, the identification of stochastic models for anisotropic,
heterogeneous nonlinear materials remain widely unexplored.

The present work is a first step towards the construction of an uncertainty quantification (UQ) framework that will
ultimately support simple and robust decision making with respect to the design, certification and qualification of
composite materials (and structures at large) under the presence of uncertainty. As the initial step in the development
of this approach, the main goal of this paper is to introduce the formulation of a probabilistic modeling approach that
accounts for the variability exhibited by the hyperelastic strain energy function defining the (recoverable) mechanical
response of a laminated composite. Two specific contributions are presented. First, an appropriate formulation defining
the random field of anisotropic strain energy function is proposed. This stochastic model is consistent with the
anisotropy exhibited by the composite, as well as with all mathematical requirements arising from the theory of
nonlinear elasticity. Second, we address the identification of model parameters using experimental, three-dimensional
full-field data acquired at the US-NRL [3,4,15] by using custom developed non-contact strain-field measurement
methods [16–18]. A two-step strategy is followed where the mean model is calibrated through a linearization of
the nonlinear model, while the parameters related to statistical fluctuations are identified by combining a principal
component analysis with the maximum likelihood method.

The rest of this paper is organized as follows. The modeling framework is presented in Section 3. Selected
theoretical results related to the modeling of anisotropic stored energy functions are recalled, with the aim to
precisely identify constraints on material parameters, in accordance with existence theorems in nonlinear elasticity.
The probabilistic model is then introduced for a prototypical hyperelastic constitutive law, relevant to transversely
isotropic materials. Forward simulations are also conducted to briefly illustrate the effect of model parameters on
sample paths. Section 4 is focused on the identification of the non-Gaussian random field model. The experimental
database, associated with a carbon-epoxy laminated composite, is first introduced. The calibration methodology is
next detailed and finally deployed for the identification of the anisotropic strain energy function random field.

3. Stochastic modeling of the hyperelastic strain energy function

3.1. Background on hyperelastic constitutive models for transversely isotropic heterogeneous materials

In this section, we recall the kinematics and constitutive equations of deterministic hyperelasticity (see, e.g.,
[19,20]). Since the laminate under consideration is made of unidirectional transversely isotropic plies, the presentation
is restricted to the case of materials exhibiting such material symmetry.

Let (f(r ), f(r )
⊥

) be the basis of unit vectors defining the local frame of ply r (see Fig. 1) and let (e1, e2, e3) be the
canonical basis of R3. The plane of the plies is normal to e3. The local basis vectors are given by

f(r )
= sin(θ )e1 + cos(θ )e2 , f(r )

⊥
= − cos(θ )e1 + sin(θ )e2 (1)

for odd plies, and read as

f(r )
= − sin(θ )e1 + cos(θ )e2 , f(r )

⊥
= − cos(θ )e1 − sin(θ )e2 (2)

for even plies, with θ ∈ [0, π/2]. In this paper, the composite is defined by a stacking sequence of [+θ,−θ ]16

(meaning that the first ply is defined by an angle +θ , the second one by an angle −θ , and this two-ply structure is
stacked up 16 times; hence a total of 32 plies); see Section 4.1 for a more complete description of the material.

Let B be the reference configuration occupied by the composite and let ∂B denote its boundary. Each ply r has a
reference configuration denoted by B(r ), such that B = ∪

32
r=1B

(r ) with B(r )
∩B(s)

= {∅} for r ̸= s, 1 ⩽ r, s ⩽ 32. In
the present case, all domains occupied by the plies are assumed to exhibit the same geometrical characteristics after



428 B. Staber, J. Guilleminot, C. Soize et al. / Computer Methods in Applied Mechanics and Engineering 347 (2019) 425–444

Fig. 1. Definition of the global and local basis vectors.

material processing. The material undergoes a deformation map ϕ : B → R3 that is assumed to be injective and
orientation-preserving. The associated deformation gradient is denoted by

[Fϕ(x)] = ∇ϕ(x) , (3)

such that det([Fϕ(x)]) > 0 for all x in B. In the following, any deformation gradient evaluated at a fixed location x
in B will be denoted by [F] ∈ M3

+
. The material is assumed to be hyperelastic, meaning that there exists a stored

energy function w : B × M3
+

→ R such that the first Piola–Kirchhoff stress tensor can be obtained by

[P(x, [F])]i j =
∂w(x, [F])
∂[F]i j

, 1 ⩽ i, j ⩽ 3 , (4)

for all [F] ∈ M3
+

. The stored energy function w is further assumed to be frame-invariant, that is, it satisfies

w(x, [F]) = w(x, [Q][F]) , ∀[Q] ∈ SO(3) (5)

for all x in B. The stored energy function w can thus be decomposed as

w(x, [F]) =

32∑
r=1

χ (r )(x)w(r )(x, [F]) , ∀[F] ∈ M3
+
, (6)

where x ↦→ χ (r )(x) is the characteristic function of the r th ply (that is, χ (r )(x) = 1 if x ∈ B(r ), and χ (r )(x) = 0
otherwise) and w(r )

: B(r )
× M3

+
→ R is the stored energy function in B(r ).

In order to represent the material symmetry, the stored energy function w(r ) must satisfy the following invariance
property:

w(r )(x, [F]) = w(r )(x, [F][Q]) , ∀[Q] ∈ G (r ) , (7)

for all x in B(r ), where G (r )
⊂ SO(3) is the symmetry group associated with the preferred direction f(r ), i.e.,

G (r )
= {[Q] ∈ SO(3) : [Q]f(r )

= f(r )
} . (8)

In this work, and without loss of generality, the anisotropic stored energy function proposed in [21] (for all symmetry
classes) is selected to model each ply (see Appendix A). The stored energy function w(r ) is specifically decomposed
as

w(r )(x, [F]) = w
(r )
iso(x, [F]) + w

(r )
ani(x, [F]) − ψ∗(x) , (9)

in which the isotropic and anisotropic contributions, as well as the additional term ψ∗, are defined as follows.

