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a b s t r a c t 

A methodology to model and generate spatially dependent material uncertainties in stochastic multiscale 

analysis is proposed. The approach consists in defining non-Gaussian random fields through transport 

maps acting on Gaussian fields, defined by appropriately filtering a Gaussian white noise. In contrast to 

standard covariance-based representations, the proposed strategy can efficiently accommodate the case 

of fields with anisotropic correlation structures on nonconvex domains. This case is especially relevant to 

computational homogenization involving random microstructures with connected phases. The theoretical 

stochastic framework is first laid down. A numerical application associated with a polydisperse random 

microstructure is then presented to illustrate various aspects of the method. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

The proper identification, modeling and propagation of un-

ertainties is of paramount importance in multiscale frameworks

1,2] where stochasticity is typically induced by morphological

andomness or material uncertainties, or a combination of both.

ccounting for the former type of uncertainties is a classical issue

n homogenization theories for random media [3–5] : when the

eparation of scales can reasonably be invoked, the homogenized

roperty is deterministic, independent of boundary conditions, and

t is referred to as an effective property. For non-separated scales,

owever, the homogenized coefficient presents non-vanishing

andom fluctuations [6] and is referred to as an apparent property,

ollowing the terminology introduced in [7] . The propagation of

eometrical uncertainties has been extensively addressed over

he past two decades, mostly through Monte Carlo simulations or

ollocation methods; see [8] for a state-of-the-art review, as well

s [9–19] for various examples. 

The propagation of material-type uncertainties can be pursued

y using similar frameworks (see, e.g., [20–22] ) and contributions

ttempting to combine various forms of parametric uncertainties

an be found in [23–27] for some specific classes of materials. In

hese works, stochastic material parameters are modeled as ran-

om variables or more rarely, as random fields. In the latter case,
∗ Corresponding author. 
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nite-dimensional representations of random fields are usually in-

roduced through truncated Karhunen–Loève expansions [8] . 

In this paper, we consider spatially varying material proper-

ies defined on complex, nonconvex domains. This case has re-

eived little attention to date and is relevant to the modeling of,

.g. , connected phases in fiber-reinforced composite materials; see

ig. 1 for an illustration. 

The nonconvexity exhibited by the domain (occupied by the

onnected phase) complicates the construction of an appropriate

ovariance kernel, which in turn restricts the use of covariance-

ased approaches to define and generate the random field(s) of

nterest. A possible approach to attack this problem consists in

efining an homeomorphic transformation of the domain to ad-

ress both stochastic modeling and sampling on a much simpler

eometry. Such a strategy is, however, hardly applicable in most

ultiscale setups where the number of topological singularities

heterogeneities) is from moderate to large. In addition, the image

f a covariance function through an homeomorphic transformation

s generally unknown, so that physical insight may be lost while

efining some key properties in the stochastic model. Another way

o proceed is to define covariance functions parametrized with a

eodesic distance [28] . This approach is a very natural way to use

tandard (covariance-based) sampling techniques on complex ge-

metries; see [29] for a recent structural application. This strategy

s nonetheless restricted, by construction, to isotropic-like covari-

nce structures and may be penalized by its computational cost,

specially for three-dimensional microstructures. 

An alternative approach enabling the computational treatment

f microstructural complexity in the definition and sampling of

https://doi.org/10.1016/j.mechrescom.2019.01.008
http://www.ScienceDirect.com
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mailto:johann.guilleminot@duke.edu
https://doi.org/10.1016/j.mechrescom.2019.01.008


40 S. Chu and J. Guilleminot / Mechanics Research Communications 97 (2019) 39–45 

Fig. 1. Example of a random microstructure where the matrix phase constitutes a 

nonconvex domain in R 2 . 

Fig. 2. Boundary indexation for two-dimensional problems. 

