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Abstract
A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances
in the input graph up to a small multiplicative stretch. The common objective in the computation
of spanners is to achieve the best-known existential size-stretch trade-off efficiently.

Classical models and algorithmic analysis of graph spanners essentially assume that the al-
gorithm can read the input graph, construct the desired spanner, and write the answer to the
output tape. However, when considering massive graphs containing millions or even billions of
nodes not only the input graph, but also the output spanner might be too large for a single
processor to store.

To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for
graph spanners in general graphs, where the algorithm should locally decide whether a given edge
(u, v) ∈ E belongs to the output (sparse) spanner or not. Such LCAs give the user the “illusion”
that a specific sparse spanner for the graph is maintained, without ever fully computing it. We
present several results for this setting, including:

For general n-vertex graphs and for parameter r ∈ {2, 3}, there exists an LCA for (2r −
1)-spanners with Õ(n1+1/r) edges and sublinear probe complexity of Õ(n1−1/2r). These
size/stretch trade-offs are best possible (up to polylogarithmic factors).
For every k ≥ 1 and n-vertex graph with maximum degree ∆, there exists an LCA for O(k2)
spanners with Õ(n1+1/k) edges, probe complexity of Õ(∆4n2/3), and random seed of size
polylog(n). This improves upon, and extends the work of [Lenzen-Levi, ICALP’18].

We also complement these constructions by providing a polynomial lower bound on the probe
complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse
connected subgraph with o(m) edges.

To the best of our knowledge, our results on 3 and 5-spanners are the first LCAs with sublinear
(in ∆) probe-complexity for ∆ = nΩ(1).
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1 Introduction

One of the fundamental structural problems in graph theory is to find a sparse structure
which preserves the pairwise distances of vertices. In many applications, it is crucial for
the sparse structure to be a subgraph of the input graph; this problem is called the spanner
problem. For an input graph G = (V,E), a k-spanner H ⊆ G (for k ≥ 1) satisfies that for
any v, u ∈ V , the distance from v to u in H is at most k times the distance from v to u in
G, where k is referred to as the stretch of the spanner. Furthermore, to reduce the cost of
the solution, it is desired to output a minimum size/weight such subgraph H. The notion of
spanners was introduced by Peleg and Schäffer [31] and has been used widely in different
applications such as routing schemes [3, 30], synchronizers [2, 32], SDD’s [37] and spectral
sparsifiers [19].

It is folklore that for every n-vertex graph G, there exists a (2k − 1)-spanner H ⊆ G

with O(n1+1/k) edges. In particular, if the girth conjecture of Erdős [14] is true, then this
size-stretch trade-off is optimal. Spanners have been considered in many different models
such as distributed algorithms [5, 8–11,13,33] and dynamic algorithms [4, 6, 12].

Local computation of small stretch spanners. When the graph is so large that it does not
fit into the main memory, the existing algorithms are not sufficient for computing a spanner.
Instead, we aim at designing an algorithm that answers queries of the form “is the edge (u, v)
in the spanner?” without computing the whole solution upfront. One way to get around
this issue is to consider the Local Computation Algorithms (LCAs) model (also known as
the Centralized Local model), introduced by Rubinfeld et al. [35] and Alon et al. [1]. There
can be many different plausible k-spanners; however, the goal of LCAs for the k-spanner
problem is to design an algorithm that, given access to primitive probes (i.e. Neighbor,
Degree and Adjacency probes) on the input graph G, for each query on an edge e ∈ E(G)
consistently with respect to a unique k-spanner H ⊆ G (picked by the LCA arbitrarily),
outputs whether e ∈ H. The performance of the LCA is measured based on the quality of
solution (i.e. number of edges in H) and the probe complexity (the maximum number of
probes per each query) of the algorithm5. In other words, an LCA gives us the “illusion” as
if we have query access to a precomputed k-spanner of G.

The study of LCAs with sublinear probe complexity for nearly linear size spanning
subgraphs (or sparsifiers) is initiated by Levi, Ron, and Rubinfeld [24,25] for some restricted
families of graphs such as minor-closed families. However, their focus is mainly on designing
LCAs that preserve the connectivity while allowing the stretch factor to be as large as n.
Moreover, in their work, the input graph is sparse (has O(n) edges), while the classical
k-spanner problem becomes relevant only when the input graph is dense (with superlinear
number of edges). Recently, Lenzen and Levi [21] designed the first sparsifier LCA in
general graphs with (1 + ε)n edges, stretch O(log2 n · poly(∆/ε)) and probe complexity of
O(poly(∆/ε) · n2/3), where ∆ is the maximum degree of the input graph.

5 We may also measure the time complexity of an LCA. In our LCAs, the time complexities are clearly
only a factor of poly(log n) higher than the corresponding probe complexities, so we focus our analysis
on probe complexities.

https://doi.org/10.4230/LIPIcs.ITCS.2019.58
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In this work, we show that sublinear time LCAs for spanners are indeed possible in several
cases. We give: (I) 3 and 5-spanners for general graphs with optimal trade-offs between the
number of edges and the stretch parameter (up to polylogarithmic factors), and (II) general
k-spanners, either in the dense regime (when the minimum degree is at least n1/2−1/(2k)) or
in the sparse regime (when the maximum degree is n1/12−ε).

Broader scope and agenda: local computation algorithms for dense graphs. LCAs have
been established by now for a large collection of problems, including Maximal Independent
Set, Maximum Matching, and Vertex Cover [1,15,26,27,29,34,35]. These algorithms typically
suffer from a probe complexity that is exponential in ∆ and thus are efficient only in the
sparse regime when ∆ = O(1).

