
Math Geosci (2019) 51:187–207
https://doi.org/10.1007/s11004-018-9765-7

Quantification of Optimal Choices of Parameters in
Lognormal Variational Data Assimilation and Their
Chaotic Behavior

Steven J. Fletcher1 · Anton J. Kliewer1 ·
Andrew S. Jones1

Received: 19 July 2017 / Accepted: 27 August 2018 / Published online: 11 September 2018
© International Association for Mathematical Geosciences 2018

Abstract An important property of variational-based data assimilation is the ability
to define a functional formulation such that the minimum of that functional can be any
state that is desired. Thus, it is possible to define cost functions such that the minimum
of the background error component is the mean, median or the mode of a multivariate
lognormal distribution, where, unlike the multivariate Gaussian distributions, these
statistics are not equivalent. Therefore, for lognormal distributions it is shown here
that there are regions where each one of these three statistics are optimal at minimizing
the errors, given estimates of an a priori state. Also, as part of this work, a chaotic
signal was detected with respect to the first guess to the Newton–Raphson solver that
affect the accuracy of the solution to several decimal places.

Keywords Lognormal variational data assimilation · Mode · Median · Mean ·
Newton–Raphson · Newton fractals

1 Introduction

Data assimilation (DA) plays an important role in how operational NumericalWeather
andOcean Prediction (NWP) and (NOP) centers produce their forecasts (Lorenc 1986;
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Lorenc et al. 2000; Rabier et al. 2000; Rosmond and Xu 2006; Gauthier et al. 2007;
Rawlins et al. 2007; Kleist et al. 2009). At the core of the data assimilation system is
the minimization of the posterior errors. As the errors are treated as random variables,
they must have a probability density function (PDF) or distribution assigned to them
(Lorenc 1986; Fletcher 2017). Currently, in the NWP and NOP centers the prior errors
are assumed to be multivariate Gaussian distributed.

Gaussian-based variational (VAR) DA systems can be derived from either a func-
tional formulation or from a Bayesian-based approach; see Fletcher (2017) for a
detailed derivations of both approaches. The Bayesian-based approach involves PDFs
and is designed to find the maximum a posteriori (MAP). Note the likelihood is
p (y | x), while VAR finds the mode of p (x | y). Also note that Bayesian inference
tries to find an accurate approximation to the posterior. The mode is just one (and for
high-dimensional systems an extremely unlikely) state, but it is possible to also find
the mean, or a median, state of the posterior distribution using Bayes’s theorem.

The functional approaches can be designed to have whatever form of statistic to
minimize the analysis (or posterior) errors that is desired. These approaches are not
equivalent to finding the descriptive statistics of the posterior distribution except for
the modal approach. An important feature of the multivariate Gaussian distribution
is that the three descriptive statistics are the same; however, this is not the case for
non-symmetric distributions. Both the Bayesian and functional formulations for the
minimization of the errors result in a cost function that has to be minimized. Two
of the most commonly used schemes in operational NWP to find the minimums are
conjugate-gradient, and limited memory Newton–Raphson, based algorithms.

During the last decade or so there has been work to develop VAR DA systems
with probabilistic models for positive-valued random variables that are based upon
lognormal PDFs. The first development was for lognormal observational errors, which
is based upon Cohn (1997), with Gaussian background errors (Fletcher and Zupanski
2006a). The next stage of development was to combine a Gaussian PDF with a log-
normal PDF to form a mixed PDF and hence a mixed distribution based DA system
(Fletcher and Zupanski 2006b). In Fletcher and Zupanski (2006b) the employment of
this mixed distribution was for observational errors. The extension to background
errors was presented in Fletcher and Zupanski (2007) and demonstrated in a 3-
dimensional VAR full field DA system with the Lorenz 63 model (Lorenz 1963),
where full field is referring to solving for a value for the whole of a dynamical field, or
parameter, instead of finding a small increment to the field, where the latter approach
is referred to as incremental VAR.

There is also a transform approach, in which lognormally distributed random
variables are transformed into Gaussian distributed random variables by taking the
logarithm of the lognormal random variable. This is equivalent to finding the median
of the posterior distribution as shown in Fletcher and Zupanski (2007).

The derivation for a mixed distribution-based 4DVARDA scheme was presented in
Fletcher (2010), where the formulation was also tested with the Lorenz 63 model. In
bothFletcher andZupanski (2007) andFletcher (2010) themixeddistribution approach
was compared against the transform technique. The reason for this is that the variational
DA schemes in Fletcher and Zupanski (2006a, b, 2007) and Fletcher (2010) are based
upon a MAP approach. Finally, the incremental versions of the mixed distribution
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3-dimensional and 4-dimensional VARs were introduced in Fletcher and Jones (2014)
and compared against a Gaussian configuration with the Lorenz 63model. A summary
of all of the papers just mentioned can be found in Chapter 21 of Fletcher (2017).

The reason for developing non-Gaussian based systems is in part due to what are
referred to as “dropouts”. A dropout is where an operational data assimilation produces
a large negative increment for positive definite fields, such that when the increment
is added back to the background state, the resulting new state is negative and thus
unphysical, which then causes the numerical model to become unstable. An example
of a dropout can be found in Song et al. (2012) with a biochemical ocean variational
data assimilation system where the Gaussian approach from time to time resulted in
an unphysical analysis state.