Fig. 3. Boundary indexation for three-dimensional problems. 
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spatially dependent stochastic material properties is proposed in

this paper. The methodology consists in defining the random field

of interest through the transformation of an underlying Gaussian

field, obtained by filtering the Gaussian white noise with an ap-

propriate diffusion operator. The central idea is to specifically de-

fine the components of the matrix-valued diffusion coefficient as

velocity fields associated with suitable potential flows, hence natu-

rally capturing the correlation structure around immersed geome-

tries. The rest of this paper is organized as follows. The theoret-

ical framework is first presented in Section 2 . The overview of

the modeling approach is exposed, and methodological ingredi-

ents are next reviewed step by step. An application in computa-

tional homogenization of linear microstructures is finally provided

in Section 3 to illustrate some salient features of the proposed

framework. 

2. Mathematical formulation 

2.1. Overview of the methodology 

Let us consider a random composite made up with n consti-

tutive phases, assumed to exhibit linear or nonlinear elastic be-

haviors. The statistical volume element under consideration is de-

noted by D ⊂ R 

d , with 1 � d � 3 . Let D be decomposed as D = � ∪(
∪ 

n −1 
i =1 

�i 

)
, with �i ∩ i � = j � j = ∅ and � ∩ �i = ∅ for 1 � i, j � n − 1 .

The domains { �i } n −1 
i =1 

correspond to (n − 1) families of hetero-

geneities, embedded in the matrix phase occupying the connected

domain �. Let ∂ D and ∂ � be the boundaries of D and �, respec-

tively. For latter use, the boundary ∂ D is defined as ∂ D = ∪ 

2 d 
i =1 

∂D i ,

where ∂ D j and ∂ D j+1 denote boundaries located on opposite faces,

with j = 2 k − 1 and 1 � k � d; see Figs. 2 and 3 . 

Let { P ( x ), x ∈ �} be the second-order random field of material

parameters defining the stochastic constitutive model for the ma-

trix phase. This random field is defined on a probability space

(�, F , P) and is assumed to take its values in a subset S ⊂ R 

q .

For linear elastic isotropic solids, the random vector P ( x ) ( x be-

ing fixed) can be taken as P ( x ) = (k ( x ) , μ( x )) , where k ( x ) and

μ( x ) are the stochastic bulk and shear moduli at location x , and
 = R > 0 × R > 0 . Given the almost sure boundedness properties typ-

cally exhibited by material parameters, the random field { P ( x ),

 ∈ �} is non-Gaussian. Moreover, { P ( x ), x ∈ �} is assumed to be-

ong to a given subclass of second-order non-Gaussian random

elds admitting the representation 

 ( x ) = T ( �( x ) , x ) , ∀ x ∈ �, (1)

here T is a nonlinear measurable mapping and { �( x ) , x ∈ R 

d }
s a normalized R 

q -valued Gaussian random field with indepen-

ent components. This subclass typically contains mathematically

dmissible random field models exhibiting both reasonable model-

ng flexibility and low-dimensional parameterization. The construc-

ion of a stochastic model for the field of material properties then

nvolves (i) the construction (or identification) of T , and (ii) the

efinition of the Gaussian germ. The latter definition is the central

ssue addressed in this paper and must ensure that the covariance

unction for the non-Gaussian random field { P ( x ), x ∈ �}, induced

y the mapping T , is geometrically consistent. In this context, the

onstruction of an admissible mapping T for selected classes of

inear and nonlinear behaviors is outside the scope of this paper.

nterested readers are referred to [30,31] and [32–35] for the con-

truction of information-theoretic stochastic models in linear and

onlinear elasticity, respectively (see Section 3 for an illustrative

xample). In particular, the stochastic model proposed in [31] can

eadily be combined with the presented approach to model elastic-

ty fields with any material symmetry within the class of models

efined by Eq. (1) (note for the sake of completeness that spectral

xpansions for all elasticity fields can be found in [36] ). 