To this end, obtaining LCAs even with a polynomial dependency in ∆ is a major open
problem for many classical local graph problems, as noted in [16,26,28]. For instance, recently
Ghaffari and Uitto [16] obtained an LCA for the MIS problem with probe complexity of
∆O(log log ∆) · log n improving upon a long line of results. Their result also illustrates the
connection between LCAs with good dependency on ∆, and algorithms for the massively
parallel computation model with sublinear space per machine. Recently, [26] and [21] provided
LCAs with probe complexities polynomial in ∆ for the problems of (1−ε)-maximum matching
and sparse connected subgraphs, respectively. Note that in the context of spanners, such
algorithms are still inefficient when the maximum degree is polynomial in n, which is precisely
the setting where graph sparsification is applied.

1.1 Our results and techniques
In this paper we initiate the study of LCAs for graph spanners in general graphs which concerns
with the following task: How can we decide quickly (e.g., sublinear in n time) if a given edge
e belongs to a sparse spanner (with fixed stretch) of the input graph, without preprocessing
and storing any auxiliary information? In the design of LCAs for graph problems, the set of
defined probes to the input graph plays an important role. Here we consider the following
common probes: Neighbor probes (“what is the ith neighbor of u”?), Degree probes (“what
is deg(u)?”) and Adjacency probes (“are u and v neighbors”?) [17,18]. We emphasize that
the answer to an Adjacency probe on an ordered pair 〈u, v〉 is the index of v in Γ(u) if6
the edge exists and ⊥ otherwise. Note that if the maximum degree in the input graph is
O(1), each Adjacency probe can be implemented by O(1) number of Neighbor probes.

The problem of designing LCAs for spanners is closely related to designing LCAs for
sparse connected subgraphs with (1 + ε)n edges which was first introduced by [24]. With the
exception of [21], a long line of results for this problem usually concerns special sparse graph
families, rather than general graphs. A summary of these results with a comparison to our
results is provided in Table 1.

1.1.1 LCAs for 3 and 5-Spanners for General Graphs
Our first contribution is the local construction of 3 and 5-spanners for general graphs, while
achieving the optimal trade-offs between the number of edges and the stretch factors (up
to polylogarithmic factors)7. In particular, our LCAs have n1−ε probe complexity even
when the input graph is dense with ∆ = Ω(n); note that in such a case, given a query

6 Γ(u) denotes the neighbor set of u, whereas Γ+(u) = Γ(u) ∪ {u}.
7 Indeed, the girth conjecture of Erdős is resolved for these stretch factors; see e.g., [39].
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Table 1 Table of results on LCAs for the spanner problem. The symbol ′−′ indicates that the
stretch is not analyzed. The input graph is a simple graph with n vertices, m edges, maximum
degree ∆, and belongs to the indicated graph family. Õ hides a factor of poly(log n, k).

Reference Graph Family # Edges Stretch Probe Complexity

P
rio

r
w
or
ks

[24]
Bounded Degree Graphs (1 + ε)n − Ω(

√
n)

Expanders (1 + ε)n − O(
√

n)
Subexponential growth (1 + ε)n − O(

√
n)

[23] Minor-free (1 + ε)n poly(∆, 1/ε) poly(∆, 1/ε)
[25] Minor-free (1 + ε)n O((log ∆)/ε) poly(∆, 1/ε)
[22] Expansion (1/ log n)1+o(1) (1 + ε)n super-exponential in 1/ε super-exponential in 1/ε

[21] General (1 + ε)n O(log2 n · poly(∆/ε)) O(n2/3 · poly(∆/ε))

H
er
e

Thm. 1 General Õ(n1+1/r) 2r − 1 (r ∈ {2, 3}) Õ(n1−1/(2r))
Thm. 12 Min degree O(n1/2−1/(2k)) Õ(n1+1/k) 5 Õ(n1−1/(2k))
Thm. 2 Max degree O(n1/12−ε) Õ(n1+1/k) O(k2) Õ(n1−4ε)
Thm. 3 General o(m) any k ≤ n Ω(min{

√
n, n2/m})

edge (u, v), the LCA should return yes or no without being able to inspect the neighbor
lists Γ(u) and Γ(v). In what follows we show how to manipulate the common distributed
construction by Baswana and Sen [5] to yield LCAs for 3-spanners and 5-spanners with
sublinear probe complexity.

The common distributed approach. Most distributed spanner constructions are based on
thinning the graph via clustering: construct a random set S of centers by adding each vertex
to S independently with some fixed probability. For each vertex v sufficiently close to a
center in S, include the edges of the shortest path connecting v to its closest member s ∈ S:
this induces a cluster around each center s ∈ S, where every pair of vertices in the same
cluster are connected by a short path. Then, add edges connecting pairs of neighboring
clusters to ensure the desired stretch factor.

The following algorithm constructs a 3-spanner H ⊆ G with Õ(n3/2) edges. First, add
to H all edges incident to vertices of degree at most

√
n. Second, pick a collection S of

centers by sampling each vertex independently with probability Θ(log n/
√
n). Each vertex v

of degree at least
√
n picks a single neighboring center s ∈ S ∩ Γ(v) (which exists w.h.p.) as

its center, then adds (v, s) to H , forming a collection of |S| = O(
√
n) clusters (stars) around

these centers. Lastly, every vertex u adds only one edge to each of its neighboring clusters –
note that this last step may add edges whose endpoints are both non-centers. This results in
a 3-spanner: For omitted edge (u, v) in G, if u and v are in the same cluster, then they have
a path of length 2 through their shared center s. If u and v are in different clusters, an edge
from u to some other vertex w in v’s cluster would have been chosen, providing the path
〈u,w, s, v〉 of desired stretch 3 connecting u and v, where s is v’s center.