Recently, there has been work to implement the mixed Gaussian-lognormal
approach, with synthetic and real brightness temperature data, into the Cooperative
Institute for Research in the Atmosphere’s (CIRA) 1-dimensional optimal estimator
(C1DOE) (Kliewer et al. 2016), which is based upon a 1-dimensional VAR formula-
tion and uses the Newton–Raphson algorithm. One-dimensional VAR requires an a
priori state, and because the synthetic observations were created from a known state,
the estimate for the a priori state was chosen to be a randomly perturbed value from
the known state. However, when the transform approach was compared against the
MAP approach, it was seen that the MAP approach was not optimal at minimizing the
errors, even though the problem had been set up so that it was believed that it would be.

Given the constraint of not being able to outperform the median approach as
expected by theory, an approximation to C1DOE for the univariate background and
observational error case was developed for test purposes. This simple approximation
led to the findings that are presented here. It appears that there are regions of values
for the a priori state such that each of the three descriptive statistics, mean, mode
or median will minimize lognormally distributed background errors. Thus, given the
general definitions for the three descriptive statistics of a lognormal distribution, it is
possible to rearrange them with respect to the three parameters: the a priori state, xap,
the background error variance, σ 2

b , and the observational error variance, σ
2
o , such that

the minimums of their associated cost function are at the true state and the regions
referred to above can be derived for the three statistics for both the perfect and imper-
fect observation cases.

However, while undertaking the experiments described, it became apparent that
there was a sensitivity to the first guess to the Newton–Raphson solver that affected
the accuracy of the final solution. This sensitivity was investigated through creating
what are referred to as error planes, where the error refers to the differences between
the preprescribed true state and the converged solution. When the errors are plotted
against the first guess, as well as against different magnitudes of measurement error,
the resulting plots appear to indicate a chaotic behavior to the sensitivity to the first
guess. Upon further investigation, it appears that the chaotic structure is a form of
Newton fractal.

Given this brief description of the properties of the lognormal based VAR, the
remainder of this paper is as follows: Sect. 2 contains a brief overview of the Bayesian
formulation for theGaussian errors alongwith introducing lognormal based variational
DA followed by the extension to the lognormal background errors combined with
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Gaussian observation errors case. The cost functions for minimizing the background
errors with respect to the lognormal median and mean are also introduced. In Sect. 3
the cost function for the one-dimensional approximation to C1DOE that minimizes
the background errors by the mean, median and mode are introduced, and the optimal
regions are presented with respect to the different parameters. The initial sensitivity
to the first guess to the Newton–Raphson solver is also presented here.

In Sect. 4 the chaotic structures that have been discovered for the simple univariate
case are presented, and it is shown that a chaotic behavior is present when any of the
three parameters are optimized given the other two parameters and the measurement
error. Upon re-examining the perfect observation case it is shown that there are also
Newton fractals underlying the sensitivity of the first guess to the Newton–Raphson
solver here as well, but that the sensitivity can result in a loss of up to seven figures of
accuracy at every decimal place!

In Sect. 5 the sensitivity of how close to the optimal value the parameters have to
be before the chaos starts to dominate the accuracy of the solution is presented. The
paper is finished with conclusions, along with thoughts for the implications of these
findings for operational data assimilation systems.

2 Variational Data Assimilation

In this section an overview of variational data assimilation for the Gaussian, lognormal
and mixed Gaussian-lognormal distributions is presented for the Bayesian approach,
along with a brief explanation of the functional method.

2.1 Gaussian Based Variational Data Assimilation

As mentioned in the Introduction, there are two different approaches to derive the
associated cost function for the variational data assimilation systems. The starting
point for both the Bayesian and the functional approach is the definition of the errors.
If the errors are assumed to be multivariate Gaussian distributed, then the background
and observational errors are defined as

εb ≡ x − xap ∼ MG (0,B) , εo ≡ y − h (x) ∼ MG (0,R) , (1)

where εb represents the background error, which is that associated with the numerical
model’s current estimate of the true state, xt , given by x and where xap is an a priori
estimate of the true state. The observation error, εo, comprises two types of error:
the measurement errors associated with the devices used to take the observation y,
and the representative error, which is associated with both the observation operator,
h (x), which is the approximation of the atmospheric or oceanic variable to the indi-
rect observation of the atmospheric or oceanic variable, not an exact match for the
observation, and the mismatch of dynamical scales between what the true observation
is observing and those that the numerical model can resolve due to its grid resolution.
The B andRmatrices are the background and observational error covariance matrices
respectively, and are defined by
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B ≡ E

[(
εb − E

[
εb

])2]
, and R ≡ E

[(
εo − E

[
εo

])2]
, (2)

where E represents the expectation operator.
One approach to minimize the errors is to apply Bayes’s theorem (Lorenc 1986;

Fletcher 2017), which is given by

P (A | B) ∝ P (B | A) P(A), (3)

where P (·) represents a probability density function, A and B are events that the
probabilities of being true are sought, and P (A | B) is the conditional probability
density function that the event A is true given that the event B is true. In variational
data assimilation the event A is x = xt , while the event B is y = yt as stated in Lorenc
(1986). Therefore, given the expressions above (3) becomes

P
(
x = xt | y = yt

) ∝ P
(
y = yt | x = xt

)
P

(
x = xt

)
. (4)

According to Lorenc (1986) (4) defines a multivariate PDF, which is denoted by
Pa (x), where this PDF is specifying all that is known about the analysis, and that
VAR data assimilation is seeking the best estimate, xa , which is given by the mode
of Pa (x), and is the state such that Pa (x) is maximum. The expression above is in
terms of probabilities and as such the probability density functions that are to be used
to calculate these probabilities have to be defined.

