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Abstract
There has been significant study on the sample complexity of testing properties of distributions over
large domains. For many properties, it is known that the sample complexity can be substantially
smaller than the domain size. For example, over a domain of size n, distinguishing the uniform
distribution from distributions that are far from uniform in `1-distance uses only O(

√
n) samples.

However, the picture is very different in the presence of arbitrary noise, even when the amount
of noise is quite small. In this case, one must distinguish if samples are coming from a distribution
that is ε-close to uniform from the case where the distribution is (1 − ε)-far from uniform. The
latter task requires nearly linear in n samples (Valiant, 2008; Valiant and Valiant, 2017a).

In this work, we present a noise model that on one hand is more tractable for the testing prob-
lem, and on the other hand represents a rich class of noise families. In our model, the noisy dis-
tribution is a mixture of the original distribution and noise, where the latter is known to the tester
either explicitly or via sample access; the form of the noise is also known a priori. Focusing on
the identity and closeness testing problems leads to the following mixture testing question: Given
samples of distributions p, q1, q2, can we test if p is a mixture of q1 and q2? We consider this general
question in various scenarios that differ in terms of how the tester can access the distributions, and
show that indeed this problem is more tractable. Our results show that the sample complexity of
our testers are exactly the same as for the classical non-mixture case.

1. Introduction

Distribution testing (Batu et al., 2013) has been studied extensively for the past many
years (see Canonne (2015) for a survey). In the vanilla version, the problem is to quickly test if
a discrete distribution has a certain property or is statistically far from any distribution with that
property. The tester has access to samples from the distribution and strives to be as frugal as pos-
sible in the number of samples it uses. Many statistical properties, including various distances
between distributions, are well understood in this model. There have been several relaxations to the
basic testing model including tolerant testing (where the tester should also accept if the distribu-
tion is close to having a property), the conditional samples model (where the tester can access the
distribution conditioned on a specified subset), making stylized assumptions about the distribution
(monotone, sparse support, high-dimensional, etc), and so on. In each of these works, the aim has
been to push the boundaries of our understanding: when do sample-efficient testers exist? Here, by
sample-efficient, we mean the number of samples should be sub-linear in the domain size.
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TESTING MIXTURES OF DISCRETE DISTRIBUTIONS

There are many scenarios in which a distribution is observed along with noise; in some cases,
even the form of the noise is known a priori. One such scenario is the so-called identity testing
problem in which the tester has a known (explicitly specified) distribution and its goal is to check if
a given distribution, available as samples, is close to the known distribution. For example, assume
that the distribution of the top million queries to a web search engine is known in advance. Then,
identity testing would be a quick way to check how close the daily query distribution is to this known
distribution. However, in reality, there are natural minor variations to the daily query distribution,
which may cause the identity tester to fail. This is clearly undesirable.

An option to tackle the noise would be to use testers that are tolerant to noise. Unfortunately,
even simple versions of tolerant testers are faced with near-linear lower bounds on the sample com-
plexity, making this option uninteresting. For example, one can distinguish if a distribution on a
domain of size n is uniform or far from uniform in `1-distance using Θ(

√
n) samples (Paninski,

2008). However, an algorithm that distinguishes between near-uniform distributions and distribu-
tions that are far from uniform requires Ω(n/ log n) samples (Valiant, 2008; Valiant and Valiant,
2017b). Hence, to achieve sub-linear sample complexity, we need more judicious, stylized assump-
tions about the noise—how it is available to the tester and if it is adversarial.

A different yet natural way to model the above scenario is to view it as a mixture of distribu-
tions. In the above example, one of the components of the mixture can be interpreted as the signal
and the other component can be thought of as the noise. More generally, the tester is given the
components of a mixture of two distributions. However, it does not know the mixing parameter, i.e.,
the magnitude of the contribution of each component to the mixture. The mixture testing problem is
then to test if a distribution is close to a mixture of two given distributions or is far from any manner
in which the two distributions can be mixed. As we will see, by making reasonable assumptions on
the form of the noise and how it is available to the tester, the tolerant testing lower bounds can be
circumvented and one can obtain testers with sub-linear sample complexity.

Main contributions. In this work, we consider distribution testing of mixtures of two distribu-
tions q1 and q2. For ease of exposition, let us call the first component q1 the original distribution
and the second component q2 the noise, and let [n] = {1, . . . , n} be the domain of both q1 and
q2. The simplest version of our problem is: given sample access to distribution p, and for known
distributions q1, q2, is p = αq1 + (1− α)q2 for some α, or is p far from αq1 + (1− α)q2 for every
α ∈ [0, 1]? Note that the tester is not given the mixture parameter α. We further study the case
when q1, q2 are not given explicitly to the algorithm, as well as other generalizations.

We mainly focus on identity and closeness testing, which are two basic instances of hypothesis
testing that have received much attention in the theory, machine learning, and statistics communities;
see the works of Goldreich et al. (1998); Batu et al. (2001, 2013); Batu (2001); Batu et al. (2002,
2004); Paninski (2008); Valiant (2008); Goldreich and Ron (2011); Indyk et al. (2012); Levi et al.
(2013); Daskalakis et al. (2013); Acharya et al. (2014); Chan et al. (2014); Falahatgar et al. (2015);
Diakonikolas et al. (2015a,b); Acharya et al. (2015); Aliakbarpour et al. (2016); Canonne et al.
(2016, 2017); Daskalakis and Pan (2017); Valiant and Valiant (2017b); Diakonikolas et al. (2018);
Stewart et al. (2018); Blum and Hu (2018) and the surveys of Rubinfeld (2012) and Canonne (2015).

The mixture testing problem has a more constrained model compared to the tolerant testing
problem, so one might hope to bypass the existing lower bounds. However, the mixture testing
problem can also run into near-linear sample complexity lower bounds if one does not provide the
tester with sufficient access to the mixture components. Indeed, if the tester does not have access
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to the noise, we show the mixture testing problem becomes as hard as tolerant testing, necessitating
Ω(n/ log n) samples (Theorem 19). Hence, to show nontrivial positive results, the tester must have
access to some kind of information about the noise. We consider the following three cases for the
noise, namely, (i) when the noise is given as an explicitly specified distribution, (ii) when the tester
does not explicitly know the noise distribution, but does have sample access to it, and (iii) when
there is no explicit description or access to samples from the noise distribution, but it is known that
the noise distribution comes from a class of distributions, e.g., the set of k-histogram distributions.
For the first, we obtain a tester with sample complexity Θ(

√
n/ε2) and for the second, we obtain a

tester with sample complexity Θ(
√
n/ε2 +n2/3/ε4/3) where ε is a given proximity parameter; these

show that the complexity of our testers is exactly the same as for the classical non-mixture case. For
the third, when the noise is assumed to come from the set of k-histogram distributions, we obtain
an identity tester that uses Õ(

√
kn) samples.

2. Preliminaries

For the rest of the paper, we use the following notation. For a distribution p over [n], we use p(i)
to denote the probability of element i ∈ [n] and for a subset S ⊆ [n], let p(S) =

∑
i∈S p(i). We

use ‖.‖p to indicate the `p-norm of a vector. We typically use the `1-distance and say p and q are
ε-close if ‖p− q‖1 < ε and ε-far otherwise. Let Un denote the uniform distribution on [n]; we drop
the subscript when the domain is clear from the context. Distribution p is a mixture of q1 and q2 if
there exists α ∈ [0, 1] such that p = (1− α) q1 + αq2. We call α the mixture parameter. We use qα
to denote the mixture (1− α)q1 + αq2 when the components q1 and q2 are clear from the context.

Background. Through this paper we consider several distribution testing problems: For a given
property of distributions, we use Π to denote a set of distributions that satisfy the property. The
distance of distribution p to Π is the `1-distance between p and the closest distribution q in Π. In a
distribution testing problem, the goal is to distinguish whether p is in Π or is ε-far from Π. We say
an algorithm is a tester for property Π if the following is true with probability 2/3. 1

• Completeness: If p is in Π, then the algorithm outputs accept.
• Soundness: If p is ε-far from Π, the algorithm outputs reject.

The algorithm is an (ε′, ε)-tolerant tester, if it also satisfies the stronger completeness property that
when p is ε′-close to some distribution in Π, then the algorithm outputs accept (with probability at
least 2/3). These definitions can be extended to the case of properties of collections of more than
one distribution. Although in the standard setting we receive samples from at least one distribution
in the collection, the testing problems may be defined with respect to other methods of access.

We make one of the three following assumptions regarding the algorithm’s view of the distribu-
tions: (i) The distribution is explicitly given or known if the algorithm knows the probability of each
domain element under the distribution. (ii) The distribution is given by samples if the algorithm has
access to an oracle that provides samples from the distribution. (iii) The distribution is not known
nor given by samples but is a member of a given class of distributions.

The term identity testing is used to refer to the setting in which we test if a distribution, which
we have sample access to, is equal to a known one. Note that this is equivalent to testing property

1. The success probability of 2/3 is arbitrary here. Given such tester, we can achieve a success probability of 1− δ, via
standard amplification methods, at the cost of a log(1/δ) multiplicative increase in the sample complexity.
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Π = {q}. The term closeness testing refers to the setting in which we test if two distributions, both
available via samples, are equal or not; in this case, Π is the set of pairs of equal distributions.

Mixture testing problems. Suppose p, q1, and q2 are distributions over [n]. Let Πq1,q2 := {(1 −
α) q1 +α q2 | α ∈ [0, 1]} (we usually drop the subscripts q1, q2 when they are clear from context).
In a mixture testing problem, the goal is to distinguish whether a distribution p given via samples
is in Πq1,q2 or ε-far from any distribution in Πq1,q2 with probability at least 2/3. We investigate the
following problems, which differ in the way that mixture testing algorithm can access q1, q2. Note
however that the mixture parameter α is not given to the tester. (i) An algorithm is an identity tester
in the presence of known noise if it solves the mixture testing problem when q1, q2 are known to the
tester. (ii) An algorithm is a closeness tester in the presence of noise that is accessible via samples
if it solves the mixture testing problem when q1, q2 are not explicitly given, but samples of each are
provided to the tester. (iii) An algorithm is an identity tester in the presence of class C-noise if it
can distinguish whether p is a mixture of a known distribution q1 and some q2 ∈ C. Note that such
an algorithm is a property tester for Π := {(1− α) q1 + α q2 | q2 ∈ C, and α ∈ [0, 1]}.

Note that one can also define “closeness testing in the presence of known noise”, and “identity
testing in the presence of noise that is given via samples”, but our lower bounds will show that the
sample complexity of these tasks is the same as the sample complexity of closeness testing in the
presence of noise that is given via samples.

3. An overview of our results and techniques

3.1. Testing identity in the presence of known noise

We first consider the problem of testing if distribution p, given via samples, can be expressed as
mixture of known distributions q1 and q2. We show the following.

Theorem 1 Given two known distributions q1, q2, and ε > 0, there is an identity tester in the pres-
ence of known noise that uses O(

√
n/ε2) samples. Furthermore, Ω(

√
n/ε2) samples are required.

At a high level, we take the following steps to test if p is a mixture or ε-far from it. First, we
develop an algorithm (learner) to learn mixture distributions. The learner receives samples from
p and outputs a mixture distribution qα. If p is a mixture, then we show that the learner finds a
mixture distribution qα that is ε′-close to p for some proximity parameter ε′ := Θ(ε); and if p is not
a mixture, the learner outputs qα with no specific guarantee. Second, we use the distance between p
and qα as a measure to decide about p: if p is ε′-close to qα, we accept p; and if p is ε-far from qα,
we reject it. This approach results in a tester for p. In fact, if p is a mixture, then we show that the
learner finds a qα that is ε′-close and if p is ε-far from being a mixture, then we show that p has to
be ε-far from any mixture distribution, including qα.