The challenge and key ideas. Recall that our goal is to design an LCA for 3-spanners
H ⊆ G of size Õ(n3/2) and probe complexity of Õ(n3/4): the LCA is given an edge (u, v)
and must answer whether (u, v) ∈ E(H). First, if deg(u) or deg(v) is at most

√
n, then the

algorithm can immediately say YES. This requires only two Degree probes for the endpoints
u, v. Hence, the interesting case is where both u and v have degrees at least

√
n.

We start by sampling each vertex into the center set S with probability of p = Θ(log n/
√
n),

thus w.h.p. guaranteeing that each high-degree vertex has at least one sampled neighbor. For
clarity of explanation, assume that given the ID of a vertex v, the LCA algorithm can decide
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(with no further probes) whether v is sampled. Upon selecting the set of centers S, the above
mentioned distributed algorithm has two degrees of freedom (which our LCA algorithm will
enjoy). First, for a high-degree vertex v, there could be potentially many sampled neighbors
in S: the distributed algorithm lets v join the cluster of an arbitrarily sampled neighbor.
The second degree of freedom is in connecting a high-degree vertex to neighboring clusters.
In the distributed algorithm, a vertex connects to an arbitrarily chosen neighbor in each of
its neighboring clusters. Since the answers of the LCA algorithm should be consistent, it is
important to carefully fix these decisions to allow small probe complexity.

The naïve approach for 3-spanners and its shortcoming. The most naïve approach is as
follows: for each v, traverse the list Γ(v) in a fixed order and pick the first neighbor that
satisfies the required conditions. That is, a vertex joins the cluster of its first sampled
neighbor (center) and connects to its first representative neighbor in each of its neighboring
clusters. To analyze the probe complexity of such a construction, consider a query edge
(u, v) where deg(u), deg(v) ≥

√
n. By probing for the first

√
n neighbors of u and v, one can

compute the cluster centers cu and cv of u and v with high probability. The interesting case is
where u and v belong to different clusters. In such a case, the LCA algorithm should say YES
only if v is the first neighbor of u that belongs to the cluster of cv. To check if this condition
holds, the algorithm should probe for each of the neighbors w of u that appears before v
in Γ(u), and say NO if there exists such earlier neighbor w that belongs to the cluster of cv.
Here, it remains to show how this cluster-membership testing procedure is implemented.

A cluster-membership test, for a pair 〈s, w〉 with s ∈ S, must return YES iff w belongs to
the cluster of the center s. The above mentioned algorithm thus makes O(deg(v)) cluster-
membership tests for each w preceding u in Γ(v) and s = cv. Since each center is sampled
with probability p = log n/

√
n, the probe complexity of a single cluster-membership test is

O(
√
n) w.h.p., leading to a total probe complexity of O(deg(v) ·

√
n).

Idea (I) – Multiple centers for efficient cluster-membership test. The key idea in our
solution is to pick the cluster centers in a way that allows answering each cluster-membership
test for a pair 〈s, w〉 using a single Neighbor probe! Towards this goal, we let each high-
degree vertex join multiple clusters, instead of just one. In particular, for a vertex w, we
look at the subset Γ1(w) consisting of its first

√
n neighbors in Γ(w). We then let w join the

clusters of all sampled neighbors in Γ1(w) ∩ S. Since each vertex is a center with probability
p, this implies that, w.h.p., w joins Θ(p · |Γ1(w)|) = Θ(log n) many clusters. Though this
approach adds a multiplicative O(log n) factor to the size of our spanner, it will pay off
dramatically in terms of the probe complexity of our LCA. In particular, this modification
enables the algorithm to test cluster-membership with a single Adjacency probe: the vertex
w belongs to the cluster of s, if the index of s in w’s neighbor-list is at most

√
n (the index

is returned by the Adjacency probe on u and s). This idea alone decreases the probe
complexity of our LCA to Õ(deg(w)).

Idea (II) – Neighborhood partitioning. The multiple center technique above allows our
LCA to handle edges adjacent to a vertex u of degree at most n3/4. For deg(u) > n3/4, our
LCA cannot afford to look at all neighbors of u. To this end, we partition the neighbors
of u into blocks of size n3/4 each. Rather than adding only one edge between u to each
neighboring cluster, we make the decision on which edges to keep for each block independently,
by scanning only the block containing v and keeping (u, v) if v belongs to the cluster that
was not previously seen in this block. Though this leads to an increase in the number of
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edges by a factor of deg(u)/n3/4 ≤ n1/4, we can now keep the probe complexity down to
Õ(n3/4) as we only need to scan the block containing v given the query (u, v) instead of
u’s entire neighbor-list. To keep the size of the spanner small, e.g., Õ(n3/2), we use the
fact that O(n1/4 log n) sampled vertices are enough to hit the neighborhoods of all vertices
with degree more than n3/4 with high probability. Since for each block of size n3/4 in the
neighborhood of u the algorithm adds O(|S|) edges, the total number of edges added per
vertex is O(|S| · deg(u)/n3/4) = Õ(n3/2), as desired.