Given the assumption that the background and observational errors are multivariate
Gaussian distributed, and that they are independent of each other, along with the
definition of the multivariate Gaussian distribution,

MG (x;μ,�) ≡ 1

|�| n2 (2π)
n
2
exp

{
−1

2
(x − μ)T �−1 (x − μ)

}
, (5)

where n is the number of variables, μ is the vector of means and � is the covariance
matrix, and applying the log likelihood approach, which is to take the negative loga-
rithm of (3), results in the problem of finding the state that minimizes a cost function.
For the error definitions given above, the associated cost function is

J (x) = 1

2

(
x − xap

)T B−1 (
x − xap

)
︸ ︷︷ ︸

BACKGROUND

+ 1

2
( y − h (x))T R−1 ( y − h (x))︸ ︷︷ ︸

OBSERVATIONAL

. (6)

2.2 Lognormal Distribution Based Cost Functions

As mentioned in the Introduction, the basis for Gaussian PDF-based variational DA
schemes is the definition of the errors. This is also true for lognormal PDF-based
DA schemes. However, as a lognormal distribution is not defined for values less than
or equal to zero, the definition for the errors must be such that the random variable
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is always positive. The original definitions for lognormally distributed observational
errors come fromCohn (1997) and Fletcher and Zupanski (2006a), while the definition
for lognormally distributed background errors comes from Fletcher and Zupanski
(2007), and are given by

εbL ≡ x
xap

∼ MLN (0,BL) , εoL ≡ y
h (x)

∼ MLN (0,RL) , (7)

where

BL ≡ E

[(
ln εbL − E

[
ln εbL

])2]
, and RL ≡ E

[(
ln εoL − E

[
ln εoL

])2]
. (8)

Note that the covariance matrices are with respect to ln x, not x. Finally the associated
multivariate lognormal distribution is defined by

MLN (x;μL ,�L) =
N∏
i=1

(
1

xi

)
1

|�L | N2 (2π)
N
2

× exp

{
−1

2
(ln x − μL)T �−1

L (ln x − μL)

}
. (9)

Formulating the Bayesian problem as described in the introduction with the defi-
nitions in (7) and using the PDF defined in (9) to provide the probability, then next
step is to seek the mode of the posterior distribution as set out in Lorenc (1986) which
results in the following cost function that has to minimized

JL (x) = 1

2

(
ln x − ln xap

)T B−1
L

(
ln x − ln xap

) + 〈(ln x − ln xap
)
, 1N 〉

+1

2
(ln y − ln h (x))T R−1

L (ln y − ln h (x)) + 〈(ln y − ln h (x)) , 1No〉,
(10)

where 1 is a vector of 1s, N is the number of state variables and No is the number of
observations.

2.3 Lognormal Background Errors with Gaussian Observational Errors

It is also possible to define a cost function for lognormally distributed background
errors combinedwith Gaussian distributed observational errors such that theminimum
is the mode of the posterior distribution which is given by

JLG (x) = 1

2

(
ln x − ln xap

)T B−1
L

(
ln x − ln xap

) + 〈(ln x − ln xap
)
, 1N 〉

+1

2
( y − h (x))T R−1 ( y − h (x)) , (11)

(Kliewer et al. 2016).
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2.4 Functional Form of Variational Data Assimilation

The initial work into 4DVAR appears in Lewis and Derber (1985), where the obser-
vations are assimilated throughout a window rather than at a set time. The problem in
Lewis and Derber (1985) is equivalent to the minimization of the functional

J (x (t0)) = min
x(t0)

∫
1

2

ta∑
i=0

〈W (ti ) (x (ti ) −xb (ti )), (x (ti ) − xb (ti ))〉 dx, (12)

where ta is the analysis time,W is a weight matrix which can be changed depending on
known accuracies, the expression 〈·, ·〉 is the inner product operator, xb is the output
from a numerical model, which has been started by some set of initial conditions,
xb,0 ≡ xb (t0), and x is the analysis that has come from a simpler version ofDA (Lewis
and Derber 1985). The problem is then to seek the initial conditions that minimizes
the weighted squared differences between the original analysis from a simpler DA
scheme at several times and the coincident solutions to the numerical model.

