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Abstract

A methodology allowing for the algorithmic integration of topologically dependent random fields of material parameters in
topology optimization processes is presented. A detailed example is provided to illustrate the methodology step by step.
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1 Introduction

Engineering structures processed by additive manufactur-
ing (AM) techniques are often designed through topol-
ogy optimization. While AM has proven very effective
in producing parts with complex shapes, it is known to
introduce a large scatter at the microstructural level, result-
ing in high levels of uncertainties that eventually propa-
gate across scales (see, e.g., Hu and Mahadevan (2017)).
This variability remains a major obstacle to the widespread
adoption of AM-produced parts and has fostered the devel-
opment of topology optimization under uncertainty in recent
years. Frameworks currently available involve the definition
of material uncertainties on the initial geometry, typically a
simple (e.g., rectangular) domain (Chen et al. 2010; Lazarov
et al. 2012). This definition may, however, become less
relevant as the design iterations go on. More specifically,
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material uncertainties that would be generated at a given
iteration exhibit preferred correlation paths (along existing
arches, for example) that cannot be accounted for if the def-
inition of the random field is not updated on the fly. This
updating turns out to be very challenging for commonly
employed techniques (such as Karhunen-Lo¢ve expansions)
that require the covariance operator to be defined a priori. In
particular, the fact that the underlying geometry is iteration
dependent (and thus, unknown in advance) and generally
nonconvex constitutes a severe obstacle.

This note aims to advance a computational approach
enabling the integration of topologically dependent fields
of material uncertainties within topology optimization. The
topology optimization framework is introduced in Section 2.
The stochastic approach is presented in Section 3. An
illustrative example is finally provided in Section 4.

2 Framework for topology optimization
We propose to proceed following a two-step approach:

— first, deterministic topology optimization with no
material uncertainties is performed. The purpose of this
initial step is to obtain a prior optimized configuration,
that meets the typical manufacturability constraints
(e.g., minimum length scale).

— second, topology optimization integrating random
fields of material properties is performed to compute
a posterior optimized configuration accounting for the
uncertainties that would be generated by the AM
technique, should the part be processed at the current
iteration of the optimization process.
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Without loss of generality, the topology optimization
problem is defined as

Hgnfo(fb) st.fi(g) =0, 1<i<ne, ey

where fp and f; denote the objective function and the
i'" constraint, ¢ = {¢i}7il is the vector of design
variables defining the topology over the design domain,
D C R?, which is typically discretized with a dense
mesh of finite elements {D,}.. The goal then is to identify
a combination of solid/void elements (a topology) that
minimizes the objective function. With upwards of a
few thousands design variables, this identification rapidly
becomes computationally infeasible if performed in discrete
space. A transformation to continuous space that allows
for the use of efficient gradient-based (GB) optimizers
is therefore essential for solving topology optimization
problems with a reasonable computational cost (Sigmund
2011). One way to arrive at such a transformation is to
combine the density approach (see, e.g., Sigmund and
Maute (2013) for a review) with the Simplified Isotropic
Material with Penalization (SIMP) method (Bendsge 1989;
Zhou and Rozvany 1991), where the modulus of element
e, E,, is written as: E, = Epin + pL(E — Emin), where
0 < Epin < 1, po € [0,1] is the element “density”, p
the penalization parameter and E the modulus of the base
material. The cases p, = 0 and p, = 1 correspond to
void and solid elements, respectively. To avoid numerical
instabilities and to impose a minimum length-scale of
size 2r, on the developed features, we use the Heaviside
projection method (Guest et al. 2004) and write p, as

pe(@P) =1 —exp(—=Bie(d)) + pe(d) exp(—p), @

where f is the shape parameter in the projection and . is
defined as pi (@) = (3,2 diwd)/ (X2, we), with wf =
max{0, 7, — llx. — x¢ 1}, x¢; the coordinate of the design
variable ¢; and x, the coordinate of the centroid of element
e.