The challenge in this approach is to distinguish whether p is close to qα or far from it. In general,
testing whether two distributions are ε′-close or ε-far from each other requires Ω(n/ log n) samples.
However, we show that we can exploit the structural properties of mixture distributions to achieve a
sample-efficient algorithm. Below we provide a more detailed description of the steps.

The learner. The algorithm begins by assuming that the given distribution p is indeed a mixture,
and attempts to learn the mixture parameter: If p is a mixture, then we show that it can be learned
to error ε′ = Θ(ε) using O(1/ε2) samples given q1 and q2. The algorithm picks a subset S of

4



TESTING MIXTURES OF DISCRETE DISTRIBUTIONS

elements such that it contains every element i for which q1(i) ≥ q2(i) and estimates the weight of
these elements according to p, i.e., p(S). S satisfies that q1(S)− q2(S) is exactly the total variation
distance between q1 and q2. Comparing p(S) with the weight of these elements according to q1 and
q2 guides us to choose a mixture parameter α, and allows us to bound the distance between p and
qα := (1 − α)q1 + αq2. (Instead of learning α, one might do a grid search on α ∈ [0, 1]; however
the granularity required could make the resulting algorithm sub-optimal.)

Assessing the distance between p and qα. After obtaining qα, the task of distinguishing whether
distribution p is a mixture or ε-far from a mixture boils down to testing if p is ε′-close to qα or is ε-far
from it. We propose a scheme to reshape the distributions p and qα and get two new distributions
p′ and q′α such that for p that is a mixture, the `2-distance between p′ and q′α is at most O(ε/

√
n).

Furthermore, in the case where p is ε-far from being a mixture, p′ is ε-far from q′α. It is known that
one can efficiently distinguish the case that ‖p′ − q′α‖2 ≤ O(ε/

√
n) versus ‖p′ − q′α‖1 ≥ ε using

O(
√
n/ε2) samples (Diakonikolas and Kane, 2016; Chan et al., 2014)).

Here, we elaborate further on how we reshape the distributions. Similar techniques have been
used previously to reduce the `2-norm, e.g., in Diakonikolas and Kane (2016). Here, we use it
to bound the `2-distance between p′ and q′α. The reshaping process is as follows. Define p′, the
reshaped distribution of p with a new domain which is larger than the domain of p. For each
element i, we determine an integer ai solely based on q1, q2, and qα. Then we add (i, j) for all j in
[ai] to the domain of p′. We set the probability of element (i, j) to be p(i)/ai. Also, we reshape qα
according to the same process and get q′α.

But how can reshaping reduce the `2-distance? Given that p is a mixture, for each element i in
the domain, the discrepancy between the probability of i according to p′ and q′α, |p(i) − qα(i)|/ai,
is proportional to |q1(i) − q2(i)|/ai. With this observation, we set the ai’s such that they make the
discrepancy O(ε/n) for each element. This ensures the `2-distance between p′ and q′α is O(ε/

√
n).

The arguments described above are formalized in Theorem 5. In addition, in the case where q1

and q2 are uniform, this problem is as hard as testing if a distribution is uniform, which needs at
least Ω(

√
n/ε2) samples (Paninski (2008)), showing that the sample complexity of our algorithm is

tight. Furthermore, we match the sample complexity of the standard identity tester where there is
no noise involved.

3.2. Testing closeness in the presence of noise that is accessible via samples

We next investigate the problem of testing closeness of distributions in the presence of noise that is
accessible via samples. Suppose we have sample access to three distributions, p, q1, and q2, over
[n]. The goal is to test if there is a mixture parameter α∗ such that p = (1 − α∗) q1 + α∗q2, or p is
ε-far from any distribution in this form.

Similarly to the identity testing algorithm explained earlier, our approach is first attempt to learn
p. That is, we design an algorithm that finds a candidate mixture distribution, qα := (1−α)q1+α q2,
such that if p is a mixture of q1 and q2, then p and qα will be (ε/

√
n)-close to p in `2-distance; and

if p is not a mixture, the algorithm finds a distribution qα with no specific guarantees. Then, we test
to see if p is (ε/(2

√
n))-close to qα in `2-distance, or (ε/

√
n)-far from it. The answer of the test

dictates if we should accept or reject p. Indeed, if p is a mixture distribution, qα is very close to p,
and the test will accept p. If p is ε-far from being a mixture, then p is ε-far from qα, and furthermore
p and qα are (ε/

√
n)-far from each other in `2-distance, so that the test will reject p.
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But how do we learn p? Since we are looking for qα, which is close to p in `2-distance, we
study the problem of estimating the `2-distance between p and a mixture distribution of q1 and q2.
Inspired by the `2-distance estimator proposed by Chan et al. (2014), we propose a statistic such that

given α it estimates the `2-distance between p and qα: f(α) :=
n∑
i=1

(Xi− (1−α)Yi−αZi)2−Xi−

(1− α)2Yi − α2Zi, where Xi, Yi, and Zi are the number of instances of element i among samples
from p, q1, and q2 respectively. The statistic is designed such that it is equal to s2‖p − q(α)‖22 in
expectation where s is the number of samples from each distribution p, q1, and q2.

Given the sample sets, the goal is to use the quadratic function f to find a candidate α. For now,
assume p is a mixture of q1 and q2 with parameter α∗. We make two observations about f(α∗): (i)
the expectation of f(α) is minimum, in fact zero, when α = α∗, and (ii) we provide a threshold T
for which |f(α∗)| is at most T with high probability. Although α∗ is not given to the algorithm, we
wish to pick a candidate α that is very close to α∗. We use the above two observations as a guide
to take the following strategy: find α that minimizes f(α) while |f(α)| is at most T . This method
apparently finds several candidate α’s. We establish that if p is a mixture, then one of the candidate
α’s will result in a mixture distribution qα that is (ε/2

√
n)-close to p in `2 distance. (Once again, a

grid search on α ∈ [0, 1] will not yield an optimal sample complexity.)
From there on, we only need to test if any of the candidates we found are (ε/2

√
n)-close to p

or not. If p is a mixture we are promised that one of the candidates will pass the test. Otherwise we
show that all candidates have to give distributions that are ε-far (implying (ε/

√
n)-far in `2-distance)

from p by definition, so all of them will fail. Our approach yields the following result:

Theorem 2 Assume we have sample access to three distributions p, q1, and q2 over [n]. There exists
a closeness tester in the presence of noise that uses O(

√
n/ε2 + n2/3/ε4/3) samples. Furthermore

Ω(
√
n/ε2 + n2/3/ε4/3) samples are required.

See Theorem 10 for the formal statement of the result. For the lower bound of sample complexity,
we establish that the lower bound for standard closeness testers holds in the mixture setting as well,
even in the case where q1 or q2 is known. In particular, we show given sample access to p and q1,
testing whether p is a mixture of q1 and the uniform distribution requires Ω(

√
n/ε2 + n2/3/ε4/3)

samples (Proposition 20). Hence, one cannot hope to achieve a better sample complexity.

3.3. Testing identity in the presence of k-flat noise

On the one hand, the sample complexity of distribution testing under arbitrary noise is significantly
worse than that of noise-free distribution testing. On the other hand, we have seen that the sample
complexity of distribution testing with noise (either known or given via sample access) is very sim-
ilar to the sample complexity of noise-free distribution testing. This raises the question of whether
one can relax the requirement of the access to the noise by the tester and still achieve better sample
complexity. The next problem we consider is the identity testing problem when there is no direct
access to the noise (either via samples, or an explicit description) except for the promise that the
noise comes from a class, in particular, the class of k-flat distributions.

We say a distribution is k-flat if the probability mass function of the distribution is a piece-wise
constant function with k pieces. We investigate the following problem: given a known distribution q
and having sample access to p, can we distinguish if p is a mixture of q and some k-flat distribution,
or p is ε-far from any such distribution? We provide an algorithm that uses Õ(

√
kn) samples.
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Inspired by the identity tester proposed in Batu et al. (2001), we propose the following approach.
First, we guess the k intervals on which the noise is constant. Then, we take the elements of each
interval and further partition them into subsets (not necessarily contiguous) such that in each subset
the probability of the elements according to q are very similar to each other (similar enough so that
we can show that q is nearly-uniform on each subset). For a mixture distribution p, if we have
guessed the intervals correctly, p is almost uniform within each subset since it is a mixture of an
almost uniform q and a constant function (noise). Hence to see if p is a mixture, we first test each
of these subsets and see if p is close to uniform on them. We then estimate the total weights that p
assigns to each of these subsets and determine if the weights are consistent with a mixture of q and
some k-flat distribution. One challenge is to find a sampling method that guarantees good results
for all initial guesses of the k intervals describing the noise. See Appendix A for details.

3.4. Lower bounds

We show that testing identity with respect to the uniform distribution when the noise component
can be an arbitrary distribution, requires near-linear samples, i.e., Ω(n/ log n). More specifically,

Theorem 19 Assume p is a distribution on [n]. There exists a constant parameter ε such that
distinguishing the following cases with probability at least 2/3 requires Ω(n/ log n) samples.
• There exists a noise distribution on [n], namely η, and an α ≤ ε1 such that p is a mixture of

uniform and η with parameter α, i.e., p = (1− α)U + αη.
• There is no noise distribution η such that p = (1− α)U + αη unless α = 1.

The main idea is to reduce this problem to the that of testing the T -bigness property (Aliak-
barpour et al., 2019 (this proceedings), which holds if all probabilities are above a given threshold
T .

4. Identity testing of mixtures in the presence of known noise

In this section, we give an algorithm which tests if p is close to a mixture where both the components
are explicitly known. As before, we assume the mixture parameter α is unknown.

The main idea is attempt to learn a mixture distribution qα that is close to p. Using q1, q2,
and qα, we then reshape the distribution p to another distribution p′ and use the same reshaping to
transform qα to q′α. The reshaping has the property that in the case that p is indeed a mixture, then
p′ and q′α will be extremely close to each other in `2-distance and if p is not a mixture, then p′ and
q′α will be quite far from each other. Thus we can use a (non-tolerant) identity tester on p′ and q′α.

In the rest of this section, we present the three main steps of the testing algorithm. The first
step is a learner algorithm that finds qα (Section 4.1). The second step is a reshaping process that
transforms the distributions p and qα into p′ and q′α respectively (Section 4.2). The third step is to
put these pieces together to get the identity tester (Section 4.3).

4.1. The learner

At a high level, the leaner proceeds as follows. Observe that if p is a mixture of q1 and q2, then there
is a parameter α∗ ∈ [0, 1] such that p = (1− α∗)q1 + α∗q2, so to learn p it is sufficient to learn α∗.
Let S be the set of all domain elements, x, where q1(x) is at least q2(x). By definition, for S ⊆ [n],
we have p(S) = (1−α∗)q1(S)+α∗q2(S), which leads to α∗ = (q1(S)− p(S)) / (q1(S)− q2(S)).
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The idea then is to replace p(S) with its estimate, say, wS to get an estimate α of α∗. We formally
describe the procedure in Algorithm 1 and prove its correctness in Lemma 3.

Lemma 3 Suppose p = (1−α∗)q1 +α∗q2. UsingO(1/ε2) samples, Algorithm 1 outputs a mixture
parameter α ≤ α∗ such that Pr[[[‖qα − p‖1 < ε]]] ≥ 5/6.

The proof is presented in Appendix C.

4.2. Reshaping the distributions

Algorithm 1: Learning mixture of two
known distributions.