Given the expression in (12) it is possible to define functionals such that the min-
imum of that functional is any state that is desired. Therefore, by applying calculus
of variational techniques it is possible to show that the solution of these functionals
are equivalent to different sets of cost functions (Fletcher 2010, 2017). Thus, it is
possible to define cost functions such that their minimums are the median of a log-
normal based posterior distribution. Why this is important is that one approach for
lognormally distributed errors is to transform them into Gaussian random variables
through the property that the logarithm of a lognormal random variable is a Gaussian
random variable. It is shown in Fletcher and Zupanski (2007) that this optimal value
in Gaussian space inverts to a median in lognormal space.

However, a property of medians of multivariate distributions is that they are non-
unique. This can easily be seen from the definition of the multivariate median

x̂ such that
∫ x̂N

aN

∫ x̂N−1

aN−1

. . .

∫ x̂2

a2

∫ x̂1

a1
f (x) dx1dx2 . . . dxN−1dxN = 0.5, (13)

where x̂ = (
x̂1, x̂2, . . . , x̂N

)
is the median state such that when the integral in (13) is

evaluated at the entries in x̂, where f (x) is a multivariate PDF, then the cumulative
density function is equal to 0.5. The values of the ai for i = 1, 2, . . . , N are the lower
limits of the distribution under consideration. The non-uniqueness comes through
considering a general entry of the random variable, say xi , then given a chosen value,
there exists values for the remaining N − 1, such that (13) will hold.

As shown in Fletcher and Zupanski (2007) and Fletcher (2010) it is possible to
define a cost function that is based upon the definition of the lognormal distribution’s
median through a functional form, see Fletcher (2010) or Fletcher (2017) for a full
derivation. For the current assumption for the background and observational errors,
the associated cost function would be
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Jmd (x) = 1

2

(
ln x − ln xap

)T B−1
L

(
ln x − ln xap

) + 1

2
( y − h (x))T R−1

× ( y − h (x)) . (14)

It is possible to define an approximate cost function so that the minimum is the
mean of the posterior distribution. It should be noted that the multivariate mean is
actually a vector of mean states not a mean vector. Therefore, it is possible to define a
cost function componentwise that uses the mean to be the minimizer of the lognormal
background errors (Fletcher 2010) as

Jmn =
N∑
i=1

(
ln xi − ln xap,i

)2
BL ,i,i

− 1

2

(
ln xi − ln xap,i

) + 1

2
( y − h (x))T

×R−1 ( y − h (x)) . (15)

Given the three cost functions defined in (10), (14) and (15), it is possible to identify
regions of values for the different parameters such that each of the three descriptive
statistics mentioned above minimize the errors, and these regions are presented in the
next section.

3 Identification of Areas of Optimization

During the synthetic brightness temperature experiments in Kliewer et al. (2016) there
were problems with the modal-approach mixed distribution based version of C1DOE
not being able to outperform the median based approach, even though the situation
had been set up such that it should. To test why this was the case, a synthetic univari-
ate version was coded in MATLAB to investigate what could be wrong minimizing
the lognormal background errors with the mode, median and mean, which uses the
following three cost functions

Jmo (x) = 1

2

(
ln x − ln xap

)2
σ 2
b

+ (
ln x − ln xap

) + 1

2

(y − h (x))2

σ 2
o

, (16a)

Jmd (x) = 1

2

(
ln x − ln xap

)2
σ 2
b

+ 1

2

(y − h (x))2

σ 2
o

, (16b)

Jme (x) = 1

2

(
ln x − ln xap

)2
σ 2
b

− 1

2

(
ln x − ln xap

) + 1

2

(y − h (x))2

σ 2
o

, (16c)

respectively.
The minimums of (16a), (16b) and (16c) are found through setting their gradients

to zero where each are given by

dJmo

dx
=

(
1

x

) ((
ln x − ln xap

)
σ 2
b

+ 1

)
− H

(y − h (x))

σ 2
o

, (17a)
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dJmd

dx
=

(
1

x

) (
ln x − ln xap

)
σ 2
b

− H
(y − h (x))

σ 2
o

, (17b)

dJme

dx
=

(
1

x t

) ((
ln x − ln xap

)
σ 2
b

− 1

2

)
− H

(y − h (x))

σ 2
o

, (17c)

respectively.
An important property of the lognormal distribution in relation to the three descrip-

tive statistics, and in general for left skewed distribution, is that

MODE ≤ MEDIAN ≤ MEAN.

For the lognormal distribution, these statistics are given by

exp
{
μ − σ 2

}
< exp {μ} < exp

{
μ + σ 2

2

}
. (18)

It is the inequality in (18) that is important in determining the bounds on the three
statistics and when they are optimal for minimizing the errors.

3.1 Perfect Observations Case

“Perfect observations” refers to the case where there are neither measurement nor
representative errors and that at the true solution, x t , the observational component is
zero, i.e. y = h

(
x t

)
. Therefore, the two parameters, xap and σb, are free to be chosen

so that the minima of (16a)–(16c) are at x t . An important feature to note here is that
while all three cost functions are equal to zero at xap = x t , when x = x t , this does not
imply that the gradients of their cost functions are also equal to zero.