Overview of the LCA for 5-spanners. For 5-spanners, the desired number of edges is
Õ(n4/3). This allows us to immediately add to the spanner all edges incident to low-
degree vertices u with deg(u) = Õ(n1/3). The common distributed construction for 5-
spanners computes O(n2/3) clusters by sampling each center independently with probability
Θ(log n/n1/3). By letting each high-degree vertex (i.e., with deg(u) = Ω(n1/3)) join the
cluster of one of its sampled neighbors, the spanner contains a collection of O(n2/3) (vertex-
disjoint) clusters that, w.h.p., cover all high-degree vertices. Finally, each pair of neighboring
clusters C1, C2 are connected by adding an edge (u, v) ∈ (C1 ×C2) ∩E to the spanner H . It
is straightforward to verify that H is a 5-spanner of size Õ(n4/3).

Designing LCAs for the 5-spanner problem turns out to be significantly more challenging
than the 3-spanner case. The reason is that deciding whether an edge (u, v) is in the 5-spanner
requires information from the second neighborhoods of v and u, which is quite cumbersome
when one cannot even read the entire neighborhood of a vertex. Our solution extends the
3-spanner construction in two ways: some of the edges added to our 5-spanner are between
cluster pairs, instead of edges between a vertex and a cluster as in the 3-spanner solution.
Another set of edges added to the 5-spanner is between pairs of vertex and cluster, but unlike
the 3-spanner case, these clusters have now radius two.

Idea (III) – Cluster partitioning (bucketing). The standard clustering-based construction
of 5-spanners adds an edge between every pair of neighboring clusters (stars). This clustering-
based construction cannot be readily implemented with the desired probe complexity. To see
why, consider clusters centered at s and t, containing u and v respectively. A naïve attempt
spends deg(s) · deg(t) probes for vertices between these clusters, as to consistently pick a
unique edge between the two clusters.

One of our tools extends the idea of neighborhood partitioning from 3-spanner into
cluster partitioning. Each of the O(n2/3) clusters is partitioned into balanced buckets of
size Θ(n1/3).8 The algorithm then picks only one edge between any pair of neighboring
buckets. Since the number of buckets can be shown to be Õ(n2/3), the spanner size still
remains Õ(n4/3). Unlike partitioning neighbor-lists, partitioning a cluster requires the full
knowledge of its members – which are no longer nicely indexed in a list. To be able to
efficiently partition a clusters, the algorithm allows only vertices with degree at most n5/6 to
be chosen as cluster centers. The benefit of this restriction is that one can inspect the entire
neighborhood of a center in O(n5/6). The drawback of this approach is that it only clusters
vertices that have sufficiently many neighbors (i.e., at least n1/3) with degree less than n5/6.
The remaining vertices are handled via their high-degree neighbors (i.e., of degree at least
n5/6) as described next.

8 Note that each cluster may have at most one bucket of size o(n1/3).
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Idea (IV) – Representatives. Using the neighborhood-partitioning idea from 3-spanner,
all vertices with degree at least n5/6 can be clustered by sampling Õ(n1/6) cluster centers.
By partitioning the neighborhood of each high-degree vertex into disjoint blocks each of size
Õ(n5/6), one can construct a 3-spanner for all edges incident to these high-degree vertices
with probe complexity of Õ(n5/6) while using Õ(n4/3) edges. To take care of vertices of
degrees less than n5/6 that have many high-degree neighbors, we let them join the cluster of
their high-degree neighbors, hence creating clusters of depth 2.

To choose which cluster to join (in the second level), our vertex, which has many high-
degree neighbors, simply chooses and connects itself to one or more high-degree neighbors,
called its representatives. To determine the representatives of a vertex u, we simply pick
Θ(log n) random neighbors of u, and w.h.p. one of them will have high-degree, and hence is
chosen as u’s representative.

We implement our LCA by first picking |S| = Õ(n1/6) centers. Consider the query
edge (u, v) where deg(u), deg(v) ≥ n1/3 and u has many high-degree neighbors. Here, u has
Θ(log n) representatives, each of which has Θ(log n) centers in S w.h.p., so u belongs to
O(log2 n) clusters. As in the 3-spanner case, we keep (u, v) if v is the first neighbor of u in
the cluster that v belongs to. We find the representatives of each neighbor of u by making
O(log n) probes, and for all these deg(u) ·O(log n) = Õ(n5/6) representatives, check if they
belong to any of v’s O(log2 n) clusters with Õ(n5/6) total probes.

I Theorem 1 (3 and 5-spanners). For every n-vertex simple undirected graph G, there exists
an LCA for (2r − 1)-spanners with Õ(n1+1/r) edges and probe complexity Õ(n1−1/(2r)) for
r ∈ {2, 3}. Moreover, the algorithm only uses a seed of O(log2 n) random bits.

In fact, if G has minimum degree ω(n1/3), we may apply the 5-spanner construction (with
modified parameters) to obtain 5-spanners with even smaller number of edges as indicated
in Table 1 (Theorem 12): this minimum degree assumption indeed allows even sparser
spanners, bypassing the girth conjecture that holds for general graphs. We also remark that,
in the somewhat related setting of dynamic computation, spanner algorithms with worst-case
sublinear update time are currently known only for 3 and 5-spanners as well (see Bodwin
and Krinninger, [6]).

1.1.2 LCA for O(k2)-spanners
Our second contribution is the local construction of O(k2)-spanners with O(n1+1/k) edges
for any k ≥ 1, which has sub-linear probe complexity for graphs of maximum degree
∆ = O(n1/12−ε). Our approach improves upon and extends the recent work of Lenzen and
Levi [21]. The work of [21] aims at locally constructing a spanning subgraph with O(n)
edges, but the stretch parameter of their subgraph might be as large as O(poly(∆) log2 n).
In addition, this construction requires a random seed of polynomial size. In our construction,
we reduce the stretch parameter of the constructed subgraph to O(k2), independent of both
n and ∆, while using only Õ(n1+1/k) edges. In addition, we implement our randomized
constructions using poly(log n) independent random bits, whereas [21] uses poly(n) bits. We
remark that for the LCAs with large stretch parameter considered in [21], our techniques
can still be applied to exponentially reduce the required amount of random bits, and save
a factor of ∆ in the probe complexity. The details of O(k2)-spanners are omitted in this
version: please refer to the longer version of this paper for the missing details of this result.