Procedure: MIXTURE-LEARNER(q1,
q2, n, ε, sample access to p)

if ‖q1 − q2‖1 ≤ ε then
return 0

end
S ← {i ∈ [n] | q1(i) > q2(i)}
m← O(1/ε2)
wS ← (# samples in S)/m

α← q1(S)− wS − ε/4
q1(S)− q2(S)

return α

Using Algorithm 1, given p, we can obtain a mixture
parameter α and a mixture distribution qα for which
(i) if p is the mixture of q1 and q2 with parameter
α∗, then qα is ε′-close to p for a proximity parameter
ε′ = ε/6, and α ≤ α∗ and (ii) if p is ε-far from being
a mixture, then p is ε-far from qα. Ideally, we wish
to use an identity tester to see if qα and p are roughly
the same or far from each other. Unfortunately, this
is not possible in general, unless p and qα are very
close on every domain element. To resolve this issue,
the goal in this section is to introduce two distribu-
tions p′ and q′α such that (i) when p and qα are close,
p′ and q′α are very close to each other on every do-
main element and (ii) when p and qα are far, p′ and
q′α are far. Our reshaping process is inspired by the
method of Diakonikolas and Kane (2016): For each
element i ∈ [n], using qα, we define:

ai := bnqα(i)c+

⌊
n|qα(i)− q2(i)|
‖qα − q2‖1

⌋
+ 1.

Note that the process in Diakonikolas and Kane (2016) uses only the first and third terms of the
above sum in defining ai. We start the reshaping process by associating ai ≥ 1 buckets to each
domain element i ∈ [n] to form a new domain D = {(i, j) | i ∈ [n] and j ∈ [ai]}. To draw a
sample from p′, we first draw a sample i from p, then we sample j from [ai], and return the pair (i, j)
as the sample from p′. We say p′ is a reshaping of p with respect to qα. Clearly p′(i, j) = p(i)/ai.
In a similar manner, we define the reshaping q′α of qα and once again, we have q′α(i, j) = qα(i)/ai.

We next prove several crucial properties of the reshaped distributions.

Lemma 4 Let p′ and q′α be the result of the reshaping of p and qα with respect to qα as described
above. Then, the following hold:

(i) The `1-distance after reshaping does not change: ‖p− qα‖1 = ‖p′ − q′α‖1.
(ii) The domain size of p′ and q′α, |D| ≤ 3n.

(iii) The `2-norm of q′α, ‖q′α‖2 ≤
√

3/n.
(iv) If p is a mixture distribution, qα is ε′-close to p, and α is at most α∗, then |p′(i, j)− q′α(i, j)| ≤

ε′/n for all (i, j) ∈ D.

Appendix C contains the proofs.
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4.3. The mixture testing algorithm

In this section, we use the learner and the reshaped distributions to obtain an identity tester for
mixtures of two known distributions.

Theorem 5 Given a proximity parameter ε, Algorithm 2 is identity tester in the presence of known
noise that uses O(

√
n/ε2) samples.

Algorithm 2: Identity tester in the
presence of known noise.

Procedure: MIXTURE-IDENITTY-
TESTER(q1, q2, n, ε, sample access to p)
ε′ ← ε/6
α←MIXTURE-LEARNER(q1, q2, n, ε

′)
for i = 1 to n do

ai ← bnqα(i)c+
⌊
n|qα(i)−q2(i)|
‖qα−q2‖1

⌋
+ 1

q′α(i) = p(i)
ai

end
x1, . . . , xs ← Θ

(√
n
ε2

)
samples from p

for i = 1 to s do
r ← uniform at random in [ai]
yi ← (xi, r)

end
return IDENTITY-TESTER(q′α, ε,
{y1, . . . , ys} as samples from p′)

Proof Let ε′ = ε/6. In the completeness case, p is
a mixture distribution with parameter α∗. Therefore,
with probability at least 5/6, qα is a mixture distribu-
tion with parameter α for which qα is ε′-close to p.
Let p′ and q′α be the reshaped distributions described
in Section 4.2. By Lemma 4(ii), |D| ≤ 3n. More-
over, for any (i, j) ∈ D, |p′(i, j)− q′α(i, j)| ≤ ε′/n,
which implies that

‖p′ − q′α‖2 ≤
√
|D| · ε′2
n2

≤
√

ε2

12n
≤ ε

2
√
|D|

.

Conversely, if p is ε-far from being a mixture distri-
bution, then it has to be ε-far from qα. By Lemma
4, p′ and q′α are ε-far from each other. Therefore,
‖p′ − q′α‖22 ≥ ε/

√
|D|. Using the identity tester

(IDENTITY-TESTER) provided in Diakonikolas and
Kane (2016) (see Remark 2.7 and Remark 2.8),
there exists an algorithm that can distinguish the
above cases with probability 5/6 usingO(

√
|D|/ε2)

samples. Thus, with probability 2/3 both the in-
voked learner and the tester returns the right answer.
Also, the sample complexity is O(

√
n/ε2 + 1/ε2) =

O(
√
n/ε2). Hence the proof is complete.

5. Testing mixtures in the presence of noise that is accessible via samples

In this section, we provide an algorithm for the testing closeness of distributions in the presence
of noise that is accessible via samples. We assume we have sample access to three distributions p,
q1, and q2, over [n] and the goal is to test if p is a mixture of q1 and q2. Our approach is first to
learn p in an indirect manner. Specifically, we design an algorithm that finds a candidate mixture
distribution qα := (1 − α)q1 + α q2 such that with high probability if p is a mixture of q1 and q2,
then qα will be close to p. We claim that the answer to the test “is p close to qα” can be used to test
if p is close to a mixture of q1 and q2. Indeed, if p is a mixture distribution, by the property of the
learning algorithm, qα is close to p and hence the test will accept. Conversely, if p is far from being
a mixture, then p is far from any mixture distribution including qα, and hence the test will reject.

In particular, the candidate qα will be such that (i) if p is a mixture, then ‖p−qα‖2 ≤ cε/
√
n for

a sufficiently small constant c and (ii) if p is ε-far from being a mixture, then ‖p−qα‖2 ≥ ε/
√
n. As

we will see, the robust `2-distance tester of Chan et al. (2014) can efficiently distinguish these two

9
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cases. Since we are looking for qα that is close to p in `2-distance, we study how we can estimate
the `2-distance between p and a mixture distribution q1 and q2. Let s be the expected number of
samples we draw; s will be specified later. Assume we draw Poi(s) samples2 from p, q1, and q2. Let
X , Y , and Z denote the (multi)set of samples from p, q1, and q2 respectively. Let Xi, Yi, and Zi be
the numbers of instances of element i ∈ [n] in each sample set. Consider the following statistic:3

f(α) :=

n∑
i=1

(Xi − (1− α)Yi − αZi)2 −Xi − (1− α)2Yi − α2Zi. (1)

Note that if we fix the sample sets X , Y , and Z, f is a quadratic function of α. We show that the
above statistic has the expected value of s2‖p− qα‖22.

If p is a mixture distribution with parameter α∗, then E[[[f(α∗)]]] = 0, where the expectation is
taken over the randomness of the samples. Hence, a natural candidate to approximate α∗ is some
α where f achieves its (near-)minimum. To do this, we first show that if p is a mixture, then we
can choose a threshold parameter T such that |f(α∗)| ≤ T with high probability. Then we pick
α ∈ [0, 1] that minimizes f(α) with the constraint that |f(α)| ≤ T . Since f is a quadratic, let α̂1

and α̂2 be the solutions. We then show that if p is a mixture of q1 and q2, with high probability, at
least one of ‖p− qα̂1‖2 or ‖p− qα̂2‖2 is small (Section 5.1).

For the rest of the section, let b be a parameter specified later for which ‖p‖22, ‖q1‖22/2, and
‖q2‖22/2 are bounded by b. Thus for any mixture distribution qα, we have ‖qα‖22 ≤ b. Also, let
γ = ε2/(10n), s = cs · (

√
b/(γ/2)) for a sufficiently large constant cs, and let T = s2γ. (All

missing proofs are in Appendix D.)

5.1. Finding candidates

In this section, we aim to learn a mixture distribution. More precisely, we are looking for α’s such
that if p is a mixture distribution, then with high probability, ‖p− qα‖2 ≤ ε/(2

√
n).

Theorem 6 Suppose p is a mixture distribution. Given X , Y , and Z, with probability 0.94, one
can compute a candidate setM, |M| ≤ 5, for which there exists α ∈M such that ‖p−qα‖22 ≤ ε2

4n .

Proof We consider two cases based on the `2-distance of q1 and q2. Suppose ‖q1−q2‖22 ≤ ε2/(4n).
If p is a mixture distribution with parameter α∗, then we have:

‖q1 − p‖22 =
n∑
i=1

(q1(i)− (1− α∗)q1(i)− α∗ q2(i))2 =
n∑
i=1

α∗2 · (q1(i)− q2(i))2

= α∗2 · ‖q1 − q2‖22 ≤ ‖q1 − q2‖22 ≤
ε2

4n
.

Hence, q1, which is a mixture distribution with parameter α = 0, is a candidate.
We now focus on the case ‖q1 − q2‖22 ≥ ε2/(4n). Without loss of generality, α∗ > 1/2

(otherwise swap q1 and q2). Fixing X,Y, Z, we write (1) as f(α) = Aα2 +Bα+ C, where

A :=
n∑

i=1

(Yi − Zi)
2 − Zi − Yi, B := 2

n∑
i=1

Yi +XiYi + YiZi − Y 2
i −XiZi, C :=

n∑
i=1

(Xi − Yi)2 −Xi − Yi.

(2)

2. Poi(s) is a Poisson random variable with parameter s.
3. This is motivated by the `2-distance estimator proposed in Chan et al. (2014) in which they draw a set of samples

from p and q and use the statistic
∑n
i=1(Xi − Yi)

2 −Xi − Yi, where Xi (resp., Yi) is the number of times i ∈ [n]
occurs in the samples from p (resp., q).

10
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As explained earlier, the idea is to use f(α) to find a proper candidate α.
We now study the properties ofA andB. It turns out thatA is the same as the statistic for testing

closeness where Poi(s) samples are drawn from q1 and q2. From Chan et al. (2014),

EX,Y,Z[[[A]]] = s2‖q1 − q2‖22 and VarX,Y,Z[[[A]]] ≤ 8s3 ‖q1 − q2‖24
√
b+ 8 s2 b .

We show (Lemma 21) that with probability 0.99, there is a constant cA ∈ [0.9, 1.1] such that

A = cA · s2‖q1 − q2‖22. (3)

B might not have a nice closed-form expression when p is an arbitrary distribution, but when p is a
mixture, it has the following property.

Lemma 7 Suppose p is a mixture of q1 and q2 with parameter α∗ ≥ 1/2. Let B be a function of
the sample sets X , Y , and Z as defined in (2) and let γ < ‖q1− q2‖22. If the sample sets, X , Y , and
Z, each have Θ(

√
b/γ) samples, then with probability 0.99, there exists cB ∈ [0, 1] such that

B = −2 cB · α∗‖q1 − q2‖22 . (4)

We now analyze f(α) for a fixed α. (The following in fact holds for any distribution p over [n].)

Lemma 8 For a fixed α,

EX,Y,Z[[[f(α)]]] = s2 · ‖p− qα‖22 and VarX,Y,Z[[[f(α)]]] ≤ 8 s3 ·
√
b · ‖p− qα‖24 + 8 s2 · b .

By Lemma 8 and Lemma 21, with probability 0.99, if p = (1− α∗)q1 + α∗q2, then

|f(α∗)| ≤ s2γ = T. (5)

With probability 0.97, all of (3), (4), and (5) hold; we condition on this from now on.
Since f(α) is a quadratic and since A > 0 from (3), let αmin = −B/(2A) where f achieves its

minimum. We define α̂1 and α̂2 as follows:

α̂1 = arg min
α∈[αmin,1],f(α)≤T

f(α), and α̂2 = arg min
α∈[0,αmin],f(α)≤T

f(α) . (6)

Note that (5) guarantees that either α̂1 or α̂2 exists depending on if α∗ > αmin or not; they can also
be found very efficiently by binary search. It remains to show that one of qα̂1 and qα̂2 is very close
to p in `2-distance.