(I) The isotropic potential w(r )
iso corresponds to a compressible Mooney–Rivlin model and is given by

w
(r )
iso(x, [F]) = µ

(r )
1 (x)∥[F]∥2

F + µ
(r )
2 (x)∥Cof([F])∥2

F + µ
(r )
3 (x) det([F])2

− dr (x) log(det([F])) , (10)

for all [F] ∈ M3
+

, where {µi (x)}3
i=1 are model parameters, with µ3(x) > 0, and dr (x) = 2µ(r )

1 (x) + 4µ(r )
2 (x) +

2µ(r )
3 (x) ∀x ∈ B(r ). The fields x ↦→ µ

(r )
1 (x) and x ↦→ µ

(r )
2 (x) are assumed to be uniformly bounded from below

by strictly positive constants, i.e., there exists (τ (r )
1 , τ

(r )
2 ) such that

∀x ∈ B(r ) , µ
(r )
1 (x) ⩾ τ

(r )
1 > 0 , µ

(r )
2 (x) ⩾ τ

(r )
2 > 0 . (11)



B. Staber, J. Guilleminot, C. Soize et al. / Computer Methods in Applied Mechanics and Engineering 347 (2019) 425–444 429

(II) The anisotropic contribution w(r )
ani is given by

w
(r )
ani(x, [F]) =

(
Tr([F]T [F][M (r )(x)])

)1+β4

(1 + β4)Tr([M (r )(x)])β4
+

(
Tr(Cof([F]T [F])[M (r )(x)])

)1+β5

(1 + β5)Tr([M (r )(x)])β5

− 2Tr([M (r )(x)]) det([F]) ,

(12)

where β4 ⩾ 0, β5 ⩾ 0, and [M (r )(x)] is a symmetric and positive-definite second-order tensor that is referred
to as to a structural tensor at point x. This tensor can be decomposed as

[M (r )(x)] = µ
(r )
4 (x)f(r )

⊗ f(r )
+ µ

(r )
5 (x)([I3] − f(r )

⊗ f(r )) , ∀x ∈ B(r ) , (13)

in which x ↦→ µ
(r )
4 (x) and x ↦→ µ

(r )
5 (x) are fields of model parameters (note that µ(r )

4 (x) > 0 and µ(r )
5 (x) > 0 for

all x ∈ B(r ), are implied by the positive-definiteness of [M (r )(x)]). It satisfies, by construction, the invariance
property

[M (r )(x)] = [Q][M (r )(x)][Q]T , ∀[Q] ∈ G (r ) , (14)

where G (r ) is given by Eq. (8).
(III) The term ψ∗ is defined as

ψ∗(x) = µ
(r )
3 (x)δ(r )

0 (x)2
− dr (x) log(δ(r )

0 (x)) − 2Tr([M (r )(x)])δ(r )
0 (x) , (15)

where the mapping x ↦→ δ
(r )
0 (x) is defined as

δ
(r )
0 (x) = 2Tr([M (r )(x)]) +

√
(Tr([M (r )(x)]))2 + 2µ(r )

3 (x)dr (x)

2µ(r )
3 (x)

. (16)

In this setting, it can be shown that the stored energy function w(r ) satisfies the objectivity constraint and all
the mathematical requirements involved in the existence theorems of nonlinear elasticity [22,23] (see also [19]);
see Appendix B.

Remark 3.1. Using Eq. (13), the anisotropic invariants involved on the right-hand side of Eq. (12) can be expressed as

Tr([F]T [F][M (r )(x)]) = µ
(r )
4 (x)∥[F]f(r )

∥
2
+ µ

(r )
5 (x)(∥[F]f(r )

⊥
∥

2
+ ∥[F]e3∥

2) (17)

and

Tr(Cof([F]T [F])[M (r )(x)]) = µ
(r )
4 (x)∥Cof([F])f(r )

∥
2
+ µ

(r )
5 (x)(∥Cof([F])f(r )

⊥
∥

2
+ ∥Cof([F])e3∥

2) . (18)

For any unit vector a, the terms ∥[F]a∥ and ∥Cof([F])a∥ represent the stretch along the direction defined by a and the
deformation of an area with unit normal vector a, respectively. This interpretation serves as a physical basis to justify
the use of the retained anisotropic contribution.

3.2. Construction of the random field model

In this section, the proper randomization of the spatially dependent, anisotropic stored energy function introduced
in Section 3.1 is addressed, following the methodology proposed in [12] for hyperelastic materials. The approach
consists of substituting the fields of deterministic material parameters by non-Gaussian random fields, the probabilistic
models of which must be constructed. In this work, the exponents β4 and β5 are taken deterministic and could be
randomized as well, depending on the application.

Let {W(r )(x, ·), x ∈ B(r )
} be the stored energy function random field, defined on a probability space (Ω , T ,P)

and corresponding to the probabilistic modeling of the anisotropic stored energy function w(r ), 1 ⩽ r ⩽ 32. Let
{G(r )(x) = (G(r )

1 (x), . . . ,G(r )
5 (x)), x ∈ B(r )

} be the random field corresponding to the probabilistic modeling of the
vector-valued model parameter field x ↦→ (µ(r )

1 (x), . . . , µ(r )
5 (x)), associated with {W(r )(x, ·), x ∈ B(r )

}.
Some mathematical preliminaries regarding the functional form of the stochastic potential W(r )(x, ·), x being fixed

in B(r ), are first discussed in Section 3.2.1. The construction of the probabilistic model for {G(r )(x), x ∈ B(r )
} is then

tackled in Section 3.2.2. Note at this point that this model can be used per se, or can be integrated as an optimal prior
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model in a Bayesian approach (see Chapter 26 in [24] for methodological aspects). In the following, it is assumed that
{G(r )(x), x ∈ B(r )

} is a second-order random field, and that the mean function of x ↦→ G(r )(x) is independent of x and
r , with

E{G(r )(x)} = g , (19)

where E denotes the mathematical expectation and g = (g
1
, . . . , g

5
) is such that g

j
> 0 for 1 ⩽ j ⩽ 5.