I Theorem 2 (O(k2)-spanners). For every integer k ≥ 1 and every n-vertex simple undirected
graph G with maximum degree ∆, there exists a (randomized) LCA for O(k2)-spanner
with Õ(n1+1/k) edges and probe complexity Õ(∆4n2/3). Moreover, the algorithm only uses
O(log2 n) random bits.
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The high level structure is as in [21]: for a given stretch parameter k, partition the edges
in G into the sparse set Esparse and the dense set Edense. Roughly speaking, the sparse
set Esparse only consists of edges (u, v) for which the k-neighborhood in G of either u or v
contains at most O(n2/3) vertices. For this sparse region in the graph, we can simulate a
standard distributed algorithm for spanners [5, 7] (using only a poly-logarithmic number of
random bits), with small probe complexity. This yields an LCA handling the sparse edges
with O(∆2n2/3) probe complexity.

To take care of the dense edges, we sample a collection of O(n2/3 log n) centers and
partition the (dense) vertices into Voronoi cells around these centers.

The main challenge is in connecting the Voronoi cells, keeping in mind that taking an
edge between every pair of cells adds too many edges to the spanner. To get around it,
the main contribution of [21] was in designing a set of rules for connecting bounded-size
sub-structures in Voronoi cells, called clusters. The high-level description of the rules are
as follows9: mark a random subset of O(n1/3 log n) Voronoi cells (among the n2/3 Voronoi
cells), then connect10 them according to the following rules using Õ(n) edges each. Rule (1):
connect every marked Voronoi cells to each of its neighboring Voronoi cells. Rule (2): if a
Voronoi cell has no neighboring marked Voronoi cells, then connect it to all its neighboring
Voronoi cells as well. Rule (3): For each pair of (not necessarily adjacent) Voronoi cell a and
marked Voronoi cell c sharing common neighboring Voronoi cells Γ(a) ∩ Γ(c), keep an edge
from a to a single Voronoi cell b∗ ∈ Γ(a) ∩ Γ(c) (i.e., b∗ has the minimum ID in Γ(a) ∩ Γ(c)).
This last rule handles the edges of (unmarked) Voronoi cells that have some neighboring
marked Voronoi cell.

Idea (V) – Establishing the O(k2) stretch guarantee. In our implementation, the radius
of each Voronoi cell is O(k) (as opposed to O(∆ log n) in [21]). Thus, it suffices to show
that the spanner path from Voronoi cell supervertices a to b only visits O(k) other Voronoi
cells. To this end, we impose a random ordering of the Voronoi cells, by assigning them
distinct random ranks. We then make the following modification to Rule (3): add an edge
from a to b if there exists a marked Voronoi cell c such that the rank r(b) of b is among the
O(n1/k log n) lowest ranks in Γ(a) ∩ Γ(c), restricted to those discovered by the LCA. This
modified rule allows us to extend the inductive connectivity argument of [21] to show that
every pair of adjacent cells are connected by a path that goes through O(k) cells – since each
cell has radius O(k), the final stretch is O(k2).

Idea (VI) – Graph connectivity with bounded independence. One of our key technical
contributions is in showing that one can implement the above randomized random rank
assignment using small number of random bits. We show that the ranks of Voronoi cells can
be computed using T = Θ(k) hash functions h1, · · · , hT chosen uniformly at random form a
family of O(log n)-wise independent hash functions of the form {0, 1}logn → {0, 1}O((logn)/k).
We define our rank function as a concatenation of hi’s on the ID of the Voronoi cell’s center:
for the Voronoi cell centered at v, r(v) = h1(ID(v)) ◦ . . . ◦ hT (ID(v)). We then carefully
adopt the inductive stretch argument to this randomized rank assignment with limited
independence so that in the ith step, our analysis only relies on the hash function hi.

9 Here, we state a simplified version of the rules. In particular, the rules are expressed in terms of clusters
whose exact definitions are skipped for now. Refer to the longer version of our paper for the precise
definitions of the rules.

10We connect two vertex sets by adding the unique lexicographically-first edge between the two vertex
sets (if any exists) based on the vertex IDs of the endpoints.
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1.1.3 Lower Bounds
To establish the lower bound, we construct two distributions over undirected d-regular graph
instances that contain a designated edge e. For graphs in the first family, it holds that after
removing e, w.h.p., they remain connected while in the second family, removing e disconnects
the endpoints of e and leave them in separate connected components. We show that for
the edge e, any LCA that makes o(min{

√
n, n/d}) = o(min{

√
n, n2/m}) probes can only

distinguish whether the underlying graph is from the first family or the second family with
probability 1/2 + o(1).

Our approach mainly follows from the analysis of Kaufman, Krivelevich, and Ron [20],
on the lower bound construction of [24]. While [20] studies a rather different problem of
bipartiteness testing, we consider similar probe types and obtain a similar lower bound as
those of [20]. On the other hand, the construction of [24] shows the probe complexity of Ω(

√
n)

for LCAs for spanning graphs that only use Neighbor probes, not Adjacency probes.

I Theorem 3 (Lower Bound). Any local randomized LCA that computes, with success
probability at least 2/3, a spanner of the simple undirected m-edge input graph G with o(m)
edges, has probe complexity Ω(min{

√
n, n2/m}).