Therefore, considering xap first such that the minima of (16a)–(16c) are at the true

state, given the definition for the mean state, exp

{
ln xap + σ 2

b
2

}
≡ xap exp

{
σ 2
b
2

}
,

implies that the zero of (17c) at x t is xap = x t exp

{
−σ 2

b
2

}
. Now, considering the

median-based approach, for (17b) to have a solution at x t it is required that xap = x t .
Finally, considering the modal based approach, for the minimum of (17a) to be at x t

then xap = x t exp
{
σ 2
b

}
.

Thus, the mean-based approach has the smallest absolute errors for values of xap

from just above zero to xap = x t exp

{
−σ 2

b
4

}
where the median-based approach

now has the smallest absolute errors up to xap = x t exp

{
σ 2
b
2

}
. Thus, for all

xap ≥ x t exp

{
σ 2
b
2

}
the modal based approach has the smallest absolute errors.

The ranges for which the three different statistics have the smallest errors associ-
ated with solving (17a)–(17c) using the Newton–Raphson method with the nonlinear
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Fig. 1 Plots to illustrate the ranges where the mean (black), median (red) and the mode (blue) based
approaches for different values of xap for σ 2

b = 2 minimize the errors. Plot a is the difference plot, while
plot b is the absolute error

observation operator, h (x) = x2, are presented in Fig. 1. All first guesses are xfg = 1,
with σ 2

b = 2 and σ 2
o = 0.01. Note that no observational error (measurement error) has

been introduced here, but there is representative error in that h (x) 	= y, except when
x = x t . The true state is generated from a lognormal distribution random number
generator in MATLAB using μ = − 0.75 and σ = 1.4454. These values have been
found from real data associated with C1DOE. The true solution here is x t = 6.5. It
should also be noted that there is no error added to the observations.

The errors and absolute errors havebeenplotted inFig. 1a andb, respectively, for dif-
ferent values of xap, where xap = xt exp

{
( j − 10) ∗ 0.05 ∗ σ 2

b

}
for j = 1, 2, . . . , 100,

where the lines in Fig. 1a represent the exact values for xap where the minimum of
the associated cost function is at the true state, while in Fig. 1b the red lines represent
the region where the median-based approach minimized the absolute errors the most.
This is to illustrate where the different descriptive statistic-based approaches take over
from each other, with respect to magnitude, in minimizing the errors. A clear feature
that is present in both plots is that the area where the mean-based approach minimizes
the errors is quite small, but that the regions just identified are also evident.

Another clear feature in Fig. 1b is that for this configuration the mode-based
approach requires a large overestimation of the true state. However, this is illustrating
that for the lognormal background error formulation the a priori state is not an approx-
imation to the true state, but is an approximation to the true mean of the lognormal
distribution. Therefore, in the lognormal situation it appears that the median-based
approach is optimal at minimizing the errors if xap ≈ x t and is consistent with the
findings from Kliewer et al. (2016).

To illustrate how strong the assumption that xap has to be quite close to the true state
for themedian-based approach to be optimal atminimizing the errors the absolute error
plots for five different values of σ 2

b , 0.1, 0.5, 1, 1.5, 2 are shown in Fig. 2. It is quite
clear that the region where the median-based approach is optimal can be quite small
for small background error variances. However, for values of xap that are greater than
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Fig. 2 Plots of the ranges where the three statistics based approaches minimize the absolute error. Mean
(black), median (red) and mode (blue) where the dashed red lines represent the range of values for xap that
the median based is optimal with xt = 6.5 for a σ 2

b = 0.1, b σ 2
b = 0.5, c σ 2

b = 1, d σ 2
b = 1.5 and e σ 2

b = 2

the upper bound for the median-based approach, the solution from the modal-based
approach always has the smallest error.

As can be seen from Fig. 2a where σ 2
b = 0.1, the range for which the median-based

approach is optimal is smaller than for σ 2
b = 2. The exact values for the upper and

lower bounds for the five different choices for the background error variances are
presented in Table 1. It is clear from both Fig. 2 and Table 1 that for xt = 6.5, the
range for σ 2

b = 0.1 is only 0.4938, compared to 13.7264 for σ 2
b = 2.

Another way of considering the bounds is to rearrange them to find bounds on the
size of the errors xt

xap , which for the median-based approach these are

exp

{
−σ 2

b

2

}
≤ xt

xap
≤ exp

{
σ 2
b

4

}
. (19)

The error bounds for the variances shown in Table 1 are displayed in Table 2. It
appears that for the median-based approach to have the smallest errors, the lognormal
background error, for the perfect observation situation, can be as large as 65% bigger
or 63% smaller.

However, it is also possible to bound the background error variance, σ 2
b , instead

of xap. The values for σ 2
b so that the three statistics based approaches are optimal

are again obtained through evaluating the gradients in (17a)–(17c) at xt . The first
important feature to note here is that (17b) cannot be rearranged so that σ 2

b is isolated.
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Table 1 Summary of the upper
and lower bounds for the
optimization of the median
based approach to minimize the
errors

σ 2
b Lower bound Upper bound Range

0.1 6.3395 6.8333 0.4938

0.5 5.7362 8.3462 2.6100

1 5.0622 10.7167 5.6545

1.5 4.4674 13.7605 9.2931

2 3.9424 17.6688 13.7264

Table 2 Summary of the upper
and lower error bounds where
the median-based approach
minimizes the errors

σ 2
b Lower bound Upper bound

0.1 0.9512 1.0253

0.5 0.7788 1.1331

1 0.6065 1.2840

1.5 0.4724 1.4550

2 0.3679 1.6487

This then implies that for the median-based approach there is no optimal value for σ 2
b .

