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1. Introduction

The proper identification, modeling and propagation of un-
certainties is of paramount importance in multiscale frameworks
[1,2] where stochasticity is typically induced by morphological
randomness or material uncertainties, or a combination of both.
Accounting for the former type of uncertainties is a classical issue
in homogenization theories for random media [3-5]: when the
separation of scales can reasonably be invoked, the homogenized
property is deterministic, independent of boundary conditions, and
it is referred to as an effective property. For non-separated scales,
however, the homogenized coefficient presents non-vanishing
random fluctuations [6] and is referred to as an apparent property,
following the terminology introduced in [7]. The propagation of
geometrical uncertainties has been extensively addressed over
the past two decades, mostly through Monte Carlo simulations or
collocation methods; see [8] for a state-of-the-art review, as well
as [9-19] for various examples.

The propagation of material-type uncertainties can be pursued
by using similar frameworks (see, e.g., [20-22]) and contributions
attempting to combine various forms of parametric uncertainties
can be found in [23-27] for some specific classes of materials. In
these works, stochastic material parameters are modeled as ran-
dom variables or more rarely, as random fields. In the latter case,
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finite-dimensional representations of random fields are usually in-
troduced through truncated Karhunen-Loéve expansions [8].

In this paper, we consider spatially varying material proper-
ties defined on complex, nonconvex domains. This case has re-
ceived little attention to date and is relevant to the modeling of,
e.g., connected phases in fiber-reinforced composite materials; see
Fig. 1 for an illustration.

The nonconvexity exhibited by the domain (occupied by the
connected phase) complicates the construction of an appropriate
covariance kernel, which in turn restricts the use of covariance-
based approaches to define and generate the random field(s) of
interest. A possible approach to attack this problem consists in
defining an homeomorphic transformation of the domain to ad-
dress both stochastic modeling and sampling on a much simpler
geometry. Such a strategy is, however, hardly applicable in most
multiscale setups where the number of topological singularities
(heterogeneities) is from moderate to large. In addition, the image
of a covariance function through an homeomorphic transformation
is generally unknown, so that physical insight may be lost while
defining some key properties in the stochastic model. Another way
to proceed is to define covariance functions parametrized with a
geodesic distance [28]. This approach is a very natural way to use
standard (covariance-based) sampling techniques on complex ge-
ometries; see [29] for a recent structural application. This strategy
is nonetheless restricted, by construction, to isotropic-like covari-
ance structures and may be penalized by its computational cost,
especially for three-dimensional microstructures.

An alternative approach enabling the computational treatment
of microstructural complexity in the definition and sampling of


https://doi.org/10.1016/j.mechrescom.2019.01.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2019.01.008&domain=pdf
mailto:johann.guilleminot@duke.edu
https://doi.org/10.1016/j.mechrescom.2019.01.008

40 S. Chu and J. Guilleminot/Mechanics Research Communications 97 (2019) 39-45

Fig. 1. Example of a random microstructure where the matrix phase constitutes a
nonconvex domain in R2.
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Fig. 2. Boundary indexation for two-dimensional problems.
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Fig. 3. Boundary indexation for three-dimensional problems.

spatially dependent stochastic material properties is proposed in
this paper. The methodology consists in defining the random field
of interest through the transformation of an underlying Gaussian
field, obtained by filtering the Gaussian white noise with an ap-
propriate diffusion operator. The central idea is to specifically de-
fine the components of the matrix-valued diffusion coefficient as
velocity fields associated with suitable potential flows, hence natu-
rally capturing the correlation structure around immersed geome-
tries. The rest of this paper is organized as follows. The theoret-
ical framework is first presented in Section 2. The overview of
the modeling approach is exposed, and methodological ingredi-
ents are next reviewed step by step. An application in computa-
tional homogenization of linear microstructures is finally provided
in Section 3 to illustrate some salient features of the proposed
framework.

2. Mathematical formulation
2.1. Overview of the methodology

Let us consider a random composite made up with n consti-
tutive phases, assumed to exhibit linear or nonlinear elastic be-
haviors. The statistical volume element under consideration is de-
noted by D c RY, with 1 < d < 3. Let D be decomposed as D = Q U
(U?;l]Qi), with Qi ﬂi#j Q] =¢ and 2N Qi =¢ for 1< l,] <n-1.
The domains {Qi}?;] correspond to (n—1) families of hetero-
geneities, embedded in the matrix phase occupying the connected
domain . Let dD and 02 be the boundaries of D and €2, respec-
tively. For latter use, the boundary 9D is defined as 0D = U,?:dlBD,-,
where dD; and dD;,; denote boundaries located on opposite faces,
with j =2k -1 and 1 < k < d; see Figs. 2 and 3.