The details of this result are deferred to the longer version of this paper.

1.2 Model Definition and Preliminaries
Graph notation. Throughout, we consider simple unweighted undirected graphs G = (V,E)
on n = |V | vertices andm = |E| edges. Each vertex v is labeled by a unique O(log n)-bit value
ID(v)11. For u ∈ V , let Γ(u,G) = {v : (u, v) ∈ E} be the neighbors of u, deg(u,G) = |Γ(u,G)|
be its degree, and define Γ+(u,G) = Γ(u,G) ∪ {u}. Denote VI = {v ∈ V : deg(v,G) ∈ I}
where I is an interval. For u, v ∈ V , let dist(u, v,G) be the shortest-path distance between u
and v in G. Let Γk(u,G) = {v : dist(u, v,G) ≤ k} be the kth-neighborhood of u, and denote
its size degk(u,G) = |Γk(u,G)|. For subsets V1, V2 ⊆ V , let E(V1, V2) = E ∩ (V1 × V2). The
parameter G may be omitted for the input graph.

We assume that the input graph has an adjacency list representation: each neighbor
set has a fixed ordering, Γ(u) = {v′1, . . . , v′deg(u)}; this ordering may be arbitrarily (e.g.,
not necessarily sorted by vertex IDs). Many of the algorithms in this paper are based
on partitioning the neighbor-list into balanced-size blocks. For ∆ ∈ [n] and u ∈ V such
that deg(u) ≥ ∆, let Γ∆,1(u), . . . ,Γ∆,Θ(deg(u)/∆)(u) be blocks of neighbors obtained by
partitioning Γ(u) into consecutive parts. Each block is of size ∆, except possibly for the last
block that is allowed to contain up to 2∆ vertices.

Local Computation Algorithms. We adopt the definition of LCAs by Rubinfeld et al. [35].
A local algorithm has access to the adjacency list oracle OG which provides answers to the
following probes (in a single step):

Neighbor probes: Given a vertex v ∈ V and an index i, the ith neighbor of v is returned
if i ≤ deg(v). Otherwise, ⊥ is returned. The orderings of neighbor sets are fixed in
advance, but can be arbitrary.
Degree probes: Given a vertex v ∈ V , return deg(v). This probe type is defined for
convenience, and can alternatively be implemented via a binary search using O(log n)
Neighbor probes.

11We do not require IDs to be a bijection V → [n] as in other LCA papers.
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Adjacency probes: Given an ordered pair 〈u, v〉, if v ∈ Γ(u) then the index i such that
v is the ith neighbor of u. Otherwise, ⊥ is returned.

I Definition 4 (LCA for Graph Spanners). An LCA A for graph spanners is a (randomized)
algorithm with the following properties. A has access to the adjacency list oracle OG of the
input graph G, a tape of random bits, and local read-write computation memory. When
given an input (query) edge (u, v) ∈ E, A accesses OG by making probes, then returns YES
if (u, v) is in the spanner H, or returns NO otherwise. This answer must only depend on
the query (u, v), the graph G, and the random bits. For a fixed tape of random bits, the
answers given by A to all possible edge queries, must be consistent with one particular sparse
spanner.

The main complexity measures of the LCA for graph spanners are the size and stretch of
the output spanner, as well as the probe complexity of the LCA, defined as the maximum
number of probes that the algorithm makes on OG to return an answer for a single input
edge. Informally speaking, imagine m instances of the same LCA, each of which is given
an edge of G as a query, while the shared random tape is broadcasted to all. Each instance
decides if its query edge is in the subgraph by making probes to OG and inspecting the
random tape, but may not communicate with one another by any means. The LCA succeeds
for the input graph G and the random tape if the collectively-constructed subgraph is a
desired spanner. All the algorithms in this paper are randomized and, for any input graph,
succeed with high probability 1− 1/nc over the random tape.

Paper Organization. In Section 2 and 3 we describe our results for 3 and 5-spanners in
general graphs. For simplicity, we first describe all our randomized algorithms as using full
independence, then in Section 4, we explain how these algorithms can be implemented using
a seed of poly-logarithmic number of random bits).

Clarification. Throughout we use the term “spanner construction” when describing how to
construct our spanners. These construction algorithms are used only to define the unique
spanner, based on which the LCA makes its decisions: we never construct the full, global
spanner at any point.

2 LCA for 3-Spanners

In this section, we present the 3-spanner LCA with probe complexity of Õ(n3/4). We begin
in Section 2.1 by establishing some observations that allow us to “take care” of different types
of edges separately based on the degrees of their endpoints. In Section 2.2-2.3 we provide
constructions that take care of each type of edges; the analysis of stretch, probe complexity
and spanner size for each case is included in their respective sections. We establish our final
LCA for 3-spanners in Section 2.4.

2.1 Edge classification
I Definition 5 (Subgraphs taking care of edges). For stretch parameter k and set of edges
E′ ⊆ E, we say that the subgraph H ′ ⊆ G takes care of E′ if for every (u, v) ∈ E′,
dist(u, v,H ′) ≤ k.

Observe that if we have a collection of subgraphs Hi’s such that every edge in (u, v) ∈ E
is taken care by at least one Hi, then the union H of the Hi’s constitutes a k-spanner for G.
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I Observation 6 (Spanner construction by combining subgraphs). For a collection of subsets
E1, . . . , E` ⊆ E where ∪i∈[`]Ei = E, if Hi is a subgraph of G that takes care of Ei, then
H = ∪i∈[`]Hi is a k-spanner of G. Further, if we have an LCA Ai for computing each Hi

(i.e., deciding whether the query edge (u, v) ∈ Hi and reporting YES or NO accordingly), we
may construct a final LCA that runs every Ai and answer YES precisely when at least one
of them does so. The performance of our overall LCA (number of edges, probes, or random
bits) can then be bounded by the respective sum over that of Ai’s.