Lemma 9 We have either ‖p− qα̂1‖2 ≤ 2T
0.9 s2

or ‖p− qα̂2‖2 ≤ 2T
0.9 s2

.

Note that by choice of our parameters, we have 2T/(0.9s2) < ε2/(4n). Hence, either qα̂1 or
qα̂2 is a candidate. Thus our potential candidates so far are α = 0, qα̂1 , and qα̂1 . In addition, given
our assumption for α∗ > 1/2, we need to compute the corresponding α̂1 and α̂2 when q1 and q2 are
swapped. Hence, we have at most five candidates for α.

5.2. Mixture closeness tester

In this section, we provide our algorithm and prove its correctness in the following theorem.

Theorem 10 Given a proximity parameter ε, Algorithm 3 is an closeness tester in the presence of
noise that is accessible via samples and it uses Θ(

√
n/ε2 + n2/3/ε4/3) samples.

11
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Algorithm 3: Closeness tester in the presence
of noise that is accessible via samples.

Procedure: MIXTURE-CLOSENESS-
TESTER (n, ε, sample access to p, q1, q2)

k ← Θ
(
min

(
n, n2/3/ε4/3

))
samples to reduce

the `2-norm of the distribution.
p′, q′1, q′2 ← p, q1, and q2 after flattening.
b← Θ (1/k)
s← Θ(n ·

√
b/ε2)

X,Y, Z ← Poi(s) samples from each distribu-
tion p′, q′1, and q′2.
C ← set of candidates
for α ∈ C do

if `22-DIST-ESTIMATOR
(
b, ε

2

4n , q
′
α, p
′
)
≤

ε2

2n then
return accept

end
end
return reject

Proof We reduce the `2-norm of the three
input distributions via the reshaping technique
proposed in Diakonikolas and Kane (2016). Let
S be a multi-set consisting of 3 k samples,
where k samples are chosen from each distri-
bution p, q1, and q2. For i ∈ [n], we assign
bi buckets to element i where bi is the num-
ber of instances of element i in set S plus one.
For a distribution d over [n], we define d′ to
be a distribution over all the buckets, D :=
{(i, j) | i ∈ [n] and j ∈ [bi]}. We generate
a sample from d′ via the following process: (i)
draw a sample i ∼ d, (ii) pick j ∈ [bi] uni-
formly at random, and (iii) output (i, j). The
probability of any element (i, j) according to
d′ is d(i)/bi. It is known that flattening does
not change the `1-distance between two distri-
butions. Let p′, q′1, and q′2 be the distributions
p, q1, and q2 after flattening. We show that a
mixture distribution will remain a mixture after
flattening. More precisely, if p is a mixture of
q1 and q2 with parameter α∗, then it is easy to
see that p′ is a mixture of distributions q′1 and q′2
with the same parameter α∗. Thus, it suffices to

test if p′ is a mixture of q′1 and q′2.
By setting k = Θ(min(n, n2/3/ε4/3)), according to (Diakonikolas and Kane, 2016, Lemma

II.6) and Markov’s inequality, we can assume the `2-norms of all three distributions p′, q′1, and q′2
are at most b with probability at least 0.99, where we set b = 1/min(n, n2/3/ε4/3) = Θ(1/k) .
Also, note tht |D| = Θ(n).

Given Theorem 6, one can find a setM of at most five candidates. If p′ is a mixture of q′1 and
q′2, then there is an α ∈ M such that ‖q′α − p′‖2 ≤ ε/(2

√
|D|). On the other hand, if p′ is ε-far

from being a mixture, it is also ε-far from all α ∈ M; using the Cauchy–Schwarz inequality, we
have ‖q′α − p′|2 ≥ ε/

√
|D|. Note that Chan et al. (2014) showed one can estimate the `2-distance

accurately using Θ(|D| ·
√
b/ε2) samples and with probability 0.99 (see Lemma 22 in Appendix D.)

By a union bound, the probability that M does not contain the right α, the probability that
the `2 estimation fails, and the probability that Poi(λ) < 100λ sum up to below 1/3. Hence,
with probability 2/3, the algorithm outputs the right answer and the total number of samples is
Θ(k + n

√
b/ε2) = Θ(

√
n/ε2 + n2/3/ε4/3).
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Appendix A. Testing under k-flat noise

We have so far considered the problems of identity testing and closeness testing in the presence of
the noise that is directly accessible and proved these problems have the same sample complexity as
their respective noise-free versions. These results raise the question of whether one can replace the
requirement of access to the noise by an assumption that restricts the noise to be in a class of distri-
butions and still achieve improved sample complexity compared to the near-linear lower bound we
mentioned earlier. In this section we develop a tester for identity testing when the noise distribution
belongs to the class of k-flat distributions without any further information. This assumption means
that the noise can be any k-flat distribution, while the parameters of the k-flat distribution are not
known to the tester, nor given via samples.

A.1. Preliminaries

We begin by formally defining k-flat distributions: We say I = {I1, . . . , Ik} is a k-segmentation of
[n] if and only if I1, . . . , Ik are k disjoint intervals that cover [n]. Also, we say a function f : [n]→
R is a k-flat function if and only if there is a k-segmentation of [n], namely I = {I1, . . . , Ik}, such
that for any two elements, x and y, in the same interval in I, f(x) is equal to f(y). A distribution
is a k-flat distribution if and only if its probability mass function is a k-flat function.

We next define concepts that will be necessary for describing our algorithms. For any distribu-
tion p and a partitionD = {D1, . . . Dt} of its domain, the coarsening of p overD, denoted by p〈D〉,
is a distribution over the sets in D where the probability of each set Di is

∑
x∈Di p(x). For a subset

D ⊆ [n], we define the restriction of p to D, denoted by p|D, to be a distribution over D for which
the probability of x ∈ D is equal to p(x | x ∈ D). Although the restriction is well-defined only
when p(D) is not zero, abusing notation, we define ‖p|D− q|D‖1 to be zero if p(D) or q(D) is zero.

Also, throughout this section, we study different schemes for partitioning the domain. In
addition to k-segmentation, which is defined earlier, two other schemes are defined as follows:
Given a known distribution q, Batu et al. (2001) provide a partitioning scheme, called bucketing,
which places elements with similar probability in the same bucket. Note that, in contrast with
k-segmentation, this scheme does not necessarily place consecutive elements in the same bucket.

Definition 11 (Similar to Batu et al. (2001)) Assume we have a known distribution q over [n].
Given a parameter ε, we define the bucketing of the domain, BUCKET(q, n, ε), to be a set of v
subsets of the domain, B = {B1, . . . , Bv}, where each subset is defined as below:

B1
def
=

{
x ∈ [n]

∣∣∣∣q(x) ≤ ε2

n

}
, and

Bi
def
=

{
x ∈ [n]

∣∣∣∣(1 + ε)iε2

n
< q(x) ≤ (1 + ε)i+1ε2

n

}
for i = 2, . . . , v .
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We define the last partitioning scheme below. This partition is a refinement of the bucketing with
respect to a k-segmentation I.

Definition 12 Assume I is a k-segmentation of [n], and B is a bucketing of [n] containing v disjoint
subsets. We define D(I,B) = {Di,j,`}(i,j)∈[k]×[v] to be a division of the domain for which the
Di,j,`’s are the intersection of the ith interval and the jth bucket. Formally, Di,j,` is defined as:

Di,j,` := {x ∈ [n] |x ∈ Ii ∩Bj} .

The problem of testing identity in the presence of k-flat noise. Suppose we are given a known
distribution q, and sample access to a distribution p both over the domain [n]. Let C denote the class
of all k-flat distributions over [n]. The problem of testing identity in the presence of k-flat noise
boils down to distinguishing the following cases with probability at least 2/3:

• There exists a mixture parameter α∗ and a k-flat distribution r∗ over [n] such that p is a
mixture of q and r∗ with parameter α∗, i.e., p = (1− α∗)q + α∗ r∗.

• p is ε-far from any distribution of the form (1− α)q + α r where r ∈ C and α ∈ [0, 1].

A.2. The algorithm

We start by explaining the properties of the partitioning schemes we defined earlier. Let B =
BUCKET(q, n, ε′) be the bucketing of the domain elements for a parameter ε′ := ε/14. The algo-
rithm can obtain this bucketing since q and ε is known to the algorithm. The bucketing scheme is
designed such that the probabilities of the elements in a bucket are within a (1 + ε)-factor of each
other (except for B1). This property implies that the restriction of q to any bucket is extremely close
to the uniform distribution.

Now, assume that p is in fact a mixture of q and a k-flat distribution r∗. We denote the k-
segmentation of r∗ by I∗ = {I∗1 , . . . , I∗k} (which is not known to the algorithm). By definition,
the restriction of r∗ on any I∗i ∈ I∗ is a uniform distribution. Consider the division D(I∗,B),
described in Definition 12. Observe that Di,j,` ∈ D is a subset of both Ii and Bj . One can show
that the restriction of r∗ is uniform on Di,j,`, and the restriction of q to Di,j,` is very close to the
uniform distribution as well. Thus, p, which is assumed to be the mixture of q and r∗, must be very
close to the uniform distribution on Di,j,`. We formally prove this claim in Lemma 15.

Based on the above observation, our tester looks for two qualities in p to assert that it is a mixture
distribution: Given a divisionD(I,B), (i) are the restrictions of p to the Di,j,`’s almost uniform and
(ii) is the overall shape of p over Di,j,`’s (i.e., p〈D〉) consistent with a mixture of q and a k-flat
noise distribution? More specifically, our tester follows these steps. For every k-segmentation I,
the tester checks that the restriction of p to each Di,j,` ∈ D(I,B) is almost uniform. If it figures
out that it is not the case, it abandons the current segmentation, and start over with another one. If
at some point, the tester passes this step, it checks the overall shape of p. It draws enough samples
from p and forms the empirical distribution p̂ from the samples. Then it checks whether there exists
a k-flat function, f , such that p̂〈D〉 is consistent with a mixture of q and f . If the tester finds a k-
segmentation such that the distribution passes the two steps above, then it asserts that p is a mixture
and outputs accept. Otherwise, it outputs reject.

Based on our first observation, one can expect the tester to accept a mixture distribution p. How-
ever, the main challenge is to show that the tester rejects when p is ε-far from being a mixture. To
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Algorithm 4: Identity testing in the presence of k-flat noise
Procedure: IDENTITY-TESTER-K-FLAT-NOISE(q, n, ε, sample access to p)
ε′ ← ε/14
B ← (q, n, , ε′)
M ←Multiset of s = Θ̃ε(k

√
n) i.i.d. samples from p.

for every possible k-segmentation I do
D ← D(I,B)
for i = 1 to k do

for j = 2 to v do
Mi,j ←M ∩Di,j,`

if |Mi,j | ≥ ε′s/4(k · v) then
if ‖p|Di,j,` − U|Di,j,`‖2 ≥ 2 ε′/

√
|Di,j,`| then

Continue with another segmentation.
end

end
end

end
p̂← Empirical distribution built by samples in M
for α = 0, ε′/2, ε′, . . . , 1 do

f ← find a k-flat function on I such that p̂〈D〉 is 2 ε′-close to (1−α)q〈D〉+α f〈D〉 if f exists
then

return accept
end

end
end
return reject

prove this fact, we also use the following observation. Suppose we have two distributions p and p′.
Let P be a partition of their domain. We prove that if p and p′ are ε-far from each other, there is a
noticeable discrepancy between either their coarsening distributions over P or their restrictions to
the subsets in P (Lemma 16). This observation implies that if p is ε-far from being a mixture distri-
bution, then at least one the steps will fail. Hence, we distinguish both cases with high probability.

We describe our tester in Algorithm 4 and show its correctness in Theorem 13. Later, we also
discuss how to avoid trying all I’s and achieve a polynomial time algorithm.