3.2.1. Regularized form of the stochastic stored energy function
In order to ensure uniform boundedness from below, a regularized form W(r )

ϵ of the random stored energy function
is introduced as

W(r )
ϵ (x, [F]) =

1
1 + ϵ

(W(r )
1 (x, [F]) + ϵ w1([F])) + W

(r )
2 (x, [F]) + W

(r )
vol(x, det([F])) − W

(r )
vol(x, D(r )

0 ) , (20)

where 0 < ϵ ≪ 1 is an arbitrary small parameter. The stochastic potential W(r )
1 (x, ·) corresponds to the stochastic

modeling of the first two terms in the isotropic contribution given by Eq. (10) and writes

W
(r )
1 (x, [F]) = G(r )

1 (x)∥[F]∥2
F + G(r )

2 (x)∥Cof([F])∥2
F , ∀[F] ∈ M3

+
. (21)

By construction, the mean function x ↦→ E{W
(r )
1 (x, ·)} is independent of x and is denoted by E{W

(r )
1 (x, ·)} = w1(·),

with

w1([F]) = g
1
∥[F]∥2

F + g
2
∥Cof([F])∥2

F . (22)

By substituting Eqs. (21) and (22) into Eq. (20), a regularized, isotropic strain energy function W1,ϵ can be introduced
as

W1,ϵ(x, [F]) = G1ϵ(x)∥[F]∥2
F + G2ϵ(x)∥Cof([F])∥2

F , (23)

with

G1ϵ(x) =
1

1 + ϵ
(G1(x) + ϵg

1
) (24)

and

G2ϵ(x) =
1

1 + ϵ
(G2(x) + ϵg

2
) . (25)

Following Eq. (12), the random contribution W
(r )
2 takes the form

W
(r )
2 (x, [F]) =

(
Tr([F]T [F][M(r )(x)])

)1+β4

(1 + β4)(Tr([M(r )(x)]))β4
+

(
Tr(Cof([F]T [F])[M(r )(x)])

)1+β5

(1 + β5)(Tr([M(r )(x)]))β5
, (26)

where [M(r )(x)] is now a random matrix given by

[M(r )(x)] = G(r )
4 (x)f(r )

⊗ f(r )
+ G(r )

5 (x)([I3] − f(r )
⊗ f(r )) . (27)

Similarly, from Eq. (15), the random volumetric contribution W
(r )
vol is given by

W
(r )
vol(x, δ) = G(r )

3 (x)δ2
− Dr (x) log(δ) − 2Tr([M(r )(x)])δ , (28)

where the random variable Dr (x) reads as Dr (x) = 2G(r )
1 (x) + 4G(r )

2 (x) + 2G(r )
3 (x). Finally, the expression of the

random variable D(r )
0 involved in the very last term of the right-hand side of Eq. (20) can be deduced from Eq. (16),

i.e.,

D(r )
0 (x) = 2Tr([M(r )(x)]) +

√
(Tr([M(r )(x)]))2 + 2G(r )

3 (x)Dr (x)

2G(r )
3 (x)

. (29)

In order to ensure the well-posedness of the stochastic boundary value problem, it is further assumed that the random
variables G(r )

1 (x), . . . ,G(r )
5 (x) are such that

G(r )
j (x) > 0 , 1 ⩽ j ⩽ 5 , (30)
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for all x in B(r ), almost surely. By substituting Eqs. (21)–(30) into the stochastic stored energy function given by
Eq. (20), it can be deduced that

W(r )
ϵ (x, [F]) ⩾ cϵ w1([F]) , (31)

with cϵ = ϵ/(1 + ϵ). Eq. (31) shows that w1 is a deterministic lower bound for the random strain energy function,
which then satisfies uniform growth conditions (see Appendix B).

3.2.2. Definition of the probabilistic model for the set of coefficients
Given the inequality constraints raised by the well-posedness of the stochastic boundary value problem, the random

fields {{G(r )
i (x), x ∈ B(r )

}}
5
i=1 cannot be Gaussian and must be modeled as non-Gaussian random fields. Following the

methodology proposed in [5] for anisotropic linear elastic materials (see also [6,7]) and advanced in [12] for spatially
dependent anisotropic stored energy functions, each random field {G(r )

i (x), x ∈ B(r )
} is then expressed through a

nonlinear transformation of a Gaussian random field, that is:

G(r )
i (x) = Hi

(
Ξ (r )

i (x)
)
, ∀x ∈ B(r ) , 1 ⩽ i ⩽ 5 , (32)

where the mapping Hi is constructed below and such that all considered constraints (e.g., Eq. (30)) hold, and
{Ξ (r )

i (x), x ∈ B(r )
} denotes the restriction to B(r ) of a real-valued, homogeneous and normalized Gaussian random

field. Furthermore, and since the constraints on material parameters do not contain cross information between
them (see Section 3.1), the information-theoretical framework (see below) implies that {G(r )

i (x), x ∈ B(r )
} and

{G(r )
j (x), x ∈ B(r )

} (and similarly, {Ξ (r )
i (x), x ∈ B(r )

} and {Ξ (r )
j (x), x ∈ B(r )

}), 1 ⩽ i ̸= j ⩽ 5), are statistically
independent random fields. In order to make the identification of the probabilistic model tractable, it is assumed below
that (i) the covariance functions defining the underlying Gaussian random fields exhibit the same algebraic form,
regardless of the material parameter; (ii) the hyperparameters defining the random fields do not change from one ply
to another. Note that this latter assumption is consistent with the very structure of the material (which is manufactured
by stacking up independent samples of unidirectional plies), provided that the impact of the curing process (which may
generate spatial fluctuations in the mean fields for thick composite parts, for instance) can reasonably be neglected.