Let {P(x), x< Q} be the second-order random field of material
parameters defining the stochastic constitutive model for the ma-
trix phase. This random field is defined on a probability space
(®,F,P) and is assumed to take its values in a subset S c RY.
For linear elastic isotropic solids, the random vector P(x) (x be-
ing fixed) can be taken as P(x) = (k(x), u(x)), where k(x) and
Ju(x) are the stochastic bulk and shear moduli at location x, and

S =R_g x R.g. Given the almost sure boundedness properties typ-
ically exhibited by material parameters, the random field {P(x),
xc Q} is non-Gaussian. Moreover, {P(x), X< 2} is assumed to be-
long to a given subclass of second-order non-Gaussian random
fields admitting the representation

P(x) =T(E(®x),Xx), VYxcQ, (1)
where 7 is a nonlinear measurable mapping and {ZE (x),x € R%}
is a normalized R9-valued Gaussian random field with indepen-
dent components. This subclass typically contains mathematically
admissible random field models exhibiting both reasonable model-
ing flexibility and low-dimensional parameterization. The construc-
tion of a stochastic model for the field of material properties then
involves (i) the construction (or identification) of 7, and (ii) the
definition of the Gaussian germ. The latter definition is the central
issue addressed in this paper and must ensure that the covariance
function for the non-Gaussian random field {P(x), x € 2}, induced
by the mapping 7, is geometrically consistent. In this context, the
construction of an admissible mapping 7 for selected classes of
linear and nonlinear behaviors is outside the scope of this paper.
Interested readers are referred to [30,31] and [32-35] for the con-
struction of information-theoretic stochastic models in linear and
nonlinear elasticity, respectively (see Section 3 for an illustrative
example). In particular, the stochastic model proposed in [31] can
readily be combined with the presented approach to model elastic-
ity fields with any material symmetry within the class of models
defined by Eq. (1) (note for the sake of completeness that spectral
expansions for all elasticity fields can be found in [36]).

The approach pursued in this work relies on the interpreta-
tion of Gaussian random fields with Matérn-type correlation struc-
tures as solutions of stochastic partial differential equations. For
stationary fields, the Matérn covariance function T+~ C(7) is de-
fined as

21—v

C(7) = "21“(1;)

klTlD"Ks (e llTl), VT eRY, (2)

where «¥ >0 and v >0 are scale and smoothness parameters, and
o2 represents the variance of the field. Gaussian fields with the
covariance function defined by Eq. (2) are |[v — 1] mean square
differentiable, and the classical exponential and squared expo-
nential covariance functions are obtained for v =1/2 and v —
+oo, respectively. As noticed by Whittle [37,38] (see, e.g., Section
9 in [37]), a Gaussian field {E(x),x ¢ RY} exhibiting the covari-
ance function given by Eq. (2) is the stationary solution of the
stochastic partial differential equation (SPDE)

(2= (V. V))E@ = W(x), xer’, 3)

where (-, -) denotes the inner product in R?, V is the nabla (del)
operator, o = v+ d/2 and {WW(x),x € Q} is the spatial normalized
Gaussian white noise. This result was recently revisited along with
computational aspects in [39]. In this work, we consider the exten-
sion to anisotropic covariance kernels proposed in [40] and define
each independent component of {Z (x), x € R} as the solution of
the SPDE

o/ xeQ, (4)

(2 = (V,[H®IV))"*E;(x) = W),
where x+— [H(x)] is a diffusion field with values in the set of
symmetric positive definite matrices (note that there is no time-
dependency and that the term “diffusion” is preserved here for the
sake of consistency with [39,40]). The boundary condition associ-
ated with Eq. (4) will be specified later on. The definition of this
diffusion field and the strategy to solve the SPDE are addressed in
order in Sections 2.2 and 2.3.
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2.2. Step 1: definition of elementary problems

In order to define the diffusion field in accordance with mi-
crostructural complexity, we now introduce a set of d elementary
problems, the solutions of which are denoted by {x lIJ,»(x)}f:1.
Assume that 0Q2NdDy_1#¢ and 0R2NadDy#¢0, 1<i<d. It
should be noticed that these geometrical boundary conditions are
generally satisfied by random (stationary) microstructures and al-
low the case of microstructural samples with inclusions inter-
secting the boundary of D to be handled. Each field x+— W;(x),
1 <i<d, is specifically defined as the solution of the following
Laplace problem:

AV (x)=0, Vxe(, (5)
augmented with the Dirichlet boundary conditions

{\Il(x) =0, VxedQnaDy_q,

6
VUx)=1, VxecdQnaDy, ©

and with the Neumann boundary condition
< Vlll(x), n(x) >=0, VxedQ \ (BDZH U 8D2,‘), (7)

where n(x) is the outward pointing unit normal vector at point x.
These solutions are subsequently used to construct vector fields
{x~ e’(x)}fi=1 corresponding to the normalized velocities of the
potential flows described by Eqs. (5)-(7):

VU;(x), VxeQ,

ei(x) = 1<i<d. (8)

1
VW)l
The fields {x+~— ei(x)}?zl represent physically-consistent correla-
tion paths around the heterogeneities, and can thus be used to
appropriately define the diffusion field x+— [H(x)] as

d
[Hx)] =) rex e, Vxe, (9)

i=1

where {)»i>0};1:1 are model parameters controlling the local
anisotropy of the covariance function of {Z(x), x€ }. The form
selected in Eq. (9) facilitates the interpretation of the hyperpa-
rameters {A;}4 | in the local frame defined by the vector fields
{x — ei(x)}?=l. The rationale behind this construction of the dif-
fusion field is that the flows associated with the elementary prob-
lems mimic, in some sense, the flow of the matrix phase while
the composite material is being processed, and generate natural
correlation paths around the heterogeneities.

2.3. Step 2: solving the SPDE

Assume at this stage that o =2, and consider a finite element
discretization of the domain 2. In this context, a Galerkin solution
of the SPDE is sought in the form

N
Bi®) =) nii(x), (10)

i=1

where {1//,—}§V=1 is the finite element basis consisting of piecewise
linear functions and N is the total number of nodes [39]. Note
that the dependence on N of the left-hand side in Eq. (10) is not
made explicit for the sake for notational convenience. The weak
form is then obtained in a standard manner and can be simplified
by applying Green’s first identity with Neumann boundary condi-
tions. More specifically, the discretized form involves the (N x N)
matrices [M] and [G] with entries

M;; = fﬂ Vi)Y ()dx (11)

and

Gy = [ (V0. [HGOIV ;) (12)
for 1 <i, j < N. It can then be shown that the vector of stochastic
nodal values satisfies

n~N(@O,[ZP)), (13)
where the covariance matrix [Z(®)] is given by

[£@] = (k2IM]+[G]) " IMI(2[M] + [G]) " (14)

and superscript underpins the order o = 2. From a computational
standpoint, it is more appropriate to work with the precision
matrix

[@@]=[=®]" = (M + ()M} (M +[Gl),  (15)

since [M] and [G] exhibit high sparsity for piecewise linear ele-
ments. In addition, the computation of [Q] can be speed up by
using the lump mass method to approximate [M]~! as [M]~! ~
[M]~1, where [M] is the diagonal matrix with elements

N
Mi=Y M. 1<i<N. (16)
j=1

A recursion formula on the precision matrix can then be used for
arbitrary orders @ € N_g:

[@] =[P ]iMI [ > M [Q]. (17)
with
[@"] = k*[M] +[C] (18)

and [Q?)] defined by Eq. (15). The use of Eq. (17) enables generat-
ing random fields with various mean-square differentiability prop-
erties and thus offers significant flexibility in terms of stochastic
modeling. It should be noted that the previous derivations can also
be extended to non-integer orders

[Q©)] = [MI"2([M]/2[Q | M]V/2)“ [M]'/2, (19)

for any « > 0, in which case the sparsity of the precision matrix is
lost.

Let [Q@] = [L@]T[L®)] be a matrix factorization of [Q(®)], ob-
tained through, e.g., a Cholesky or a QR decomposition. It follows
that n satisfies the linear system

(L@ln=g g~N(O.[I]), (20)

which can be used to draw samples of the stochastic nodal values
(and thus, of the Gaussian random field {E;(x), x € 2}; see Eq. (10))
from samples of the multidimensional normalized Gaussian
probability measure.

It should be noticed that boundary effects are typically intro-
duced while solving the SPDE on bounded domains. This aspect is
not an issue in a multiscale framework where the stationarity of
the microstructural fields enables the consideration of a sampling
domain that is larger than the domain of interest.