Theorem 13 Algorithm 4 is an identity tester in the presence of k-flat noise that uses Õ(
√
nk/ε3.5)

samples.

Proof We set ε′ = ε/14. We denote the number of buckets in B = BUCKETS(q, n, ε′) by v. Let t
denote k ·v. Without loss of generality we assume t ≤ n. Otherwise, one could learn the distribution
p up to ε/2 `1-distance error via O(n/ε2) samples, and trivially check if it is ε/2-close to a mixture
of q and a k-flat distribution.

Consider a segmentation I, and a division D := D(I,B). To obtain better sample complexity,
we need to make sure that the size of each set in D is not greater than dn/te. In the case that a large
set of size z > dn/te exists, we split it into Di,j,` := bz · t/nc+ 1 sets of roughly the same size and
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denote them by Di,j,` for ` ∈ [Di,j,`]. The new sets form a new partition of the domain. We call it
a refined division, denoted D̃ := D̃(I,B, n, t). Note that this replacement will not asymptotically
increase the total number of sets in the division, since D̃ has

∑
i,j Di,j,` ≤ 2 t many sets.

Now, we establish that for a sufficiently large number of samples, the three steps in the algorithm
succeed with high probability. First, in the following lemma, we show that O(t · log n/ε2) samples
are enough to obtain an empirical distribution p̂ such that for all the divisions D p̂〈D〉 and p〈D〉 are
ε′-close to each other with probability 0.9.

Lemma 14 Assume p is a distribution over [n]. Let p̂ be an empirical distribution formed
by Θ(min(n, kv log n) · (log δ−1)/ε′2) samples from p. Fix a bucketing of the domain
B =BUCKET(q, n, ε′). For every k-segmentation I, and the corresponding refined division of the
domain D = D(I,B), the coarsening of p and the empirical distribution p̂ over D is at most ε′-far
from each other with probability at least 1− δ.

The proof is presented in Section A.3.
Second, we show that if p(Di,j,`), for a fixed i, j, and `, is at least ε′/|D̃| = Θ(ε′/t), then Mi,j

contains at least ε′/(4t) fraction of the samples with high probability. Note that there are at most
Θ(n2 · v) set Di,j,` for a fixed B. Using the Chernoff bound, the claim is true for all Di,j,`’s with
probability 0.9 if we draw more than Θ(log(n2 · v)t/ε′) samples.

Third, we show if Mi,j contains enough samples, then with high probability we can dis-
tinguish whether ‖p|Di,j,` − U|Di,j,`‖

2
2 is at most ε′2/|Di,j,`|, or it is at least 2ε′2/|Di,j,`|: If

we draw Θ(t/ε′ · (log(n2 · v) ·
√
n/t/ε2)) samples, we receive O((log(n2 · v) ·

√
n/t/ε2) =

O((log(n2 · v) ·
√
|Di,j,`|/ε2) samples from any set Di,j,` with p(Di,j,`) ≥ ε′/t. Based on (Di-

akonikolas et al., 2016, Theorem 1), with probability 1 − 1/3, we can distinguish whether
‖p|Di,j,` − U|Di,j,`|‖

2
2 is at most 2ε′2/|Di,j,`| or at least ε2/|Di,j,`| using Θ(

√
|Di,j,`|/ε2) samples.

By repeating this Θ(log(n2 · v)) times and taking the majority answer, we can be assured to ob-
tain the correct answer for the test on all the Di,j,`’s with probability at least 0.9. Thus, we need
O(
√
n · t · (log n+ log v)/ε3) samples for this step.

In the above three steps, we need the following number of samples:

O(t · log n/ε2 +
√
n · t · (log n+ log v)/ε3 + log(n2 · v)t/ε′)

= O(
√
n · k/ε3.5) · Polylog(n, ε−1) = Õ(

√
n · k/ε3.5) .

By a union bound, the probability than any of the above steps goes wrong is at most 0.3. Hence, for
the rest of the proof, we assume that the algorithm carries out the steps as expected with probability
at least 2/3. Given this assumption, we show in both the completeness case and the soundness case,
the algorithm outputs the correct answer.
Completeness: In this case, there exist a k-flat distribution over I, r, and a parameter α∗ such that
p = (1 − α∗)q + α∗r. First, note that p in each Di,j,` ∈ D̃ is close to the uniform distribution. In
particular, we have the following lemma.

Lemma 15 Suppose p is a mixture of q and r with parameter α. Let I∗, B, and D̃, be the partitions
we defined earlier. For any non-empty set, Di,j,` ∈ D, if j > 1, then the restriction of p to the set,
p|Di,j,` , is ε-close to the uniform distribution in `1-distance and ε/

√
|Di,j,`|-close to the uniform

distribution in `2-distance.
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For the proof of the lemma, see Section A.3.
The lemma implies that for all the Di,j,`, p|Di,j,` is close to the uniform distribution. Hence,

the algorithm while considering the segmentation I∗, will not continue with another segmentation
since p|Di,j,` is being far from uniform, and the algorithm will move on to the next step.

Also, we show that a k-flat function, f , exists, because r is a solution itself. We have Ω(t/ε′2)
samples which is enough to learn the coarsening of p over D̃. Thus, the coarsening of the empirical
distribution, p̂, is ε′-close to the coarsening of p over D̃. There exists an iteration in the algorithm
in which we try a parameter α such that α− α∗ is at most ε′/2. Therefore, r itself is a solution the
algorithm is looking for:

‖p̂〈D̃〉−((1− α)q〈D̃〉 + α r〈D̃〉)‖ ≤ ‖p̂〈D̃〉 − p〈D̃〉‖1
+ ‖p〈D̃〉 − ((1− α∗)q〈D̃〉 + α∗ r〈D̃〉)‖

+ ‖((1− α∗)q〈D̃〉 + α∗ r〈D̃〉)− ((1− α)q〈D̃〉 + α r〈D̃〉)‖

≤ ε′ + 0 +
ε′

2
· ‖q〈D̃〉 − r〈D̃〉‖1 ≤ 2ε′.

Hence, the algorithm will not output reject.
Soundness: In this case, p is ε-far from any mixture distribution qα = ((1 − α)q〈D̃〉 + α r〈D̃〉) for
any k-flat distribution r and α ∈ [0, 1]. We have the following structural lemma (similar to Lemma
6 in Batu et al. (2001)) which bounds the distance between p and qα from above:

Lemma 16 Assume p and q are two distributions on [n], and let D̃ be a refined division of the
domain elements. Then, we have

‖p− q‖1 ≤
∥∥∥p〈D̃〉 − q〈D̃〉∥∥∥1

+
∑
D∈D̃

∥∥p|D − q|D∥∥1
·min(p(D), q(D)).

The proof is in Section A.3.
Since the distance between p and qα is at least ε, we can apply this lemma to obtain a lower

bound for the two quantities in the right hand side of the equation above.

ε = 14ε′ < ‖p− qα‖1

≤
∥∥∥p〈D̃〉 − (qα)〈D̃〉

∥∥∥
1

+
∑
Di,j,`

∥∥∥p|Di,j,` − (qα)|Di,j,`

∥∥∥
1
·min (p(Di,j,`), qα(Di,j,`)) .

(7)

At least one of the two terms on the right hand side above is greater than 7ε′. Net, we show
if the algorithm reaches to the point that forms the empirical distribution, then the second term is
at most 7ε′. On the other hand, if the algorithm outputs accept, then the first term is at most 5ε′.
Hence, these two events cannot happen at the same time while |p− q| ≥ ε.

Formally, if there is noDi,j,` such that causes the algorithm to move forward to the next segmen-
tation, then for each Di,j,` either the weight of the set is not larger than ε′/|D̃|, or the `2-distance
between P|Di,j,` and the uniform distribution is not more than

√
2ε′2/|Di,j,`|. In the following

lemma, we show that this situation implies that the second term in Equation 7 is at most 6.42 ε′.
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Lemma 17 Suppose for every non-empty Di,j,` in the division D̃ = D̃(I,B), either p(Di,j,`) is at
most ε′/|D̃|, or ‖p|Di,j,` − U|Di,j,`‖

2
2 is at most 2ε′2/|Di,j,`|. Let qα be a mixture of q and a k-flat

distribution over I with an arbitrary α in [0, 1]. Then, the following holds

k∑
i=1

v∑
j=1

‖p|Di,j,` − (qα)|Di,j,`‖1 ·min (p(Di,j,`), qα(Di,j,`)) ≤ 6.42 ε′ .

See Section A.3 for the proof.
On the other hand, if the algorithm outputs accept, it implies that there exists a function f and

α, such that ‖p̂ − ((1 − α) q + α f)‖1 is at most 2ε′. In the following lemma, we show it implies
that there exists a qα such that ‖p〈D〉 − (qα)〈D〉‖1 is at most 5ε.

Lemma 18 Assume p, p̂, and q are three distributions over [n], and f : [n] → R+ is a k-flat
function over k-segmentation I. For a division D, suppose p̂〈D〉 is ε′-close to p〈D〉, and there exists
α ∈ [0, 1] such that ‖p̂− ((1− α) q + α f)‖1 is at most 2ε′. Then, there exists a k-flat distribution
r, such that p is 5ε′-close to the mixture of r and q with parameter α.

The proof of the lemma is in Section A.3.
Moreover, outputting accept means that the two terms in Equation 7 are at most 6.42ε′ + 5ε′ <

14ε′, which contradicts the fact that one of them has to be 7ε′. Hence, the proof is complete.

A faster algorithm. In the interest of a simpler exposition, the algorithm described above tries
all possible k-segmentations. However, there are at most O(n2 · v) possible subsets that could
appear as Di,j,`’s. Hence, one can test uniformity of p on each of them separately regardless of
I. Moreover, finding a k-flat function f for which the `1-distance between p̂ and the mixture of
q and f is minimized, can be done via dynamic programming: we define d[i, j] to be the smallest
`1-distance between p̂ and mixture of q and any j-flat distribution when we consider only the first i
elements of the domain. We compute d[i, j] using the previously computed d[i′, j − 1]:

d[i, j] = min
1≤i′<i

d[i′, j − 1] + cost([i′, i]),

where the cost([i′, i]) is defined as follows: We set the cost of an interval to infinity if any subset
of [i′, i] which would have appeared in the divisions (i.e, all subsets in such form [i′, i] ∩ Bz) for
z = 1, . . . , v) does not pass the uniformity test. Otherwise, cost([i, i′]) is the minimum `1-distance
between p̂ and a mixture of q and a constant function for the elements in [i′, i]. Since we are
only looking for k-flat functions rather than distributions, the updates can be computed locally and
independently of the rest of segments.

A.3. Proofs

Proof of Lemma 14: Suppose we draw s samples from p. Let nx indicate the number of occur-
rences of x among the samples. Let p̂ be the empirical distribution formed by s samples which
means that p̂(x) := nx/s. The goal is to show that for every segmentation I, the coarsening of p̂
and p over D̃(I,B, n, t) are ε′-close with probability at least 1 − δ. We build on the standard idea
that is used to show that O(n/ε2) samples is sufficient to learn a distribution over [n] within ε error
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in `1-distance. Consider D̃ which contains Θ(t) disjoint subsets of [n]. The `1-distance between the
coarsening of p and the empirical distribution is defined as follows:

‖p〈D〉 − p̂〈D〉‖1 =
k∑
i=1

v∑
j=1

Di,j,`∑
`=1

∣∣∣∣∣∣
∑

x∈Di,j,`

p(x)−
∑

x∈Di,j,`

p̂(x)

∣∣∣∣∣∣
=
∑
x∈[n]

sign

 ∑
x∈Di,j,`

p(x)−
∑

x∈Di,j,`

p̂(x)

 · (p(x)− p̂(x)).