Let η ↦→ R(η) denote the selected covariance function of the Gaussian fields. For a given ply r , this function is
given by

R(η) = ρ1(⟨η, f(r )
⟩) × ρ2(⟨η, f(r )

⊥
⟩) , (33)

where ⟨·, ·⟩ denotes the Euclidean inner product and the univariate covariance functions are defined as

ρk(dk) =

(
2Lk

πdk

)2

sin2
(
πdk

2Lk

)
, 1 ⩽ k ⩽ 2 . (34)

In the equation above, the parameters L1 and L2 correspond to the correlation lengths along the directions f(r ) and
f(r )
⊥

, respectively.
The definition of the mappings Hi , 1 ⩽ i ⩽ 5, is then achieved by invoking the maximum entropy principle

[25–27] to construct the probability distributions of G(r )
i (x), with 1 ⩽ i ⩽ 5 and x fixed in B(r ) [12]; see [9,10]

for the case of homogeneous hyperelastic materials, as well as [13] for a discussion regarding model identification.
The knowledge of these probability distributions will be used, below, to derive analytical expressions for the
transformations {Hi }

5
i=1. From a probabilistic standpoint, this approach completely defines the full systems of

marginal distributions of these fields. Under the constraints

E{G(r )
i (x)} = g

i
(35)

and

E{log(G(r )
i (x))} = χ

(r )
i , |χ

(r )
i | < +∞ , (36)

arising from Eq. (19) for the former and from the fact that G(r )
i (x) > 0 for the latter (see [28]), it can be shown

that the random variable G(r )
i (x) (x being fixed) follows a Gamma distribution. Consequently, the random field

{G(r )
i (x), x ∈ B(r )

} can simply be defined, in the present case, as

G(r )
i (x) = F−1

Γ (ki ,θi )

(
Φ(Ξ (r )

i (x))
)
, 1 ⩽ i ⩽ 5 , (37)
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Fig. 2. Representation of the geometry under consideration, with L = 50 mm, ℓ = 25 mm and e = 4.1 mm.

Fig. 3. One realization of the Gaussian field {Ξ
(r )
1 (x), x ∈ B(r )

} for an even ply, with L1 = L2 = 2 (left) and L1 = L2 = 10 (right).

where F−1
Γ (ki ,θi ) is the inverse cumulative distribution function of the Gamma law with parameters (ki , θi ) and Φ is the

cumulative distribution function of the normal distribution. Eq. (37) explicitly defines the mapping Hi , introduced in
Eq. (32), and upon expressing the parameters of the Gamma distribution in terms of second-order properties, it can be
written as

G(r )
i (x) = F−1

Γ (δ−2,δ2gi )

(
Φ(Ξ (r )

i (x))
)
, 1 ⩽ i ⩽ 5 , (38)

in which it was assumed that all random fields exhibit the same level of statistical fluctuations, measured by the
coefficient of variation δ.

As pointed out in [12], it should be noticed that the above stochastic modeling step encompasses the case of
isotropic materials and can readily be generalized to other types of strain energy functions.

3.3. Simulations of the random field model

In this section, forward simulations are performed in order to qualitatively illustrate the effect of model parameters
on sample characteristics. The random field is generated on the geometry depicted in Fig. 2, which corresponds to the
configuration that will be considered in the identification of the random field model in Section 4. Here, a single-ply
laminate is considered, and simulations are conducted for the first material parameter random field {G(1)

1 (x), x ∈ B(1)
},

with g
1

= 1. The numerical simulation of the associated Gaussian field {Ξ (1)
1 (x), x ∈ B(1)

} is carried out using a
spectral expansion [29,30]. Realizations of the Gaussian field for different sets of correlation lengths (L1,L2) are
shown in Figs. 3–4.

It can be seen that the samples exhibit patterns that are characteristic of an isotropic correlation structure for
L1 = L2. In contrast, the realizations of the Gaussian field show pronounced anisotropy along either f⊥ or f,
depending on the ordering of the spatial correlation lengths L1 and L2. Realizations of the non-Gaussian field
{G(1)

1 (x), x ∈ B(1)
} are then shown in Figs. 5–6, for different values of the correlation lengths and coefficient of

variation δ. It can be observed that the field {G(r )
j (x), x ∈ B(r )

} inherits the aforementioned patterns associated with
the underlying Gaussian field.
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Fig. 4. One realization of the Gaussian field {Ξ
(r )
1 (x), x ∈ B(r )

} for an even ply, with (L1,L2) = (2, 10) (left) and (L1,L2) = (10, 2) (right).

Fig. 5. One realization of {G(r )
1 (x), x ∈ B(r )

} for (L1,L2, δ) = (2, 2, 0.1) (left) and (L1,L2, δ) = (2, 2, 0.2) (right).

Fig. 6. One realization of {G(r )
1 (x), x ∈ B(r )

} for (L1,L2, δ) = (2, 10, 0.1) (left) and (L1,L2, δ) = (2, 10, 0.2) (right).

4. Description of the experimental setup and model identification

In this section, the identification of the random field model for the anisotropic strain energy function is pursued. The
experimental database is first described in detail in Section 4.1. The proposed methodology enabling the identification
of the hyperparameters is then discussed and applied in Section 4.2.

4.1. Description of the experimental database

In this application, the unidirectional ply corresponds to a 3501-6 epoxy resin matrix, reinforced with AS4 carbon
fibers. Four ply angles θ were considered and two specimens were tested in tension for each angle (hence, a total
of 8 specimens tested). As indicated previously, the layup stacking sequence of each specimen was [θ,−θ ]16. A
displacement distribution ud was applied on the top and fixed boundary conditions were prescribed at the bottom of
the composite samples; see Fig. 7. This loading condition represents one of 72 loading paths defined to homogeneously
sample a 4-dimensional loading space spanned by the tension and the 3-rotation loading bases. This loading path is
linear and starts from the origin (0,0,0,0) and corresponds to the case of pure tension. The particular loading subspace
where this path is defined is one of the 15 4-dimensional subspaces that can be selected out of the full 6-dimensional
loading space that NRL66.3 can apply loads in and it was selected by a process described in [31]. The loading paths
sampling this 4-dimensional subspace are linear combinations of the loading space bases and are applied (one loading
path per specimen) on the upper edge of the specimen via the US-NRL’s NRL66.3 6-DoF robotic loading frame as
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Fig. 7. Representation of the boundary conditions applied to the composite specimens.

Table 5
Summary of experimental parameters.