2.4. Step 3: definition of non-Gaussian fields of material properties

We now turn to the definition of the non-Gaussian random field
{P(x), x< 2} of material parameters. As previously indicated, we
consider non-Gaussian random fields that can be expressed as

P(x) =T(E(x),x), VxeQ, (21)

where 7 is a suitable, nonlinear mapping. Information-theoretic
random field models for spatially dependent material properties
can be found in the references listed below Eq. (1). For the
sake of illustration, assume that the elasticity field in the matrix
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Fig. 4. Finite element mesh of the microstructural sample under consideration.

phase (associated with the nonconvex domain) is isotropic almost
surely. In this case, the elasticity random field {C(x),x € 2} can be
written as

C(x) =dk(x)J +2u(x)K, VxeQ (22)

where {k(x), xc Q} and {u(x), x € 2} are the random fields of bulk
and shear moduli, and (J, K) is the standard basis of the set of
isotropic tensors in RY. In this setting, one has P(x) = (k(x), it (X)),
q =2 and one possible choice for the mapping 7, consistent with
information theory [31,41], is to take

k(x) = F; ,52)(FN(0.1)(51 (X)), VxeQ (23)
and
n@ =F;  (Fyon(E2x))), Yxe, (24)

where Fg(q ) is the cumulative distribution function of the Gamma
law with scale and shape parameters given by a and b, and Fy.(g 1)
is the cumulative distribution function of the normalized univari-
ate Gaussian law. In this case, the bulk and shear moduli random
fields are statistically independent. Alternatively, correlated elastic
coefficients can be obtained through the following transformations
[42]:

k@) =F o (Fvo1)(Bi1(®)) (25)
and
1@ =l o (Frion(p 8160+ V1= 02 E2))). (26)

where p denotes the coefficient of correlation between the
stochastic bulk and shear moduli.

3. Numerical application

In this section, the proposed framework is used to model the
(spatially dependent) stochastic linear elastic properties in the ma-
trix phase of a random microstructure. We consider a polydisperse
two-phase microstructure (n =2) in which the positions of the
particles are generated by using the molecular-dynamics-based al-
gorithm detailed in [43]. Note that the considered microstructural
sample does not exhibit inclusions that intersect the boundary of
D. While this characteristics is not critical in the presented appli-
cation where only material randomness is propagated, it should be
emphasized that the proper propagation of both microstructural
and material randomness requires domains with intersecting in-
clusions to be included (this case can easily be handled under the
assumptions listed in Section 2.2). The finite element mesh used
for subsequent simulations is shown in Fig. 4 and contains 34,372
linear triangular elements.

The properties in the domain €2; occupied by the hetero-
geneities are taken deterministic and correspond to glass fibers:

ki = 38.89 [GPa], ;= 29.17 [GPa]. (27)

Below, the non-Gaussian model defined by Eqs. (25)-(26) is se-
lected with p = 0.9, and the hyperparameters (s, S) and (s3, S4)

are determined such that k= E{k(x)} =3.92 GPa, §, =0.2, u =
E{p(x)} = 1.50 GPa and §,, = 0.2, where E denotes mathematical
expectation and 8y is the coefficient of variation of X. The mean
values assigned above correspond to an epoxy matrix.

3.1. Background on computational homogenization

Following the standard approach to computational homogeniza-
tion for linear elastic microstructures, the homogenized stiffness
tensor is defined by using the solution of the following boundary
problem:

div(c) =0, VxeD,
a(x) =CP(x) : e(x),
e(x)=Viu, VxeD,

where € and o are the local strain and stress tensors, double dot
product between tensors denotes double contraction on nearest in-
dices, CD) is the local stiffness tensor in the whole composite do-
main D, and Viu is the symmetrized gradient of the displacement
u. For the sake of illustration, the above boundary value problem
is solved under kinematically uniform boundary conditions:

Vxe dD, (29)

in which E is a macroscopic strain. Following the works from Huet
(see [7], as well as [6]), the response obtained under such bound-
ary conditions provides an upper bound for the overall homoge-
nized tensor and a lower bound can be defined by alternatively
considering statically uniform boundary conditions. Note that the
study of convergence with respect to the characteristic size of D
and boundary conditions, relevant to the issue of scale separation
(see [6] and the references therein), is outside the scope of this
work and can be achieved through a convergence analysis on ap-
propriate statistical measures [44,45].
The microscopic stiffness random field is decomposed as

CP(x) = 19(X)C(x) + 1o, (®)CV(x), VxeD, (30)

where 15 is the indicator function of the set S, {C(x),x € Q} is
the stiffness tensor random field in the nonconvex matrix phase,
and x — C (x) is the deterministic elasticity field in the inclusion
phase, assumed isotropic:

CcO@) =3k I +2uK, VxeQ, (31)

with k; and w given by Eq. (27).
The macroscopic constitutive model then reads as

o = Cyusc : E, (32)

where the overbar denotes the operator of spatial averaging over
Q:

-1
F= 1 /Q fx) dx. (33)

and |Q2| is the measure element of 2. The stochastic overall stiff-
ness tensor is given by:

VxeD, (28)

u(x) =Ex,

Cxusc = CD : A, (34)
where A is the so-called strain localization tensor such that
Ajjie = &;;(EX), (35)

and e(E9) is the strain field solution to the boundary value prob-
lem in Eq. (28), substituting E*9) for E in Eq. (29), with the set
{EkO)}, , of rank-2 tensors defined as

1
E,.(J’.{[) = 5(8”(8]‘5 + 81'58]‘]{) . (36)

In practice, the propagation of material uncertainties across the
scales can be performed by using any stochastic solver. The choice
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Fig. 5.