Note that Hi may contain edges of E that are not in Ei, thus it is necessary that the overall
LCA invokes every Ai even if Ai does not take care of the query edge.

Graph partitioning. A vertex v is low-degree if deg(v) ≤
√
n, it is high-degree if deg(v) ≥

√
n

and it is super-high degree if deg(v) ≥ n3/4. Our LCA for 3-spanner assigns each edge of E
into one or more of the subsets Elow, Ehigh, or Esuper based on the degrees of its endpoints,
where

Elow = {(u, v) ∈ E | min{deg(u), deg(v)} ≤
√
n},

Ehigh = {(u, v) ∈ E |
√
n < min{deg(u), deg(v)} ≤ n3/4}, and Esuper = E \ (Elow∪Ehigh).

Because vertices of degree at most
√
n have O(n ·

√
n) = O(n3/2) incident edges in total,

we may afford to keep all these edges, letting Hlow = (V,Elow). Thus, an LCA simply needs
to check the degrees of both endpoints (via Degree probes), and answer YES precisely
when both (or in fact, even one) have degrees at most

√
n. From now on, assume that

deg(u), deg(v) ≥
√
n.

2.2 3-spanner for the edges Ehigh

We pick a random center set S of size O(
√
n log n) by sampling vertex v ∈ V into S

independently with probability p = Θ((log n)/
√
n). For now, we assume that given an ID of

a vertex v, we can decide in O(1) time if v ∈ S. At the end of the section, we describe how
to implement this using a seed of O(log n) random bits. For each endpoint v of Ehigh, let
S(v) = Γ′(v) ∩ S where Γ′(v) is the set of the first

√
n neighbors of v in Γ(v). By Chernoff

bound we have that |S(v)| = Θ(log n) (and in particular, S(v) is non-empty). We call S(v)
the multiple-center set of v. The algorithm adds to Hhigh the edges (v, s) connecting v to
each of its centers s ∈ S(v). This adds a total of O(n log n) edges.

Next, for every v with deg(v) = O(n3/4), the algorithm traverses its neighbor list
Γ(v) = {u1, . . . , u`} and adds the edges (ui, v) ∈ Ehigh to the spanner Hhigh only if ui belongs
to a new cluster; i.e., ui has a center s ∈ S(ui) that no previous neighbor uj , j < i, has as its
center in S(uj). Since the algorithm adds an edge whenever a new center is revealed and there
are O(

√
n log n) centers, the total number of edges added to the spanner is O(n3/2 log n).

We next describe the LCA that, given an edge (u, v) ∈ Ehigh, says YES iff (u, v) ∈ Hhigh.
We assume throughout that deg(v) ≤ deg(u), so deg(v) = O(n3/4). First, by probing
for the first

√
n neighbors of u and v, one can compute the center-sets S(u) and S(v)

each containing O(log n) centers in S. Next, the algorithm probes for all of v’s neighbors
Γ(v) = {u1, . . . , uj = u, . . . , u`}. For every neighbor ui appearing before u in Γ(v), i.e., for
every i < j, and for every center s ∈ S(u), the algorithm makes a cluster-membership test for s
and ui. This cluster-membership test can be answered by making a single Adjacency probe
on the pair 〈ui, s〉, namely s ∈ S(ui) only if s is among the first

√
n neighbors of ui. Eventually,

the algorithm Ahigh answers YES only if there exists s′ ∈ S(u) such that s′ /∈
⋃j−1
i=1 S(ui). It

is straightforwards to verify that the probe complexity is Õ(deg(u) +
√
n) = O(n3/4).
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𝑢𝑢𝑢𝑢𝑖𝑖𝑣𝑣

cluster-membership test
check if 𝑠𝑠 ∈ 𝑆𝑆 𝑢𝑢𝑖𝑖

𝑠𝑠

𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸high?
Γ 𝑣𝑣

size = Θ(log𝑛𝑛)

size ≤ 𝑛𝑛3/4

⋯ ⋯ ⋯

compute the
center set 𝑆𝑆 𝑢𝑢

𝑆𝑆 𝑢𝑢

Figure 1 Illustration for the local construction of Hhigh.

Finally, we show that Hhigh is indeed a 3-spanner. For every edge (u, v) not added to
the spanner, let s ∈ S(u) and let ui be the first vertex in Γ(v) satisfying s ∈ S(ui). By
construction, (ui, v) ∈ Hhigh and also the edges (ui, s) and (u, s) are in the spanner Hhigh,
providing a path of length 3 in Hhigh.

2.3 3-spanner for the edges Esuper

We proceed by describing the construction of the 3-spanner Hsuper that takes care of the
edges Esuper. Let S′ be a collection of O(n1/4 log n) centers obtained by sampling each v ∈ V
independently with probability p′ = Θ((log n)/n3/4). For each vertex v, define its center set
S′(v) to be the members of S′ among the first n3/4 neighbors of v, and if deg(v) ≤ n3/4, then
S′(v) = S′ ∩ Γ(v). First, as in the construction of Hhigh, the algorithm connects each v to
each of its centers by adding the edges (u, s) for every u and s ∈ S′(u) to the spanner Hsuper.