θ θ1 = 15◦ θ2 = 30◦ θ3 = 60◦ θ4 = 75◦

Realization ωexp
ℓ ω

exp
1 ω

exp
2 ω

exp
1 ω

exp
2 ω

exp
1 ω

exp
2 ω

exp
1 ω

exp
2

nexp 2380 2380 2380 2375 2357 2380 2378 2380
Texp 731 686 410 471 211 272 195 179
maxs∈Texp ud (s) [mm] 0.123 0.116 0.158 0.150 0.485 0.745 0.715 0.614

described in [3,4]. Note that the geometry presents two notches that were specifically introduced to disturb the strain
field and ensure that some areas of the material will exhibit material nonlinearity in their response [4]. Snapshots
of the displacement and strain fields were acquired using the digital imaging based method described in [18] on the
front and rear faces of the composite coupons, until failure was reached (see [4] for a complete description of the
experimental setup). The measurement was performed on the front and rear faces motivated by the need to have
access to the largest data set possible from each test performed. It should be noted that marking the specimens from
both sides at the same x, y is particularly challenging and some misalignment of the optical metrology patterns is
always expected. For this reason, the present analysis does not make any assumption about alignment or not of the
front and back patterns. Instead, it allows for calculating the displacement and strain fields through vector and tensor
interpolation respectively, at the locations required for further analysis. A summary of the experimental parameters
is given in Table 5, where nexp denotes the number of observation points on the back and front faces and Texp is
the number of loading steps until the maximum displacement maxs∈Texp ud (s) imposed on the top of the specimen
has been reached. For further developments related to the statistical inverse problem, the experimental database was
postprocessed as follows. The set of observation points with the lower number of entries (nexp = 2357) was selected
as the reference set. For every observation point in this set, the nearest neighbors belonging to the seven remaining
sets were then determined using the k-nearest neighbors algorithm. An additional set of observation points was then
obtained by solving an optimization problem such that this new set constitutes an accurate approximation of all the
sets of observation points for all the experimental realizations. The resulting set contains ñexp = 2355 observation
points.

Similarly, the sets of loading steps were approximated by a single set T̃exp such that the maximum prescribed
displacement on the top is given by 0.1 mm with 10 equally spaced steps, regardless of the ply angle and realization.
In this setting, the failure of the composite material is not taken into account and may be addressed in the future. The
experimentally obtained boundary conditions in terms of the applied displacement evolution and the corresponding
reaction forces evolution for all four values of the lamination angle are presented in Fig. 8 while their associated
approximations are shown in Fig. 9.

The available realizations of the component x ↦→ [Eexp(s∗
; x, θ)]22 of the strain field are shown in Figs. 10–13,

where [Eexp(s; x, θ)] is the experimental Green–Lagrange deformation tensor at loading step s and point x, for a
composite defined by a stacking sequence of [+θ,−θ ]16, and s∗ is the final loading step such that the prescribed
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Fig. 8. Left: experimental vertical displacement prescribed on the top of the specimens. Right: experimental reaction force on the top of the
specimens with respect to the prescribed displacement.

Fig. 9. Left: approximation of the experimental boundary conditions by a single set of displacements (white bullets). Right: associated reaction
forces with respect to the prescribed displacement.

Fig. 10. One experimental realization of the strain field x ↦→ [Eexp(s∗
; x, θ)]22, for θ = 15◦, on the front (left) and back (right) surfaces.

displacement is ud = 0.1 mm. The variability in the reconstructed strain field is clearly observed and will be exploited
in the next section to identify the parameters of the random field model.

4.2. Identification methodology

This section is focused on the identification of the random field model for the anisotropic strain energy function,
presented in Section 3.2. This model depends on the mean vector g, the deterministic exponents (β4, β5), the coefficient
of variation δ, and the spatial correlation lengths (L1,L2). In this work, the identification problem is attacked through
a two-step strategy. The mean model and the deterministic exponents are first determined in Section 4.2.1, by imposing
a fit of the linearized elasticity tensor. The hyperparameter controlling the statistical fluctuations and the correlation
lengths are then identified in Section 4.2.2, using the maximum likelihood method.
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Fig. 11. One experimental realization of the strain field x ↦→ [Eexp(s∗
; x, θ)]22, for θ = 30◦, on the front (left) and back (right) surfaces.

Fig. 12. One experimental realization of the strain field x ↦→ [Eexp(s∗
; x, θ)]22, for θ = 60◦, on the front (left) and back (right) surfaces.

Fig. 13. One experimental realization of the strain field x ↦→ [Eexp(s∗
; x, θ)]22, for θ = 75◦, on the front (left) and back (right) surfaces.

It is assumed below that the level of experimental noise is negligible as compared to that of intrinsic material
variability, so that it can be neglected in the calibration stages. In addition, we note that this noise should also be
modeled and identified, and that its consideration is more relevant in a Bayesian approach to model calibration.

4.2.1. Identification of the mean model and deterministic exponents
In order to identify the mean vector g and the exponents (β4, β5), the mean elasticity tensor at small strains is fitted

with known values available in [3,15]. From the definition of the stochastic stored energy function, it can be deduced
that the associated random elasticity tensor at small strains reads as

JA(r )
ϵ (x)K =

1
1 + ϵ

(
JA(r )

iso(x)K + ϵ E{JA(r )
iso(x)K}

)
+ JA(r )

sym(x)K , (39)

where the isotropic contribution writes

JA(r )
iso(x)K = (4G(r )

2 (x) + 4G(r )
3 (x))[I3] ⊗ [I3] + (4G(r )

1 (x) + 4G(r )
2 (x))[I3] ⊠ [I3] (40)

and the anisotropic term is given by

JA(r )
sym(x)K = 4(β4 + β5)

[M(r )(x)] ⊗ [M(r )(x)]
Tr([M(r )(x)])

+ 4Tr([M(r )(x)])(1 + β3 + β5)[I3] ⊗ [I3]

− 4(1 + β5)([I3] ⊗ [M(r )(x)] + [M(r )(x)] ⊗ [I3]) + 4([I3] ⊠ [M(r )(x)] + [M(r )(x)] ⊠ [I3]) .
(41)
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Fig. 14. Left: final values of the cost function for 100 starting points obtained by Latin Hypercube Sampling. Filled bullets correspond to the cases
for which the cost function is below 10−10. Right: convergence of the optimization algorithm for the 82th starting guess.