Fig. 7. Plot of the vector fields x—e'(x) (black lines) and x— e?(x) (red lines) around
an inclusion (seen as a hole). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

of an appropriate solver is generally problem specific and is not
the purpose of the present work: interested readers are referred to
the series of reviews provided in [8] for relevant discussions.

3.2. Application to a polydisperse random microstructure

The first step in the methodology consists in constructing the
vector fields defining the correlation paths within the domain €2
(the inclusions are hence viewed as holes while defining and sam-
pling the random field); see Section 2.2. In the sequel, the two
boundary value problems defined by Eqs. (5)-(7) (for i {1, 2}) are
solved by a standard finite element formulation with 28,496 linear
triangular elements. The solution fields {x — lI’,~(;\t)}i2=1 are shown
in Fig. 5.

The local basis vectors associated with the fields {x — \I/i(x)}iz:1
over the entire microstructural sample are shown in Fig. 6, while
the vector fields around a given inclusion (recall that the latter is
seen as a hole at this stage) can be seen in Fig. 7. Within the pro-
posed approach, these vector fields are used to define the diffusion
field through Eq. (9).

Next, the Gaussian random fields {{E;(x),x Q}}iz:1 are sam-
pled by using the SPDE approach reviewed in Section 2.3, for
o =2, k=50 and various choices of A = (A{,A;). In order to
illustrate the flexibility of the framework, an isotropic corre-
lation Kkernel is considered, with A = (10,10), and anisotropic
correlation kernels are also selected with A = (100,10) and
A = (500, 10). These choices allows us to model and explore the
impact of a larger correlation range along the direction defined by
the vector field x> el(x), oriented from 9D; to 9D, (see Fig. 2).

0

Fig. 8. Plot of one realization of the Gaussian field (left) and estimated correlation
function (right) for a quasi-isotropic kernel: A = (10, 10).

0.75

0.5

0.25

Fig. 9. Plot of one realization of the Gaussian field (left) and estimated correlation
function (right) for a moderately anisotropic kernel: A = (100, 10).
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Fig. 10. Plot of one realization of the Gaussian field (left) and estimated correlation
function (right) for a strongly anisotropic kernel: A = (500, 10).

—A=X=10
14+ —— A1 =100, Ay =10
— A1 =500, Ay =10

— 08}

Fig. 11. Estimated probability functions of the homogenized coefficient Cy;, ob-
tained for different covariance kernels.

The qualitative impact of such choices can be seen in Figs. 8-10,
where realizations and correlation functions (estimated with
20,000 independent samples) of the Gaussian field are shown
for the three retained configurations. Note that the samples are
obtained by using the same realization of the Gaussian random
vector g in Eq. (20), for the sake of comparison, and that the point
x© = (0.5,0.5) serves as the reference point for estimating the
correlation.

The impact of the parametrization in the diffusion field is
clearly observed, and it is seen that the correlation function
with the most pronounced anisotropy incorporates the presence
of the heterogeneities. Finally, the uncertainty propagation was
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Fig. 12. Estimated probability functions of the homogenized coefficient Ciy,
obtained for different covariance kernels.

performed using a Monte Carlo approach with 10,000 independent
realizations of the random fields. The probability density functions
of the homogenized coefficients Cy; and Cy, (in Voigt notation) are
shown in Figs. 11 and 12, respectively.

4. Conclusion

A novel methodology to model and generate spatially depen-
dent material uncertainties in stochastic multiscale analysis was
proposed. More specifically, the approach consists in defining
non-Gaussian random fields through transformations of a filtered
Gaussian white noise. In contrast to standard covariance-based
representations, the proposed strategy can efficiently accommo-
date the case of anisotropic correlation structures on nonconvex
domains. A multiscale application involving a prototypical random
microstructure was presented to illustrate various aspects of the
method. While the probabilistic framework has been demonstrated
on elasticity fields, it can readily be applied to model other spa-
tially varying stochastic properties, such as nonlinear mechanical
properties and conductivity.
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