Therefore, the median-based approach is only optimal if xap = xt . For the mode-based

approach, (17a), if σ 2
b = ln

( xap
xt

)
then it is possible to converge for the lognormal

approach ∀xap > xt . Finally, for the mean-based approach, the relationship for σ 2
b is

σ 2
b = ln

[(
xt
xap

)2]
, ∀xt > xap.

To show the important feature that if xap > xt , the modal approach has a minimum
at the true solution when σ 2

b is as defined before, a Newton–Raphson solver is used
for the univariate case for values of xap that are greater than the true solution. The true
state, xt , was chosen from the same lognormal distribution mentioned above where
xt = 3.2601, where the values for xap are 4, 8, 12, 16 and 20. The results are shown
in Fig. 3.

While the magnitude of the errors in Fig. 3 (y-axis) are only 10−3 it should be noted
that when σ 2

b = ln x − ln xap, the solutions can be as accurate as machine precision
if an optimal first guess is chosen. If the first guess is within what appears to be an
optimal zone then the solution can be as accurate as 10−9. Further away from these
areas the solutionmay only have an accuracy of 10−3. The sensitivity to the first guess,
which was referred to in the introduction, shall be expanded upon in Sect. 3.3.

3.2 Observational Measurement Error

For the remainder of this paper, the focus is on the modal approach. This is first to do
with the fact that it is possible to find expressions for the three parameters xap, σ 2

b and
σ 2
o , when there is a measurement error, denoted by εm , such that the minimum of the

cost function
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Fig. 3 Plot of the absolute errors for xap = 4, 8, 12, 16, 20 which have an affect on the σ 2
b that are needed

so that the solution of the cost function is the true solution

Jobsm (x) = 1

2

((
ln x − ln xap

)2
σ 2
b

)
+ (

ln x − ln xap
) + 1

2

(
(yt + εm − h (x))2

σ 2
o

)
,

(20)

is at the true solution, but secondly due to an unusual behavior that is detected with
respect to the first guess to theNewton–Raphson solver applied to finding theminimum
of (20).

To find expressions for the three parameters just mentioned so that the minimum
of (20) is the true state, the gradient of (20) is evaluated at x = xt , which gives

∂ Jobsm
∂x

∣∣∣∣
x=xt

= 1

xt

((
ln xt − ln xap

)
σ 2
b

+ 1

)
− H |x=xt

εm

σ 2
o

= 0, (21)

where yt − h (x) = 0. Through some standard rearrangement techniques it is easy to
show that the optimal values for xap, σ 2

b and σ 2
o are

xap,opt ≡ xt exp

{
σ 2
b − xt H |x=xt εmσ 2

b

σ 2
o

}
, (22a)

σ 2
b,opt ≡

(
1 − xt H |x=xt εm

σ 2
o

)−1 (
ln xap − ln xt

)
, (22b)

σ 2
o,opt ≡ xt H |x=xt εmσ 2

b

ln xt − ln xap + σ 2
b

, for xt 	= xap exp
{
−σ 2

b

}
. (22c)
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Fig. 4 Plot of the errors for increasing measurement errors for the xfg values of 1, 2, 3, 4 and 5

An important feature to note about the these expressions is that when (22a) and (22b)
are evaluated at εm = 0, the expressions are those identified for the perfect observation
case.

To test the effectiveness of the formulation in (22a), values for εm = 0.01, 0.02, . . . ,
0.05 were used. The main feature that was discovered is that as εm becomes larger, the
associated optimal values for xap become very small. However, even with small values
for xap itwas still possible to converge, but not tomachine precision,whichwas the case
when εm = 0. It should be noted that to obtain the most accurate answer, there again
appeared to be a sensitivity to the choice for the first guess for the Newton–Raphson
solver.

3.3 Initial Detection of a Sensitivity to the First Guess for the Newton–Raphson
Solver

It became apparent during the experiments for the optimized xap case that the choice
for the first guess for the Newton–Raphson solver was more sensitive than previously
indicated. It was found that the sensitivity was present at every decimal place. Through
trial and error by changing each decimal place for the first guess for the Newton–
Raphson solver, there were values such that the solver was started at values greater
than these then the accuracy would be between 102 to 103 times worse than if the
scheme was started at or less than these “cliff values”. The magnitude of the error has
been increased to approximately 10−11 when the measurement error is introduced.
When starting from the wrong point at any decimal place the magnitude of the error
increases to 10−8.