Let h = (g, β4, β5) be the sought-for vector of mean values, and denote by JA(h)K the nominal value of the non-
regularized linearized elasticity tensor, obtained by summing up the right-hand sides in Eqs. (40)–(41):

JA(h)K = (4g
2
+ 4g

3
)[I3] ⊗ [I3] + (4g

1
+ 4g

2
)[I3] ⊠ [I3]

+ 4(β4 + β5)
[M (r )] ⊗ [M (r )]

Tr([M (r )])
+ 4Tr([M (r )])(1 + β3 + β5)[I3] ⊗ [I3]

− 4(1 + β5)([I3] ⊗ [M (r )] + [M (r )] ⊗ [I3]) + 4([I3] ⊠ [M (r )] + [M (r )] ⊠ [I3]) .

(42)

In the equation above, the mean value [M (r )] of the structural tensor [M(r )(x)] is given by (see Eq. (27))

[M (r )] = g
4

f(r )
⊗ f(r )

+ g
5

([I3] − f(r )
⊗ f(r )) . (43)

For given values of the mean model and deterministic exponents, Eq. (42) allows for computing the mean engineering
constants, namely the longitudinal and transversal moduli (E L , ET ,GL ), and Poisson’s ratios (V L , V T ). The vector
of mean parameters and deterministic exponents is then defined as:

h = min
q ∈Hh

5∑
i=1

(zi (q) − zi )2

z2
i

, (44)

where z(q) = (E L (q), ET (q), V L (q), V T (q),GL (q)) is the vector gathering the mean engineering constants
associated with the tensor JA(q)K, obtained by substituting q for h in Eq. (42), and z is the vector of target
mean values defined in [3,15] as z = (139.1400, 10.3620, 0.2860, 0.3080, 6.6478) (units for elastic moduli: GPa).
Following the constraints on material parameters introduced in Section 3, the admissible set Hh is defined as
Hh = (0,+∞)5

× [0,+∞)2. The optimization problem defined by Eq. (44) is solved with Matlab function fmincon,
for a series of 100 independent guesses obtained from Latin Hypercube Sampling (LHS). The final values of the cost
function with respect to the index of the (vector-valued) starting point are shown in the left panel of Fig. 14, in which
filled bullets are used to highlight starting points for which the final value of the cost function is below 10−10. The
convergence of the optimization algorithm is shown in the right panel of Fig. 14 for the optimal starting point.

Similarly, the identified values of the mean parameters g
1
, . . . , g

5
and exponents β4, β5 are shown for all starting

points in Figs. 15–17. The filled bullets represent the cases for which the cost function is below 10−10, and it can be
seen that the identification turns out to be robust with respect to the initial guess of the solution. Note that the point
associated with sample index 57 (see the right panel in Fig. 15, as well as the left panel in Fig. 16 and the right panel
in Fig. 17) is not a robust candidate, since the corresponding final value of the cost function is the largest among all
other combinations (see Fig. 14, left).

The mean parameters are finally identified as follows:

g
1

= 1771.52 , g
2

= 65.07 , g
3

= 67.49 , g
4

= 1403.72 , g
5

= 72.06 , (45)

in MPa, and the deterministic exponents are given by

β4 = 25.42822 , β5 = 0.04549 . (46)
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Fig. 15. Identified optimal values of the mean parameters g
1

and g
2
, obtained for the 100 starting points. Filled bullets correspond to cases for

which the final value of the cost function is below 10−10. In the case of g
2
, the limits of the y-axis have been reduced for readability.

Fig. 16. Identified optimal values of the mean parameters g
3
, g

4
and g

5
(from left to right), obtained for the 100 starting points. Filled bullets

correspond to cases for which the final value of the cost function is below 10−10. In the case of g
3
, the limits of the y-axis have been reduced for

readability.

Fig. 17. Identified optimal values of the exponents β3 and β4, obtained for the 100 starting points. Filled bullets correspond to cases for which the
final value of the cost function is below 10−10. In the case of β5, the limits of the y-axis have been reduced for readability.

4.2.2. Identification of the fluctuation parameter and correlation lengths
Let ξ = (L1,L2, δ) be the vector-valued parameter to be identified, gathering the fluctuation parameter and the

correlation length, and denote by Hξ = (0,+∞)2
× (0, 1) its admissible set. For any angle θ (which specifies the

laminate configuration), ζ ∈ Hξ and the value of h identified in Section 4.2.1, we introduce the Rñexp -valued random
variableY(ζ ; θ ) (recall that ñexp is the number of observation points) defined component-wise as

Yi (ζ ; θ ) = log

⎛⎝ ∑
s ∈ T̃ exp

∥[Ecomp(s; x(i), ζ , θ)]∥2
F

⎞⎠ , 1 ⩽ i ⩽ ñexp , (47)
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where [Ecomp(s; x(i), ζ , θ)] is the Green–Lagrange deformation tensor associated with the computational model at
loading step s ∈ T̃ exp, taken at location x(i) on the observed boundaries. A few remarks regarding the definition
of the random variable Y(ζ ; θ ) are relevant at this point. First, the summation on the right-hand side of Eq. (47)
corresponds, for a given component Yi (ζ ; θ ) (that is, for a given observed point), to the natural discretization of the
L2 norm along the loading paths. Second, it should be noticed that the logarithm is introduced to make the random
variable more sensitive to small values of the norm. Finally, the introduction of a vector-valued variable allows spatial
information to be preserved and will allow us to formulate the identification problem in reduced coordinates, using a
statistical reduction (see below). Let mY(ζ ; θ ) and [CY(ζ ; θ )] be the mean vector and covariance matrix ofY(ζ ; θ ).
For notational convenience, the dependence of these second-order properties on ζ and θ is briefly dropped below.