The approach pursued in this work relies on the interpreta-

ion of Gaussian random fields with Matérn-type correlation struc-

ures as solutions of stochastic partial differential equations. For

tationary fields, the Matérn covariance function τ 
→ C ( τ) is de-

ned as 

( τ) = σ 2 2 

1 −ν

�(ν) 
(κ‖ τ‖ ) 

ν
K ν (κ‖ τ‖ ) , ∀ τ ∈ R 

d , (2)

here κ > 0 and ν > 0 are scale and smoothness parameters, and
2 represents the variance of the field. Gaussian fields with the

ovariance function defined by Eq. (2) are 
 ν − 1 � mean square

ifferentiable, and the classical exponential and squared expo-

ential covariance functions are obtained for ν = 1 / 2 and ν →
 ∞ , respectively. As noticed by Whittle [37,38] (see, e.g., Section

 in [37] ), a Gaussian field { 	( x ) , x ∈ R 

d } exhibiting the covari-

nce function given by Eq. (2) is the stationary solution of the

tochastic partial differential equation (SPDE) 

κ2 − 〈 ∇ , ∇ 〉 )α/ 2 
	( x ) = 

˙ W ( x ) , x ∈ R 

d , (3)

here 〈 · , · 〉 denotes the inner product in R 

d , ∇ is the nabla (del)

perator, α = ν + d/ 2 and { ˙ W ( x ) , x ∈ �} is the spatial normalized

aussian white noise. This result was recently revisited along with

omputational aspects in [39] . In this work, we consider the exten-

ion to anisotropic covariance kernels proposed in [40] and define

ach independent component of { �( x ) , x ∈ R 

d } as the solution of

he SPDE 

κ2 − 〈 ∇ , [ H( x )] ∇ 〉 )α/ 2 
	 j ( x ) = 

˙ W ( x ) , x ∈ �, (4)

here x 
→ [ H ( x )] is a diffusion field with values in the set of

ymmetric positive definite matrices (note that there is no time-

ependency and that the term “diffusion” is preserved here for the

ake of consistency with [39,40] ). The boundary condition associ-

ted with Eq. (4) will be specified later on. The definition of this

iffusion field and the strategy to solve the SPDE are addressed in

rder in Sections 2.2 and 2.3 . 
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.2. Step 1: definition of elementary problems 

In order to define the diffusion field in accordance with mi-

rostructural complexity, we now introduce a set of d elementary

roblems, the solutions of which are denoted by { x 
→ �i ( x ) } d i =1 
.

ssume that ∂� ∩ ∂D 2 i −1 � = ∅ and ∂�∩ ∂D 2 i � = ∅ , 1 � i � d. It

hould be noticed that these geometrical boundary conditions are

enerally satisfied by random (stationary) microstructures and al-

ow the case of microstructural samples with inclusions inter-

ecting the boundary of D to be handled. Each field x 
→ � i ( x ),

 � i � d, is specifically defined as the solution of the following

aplace problem: 

 �( x ) = 0 , ∀ x ∈ �, (5)

ugmented with the Dirichlet boundary conditions 

�( x ) = 0 , ∀ x ∈ ∂� ∩ ∂D 2 i −1 , 

�( x ) = 1 , ∀ x ∈ ∂� ∩ ∂D 2 i , 
(6) 

nd with the Neumann boundary condition 

 ∇ �( x ) , n ( x ) > = 0 , ∀ x ∈ ∂� \ ( ∂D 2 i −1 ∪ ∂D 2 i ) , (7)

here n ( x ) is the outward pointing unit normal vector at point x .

hese solutions are subsequently used to construct vector fields

 x 
→ e i ( x ) } d 
i =1 

corresponding to the normalized velocities of the

otential flows described by Eqs. (5)–(7) : 