For the sake of illustration in this note, we focus on
weight minimization under a minimum stiffness constraint,
that is, fo = f p P(x)dD, where the density field p is
a piecewise function with p(x € D,) = p.(¢). The
constraints take the form f; = ¢; — 1 and f,+i = —¢;
for 1 < i < ng, and f2n¢+1 = fTu((b) — C*, where f
and u are respectively the applied force and displacement
vectors, and C* is the required minimum stiffness. In
the presence of uncertainty, the term f Tu in fo, s+1 18
replaced by E{fTu} + Ko{fTu}, where K > 0 is a
parameter balancing the contributions, and E and o denote
the operators of mathematical expectation and standard
deviation, respectively (see, e.g., Asadpoure et al. 2011;
Tootkaboni et al. 2012).
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3 Defining random fields on nonconvex
domains

In this section, we describe the methodology enabling
the generation of samples of material properties at a
given iteration of the optimization process. To this aim,
let Q" C D be the indexing domain for the random
field of interest at a specific iteration. Without loss of
generality, we consider the case d = 2 and a domain D =
[0, L1] x [0, Ly] hereinafter. The process of performing
topology optimization under uncertainty entails modeling
and sampling a random field of material parameters denoted
by {P(x),x € i) defined on a probability space
(®, F,P) and with values in S C RP. For the particular
case where either the objective or the constraints involve
the compliance, the aforementioned random field typically
gathers some stochastic elastic parameters (such as the
Young’s modulus). Since these parameters take values in
(semi-)bounded sets, the random field is non-Gaussian (see,
e.g., Soize 2006; Grigoriu 2010) and is presently modeled
as a translation random field:

P(x)=T(E(x),x), VxeQier 3)

where T is a nonlinear transport map and {E(x),x €
R?} is a normalized R?-valued Gaussian random field
with independent components. The spatial dependence of T
allows for the introduction of spatially varying (e.g., mean
and/or variance) parameters for the non-Gaussian field,
if necessary. Methodologies to construct optimal transport
maps for non-Gaussian fields can be found in Soize (2006)
and Staber and Guilleminot (2017) for linear constitutive
models. Below, we focus on the geometrically consistent
definition and random generation of the reference Gaussian
field.

The approach pursued in this work relies on the fact that a
Gaussian random field exhibiting a Matérn-type correlation
function can be interpreted as the stationary solution of the
following stochastic partial differential equation (SPDE):
(2= (V,V)*B(x) = W), x e RY, where «
is a parameter, (-, -) is the Euclidean inner product, V is
the nabla operator and W(x),x € Q) is the spatial
normalized Gaussian white noise (Whittle 1954; Lindgren
et al. 2011). The exponent « is a key modeling parameter
that governs the mean square differentiability of the solution
(and thus, the smoothness of realizations, for instance). The
anisotropic version of the SPDE reads as

5 a2 _ .
(= (V. [HEIV)) 80 = W), 0

where x +— [H (x)] is called the diffusion field (Fuglstad
et al. 2015).

The central idea in this note is to define the diffusion field
on the fly, at every iteration of the optimization algorithm.
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Fig.1 Geometry and boundary

conditions for the cantilever -

beam (left) and its deterministic £

optimized design (right) 16
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Design domain D

To this aim, a set of d elementary problems is introduced by
considering the Laplace problem

AU(x) =0, VxeQlr, (5)

with boundary conditions written in operator form as
BO{Ww}, with 1 < i < d. The scalar solution to (5)
satisfying the boundary condition B {W} is denoted by
x — W;(x). The definition of B®¥) is problem-specific
and must ensure that the gradient of the solution fields
represent privileged directions over Q' (see below). Let
9D and Q" be the boundaries of domains D and Q"
and consider the decomposition D = U;‘.ZIBD j» where
oD = {x € D|x; = 0},0D, = {x € D|x; = L1},
aD3 = {x € Dlxy = 0} and 0Dy = {x € D|x = Lz}.
Upon assuming that dQ1" N aD; # P forl < j < 4,
the boundary condition operator BY) can be defined, for
instance, by imposing W(x) = 0 on AQier N 9Dy,
W(x) = 1 on dQ" N 3Dy, and (V¥ (x), n(x)) = 0 on
gQiter \ (3D3;—1 U3 Dy;), with n(x) the outward pointing
unit normal vector at point x. The solutions of the Laplace
problems are next used to construct vector fields {x >
e (x)}f.lz1 corresponding to the normalized velocities of the
potential flows:

e'(x) = V¥ (x)/IIV¥ @), VxeQ"™. (©6)

In more general situations where not all boundaries of D
intersect with Q'°, a possible strategy consists of defining
one vector field, say x +— e!(x), by solving a Laplace
problem under a specifically defined operator B!, and to
construct the field x — e*(x) through an orthogonality
condition, (e!(x), e® (x)) = 0. The vector fields {x >
e (x)}f:l thus obtained represent natural correlation paths

on the geometry, suggesting to define the diffusion matrix
[H(x)] as

[Hx)]= ) re@x@e(x), VxeQ, 7
1<i<d

where the parameters {A; > O}l‘.i=1 control anisotropy in
terms of correlation ranges. It should be noticed that these
parameters can be made spatially dependent to increase
modeling flexibility. Note that standard models (defined on
the initial configuration) can trivially be recovered using
e; (x) = §;;, with § the Kronecker delta.