For 1 ⩽ m ⩽ ñexp, letY(m) be the reduced statistical model of the random variableY obtained through a principal
component analysis:

Y(m)
= mY +

m∑
k=1

√
λkηkϕ

(k) , (48)

where {(λk,ϕ
(k))}k are the sets of associated eigenvalues and eigenvectors of [CY], and ηk is the real-valued random

variable such that

ηk =
1

√
λk

⟨Y − mY,ϕ(k)
⟩ , (49)

The order m of the reduced model is deduced from a standard convergence analysis, looking at the convergence of the
error function m ↦→ E (m) defined as

E (m) = 1 −

∑m
α=1 λα∑ñexp
α=1 λα

. (50)

Note at this stage that m is implicitly depending on both θ and ζ . For a given fiber orientation θ , let Yexp(θ ) be the
vector-valued random variable with components

Y
exp
i (θ ) = log

⎛⎝ ∑
s ∈ T̃ exp

∥[Eexp(s; x(i), θ)]∥2
F

⎞⎠ , 1 ⩽ i ⩽ ñexp , (51)

where we recall that [Eexp(s; x(i), θ)] is the experimental version of the random Green–Lagrange deformation tensor
at loading step s and location x(i). Note that Y(ζ ; θ ) and Yexp(θ ) are not defined on the same probability space.
Let yexp(θ, ωexp

ℓ ), ℓ ∈ {1, 2}, denote the experimental realizations ofYexp(θ ). Consider next the reduced coordinates
defined as the projection of the experimental samples onto the basis obtained from the computational model (for fixed
values of the hyperparameters, that is, for a fixed value of ζ ):

η
exp
k (ζ ; θ, ω

exp
ℓ ) def

=
1

√
λk(ζ ; θ )

⟨yexp(θ, ωexp
ℓ ) − mY(ζ ; θ ),ϕ(k)(ζ ; θ )⟩ , 1 ⩽ k ⩽ m(θ, ζ ) , (52)

where the set of eigenpairs {(λk,ϕ
(k))}k was introduced below Eq. (48) and parameter dependence is now recalled.

The vector-valued parameter ξ is then defined as

ξ = arg max
ζ ∈Hξ

L(ζ ) , (53)

where L : Hξ → R denotes the log-likelihood function given by

L(ζ ) =

4∑
j=1

2∑
ℓ=1

m(θ j ,ξ )∑
k=1

log
{

f̂ηk (θ j ,ζ )

(
η

exp
k

(
ζ ; θ j , ω

exp
ℓ

))}
. (54)

In Eq. (54), f̂ηk (θ j ,ζ ) is the probability density function of random variable ηk(θ j , ζ ) (see Eq. (49)) estimated with a
kernel density estimator, using Monte Carlo simulations (with 400 independent realizations) and the computational
model parametrized by ζ (and the value of h identified in the previous section) for the configuration defined by θ j
(i.e., with a stacking sequence [+θ j ,−θ j ]16). The definition of the angles {θ j }

4
j=1 is provided in Table 5. From a

computational standpoint, the mesh of the composite domain contains 139 200 8-node hexahedral finite elements
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Fig. 18. Graph of the log-likelihood function ζ ↦→ L(ζ ). Note that marker size is proportional to the value of the cost function.

(395 721 degrees of freedom). The nonlinear problem is solved with an in-house finite element implementation, using
a standard Newton–Raphson method with a load stepping scheme (used libraries: boost, ParMETIS, Trilinos). Linear
systems are solved with the preconditioned conjugate gradient method.

Given the computational burden associated with this identification step, the non-convex optimization problem given
by Eq. (53) is solved by evaluating the cost function on a grid with equally spaced points. Other strategies could be
pursued to solve this problem and in particular, to decrease the computational cost associated with the propagation
of uncertainties through nonlinear models. A detailed discussion about stochastic solvers is outside the scope of this
work, and the reader is referred to the general review [24]. Here, the grid is specifically defined by imposing reasonable
physics-guided constraints, in particular for the correlation lengths (which are, for instance, assumed to be smaller
than the smallest characteristic length of the specimens). The graph of ζ ↦→ L(ζ ) is shown in Fig. 18, and the optimal
values are found as

ξ = (11.18, 11.18, 0.1) . (55)

The fact that the correlation lengths along f(r ) (which is the direction of the fibers) and f(r )
⊥

are found to be equal
constitutes an unexpected result. However, this may be a consequence of the relative “isotropization” of the bulk
response of the composite with respect to the loading conditions, achieved by the stacking sequence (recall that only
boundary measurements are made). The level of statistical fluctuations is rather contained (δ = 0.1), and is consistent
with typical values obtained from multiscale simulations with non-separated scales on similar materials (see, e.g.,
Section 4.2 in [10]). Realizations of the random fields associated with the engineering constants for transversely
isotropic materials are shown in Figs. 19–21, hence showing the substantial variability of the mechanical properties
over the considered ply. It should be noticed that the fluctuation patterns and ranges in these figures are induced by
the values of the hyperparameters identified using the database. In particular, the parameters L1 and L2 control the
frequency of the spatial oscillations along the local principal directions in the ply, while the range of fluctuations is
controlled by the parameter δ.

Given the very limited number of experimental realizations, quality assessment is finally achieved by controlling
that most experimental realizations for some components of the Green–Lagrange deformation tensor at observable
points are included in the support of the associated probability density functions estimated with the identified
stochastic model (note at this point that the experimental realizations of the deformation fields cannot be compared
with numerical ones, since the probability spaces are different). The plots for the components 11 and 22 of the
deformation tensor at a given point xobs, located near a notch on the upper surface of the composite samples, are
shown in Fig. 22. It is seen that the two observed data points for the component 22 exhibit a non-vanishing probability
level, whereas the realizations for component 11 fall outside the estimated support of the probability density function.
A possible explanation for this result is the small magnitude of the uniaxial deformation along e1, which makes
experimental data more sensitive to measurement noise. Moreover, it should be noticed that this constitutes a severe
validation test for the proposed model and identification strategy, since (i) no statistical treatment (e.g., local averaging)
is performed on the experimental data, and (ii) potential measurement noise is not accounted for. In this context, the
use of a Bayesian approach would be a very natural extension that is left for future works.
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Fig. 19. One realization of the longitudinal and transversal Poisson coefficients (from left to right) in the first ply (with θ = 60◦, L1 = L2 = 11.18,
δ = 0.1).

Fig. 20. One realization of the longitudinal and transversal Young moduli (from left to right) in the first ply (with θ = 60◦, L1 = L2 = 11.18,
δ = 0.1).

Fig. 21. One realization of the longitudinal shear modulus in the first ply (with θ = 60◦, L1 = L2 = 11.18, δ = 0.1).

Fig. 22. Probability density functions of [Ecomp(s∗
; xobs, ξ , 30)]11 (left) and [Ecomp(s∗

; xobs, ξ , 30)]22 (right) estimated with 100 independent
realizations of the identified probabilistic model, and associated experimental realizations (red marks).