To illustrate the impact of the first guess for the Newton–Raphson solver the
residuals, xsol − xt , for the first guesses, xfg = 1, 2, 3, 4 and 5, given the measure-
ment errors, εm = 0.01, 0.02, . . . , 0.5 are shown in Fig. 4, where the true solution
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has again been randomly sampled from a lognormal distribution and has the value
xt = 3.260104025221147, where σ 2

b = 0.5 and σ 2
o = 0.1, with xap set to the expres-

sion in (22a).
A disturbing feature in Fig. 4 is the apparent lack of randomness in the error, but

also the breaking points that appear to be present except for xfg = 3, which has a very
unusual behavior compared to the other four values. However, during the previous
perfect observation experiments it had been possible to find certain values for xfg such
that the solution from the Newton–Raphson solver was equivalent to the true state to
machine precision, but that it does not appear to be so for this configuration.

4 Chaotic Structures

Asmentioned in the previous section, there appears to be an unusual structure underly-
ing the accuracy of the solutions for theminimum of (16a). To investigate this behavior
a series of plots were created for each of the three parameters at their optimal values
for the xt that was selected in the previous section. The plots are of error values for
increasing first guess values, xfg, for 0.001 to 20, stepping by 0.001, against increasing
measurement error values, 0.01 to 2, stepping by 0.01. This configuration results in
four million points to sample the error plane. The first parameter that is considered is
the optimized xap.

4.1 Chaotic Structures for Optimized xap

Given the evidence in the previous section of an unusual sensitivity of the first guesses
for the Newton–Raphson solver, the plots in Fig. 5 are of the whole error-plane on the
left, while the right-hand-side plot is a zoomed in area around the values that were
found from the trial and error experiments.

It should be noted that the reason that the x-axis starts at 1.411 is that this is the
first xfg value that enables all of the measurement errors to have a real-valued answer.
A feature to be concerned about is the chaotic structure for first guess values that are
less than the true state. There is still a non-uniform structure to the errors for xfg > x t .
In Fig. 5 the green areas are those that result in the highest accuracy. This is true of
all the contour plots presented in this section that have the parameters at the optimal
values.

By following a line at xfg = 2, 3, 4 and 5 in the left plot in Fig. 5 then it is quite clear
that the values for the errors changed quite substantially for the different measurement
errors, which then explains the behavior presented in Fig. 4. The unusual behavior for
xfg = 3 can be explained from the plots in Fig. 5. At xfg = 3 it can be seen from Fig. 5
that the errors changes sign as the measurement error increases, while for the other
choices in Fig. 4 then, for the range of the measurement error in that figure, the errors
stay positive.

The left plot of Fig. 6 is the zoomed-in area where the trial and error experiment
was performed and where the values that were found were assumed to be the values
with the smallest error are also plotted on top of the error plane. It is clear from the
zoomed-in plot in Fig. 6 that there were regions near the trial and error points that

123



202 Math Geosci (2019) 51:187–207

−1

−0.5

0

0.5

1
x 10

−8

−1

−0.5

0

0.5

1

x 10
−8

x
fg

ε m
ERRORS FOR OPTIMIZED x

ap
 WITH σ

o
2=0.1 AND σ

b
2=0.5

1.411 4 6 8 10 12 14 16 18 20
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

x
fg

ε m

ERRORS FOR OPTIMIZED x
ap

 WITH σ
o
2=0.1 AND σ

b
2=0.5

1.411 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
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Fig. 6 Left Plot: Plot of the first guesses (blue circles) from the trial and error experiments with the error
structure. Right Plot: Plot of the errors for the negative and positive measurement errors at the optimal value
for xap

would have resulted in more accurate answers if the first guesses had been in these
regions. The zoomed-in plot in Fig. 6 also addresses the reason why the xfg values
started to become smaller (the guesses were following the orbit of the lobe in the error
plane); why there was no answer for εm = 0.96 and higher in the same area (the values
turned negative, but also that the orbit stops at εm = 0.95), as well as showing the
region of xfg > x t that had the same error magnitudes.

The right hand side plot in Fig. 6 is of the error plane now with −2 ≤ εm ≤ 2 and
for 1.411 ≤ xfg ≤ 10. This to illustrate that there is also a chaotic signal for negative
measurement errors when xap is optimized. It appears that there is more sensitivity to
the first guess for εm < 0, implying that finding the most accurate answer could be
more difficult for εm < 0 than for εm > 0. It is also clear in the right-hand-side plot
in Fig. 6 that at εm = 0 there is also some chaotic signal with respect to the first guess
and the accuracy of the solution from the Newton–Raphson solver.
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4.2 Chaotic Structures for Optimized σ 2
b

In this subsection the chaotic structures in the error plane when σ 2
b is optimized when

measurement error is present is presented. The first feature to notice in (22b) is that the
relationship between σ 2

b and εm is not exponential, which is the case between xap and
εm . During the natural extension of the optimized xap experiments to the optimized σ 2

b
situation it became quite apparent that there was again a sensitivity to the first guesses
used for the Newton–Raphson solver. Figure 7 is the error-plane where σ 2

o = 0.1 and
xap = 1.25 ∗ xt , where the starting value for xfg is 0.001 as there are real solutions for
all values of εm here.