We need to show that the above quantity is at most ε′ for any segmentation I and its corresponding
division D(I,B). However, we prove a stronger claim: Suppose we have a collection C of vectors
of length n with entries in {+1,−1} for which the following is true:

• For every refined division D̃, an every set Di,j,` ∈ D̃, there exists a vector c ∈ C such that if

x is in Di,j,`, then cx = sign
(∑

x∈Di,j,` p(x)−
∑

x∈Di,j,` p̂(x)
)

.

• For all c ∈ C,
∑

x∈[n] cx · (p(x)− p̂(x)) is at most ε′ with probability at least 1− δ.

The proof is complete if we establish this claim, so now we focus on proving that the collection
C exists. We first put a vector c corresponding to each refined division. Then we show there is an
upper bound for the size of the collection. Next, we show since there are not too many vectors in
the collection, with high probability,

∑
x∈[n] cx · (p(x)− p̂(x)) is at most ε′ for any c ∈ C.

Clearly, there are no more than 2n possible vectors. However, we get a better bound for the cases
when k is not arbitrarily large. We begin by considering a refined division D̃. Fix a set B ∈ B. If
two elements in B are in the same interval Ii for i ∈ [k], then they will have the same cx as well.
Thus, if we sort elements in B, and then write the corresponding cx’s, then we get a sequence of +1
and −1 where the sign is changed in at most Θ(t) places. To uniquely represent the sequence, one
can determine the indices where the sign changed and indicate whether the sequence starts with +1
or −1. Thus, the total number of such sequences is:

Θ(t)∑
i=0

2 ·
(
|B| − 1

i

)
≤ 2 · ((|B|)Θ(t) + 1) ≤ nΘ(t) .

Note that we have at most v such subsets of the domain B ∈ B. Thus, the total number of vectors
in C is at most min(2n, nΘ(t·v)).

Next, we show that if we draw enough samples, the probability of
∑

x∈[n] cx ·(p(x)− p̂(x)) ≥ ε′
for any c ∈ C is at most δ. Fix a vector c = (c1, . . . , cn) in {+1,−1}n. Consider the following
random process: we draw a sample from p, namely x; if cx is one, output one and otherwise output
zero. In other words upon receiving sample x, we output (1 + cx)/2. Assume x1, . . . , xs are s
samples from p that form the empirical distribution. Suppose that we generate b1, . . . , bs according
to the process using these samples from p, i.e., bj = (1+cxj )/2. The bj’s are s independent random
variables with the following expected value.

E[[[bj ]]] =

n∑
x=1

p(x) · 1 + cx
2

=
1 +

∑
x cx · p(x)

2
.
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Clearly, the average of bj’s are close to its expectation with high probability, we use this fact to
show that

∑
x cx · (p(x) − p̂(x)) are close to zero as well. Recall nx is the number of occurrences

of element x in the sample set. Using the Hoeffding bounds, we achieve:

Pr

[[[∣∣∣∣∣∑
x

cx · (p(x)− p̂(x))

∣∣∣∣∣ ≥ ε′
]]]

= Pr

[[[∣∣∣∣∣∑
x

cx · p(x)−
∑
x

cx ·
nx
s

∣∣∣∣∣ ≥ ε′
]]]

= Pr

[[[∣∣∣∣∣∑
x

cx · p(x)−
∑s

j=1 cxj

s

∣∣∣∣∣ ≥ ε′
]]]

= Pr

[[[∣∣∣∣∣1 +
∑

x cx · p(x)

2
−
s+

∑s
j=1 cxj

2 s

∣∣∣∣∣ ≥ ε′

2

]]]

= Pr

[[[∣∣∣∣∣1 +
∑

x cx · p(x)

2
−
∑s

j=1 bj

s

∣∣∣∣∣ ≥ ε′

2

]]]

= Pr

[[[∣∣∣∣∣E[[[bi ]]]−
∑s

j=1 bj

s

∣∣∣∣∣ ≥ ε′

2

]]]
≤ 2 exp

(
− s ε′2/2

)
.

(8)

Therefore, by setting s = Θ(min(n, t · v · log n) · (log δ−1)/ε′2) and using Equation 8 and a
union bound, for every c ∈ C,

∑
x∈[n] cx · (p(x) − p̂(x)) ≥ ε′ is at most ε′ with probability 1 − δ.

This completes the proof. �

Proof of Lemma 15: Fix a non-empty set Di,j,` in D̃ for some j > 1. To prove the lemma, we
show that the ratio of the maximum and the minimum probability according to p in Di,j,` is at most
1 + ε′. Consider two elements in Di,j,` namely x and y (if there is only one element in Di,j,` the
claim is apparent). Without loss of generality assume q(x) ≤ q(y). By definition of Di,j,`, x and y
are in the same interval of I, so r(x) and r(y) are equal. Thus, we have:

1 ≤ p(y)

p(x)
=

(1− α)q(y) + α r(y)

(1− α)q(x) + α r(x)
≤ q(y)

q(x)
≤ 1 + ε , (9)

the second to last inequality is true, because we have q(y) ≥ q(x) > 0. Also, the last inequality is
true since both x and y are in Bj . In the proof of Lemma 8 in Batu et al. (2001), it is show that if
the ratio of the probabilities in a set, in our case Di,j,`, is bounded by (1 + ε), then for all x ∈ Di,j,`,
|p(x)− (1/|Di,j,`|)| is at most ε/|Di,j,`|. This completes the proof. �
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Proof of Lemma 16: Fix a set in D̃, namely D, which p(D) and q(D) are non-zero, we have the
following:

∥∥p|D − q|D∥∥1
=
∑
x∈D

∣∣p|D(x)− q|D(x)
∣∣ =

∑
x∈D

∣∣∣∣ p(x)

p(D)
− q(x)

q(D)

∣∣∣∣
=
∑
x∈D

∣∣∣∣ p(x)

p(D)
− q(x)

p(D)
+
q(x)

p(D)
− q(x)

q(D)

∣∣∣∣
=
∑
x∈D

∣∣∣∣p(x)− q(x)

p(D)
− q(x) · q(D)− p(D)

p(D) q(D)

∣∣∣∣
≥ 1

p(D)

∑
x∈D
|p(x)− q(x)| − |p(D)− q(D)|

p(D)
·
∑
x∈D

q(x)

q(D)

=
1

p(D)

(∑
x∈D
|p(x)− q(x)| − |p(D)− q(D)|

)
.

Therefore, we have:∑
x∈D
|p(x)− q(x)| ≤ |p(D)− q(D)|+

∥∥p|D − q|D∥∥1
· p(D) . (10)

If we swap p and q in the above inequality, and replicate the equations, we have:∑
x∈D
|p(x)− q(x)| ≤ |p(D)− q(D)|+

∥∥p|D − q|D∥∥1
· q(D) . (11)

Putting Equation 10 and Equation 11 together, we get:∑
x∈D
|p(x)− q(x)| ≤ |p(D)− q(D)|+

∥∥p|D − q|D∥∥1
·min(p(D), q(D)) .

If at least one of p(D) and q(D) is zero, it implies:∑
x∈D
|p(x)− q(x)| = |p(D)− q(D)| .

Hence, we have:

‖p− q‖1 ≤
∑
D∈D̃
|p(D)− q(D)|+

∑
D∈D̃

∥∥p|D − q|D∥∥1
·min(p(D), q(D))

≤
∥∥∥p〈D̃〉 − q〈D̃〉∥∥∥1

+
∑
D∈D̃

∥∥p|D − q|D∥∥1
·min(p(D), q(D)) .

�

Proof of Lemma 17: We first consider a non-empty Di,j,` when j = 1. Since j = 1, Di,j,` is a
subset of B1. For each x ∈ Di,j,`, q(x) is at most ε′2/n. Also, r is a k-flat on I, and since Di,j,`

is a subset of Ii, for all x ∈ Di,j,`, r(x) is the same. We denote this quantity, r(x), by b. Here, we
prove that either qα(Di,j,`) is small, or qα(Di,j,`) has to be close to uniform.
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We have two cases. First, suppose α · b is at most ε′/n. In this case, qα(Di,j,`) is at most
ε′2|Di,j,`|/n. Thus, the total weight of such sets, sum of qα(Di,j,`)’s, is at most ε′2. Second, assume
α · b is greater that ε′/n. On the other hand, q(x) is at most ε′2/n. These two facts implies for each
x in Di,j,`:

|Di,j,`| · qα(Di,j,`)

∣∣∣∣(qα)|Di,j,`(x)− 1

|Di,j,`|

∣∣∣∣ = |Di,j,`| · qα(Di,j,`) ·
∣∣∣∣ qα(x)

qα(Di,j,`)
− 1

|Di,j,`|

∣∣∣∣
=

∣∣∣∣∣∣|Di,j,`| · (1− α)q(x)− (1− α)
∑

x∈Di,j,`

q(x)

∣∣∣∣∣∣
≤ |Di,j,`|

ε′2

n
≤ ε′ |Di,j,`|α b ≤ ε′ · qα(Di,j,`) .

Therefore, the `22-distance between (qα)|Di,j,` and the uniform distribution is bounded:

‖(qα)|Di,j,`(x)− U|Di,j,`‖
2
2 =

∑
x∈Di,j,`

(
(qα)|Di,j,`(x)− 1

|Di,j,`|

)2

≤ ε′2

|Di,j,`|
.

Note that if j is greater than one, the `2-distance between (qα)|Di,j,` and the uniform distribution
is bounded by ε′/

√
|Di,j,`| as well. Therefore, if p|Di,j,` is close uniform distribution, it has to be

close to (qα)|Di,j,` as well. That is,

‖p|Di,j,` − (qα)|Di,j,`‖1 ≤ ‖p|Di,j,` − U|Di,j,`‖1 + ‖U|Di,j,` − (qα)|Di,j,`‖1

≤
√
|Di,j,`|

(
‖p|Di,j,` − U|Di,j,`‖2 + ‖U|Di,j,` − (qα)|Di,j,`‖2

)
≤ 2.42ε′ .

Hence, given the discussion above there are three possibilities for Di,j,`. (i) p(Di,j,`) is at most
ε′/(k.v). Since `1-distance is at most 2, the total contribution of these sets in the sum below is at
most 2ε′. (ii) qα(Di,j,`) is at most ε′2|Di,j,`|/n, so the total contribution of these sets is at most 2ε′2.
(iii) ‖p|Di,j,` − (qα)|Di,j,`‖1 is at most 2.42 ε′.

‖p|Di,j,` − (qα)|Di,j,`‖1 ·min (p(Di,j,`), qα(Di,j,`)) ≤ 6.42 ε′ .

Hence, the proof is complete. �

Proof of Lemma 18: First, consider a degenerate case. If α = 0, then the claim is trivially true by
the triangle inequality: ‖p− q‖1 ≤ ‖p− p̂‖1 + ‖p̂− q‖1 ≤ 3ε′ . Thus, assume α > 0.

For now, consider the case that there exists x such that f(x) is not zero, so
∑

x f(x) is greater
than zero. First, we show that since p̂ is close to the mixture of q and f , the sum of the f(x)’s has
to be close to one. That is,

−2 ε′ ≤
∑
x

p̂(x)− ((1− α) q(x)− α f(x)) ≤ 2 ε′ ⇒

−2 ε′ ≤ 1− (1− α)− α ·
∑
x

f(x)) ≤ 2 ε′ ⇒

−2 ε′

α
≤ 1−

∑
x

f(x) ≤ 2 ε′

α
⇒

∣∣∣∣∣1−∑
x

f(x)

∣∣∣∣∣ ≤ 2 ε′

α
.

(12)
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We define r : [n] → [0, 1] to be the normalization of f for which r(x) = f(x)/
∑

x f(x) for all x
in the domain. If f is a k-flat function, then r will be a k-flat distribution. Now, we show that the
mixture of q and f is close to the mixture of q and r with mixture parameter α.