5. Conclusions and plans

In this work, we have addressed the construction and inverse identification of a random field model describing
an anisotropic stored energy function relevant to transversely isotropic materials. The stochastic model relies in part
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on information theory, which is used to properly integrate constraints related to the well-posedness of the nonlinear
boundary value problem. In order to account for potential data paucity at the identification stage, the formulation
involves a limited number of parameters that control mean and dispersion values, as well as spatial correlation lengths
along appropriate directions. The calibration strategy was tackled as a two-step problem where the linearized model
is first considered to identify the mean values. In a second step, principal component analysis is combined with the
maximum likelihood method to estimate the dispersion parameter and the correlation lengths. The framework was
finally deployed to identify the hyperelastic constitutive model of a carbon-epoxy laminate.

This research effort is a first step towards the construction of a UQ framework that will support the development
of an approach providing simple and robust decision making with regard to design, certification and qualification of
composite materials and structures under the presence of uncertainty. Two envisioned improvements of the framework
are the inclusion of additional multiaxial loading paths and the extension of the approach to include the irrecoverable
part of the strain energy density. Another potential extension of this work that would be applicable for the high
performance high strength high stiffness PMCs, would be to utilize an infinitesimal strain approximation for the strain
energy density and the typical Hooke’s tensor as the container of the anisotropic elastic properties.
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Appendix A. Definition of the anisotropic strain energy function

A generic form for anisotropic strain energy functions is proposed in [21] as (see Eq. (3.7) in [21]):

ψ(I1, I2, I3, J4, J5) = ψ iso(I1, I2, I3) + ψani(I1, I2, I3, J4, J5) . (A.1)

where {Ii }
3
i=1 and {Ji }

5
i=4 are appropriate invariants, defined below. The isotropic contribution is specifically given by

(see Eq. (3.12) in [21]):

ψ iso(I1, I2, I3) = α1 I1 + α2 I2 + δ1 I3 − δ2 ln(
√

I3) , (A.2)

where I1 = ∥[F]∥2
F , I2 = ∥Cof([F])∥2

F and I3 = (det([F]))2; {αi }
2
i=1 and {δi }

2
i=1 are model parameters. Various

forms for the anisotropic contribution were proposed in [21]. In this paper, the form given in Table 1 is selected, with
m = n = 1, ξ11 = 1 and γ11 = −1/2:

ψani(I3, J4, J5) =
1

α + 1
1
gα

J α+1
4 +

1
β + 1

1
gβ

J β+1
5 − 2gI 1/2

3 , (A.3)

where J4 = Tr([F]T [F][M]), J5 = Tr(Cof([F]T [F])[M]) and g = Tr([M]).
Using the following correspondence between the notations in [21] and those considered in this paper:

α1 = µ1 , α2 = µ2 , δ1 = µ3 , δ2 = d , α = β4 , β = β5 , (A.4)

it follows that

ψ(x, [F]) =µ1(x)∥[F]∥2
F + µ2(x)∥Cof([F])∥2

F + µ3(x)(det([F]))2
− d(x) ln(det([F]))

+
J4(x)β4+1

(β4 + 1)g(x)β4
+

J5(x)β5+1

(β5 + 1)g(x)β5
− 2g(x) det([F]) ,

(A.5)

where spatial dependency has been introduced. For homogeneous material properties, rigorous proofs of polyconvex-
ity and coercivity can be found in [21]. In order to accommodate the case of heterogeneous material parameters, the
latter are assumed to be uniformly bounded from below (see Eq. (11)) in this paper, and an additional term ψ∗(x) was
added to bound the volumetric contribution from below. This leads to the final decomposition

w(x, [F]) = ψ(x, [F]) − ψ∗(x) (A.6)

of the final energy function, given by Eq. (9) (for a given ply).
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Appendix B. Mathematical properties of the stored energy function

Under the constraints stated in Section 3.2.1, it can be shown that the stored energy function w(r ) satisfies the
following properties.

i. Strong polyconvexity. There exist a constant ϵ > 0 and a convex function f (r ) (see below) such that

w(r )(x, [F]) = ϵ∥[F]∥2
F + f (r )(x, [F],Cof([F]), det([F])) (B.1)

for all x ∈ B(r ) and [F] ∈ M3
+

. This generalized convexity condition is stronger than the usual polyconvexity
condition [22,32], due to the presence of the constant ϵ. In the present case, the latter can be chosen as ϵ = τ

(r )
1

and the function f (r ) can be defined as

f (r )(x, [F], [H ], δ) = (µ(r )
1 (x) − τ

(r )
1 )∥[F]∥2

F + µ
(r )
2 (x)∥[H ]∥2

F + w
(r )
vol(x, δ) − w

(r )
vol(x, δ0)

+

(
Tr([F]T [F][M (r )(x)])

)1+β4

(1 + β4)Tr([M (r )(x)])β4
+

(
Tr([H ]T [H ][M (r )(x)])

)1+β5

(1 + β5)Tr([M (r )(x)])β5
.

(B.2)

The convexity of the function ([F], [H ], δ) ↦→ f (r )(·, [F], [H ], δ) then follows from standard arguments [21,
33].

ii. Coercivity. For all x in B(r ) and [F] in M3
+

, there exist k(r )
1 > 0, p ⩾ 2 and q ⩾ 3/2 such that

w(r )(x, [F]) ⩾ k(r )
1 (∥[F]∥p

F + ∥Cof([F])∥q
F ) , (B.3)

with k(r )
1 = min{τ

(r )
1 , τ

(r )
2 }.

The strong polyconvexity implies that the stored energy function is uniformly elliptic, that is, it satisfies the (strong
Legendre–Hadamard) condition

∂2w(r )(x, [F])
∂[F]i j∂[F]kℓ

ξiη jξkηℓ ⩾ ϵ∥ξ∥
2
∥η∥

2 , ∀(ξ , η) ∈ R3
× R3 , (B.4)

with ϵ = τ
(r )
1 . Following existence theorems in finite elasticity [22,23], the above properties ensure the existence of

solutions to the nonlinear boundary value problem.
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