 

i ( x ) = 

1 

‖ ∇ �i ( x ) ‖ 

∇ �i ( x ) , ∀ x ∈ �, 1 � i � d . (8)

he fields { x 
→ e i ( x ) } d 
i =1 

represent physically-consistent correla-

ion paths around the heterogeneities, and can thus be used to

ppropriately define the diffusion field x 
→ [ H ( x )] as 

 H( x )] = 

d ∑ 

i =1 

λi e 
i ( x ) � e i ( x ) , ∀ x ∈ �, (9)

here { λi > 0 } d 
i =1 

are model parameters controlling the local

nisotropy of the covariance function of { �( x ), x ∈ �}. The form

elected in Eq. (9) facilitates the interpretation of the hyperpa-

ameters { λi } d i =1 
in the local frame defined by the vector fields

 x 
→ e i ( x ) } d 
i =1 

. The rationale behind this construction of the dif-

usion field is that the flows associated with the elementary prob-

ems mimic, in some sense, the flow of the matrix phase while

he composite material is being processed, and generate natural

orrelation paths around the heterogeneities. 

.3. Step 2: solving the SPDE 

Assume at this stage that α = 2 , and consider a finite element

iscretization of the domain �. In this context, a Galerkin solution

f the SPDE is sought in the form 

j ( x ) = 

N ∑ 

i =1 

ηi ψ i ( x ) , (10)

here { ψ i } N i =1 
is the finite element basis consisting of piecewise

inear functions and N is the total number of nodes [39] . Note

hat the dependence on N of the left-hand side in Eq. (10) is not

ade explicit for the sake for notational convenience. The weak

orm is then obtained in a standard manner and can be simplified

y applying Green’s first identity with Neumann boundary condi-

ions. More specifically, the discretized form involves the ( N × N )

atrices [ M ] and [ G ] with entries 

 i j = 

∫ 
ψ i ( x ) ψ j ( x ) d x (11)
�

nd 

 i j = 

∫ 
�
〈 ∇ ψ i ( x ) , [ H( x )] ∇ ψ j ( x ) 〉 d x (12)

or 1 � i , j � N. It can then be shown that the vector of stochastic

odal values satisfies 

∼ N ( 0 , [�(2) ]) , (13)

here the covariance matrix [ �(2) ] is given by 

�(2) 
]

= 

(
κ2 [ M] + [ G ] 

)−1 
[ M ] 

(
κ2 [ M ] + [ G ] 

)−1 
(14) 

nd superscript underpins the order α = 2 . From a computational

tandpoint, it is more appropriate to work with the precision

atrix 

Q 

(2) 
]

= 

[
�(2) 

]−1 = 

(
κ2 [ M] + [ G ] 

)
[ M ] −1 

(
κ2 [ M ] + [ G ] 

)
, (15)

ince [ M ] and [ G ] exhibit high sparsity for piecewise linear ele-

ents. In addition, the computation of [ Q ] can be speed up by

sing the lump mass method to approximate [ M] −1 as [ M] −1 ≈
 ̃

 M ] −1 , where [ ̃  M ] is the diagonal matrix with elements 

˜ 

 ii = 

N ∑ 

j=1 

M i j , 1 � i � N . (16)

 recursion formula on the precision matrix can then be used for

rbitrary orders α ∈ N > 0 : 

Q 

(α) 
]

= 

[
Q 

(1) 
]
[ M ] 

−1 
[
Q 

(α−2) 
]
[ M ] 

−1 
[
Q 

(1) 
]
, (17) 

ith 

Q 

(1) 
]

= κ2 [ M] + [ G ] (18)

nd [ Q 

(2) ] defined by Eq. (15) . The use of Eq. (17) enables generat-

ng random fields with various mean-square differentiability prop-

rties and thus offers significant flexibility in terms of stochastic

odeling. It should be noted that the previous derivations can also

e extended to non-integer orders 

Q 

(α) 
]

= [ M ] 1 / 2 
(
[ M ] −1 / 2 [ Q 

(1) ][ M ] −1 / 2 
)α

[ M ] 1 / 2 , (19)

or any α � 0, in which case the sparsity of the precision matrix is

ost. 

Let [ Q 

(α) ] = [ L (α) ] T [ L (α) ] be a matrix factorization of [ Q 

( α) ], ob-

ained through, e.g. , a Cholesky or a QR decomposition. It follows

hat η satisfies the linear system 

 L (α) ] η = g , g ∼ N ( 0 , [ I N ]) , (20)

hich can be used to draw samples of the stochastic nodal values

and thus, of the Gaussian random field { 	j ( x ), x ∈ �}; see Eq. (10) )

rom samples of the multidimensional normalized Gaussian

robability measure. 