The noticeable difference in Fig. 7, compared to the plot in Fig. 5, is that there
appears to be more sensitive areas in the error plane for the optimized σ 2

b case. These
sensitive areas are those that appear to be black in color. These areas represent rapid
changes in the error. This means that a small change in the first guess will produce
quite different answers. Another noticeable difference is the structure of the chaos for
xfg < x t in both figures. However, it appears that the structures xfg > x t are quite
similar to those for the optimized xap case. The structure for the errors associated with
xfg < x t are quite different; in addition to the rapid chaotic signal, the areas where
the most accurate solutions can be found are in different locations, which then implies
values that could result in the more accurate solution for one optimized parameter are
not the same for the other optimized parameter.

4.3 Chaotic Structures for Optimized σ 2
o

In this subsection the chaotic structures for the case when σ 2
o is optimized to compen-

sate for the presence of measurement error are presented (Fig. 8). The first noticeable
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difference between Figs. 7 and 8 is the lack of the rapid changing of the errors with
respect to the first guess in the latter figure. The lobe structures that are present in
Fig. 8 appear to be similar to those present in the equivalent plots for xap but there is a
significant difference. The difference between the two cases is that for the optimized
σ 2
o the error values at the center of the lobes are not as accurate as those at the center

of the lobe in Fig. 5. Therefore, there are different values for xfg for each optimized
parameter that result in the most accurate solutions from the Newton–Raphson solver.

5 Sensitivity of the Chaotic Regions

In this section the sensitivity of the chaotic behavior is presented. The sensitivity is
measured by how close to the optimal value for the three different parameters for the
xt mentioned in the last section does the chaotic behavior appear to be present. The
results for the xap case are presented in Fig. 9. For the four plots in Fig. 9 it appears
from the titles that the chaotic behavior starts to occur when xap is at 99.99% of the
optimal value, but that some form of shock occurs at 99.9% of optimal. When the
estimate of xap is at 99.999% then the structure of the chaotic behavior identified
earlier is present, but not at the magnitude detected in Sect. 4.1. It is when the estimate
for xap is at 99.9999% that the magnitudes of the errors are the same as Sect. 4.1.

Results for the other two parameters are not shown here, but what was noticeably
different to the optimized a priori state case is that for both σ 2

b and σ 2
o cases is that the

optimized value must be at 99.9999% before an indicator of the sensitivity to the first
guess starts to appear. Thus this is indicating that exponential relationship between
the optimized xap and εm , implies that the chaotic behavior occurs at less accurate
estimates of the optimal state than for the approximations to the optimal values for
σ 2
b .
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Fig. 9 Plot of the error plane as xap approaches the optimal value

6 Conclusions

In the first part of this paper it has been shown that there are bounds on the three
descriptive statistics, mean, mode and median, for a lognormal background error with
a Gaussian observational error formulation, where that specific statistic minimizes
the errors. However, it was discovered that it is possible to find optimal expressions
for the three parameters: a priori state, xap, background error variance, σ 2

b , and the
observation error variance, σ 2

o , so that the minimum of the modal-based cost function
was at the true state. This has been shown for both the perfect observation case, as
well as when measurement error is present. Note that for the perfect observation case
there was no expression possible for σ 2

o .
Given the optimal expressions for the three parameters, when solutions to the cost

function were sought using a Newton–Raphson solver, it became apparent that there
was a sensitivity to the first guess for the solver that affected the accuracy of its
solution. Upon further investigation, it became clear that there was an underlying
chaotic behavior associated with this minimization approach. It has also been shown
that the chaotic behavior starts to appear in the error plane as the estimates for the
optimal values for the three parameters are above 99% of the true value. Below 99%,
and above 101%, of the optimal value then the performance of the Newton–Raphson
solver appears to be uniform, and hence independent of xfg, but results in drastically
less accurate solutions.

While the results presented are for a specific true state, tests with larger and smaller
true values, with different values for xap, σ 2

b and σ 2
o have been performed and some

form of chaotic behavior is still present, but different in appearance.
The behavior with respect to the Newton–Raphson solver has been detected before

(Gupta 2013), but not for the situation that has been presented here. This behavior is
referred to as aNewtonFractal. NewtonFractals occurwhen the quadratic convergence
of the Newton–Raphson scheme breaks down. However, this is a worrying feature, as
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it implies that as the estimates of the parameters involved in data assimilation approach
the optimal value such that the minimum of the cost function is at the true state, the
Newton–Raphsonmethod’s property of quadratic convergence breaks down.Given the
breakdown of the quadratic convergence, the sensitivity to the first guess begins, and
effectively the fractal starts to dominate the solvability of the method, even though the
problem is approaching the true state, which is the ultimate goal for a data assimilation
system.

This chaotic behavior needs further investigation to see the impact on different data
assimilation and retrieval systems that use a form of Newton–Raphson for their solver.
Given the findings here, techniques to detect the chaotic signal to give guidance on the
conclusions that are made about the solutions of the Newton–Raphson solver need to
be developed. The chaotic signal could result in wrong conclusions about the impact
of new changes to systems, which could be new observations or numerical model
development, when what really is occurring is that the system is close to the true state,
and that chaos is now dominating the solvability of the problem.

The work that has been presented here demonstrates the need for the ability to run
multiple Bayesian probability models to illustrate the potential important impacts that
occur to retrieval and data assimilation systems under these conditions to allow the
user check if their conclusions about the affect their changes to the system have had
are correct.
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