‖(1− α) q + α f − (1− α) q + α r‖1 =
∑
x

|(1− α) q(x) + α f(x)− (1− α) q(x) + α r(x)|

= α ·
∑
x

|f(x)− r(x)| = α ·
∑
x

f(x) ·

∣∣∣∣∣1− 1∑
y f(y)

∣∣∣∣∣
= α ·

∣∣∣∣∣∑
x

f(x)− 1

∣∣∣∣∣ ≤ 2 ε′ ,

where the last inequality is due to Equation 12. Moreover, by the triangle inequality, we have:

‖p̂− ((1−α) q+α r)‖1 ≤ ‖p̂− ((1−α) q+α f)‖1 +‖(1−α) q+α f − (1−α) q+α r‖1 ≤ 4 ε′ .

Now, assume f(x) is zero for all x in [n]. We show that if we set r to be the uniform distribution
over [n], the same result holds. First, observe that the uniform distribution is a k-flat distribution for
any k ≥ 1. Then we show that (1− α) q + αr is 4ε′-close to p′. Since r(x) = 1/n for all x in [n],

‖p̂− ((1− α) q + α r)‖1 ≤ ‖p̂− ((1− α) q)‖1 + α .

On the other hand, since p̂ is 2ε′-close to (1− α) q, one can show that α is at most ε′.

2 ε′ ≥ ‖p̂− ((1− α) q + α f)‖1 ≥
∑
x

p̂(x)− (1− α) q(x) = 1− 1 + α = α .

Therefore, whether
∑

x f(x) is zero or not, there exists a k-flat distribution, r for which ‖p̂− ((1−
α) q + α r)‖1 is at most 4 ε′. Since p′ is ε′-close to p, and by triangle inequality, we have:

‖p− ((1− α) q + α r)‖1 ≤ 5ε′ ,

which concludes the proof. �

Appendix B. Lower bounds

In this section, we present lower bounds for testing mixtures in different settings discussed earlier.

Theorem 19 Assume p is a distribution on [n]. There exists a constant parameter ε such that
distinguishing the following cases with probability at least 2/3 requires Ω(n/ log n) samples.
• There exists a noise distribution on [n], namely η, and an α ≤ ε1 such that p is a mixture of

uniform and η with parameter α, i.e., p = (1− α)U + αη.
• There is no noise distribution η such that p = (1− α)U + αη unless α = 1.

Proof We prove by showing a reduction from mixture testing to testing bigness property of distri-
butions. A distribution called T -big if the probability of any domain element is at least T (Aliakbar-
pour et al., 2019 (this proceedings). In addition, they showed there exist two constant parameters ε
and β and two family of distributions, namely F+ and F−, such that the following is true
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• All distribution in F+ are 1/(βn)-big.

• All distribution in F− are ε-far from being 1/(βn)-big. Moreover, all the probability of each
element according to the distributions is either zero or at least 1/(βn).

• Using o(n/ log n) samples from a distribution in the families, no algorithm can distinguish
whether the distribution was from F+ or F− with probability at least 2/3.

Let ε = 1/β. We show that any algorithm that can test mixtures as described in theorem, can
distinguish F+ and F− with high probability.

First, we show that for any 1/(βn)-big distribution, denoted by p+, there exists distribution η
such that p+ is a mixture of η and uniform distribution, meaning p+ = αη+(1−α)U for α = 1/β.
Let η assign the following probability to the ith element of the domain:

η(i) =
p(i)− 1

βn

1− 1
β

.

It is not hard to see that η as defined above is a probability distribution. Since p is 1/(βn)-big
distribution, all the p(i) are at least 1/(βn), so all the η(i)’s are non-negative. Also,

∑
i η(i) = 1.

Clearly, p+ is a mixture in the form αη + (1− α)U for α = 1/β = ε.
Note that for any distribution p− in F− there is at least one element (in fact many elements)

that has probability zero. Otherwise, all elements would have probability at least 1/(βn), and the
distribution would be big. On the other hand, any distribution that is mixed with uniform with
parameter α < 1 cannot have any zero probability element. Thus, p− is not a mixture of the form
αη + (1− α)U when α 6= 1.

Thus, any algorithm that can test mixture property as defined in the theorem has to accept p+ and
reject p−. However, we know this is not possible unless the algorithms gets Ω(n/ log n) samples.
This completes the proof.

Proposition 20 When we have sample access to q and p, any closeness tester in the presence of
uniform noise Ω

(
max

(
n2/3/ε4/3,

√
n/ε2

))
samples.

Proof First, note that one can reduce testing uniformity to this problem by setting q equal to
the uniform distribution. Therefore, it requires at least Ω(

√
n/ε2) samples by the lower bound for

uniformity testing shown in Paninski (2008).
Now, we establish that Ω(n2/3/ε4/3) many samples is also required. Without loss of generality,

assume ε ≥ 43/4/n1/4. Otherwise
√
n/ε2 would be the dominating term in the lower bound up to a

constant factor. To prove the lower bound, we use two distributions (and any random relabeling of
them) used in proving lower bounds for testing closeness of distributions Batu et al. (2013); Valiant
and Valiant (2017a,b); Chan et al. (2014). More precisely, we define two distributions p∗ and q∗ such
that distinguishing (p∗, q∗) and (q∗, q∗) (and any random relabeling of them) requires Ω(n2/3/ε4/3)
samples. On the other hand, we show that any Ω(q∗,U , ε)-mixture tester has to distinguish (p∗, q∗)
and (q∗, q∗). Thus, the statement of the proposition is concluded.

Let a = 4ε/n and b = ε4/3/n2/3. Consider three disjoint subset of domain elements [n],
namely A, B, and C each of size (1− ε)/b, ε/a, and ε/a respectively. Let p and q be the following
distributions:

p∗ = b1A + a1B, q∗ = b1A + a1C .
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Note that p∗ is ε-far from any mixture distribution of q∗ and U with parameter α ∈ [0, 1], since

‖p∗ − q∗α‖1 =
∑
i

|p∗(i)− (1− α)q∗(i)− α/n|

≥
∑
i∈B
|a− α/n|+

∑
i∈C
| − (1− α)a− α/n|

≥ n

4
(|a− α/n|+ |(1− α)a+ α/n|)

≥ n

4
· a ≥ ε.

Clearly, in the case where p = q∗ and q = q∗, p is a mixture of q and U with mixture parameter
α = 0, and in the case where p = p∗ and q = q∗, p is ε-far from any mixture distribution of q∗ and
U . Thus, a (q,U , ε)-mixture tester has to distinguish between (q∗, q∗) and (p∗, q∗). By proposition
4.1 in Chan et al. (2014), we know that this task requires Ω(n2/3/ε4/3) samples.

Appendix C. Proofs for Section 4

Proof of Lemma 3: First, observe that if q1 and q2 are ε-close, then p is ε-close to q1 as well, so
distribution q1 which is a mixture with parameter α = 0 is a valid output. For the remainder of the
proof, we assume q1 and q2 are ε-far from each other.

Let S = {i ∈ [n] | q1(i) > q2(i)}. We have α∗ = q1(S)−p(S)
q1(S)−q2(S) . The only unknown value in the

above expression is p(S), which we estimate using O(1/ε2) samples from p. We show by replacing
p(S), we get a viable estimate for α∗.

Let wS be the estimate that is the ratio of the samples that are in S. By the Hoeffding bound, we
have Pr[[[ |p(S)− ws| ≤ ε/4]]] ≥ 5/6. We define our estimate of α∗ as: α := q1(S)−(wS+ε/4)

q1(S)−q2(S) . The
reason that we add ε/4 to wS is to assure an overestimation of p(S), so α becomes smaller than α∗

with high probability. I.e., since with high probability p(S) ≤ wS + ε/4, we get:

α∗ =
q1(S)− p(S)

q1(S)− q2(S)
≥ q1(S)− (wS + ε/4)

q1(S)− q2(S)
= α.

Below, we show qα is close to p in `1-distance. Based on the definition of S, q1(S)− q2(S) is equal
to the total variation distance (i.e., half of the `1-distance) between q1 and q2. With probability 5/6,

‖p− qα‖1 =
∑
i
|p(i)− qα(i)| =

∑
i
|(1− α∗)q1(i) + α∗ q2(i)− (1− α)q1(i)− α q2(i)|

=
∑
i
|(α− α∗)(q1(i)− q2(i))| = |(α− α∗)| · ‖q1 − q2‖1

= 2 |(α− α∗)| · (q1(S)− q2(S)) = 2
∣∣p(S)− wS − ε

4

∣∣ ≤ ε. �

Proof of Lemma 4: To prove (i), note that

‖p′ − q′α‖1 =
n∑
i=1

ai∑
j=1

|p′(i, j)− q′α(i, j)| =
n∑
i=1

ai∑
j=1

|p(i)− qα(i)|
ai

=
n∑
i=1

|p(i)− qα(i)| = ‖p− qα‖1.

For (ii), |D| =
n∑
i=1

ai ≤
n∑
i=1

(
nqα(i) + n|qα(i)−q2(i)|

‖qα−q2‖1 + 1
)

= n

(
n∑
i=1

qα(i)

)
+ n
‖qα−q2‖1

(
n∑
i=1
|qα(i)− q2(i)|

)
+ n = 3n .
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We now prove (iii). If qα(i) < 1/n, then q′α(i, j) < 1/n. If qα(i) ≥ 1/n, then ai ≥ nqα(i) and
hence q′α(i, j) ≤ 1/n. Therefore, q′α(i, j) ≤ 1/n for all i, j. Since the domain size of q′α is at most
3n, ‖q′α‖2 is at most

√
3/n.

Finally, we show (iv). Since p is a mixture distribution, there is an α∗ ∈ [0, 1] such that p =
(1− α∗)q1 + α∗ q2. Also, we have that qα has a mixture parameter α ≤ α∗. Furthermore, we also
have ‖p− qα‖1 ≤ ε′. Let β = (α∗ − α)/(1− α) which is in [0, 1]. Observe that

(1− β)qα + β q2 = (1− β)(1− α)q1 + (α(1− β) + β) q2 = (1− α∗)q1 + α∗ q2 = p .
Thus, p is a mixture of qα and q2. For an element (i, j) ∈ D, we can bound the difference of p′(i, j)
and q′α(i, j) as follows, which finishes the proof.

|p′(i, j)− q′α(i, j)| = |p(i)−qα(i)|
ai

= β·|qα(i)−q2(i)|
ai

≤ β·d·|qα(i)−q2(i)|
n·|qα(i)−q2(i)| = βd

n

= 1
n

n∑
i=1

β|qα(i)− q2(i)| = 1
n

n∑
i=1
|p(i)− qα(i)| = ‖p−qα‖1

n ≤ ε′

n . �

Appendix D. Proofs for Section 5

Proof of Lemma 8: In this proof, we adapt the proof of Proposition 3.1 from Chan et al. (2014).
Recall that

f(α) =

n∑
i=1

(Xi − (1− α)Yi − αZi)2 −Xi − (1− α)2Yi − α2Zi.

Via the Poissonization method, we can assume Xi (similarly Yi and Zi) is a random variable from
Poi(s p(i)) (similarly Poi(s q1(i)) and Poi(s q2(i))), which is drawn independently from the rest
of the random variables. Note that if x is a Poisson random variable with mean λ, then E

[[[
x2
]]]

is
λ2 + λ. Using this equation and the independence of the random variables, for a fixed α, we have:

EX,Y,Z[[[f(α)]]] = s2 · ‖p− qα‖22 .

Now, we bound the variance of f(X,Y, Z, α) for a fixed α. Let Wi denote a single term in the
summation:

Wi := (Xi − (1− α)Yi − αZi)2 −Xi − (1− α)2Yi − α2Zi .