It should be noticed that boundary effects are typically intro-

uced while solving the SPDE on bounded domains. This aspect is

ot an issue in a multiscale framework where the stationarity of

he microstructural fields enables the consideration of a sampling

omain that is larger than the domain of interest. 

.4. Step 3: definition of non-Gaussian fields of material properties 

We now turn to the definition of the non-Gaussian random field

 P ( x ), x ∈ �} of material parameters. As previously indicated, we

onsider non-Gaussian random fields that can be expressed as 

 ( x ) = T ( �( x ) , x ) , ∀ x ∈ �, (21)

here T is a suitable, nonlinear mapping. Information-theoretic

andom field models for spatially dependent material properties

an be found in the references listed below Eq. (1) . For the

ake of illustration, assume that the elasticity field in the matrix
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Fig. 4. Finite element mesh of the microstructural sample under consideration. 
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phase (associated with the nonconvex domain) is isotropic almost

surely. In this case, the elasticity random field { C ( x ) , x ∈ �} can be

written as 

C ( x ) = dk ( x ) J + 2 μ( x ) K , ∀ x ∈ � (22)

where { k ( x ), x ∈ �} and { μ( x ), x ∈ �} are the random fields of bulk

and shear moduli, and (J , K ) is the standard basis of the set of

isotropic tensors in R 

d . In this setting, one has P ( x ) = (k ( x ) , μ( x )) ,

q = 2 and one possible choice for the mapping T , consistent with

information theory [31,41] , is to take 

k ( x ) = F −1 
G(s 1 ,s 2 ) 

(
F N (0 , 1) (	1 ( x )) 

)
, ∀ x ∈ � (23)

and 

μ( x ) = F −1 
G(s 3 ,s 4 ) 

(
F N (0 , 1) (	2 ( x )) 

)
, ∀ x ∈ �, (24)

where F G(a,b) is the cumulative distribution function of the Gamma

law with scale and shape parameters given by a and b , and F N (0 , 1)

is the cumulative distribution function of the normalized univari-

ate Gaussian law. In this case, the bulk and shear moduli random

fields are statistically independent. Alternatively, correlated elastic

coefficients can be obtained through the following transformations

[42] : 

k ( x ) = F −1 
G(s 1 ,s 2 ) 

(
F N (0 , 1) (	1 ( x )) 

)
(25)

and 

μ( x ) = F −1 
G(s 3 ,s 4 ) 

(
F N (0 , 1) (ρ 	1 ( x ) + 

√ 

1 − ρ2 	2 ( x )) 
)
, (26)

where ρ denotes the coefficient of correlation between the

stochastic bulk and shear moduli. 

3. Numerical application 

In this section, the proposed framework is used to model the

(spatially dependent) stochastic linear elastic properties in the ma-

trix phase of a random microstructure. We consider a polydisperse

two-phase microstructure ( n = 2 ) in which the positions of the

particles are generated by using the molecular-dynamics-based al-

gorithm detailed in [43] . Note that the considered microstructural

sample does not exhibit inclusions that intersect the boundary of

D . While this characteristics is not critical in the presented appli-

cation where only material randomness is propagated, it should be

emphasized that the proper propagation of both microstructural

and material randomness requires domains with intersecting in-

clusions to be included (this case can easily be handled under the

assumptions listed in Section 2.2 ). The finite element mesh used

for subsequent simulations is shown in Fig. 4 and contains 34,372

linear triangular elements. 