As proposed in Lindgren et al. (2011), the Gaussian
solution to the SPDE defined on a bounded domain
and subjected to Neumann boundary conditions can be
obtained, for « = 2, by using a Galerkin method (note
that the solution for arbitrary integer orders N>, can be
obtained by a recursion formula). The approximation reads
as E(x) = vazl nivi(x), where {wi}f\;l is the finite
element basis consisting of piecewise linear functions. The
discretized form involves the (N x N) matrices [M] and
[G] with entries M;; = [gier ¥i(¥)¥j(x)dx and G;; =
Jaer{ V), [H )V (x))dx for 1 < i.j < N. It
can be shown (see Lindgren et al. 2011) that the vector
of stochastic nodal values satisfies n ~ AN(0, [X]). The
random vector » can then be defined as the solution of the
linear system [L]y = g, where g ~ N(0, [Iy]) and the
upper triangular [L] is such that the sparse precision matrix
reads as [Q] = [L]"[L].

4 Application

In order to illustrate the proposed framework, we now
consider topology optimization of a cantilever beam (see

Fig.2 Deterministic topology 8
optimization: PDF of the density m@zer = i?;
at different iterations (left) and 6 :;z — =6

prior configuration at iter = 56
(right)
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Fig.3 Left: x — W;(x). Right:
x> el(x)

Py
SN

Fig.4 One sample of the
Young’s modulus random field
obtained for the isotropic (left)
and anisotropic (right) cases

Fig.5 Posterior configurations
obtained for the isotropic (left)
and anisotropic (right) cases for
K=3

Fig.6 Difference between the

optimized solutions generated

with locally isotropic (left) and
anisotropic (right) kernels and

the deterministic solution
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Fig.1 for the geometry of the design domain and the
boundary conditions). We set C* = 1600P/E L, discretize
the domain into 80 x 50 quad elements and choose
rm = h\/z/Z, with & size of the finite elements. The
modified method of moving asymptotes (Svanberg 1987)
is used as the GB optimizer with p and B suggested in
Guest et al. (2011). The deterministic optimized solution
is shown in Fig.1. In the presence of uncertainty in
material property, the statistics of interest and their
sensitivities are computed by the Monte Carlo and adjoint
methods.

Following the first step of the methodology, the
probability density function of the density field along
design iterations is used to track early stages where a
fully connected topology (characterized by pronounced bi-
modality) is forming, and the topology obtained after 56
iterations is selected (see Fig. 2).

For the sake of illustration, we consider the case of
a stochastic Young’s modulus such that E(x) follows a
Gamma distribution, E(x) ~ G(k,60), for any x fixed
in Q" with k and 6 the scale and shape parameters of
the distribution. These parameters are chosen such that the
mean and coefficient of variation of the Young’s modulus
are given by E = 1 and g = 0.2. The solution to an
elementary problem is shown, together with its gradient, in
Fig. 3.

The fields {x +— e (x)}l.zzl thus obtained are next
used to construct the diffusion field given by (7).
In order to demonstrate the impact of the correlation
structure and in particular, the influence of anisotropy,
two configurations are tested: Ay = A, = 0.2 (isotropic
structure) and (A1,A2) = (0.2,0.0001) (anisotropic
structure). The parameter « is set to 0.15. Samples
obtained for these configurations are shown in Fig. 4, which
qualitatively illustrates the impact of the diffusion on the
realizations.

It should be noted that the same realization of g was used
for both the isotropic and anisotropic case, for comparison
purposes. The final posterior topologies obtained starting
from the prior topology in Fig.2 and the parameters given
above are shown in Fig. 5.

The impact of an anisotropic correlation structure, likely
to be induced by the directional preferences of AM, can be
noticed (see Fig. 6).

5 Conclusion

A methodology allowing for the robust integration of topo-
logically dependent material uncertainties within topology
optimization was presented. The impact on the optimized
configuration is shown to be significant, even for contained
fluctuations in elastic properties.
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