Using the moments of the Poisson distribution, we have

VarX,Y,Z[[[Wi ]]] = EX,Y,Z
[[[
W 2
i

]]]
−EX,Y,Z[[[Wi ]]]

2

= 4 s3 (p(i)− (1− α)q1(i)− α q2(i))2 · (p(i) + (1− α)2q1(i) + α2q2(i))

+ 2 s2 (p(i) + (1− α)2q1(i) + α2r(i))2

≤ 4 s3 (p(i)− (1− α)q1(i)− α q2(i))2 · (p(i) + (1− α)q1(i) + αq2(i))

+ 2 s2 (p(i) + (1− α)q1(i) + αq2(i))2

= 4 s3 (p(i)− qα(i))2 · (p(i) + qα(i)) + 2 s2 (p(i) + qα(i))2.
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Now, we bound the variance of f which is the sum of n independent terms,Wi’s. Using the Cauchy–
Schwarz inequality, and the fact that (p(i) + qα(i))2 is at most 2p(i)2 + 2qα(i)2, we have

VarX,Y,Z[[[f(α)]]] =
n∑
i=1

VarX,Y,Z[[[Wi ]]]

≤ 4 s3 (p(i)− qα(i))2 · (p(i) + qα(i)) + 2 s2 (p(i) + qα(i))2

≤ 4 s3

√√√√( n∑
i=1

(p(i)− qα(i))4

)
·

(
n∑
i=1

(p(i) + qα(i))2

)
+ 4 s2

(
‖p‖22 + ‖qα‖22

)
≤ 8 s3 · ‖p− qα‖24 ·

√
b+ 8 s2 b ,

where b is at least ‖p‖22 and ‖qα‖22 by the first condition of the theorem. �

Proof of Lemma 7: Recall that B is defined to be 2
∑n

i=1 Yi + XiYi + YiZi − Y 2
i − XiZi. To

analyze the expected value and the variance of B, we consider each terms in the sum. LetBi denote
a single term in the sum after ignoring constant 2:

Bi := Yi +XiYi + YiZi − Y 2
i −XiZi .

Note that via the Poissonization method, the Xi’s, the Yi’s, the Zi’s, and consequently the Bi’s
are independent random variables. Note that if x is a Poisson random variable with mean λ, then
E
[[[
x2
]]]

is λ2 + λ. Using this equation, we compute the expected value of Bi:

EX,Y,Z[[[Bi ]]] = −s2
(
q1(i)2 + p(i)q1(i) + q1(i)q2(i)− p(i)q2(i)

)
= −α∗s2(q1(i)− q2(i))2 .

Thus, the expected value of −B is the following:

EX,Y,Z[[[−B ]]] = −
n∑
i=1

2Bi =
n∑
i=1

2α∗s2(q1(i)− q2(i))2 = 2α∗s2‖q1 − q2‖22,

where 2α∗ is a constant between [1, 2]. Using the first four moments of the Poisson distribution and
the fact that α ≤ 1, we have the following:

VarX,Y,Z[[[Bi ]]] = EX,Y,Z
[[[
B2
i

]]]
−EX,Y,Z[[[Bi ]]]

2

= s3 α∗(1 + α∗) (q1(i)− q2(i))2(q1(i) + q2(i)) + 2 s3 (q1(i)− q2(i))2 q1(i)

+ s2
(
α∗(q2(i)2 − q1(i)2) + q1(i) (3q1(i) + 2q2(i))

)
≤ 4 s3 (q1(i) + q2(i))(q1(i)− q2(i))2 + s2 (q1(i) + q2(i))2 + 3 s2 q1(i)2 .
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Using the bound above and the Cauchy–Schwarz inequality, we bound the variance ofB as follows:

VarX,Y,Z[[[B ]]] = 4
n∑
i=1

VarX,Y,Z[[[Bi ]]]

≤ 16 s3
n∑
i=1

(q1(i) + q2(i))(q1(i)− q2(i))2 + 8‖q2‖22 + 20 s2‖q1‖22

≤ 16s3

√√√√( n∑
i=1

(q1(i)− q2(i))4

)
·

(
n∑
i=1

(q1(i) + q2(i))2

)
+ 28 s2b

≤ 32 s3‖q1 − q2‖24
√
b+ 28 s2 b .

Clearly, the variance of−B is equal to the variance of B, and it is bounded the same as above. Note
that γ is at most ‖q1−q2‖22, and the sample sets, X , Y , and Z, each have at least Θ(

√
b/γ) samples.

By Lemma 21, there exists cB ∈ [0, 1] such that

−B = 2 cB α
∗‖q1 − q2‖22,

with probability 0.99 which concludes the proof. �

Proof of Lemma 9: Consider the statistic as a function of α: f(α) = Aα2 + Bα + C. Since
A is positive, f takes its minimum at αmin := (−B)/2A. By Equation 3 and Equation 4, αmin is
cBα

∗/cA, and for any α, we have:

f(α∗)− f(α) = A(α∗2 − α2) +B(α∗ − α)

= cA s
2 ‖q1 − q2‖22 (α∗ − α)

(
α∗ + α− 2α∗(cB)

cA

)
= cA s

2 ‖q1 − q2‖22 (α∗ − α) (α∗ + α− 2αmin) .

(13)

Depending on whether α∗ is larger than αmin or not, we consider the following cases.
Case 1: α∗ ≥ αminα∗ ≥ αminα∗ ≥ αmin. Let α̂1 be the smallest number in [αmin, 1] for which |f(α̂1)| is at most T .
Clearly, α̂1 exists since α∗ is a potential solution, so the solution interval is not empty. Note that
based on the way we pick α̂1, the following are true: (i) α̂1 is at most α∗, (ii) f(α̂1) is at least −T ,
and (ii) since A is positive, and f is increasing over [αmin, 1], then f(α̂1) is at most f(α∗). Hence,
by Equation 13, we have:

0 ≤ f(α∗)− f(α̂1) = cA s
2 ‖q1 − q2‖22 (α∗ − α̂1) (α∗ + α̂1 − 2αmin) ≤ 2T .

If we replace α∗+ α̂1−2αmin by a smaller quantity ,α∗− α̂1, where both are positive then we have:

s2 ‖q1 − q2‖22 (α∗ − α̂1)2 ≤ 2T

cA
≤ 2

0.9
T . (14)

Case 2: α∗ ≤ αminα∗ ≤ αminα∗ ≤ αmin. We replicate what we did in the previous case. Let α̂2 be the largest number
in [0, αmin] for which |f(α̂2)| is at most T . Clearly, α̂2 exists since α∗ is a potential solution, so
the solution interval is not empty. Note that based on the way we pick α̂2, the following are true:
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(i) α̂2 is at least α∗, (ii) f(α̂2) is at least −T , and (iii) since A is positive, and f is decreasing over
[0, αmin], then f(α̂2) is at most f(α∗). Hence, by Equation 13, we have:

0 ≤ f(α∗)− f(α̂2) = cA s
2 ‖q1 − q2‖22 (α∗ − α̂2) (α∗ + α̂2 − 2αmin)

= cA s
2 ‖q1 − q2‖22 (α̂2 − α∗) (2αmin − α∗ − α̂2) ≤ 2T .

If we replace 2αminα
∗ − α̂2 by a smaller quantity, α̂2 − α∗, where both are positive, then we have:

s2 ‖q1 − q2‖22 (α∗ − α̂2)2 ≤ 2T

cA
≤ 2

0.9
T . (15)

The left side of Equation 14 and Equation 15 are in the form of the `2-distance between two
mixture distributions p and qα̂ due to the following:

‖p− qα̂‖22 =

n∑
i=1

(p(i)− qα̂(i))2 =

n∑
i=1

((1− α∗) q1(i) + α∗q2(i)− (1− α̂) q1(i)− α̂ q2(i))2

(16)

= (α∗ − α̂)2
n∑
i=1

(q1(i)− q2(i))2 = (α∗ − α̂)2‖q1 − q2‖22 . (17)

Note that we are either in case 1 or case 2. So, on of the two equations, Equation 14, Equation 15
has to be true. By Equation 16, of the following is true.

‖p− qα̂1‖2 ≤
2T

0.9 s2
‖p− qα̂2‖2 ≤

2T

0.9 s2
,

which concludes the proof. �

Lemma 21 [Adapted from Chan et al. (2014)] Assume a random variable, namely R, has the
following properties:

E[[[R]]] = c1s
2‖q1 − q2‖22, Var[[[R]]] ≤ c2s

3‖q1 − q2‖24
√
b+ c3s

2b, (18)

where c1, c2, and c3 are three positive constants, s is an integer, q1 and q1 are two distributions
over [n], and b is a real number which is greater than ‖q1‖22 and ‖q2‖22. If s is at least c ·

√
b/τ for

sufficiently large c, then with probability 0.99 the following is true:

• If ‖q1 − q2‖22 is at most τ , then |R| is at most 2 c1 τ s
2.

• If ‖q1 − q2‖22 is at least τ , then R is between 0.9 ·E[[[R]]] and 1.1 ·E[[[R]]].

Proof We use Chebyshev’s inequality to prove the lemma. For the first case, by the `p-norms
inequality, we have the following:

Pr
[[[
|R−E[[[R]]]| ≥ c1 τs

2
]]]
≤ Var[[[R]]]

c2
1τ

2s4
≤ c2‖q1 − q2‖24

√
b

c2
1τ

2s
+

c3 b

c2
1τ

2s2

≤ c2‖q1 − q2‖22
√
b

c2
1τ

2s
+

c3 b

c2
1τ

2s2
≤ c2

√
b

c2
1τ s

+
c3 b

c2
1τ

2s2
≤ 0.01,
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Algorithm 5: An algorithm for estimating the `2-distance squared Chan et al. (2014)
Procedure: `22-ESTIMATOR(b, σ, sample access to r1 and r2)
s← Θ(

√
b/σ))

X ← Draw s samples from r1.
Y ← Draw s samples from r2.

return 1
s2

n∑
i=1

(Xi − Yi)2 −Xi − Yi

where the last inequality is true when s ≥ max(200 c2/c
2
1,
√

200 c3/c1)
√
b/τ .

For the second case, we have the following:

Pr[[[ |R−E[[[R]]]| ≥ 0.1 ·E[[[R]]]]]] ≤ 100Var[[[R]]]

E[[[R]]]2
≤ 100 c2‖q1 − q2‖24

√
b

c2
1 s ‖q1 − q2‖42

+
100 c3 b

c2
1 s

2 ‖q1 − q2‖42

≤ 100 c2

√
b

c2
1 s ‖q1 − q2‖22

+
100 c3 b

c2
1 s

2 ‖q1 − q2‖42

≤ 100 c2

√
b

c2
1τ s

+
100 c3 b

c2
1τ

2s2
≤ 0.01,

where the last inequality is true when s ≥ max(20000 c2/c
2
1,
√

20000 c3/c1)
√
b/τ . This completes

the proof.

Lemma 22 [Restated from Chan et al. (2014)] The procedure `22-ESTIMATOR (b, σ, r1, r2) de-
scribed in Algorithm 5, that uses Θ(

√
b/σ) samples, has the following property with probability

0.99:

• If ‖r1 − r2‖22 is at most σ, then |R| is at most 2σ s2.

• If ‖r1 − r2‖22 is at least σ, then R is between 0.9 ·E[[[R]]] and 1.1 ·E[[[R]]].

Proof We use the `22-distance estimator proposed in Chan et al. (2014). However, for the sake of
completeness, we provide the process in Algorithm 5. X and Y are two sample sets each containing
s samples from r1 and r2 respectively. Let Xi and Yi indicate the numbers of samples in X and Y
respectively. The authors showed that the expected value of the statistic

∑n
i=1(Xi−Yi)2−Xi−Yi

is s2‖r1 − r2‖22, and the variance is bounded by 8s3 ‖r1 − r2‖24
√
b + 8 s2 b. By Lemma 21, if we

draw Θ(
√
b/γ) samples, then the algorithm will have the desired property with probability 0.99.
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