The properties in the domain �1 occupied by the hetero-

geneities are taken deterministic and correspond to glass fibers:

k 1 = 38 . 89 [GPa] , μ1 = 29 . 17 [GPa] . (27)

Below, the non-Gaussian model defined by Eqs. (25) –(26) is se-

lected with ρ = 0 . 9 , and the hyperparameters ( s , s ) and ( s , s )
1 2 3 4 
re determined such that k = E{ k ( x ) } = 3 . 92 GPa, δk = 0 . 2 , μ =
{ μ( x ) } = 1 . 50 GPa and δμ = 0 . 2 , where E denotes mathematical

xpectation and δX is the coefficient of variation of X . The mean

alues assigned above correspond to an epoxy matrix. 

.1. Background on computational homogenization 

Following the standard approach to computational homogeniza-

ion for linear elastic microstructures, the homogenized stiffness

ensor is defined by using the solution of the following boundary

roblem: 
 

 

 

 

 

div ( σ) = 0 , ∀ x ∈ D, 

σ( x ) = C 

(D ) ( x ) : ε ( x ) , ∀ x ∈ D, 

ε ( x ) = ∇ 

S 
x u , ∀ x ∈ D, 

(28)

here ε and σ are the local strain and stress tensors, double dot

roduct between tensors denotes double contraction on nearest in-

ices, C 

(D ) is the local stiffness tensor in the whole composite do-

ain D , and ∇ 

S 
x u is the symmetrized gradient of the displacement

 . For the sake of illustration, the above boundary value problem

s solved under kinematically uniform boundary conditions: 

 ( x ) = E x , ∀ x ∈ ∂D, (29)

n which E is a macroscopic strain. Following the works from Huet

see [7] , as well as [6] ), the response obtained under such bound-

ry conditions provides an upper bound for the overall homoge-

ized tensor and a lower bound can be defined by alternatively

onsidering statically uniform boundary conditions. Note that the

tudy of convergence with respect to the characteristic size of D

nd boundary conditions, relevant to the issue of scale separation

see [6] and the references therein), is outside the scope of this

ork and can be achieved through a convergence analysis on ap-

ropriate statistical measures [44,45] . 

The microscopic stiffness random field is decomposed as 

 

(D ) ( x ) = 1 �( x ) C ( x ) + 1 �1 
( x ) C 

(1) ( x ) , ∀ x ∈ D, (30)

here 1 S is the indicator function of the set S, { C ( x ) , x ∈ �} is

he stiffness tensor random field in the nonconvex matrix phase,

nd x 
→ C 

(1) ( x ) is the deterministic elasticity field in the inclusion

hase, assumed isotropic: 

 

(1) ( x ) = 3 k 1 J + 2 μ1 K , ∀ x ∈ �1 , (31)

ith k 1 and μ1 given by Eq. (27) . 

The macroscopic constitutive model then reads as 

= ̃

 C KUBC : E , (32)

here the overbar denotes the operator of spatial averaging over

: 

f = 

1 

| �| 
∫ 
�

f ( x ) d x , (33)

nd | �| is the measure element of �. The stochastic overall stiff-

ess tensor is given by: 

 

 KUBC = C 

(D ) : A , (34)

here A is the so-called strain localization tensor such that 

 i jk� = ε i j ( E 

(k� ) ) , (35)

nd ε ( E 

( k � ) ) is the strain field solution to the boundary value prob-

em in Eq. (28) , substituting E 

( k � ) for E in Eq. (29) , with the set

 E 

( k � ) } k , � of rank-2 tensors defined as 

 

(k� ) 
i j 

= 

1 

2 

(
δik δ j� + δi� δ jk 

)
. (36)

n practice, the propagation of material uncertainties across the

cales can be performed by using any stochastic solver. The choice
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Fig. 5. Plot of the vector fields x 
→ �1 ( x ) (left) and x 
→ �2 ( x ) (right). 

Fig. 6. Plot of the vector fields x 
→ e 1 ( x ) (left) and x 
→ e 2 ( x ) (right). 

Fig. 7. Plot of the vector fields x 
→ e 1 ( x ) (black lines) and x 
→ e 2 ( x ) (red lines) around 

an inclusion (seen as a hole). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Plot of one realization of the Gaussian field (left) and estimated correlation 

function (right) for a quasi-isotropic kernel: λ = (10 , 10) . 

Fig. 9. Plot of one realization of the Gaussian field (left) and estimated correlation 

function (right) for a moderately anisotropic kernel: λ = (100 , 10) . 

Fig. 10. Plot of one realization of the Gaussian field (left) and estimated correlation 

function (right) for a strongly anisotropic kernel: λ = (500 , 10) . 

Fig. 11. Estimated probability functions of the homogenized coefficient C 11 , ob- 

tained for different covariance kernels. 

T  

w  

2  

f  

o  

v  

x  

c

 

c  

w  

o  
f an appropriate solver is generally problem specific and is not

he purpose of the present work: interested readers are referred to

he series of reviews provided in [8] for relevant discussions. 

.2. Application to a polydisperse random microstructure 

The first step in the methodology consists in constructing the

ector fields defining the correlation paths within the domain �

the inclusions are hence viewed as holes while defining and sam-

ling the random field); see Section 2.2 . In the sequel, the two

oundary value problems defined by Eqs. (5) –(7) (for i ∈ {1, 2}) are

olved by a standard finite element formulation with 28,496 linear

riangular elements. The solution fields { x 
→ �i ( x ) } 2 i =1 
are shown

n Fig. 5 . 

The local basis vectors associated with the fields { x 
→ �i ( x ) } 2 i =1 
ver the entire microstructural sample are shown in Fig. 6 , while

he vector fields around a given inclusion (recall that the latter is

een as a hole at this stage) can be seen in Fig. 7 . Within the pro-

osed approach, these vector fields are used to define the diffusion

eld through Eq. (9) . 

Next, the Gaussian random fields {{ 	i ( x ) , x ∈ �}} 2 
i =1 

are sam-

led by using the SPDE approach reviewed in Section 2.3 , for

= 2 , κ = 50 and various choices of λ = (λ1 , λ2 ) . In order to

llustrate the flexibility of the framework, an isotropic corre-

ation kernel is considered, with λ = (10 , 10) , and anisotropic

orrelation kernels are also selected with λ = (100 , 10) and

= (500 , 10) . These choices allows us to model and explore the

mpact of a larger correlation range along the direction defined by

he vector field x 
→ e 1 ( x ), oriented from ∂D to ∂D (see Fig. 2 ).
1 2 
he qualitative impact of such choices can be seen in Figs. 8–10 ,

here realizations and correlation functions (estimated with

0,0 0 0 independent samples) of the Gaussian field are shown

or the three retained configurations. Note that the samples are

btained by using the same realization of the Gaussian random

ector g in Eq. (20) , for the sake of comparison, and that the point

 

(0) = (0 . 5 , 0 . 5) serves as the reference point for estimating the

orrelation. 

The impact of the parametrization in the diffusion field is

learly observed, and it is seen that the correlation function

ith the most pronounced anisotropy incorporates the presence

f the heterogeneities. Finally, the uncertainty propagation was
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Fig. 12. Estimated probability functions of the homogenized coefficient C 12 , 

obtained for different covariance kernels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performed using a Monte Carlo approach with 10,0 0 0 independent

realizations of the random fields. The probability density functions

of the homogenized coefficients C 11 and C 12 (in Voigt notation) are

shown in Figs. 11 and 12 , respectively. 

4. Conclusion 

A novel methodology to model and generate spatially depen-

dent material uncertainties in stochastic multiscale analysis was

proposed. More specifically, the approach consists in defining

non-Gaussian random fields through transformations of a filtered

Gaussian white noise. In contrast to standard covariance-based

representations, the proposed strategy can efficiently accommo-

date the case of anisotropic correlation structures on nonconvex

domains. A multiscale application involving a prototypical random

microstructure was presented to illustrate various aspects of the

method. While the probabilistic framework has been demonstrated

on elasticity fields, it can readily be applied to model other spa-

tially varying stochastic properties, such as nonlinear mechanical

properties and conductivity. 
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