Consider a vertex v and divide its neighbor list into consecutive blocks Γ1(v), . . . ,Γ`(v),
each of size n3/4 (expect perhaps for the last block). In every block Γi(v) = {ui,1, . . . , ui,`′},
the algorithm adds the edge (v, ui,j) to the spanner Hsuper only if ui,j belongs to a new cluster
with respect to all other vertices that appear before it in that block. Formally, the edge
(v, ui,j) is added iff there exists s ∈ S′(ui,j) such that s /∈

⋃
q≤j−1 S

′(ui,q). This completes
the description of the construction. Observe that within each block, the LCA adds an edge
for each new center. W.h.p., there are O(n/n3/4) = O(n1/4) blocks and |S′| = O(n1/4 log n)
centers, so O(

√
n log n) edges are added for each v, yielding a spanner of size O(n3/2 log n).

The LCA Asuper is very similar to Ahigh: the main distinction is that given an edge
(u, v) with deg(u) ≥ n3/4, the algorithm Asuper will probe only for the block Γi(v) =
{ui,1, . . . , ui,j = u, ui,`′} to which v belongs, ad will make its decision only based on that
block. By probing for the degree of v, and the index j such that u is the jth neighbor of v,
one can compute the block Γi(v) by making n3/4 Neighbor probes. In addition, by probing
for the first n3/4 neighbors of both u and v, one can compute the multiple-center sets S′(u)
and S′(v). Finally, the algorithm applies a cluster-membership test for each pair s ∈ S′(u)
and ui,q for q ≤ j − 1. It returns YES only if there exists s /∈

⋃
q≤j−1 S

′(ui,q). Hence, the
number of probes made by the LCA is w.h.p. bounded by |Γi(v)| · |S′(u)| = O(n3/4 log n).

We now show that Hsuper is a 3-spanner for the edges Hsuper. Let (u, v) be such that
deg(u) ≥ n3/4 and let Γi(v) be the block in Γ(v) to which u belongs. Since deg(u) ≥ n3/4,
w.h.p. |S′(u)| = Θ(log n). Assume that (u, v) /∈ Hsuper. Fix s ∈ S′(u) and let ui,q be the
first vertex in Γi(v) that belongs to the cluster of s. Since (u, v) /∈ Hsuper, such a vertex ui,q
is guaranteed to exist. The spanner Hsuper contains the edges (s, u), (s, ui,q) and (v, ui,q),
thus containing a path of length 3 between u and v.
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𝑢𝑢𝑢𝑢𝑖𝑖,𝑞𝑞𝑣𝑣
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Figure 2 Illustration for the local construction of Hsuper.

2.4 The Final LCA

Given an edge (u, v) the algorithm says YES if one of the following holds:
deg(u), deg(v) ≤

√
n.

u ∈ S(v) ∪ S′(v) (or vice versa).
the local algorithm Ahigh says YES on edge (u, v).
the local algorithm Asuper says YES on edge (u, v).

This completes the 3-spanner LCA from Theorem 1.

Missing piece: computing centers in the LCA model. In the LCA model, we do not
generate the entire set S (or S′) up front. Instead, we may verify whether v ∈ S on-the-fly
using v’s ID by, e.g., applying a random map (chosen according to the given random tape)
from v’s ID to {0, 1} with expectation p. In fact, this hitting set argument does not require
full independence – the discussion on reducing the amount of random bits is given in Section 4,
but for now we formalize it as the following observation.

I Observation 7 (Local Computation of Centers). Let S be a center set obtained by placing
each vertex into S independently with probability p = Θ(log n/∆). W.h.p., S forms a hitting
set for the collection of neighbor sets of all vertices of degree at least ∆. Further, under the
LCA model, we may check whether v ∈ S locally without making any probes.

3 LCA for 5-Spanners

We now consider LCAs for 5-spanners, aiming for spanners of size Õ(n4/3) with probe
complexity Õ(n5/6). We start by noting that the construction of Hsuper for the 3-spanners
in fact gives for every r ≥ 1, a 3-spanner of size Õ(n1+1/r) for the subset of edges (u, v)
with min{deg(u), deg(v)} ≥ n1−1/(2r): this is achieved by instead setting the threshold for
super-high degree at n1−1/(2r), pick |S′| = Õ(n1/(2r)) centers, and use block size n1−1/(2r).
The probe complexity for querying the spanner is Õ(n1−1/(2r)). For 5-spanner, by taking
r = 3, one takes care of all edges (u, v) with max{deg(u), deg(v)} ≥ n5/6.

Let ∆low = n1/r, ∆med = n1/2−1/(2r) and ∆super = n1−1/(2r). For the purpose of
constructing 5-spanners for general graphs, we let r = 3, simplifying the thresholds to
∆low = ∆med = n1/3 and ∆super = n5/6.) Again, we may afford to keep all edges incident to
some vertex of degree at most ∆low.

For integers a ≤ b, let V[a,b] = {v ∈ V (G) | deg(v) ∈ [a, b]}. We will design a subgraph
H ⊆ G that will take care of the remaining edges Emed = E(V[∆med,∆super], V[∆med,∆super]).
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Table 2 Edge categorization for the construction of 5-spanners.

Subset Criteria # Edges Probe Complexity
Elow (u, v) ∈ E(V, V[1,∆low]) O(n ·∆low) = O(n1+ 1

r ) O(1)
Ebckt (u, v) ∈ E(Vdsrt, Vdsrt) O(n

2 log2 n
∆2

med
) = O(n1+ 1

r log2 n) O((∆super + ∆2
med) log2 n) = O(n1− 1

2r log2 n)

Erep (u, v) ∈ E(V[∆med,∆super], Vcrwd) O( n2

∆super
· log n) = O(n1+ 1

r log n) O(∆super log3 n) = O(n1− 1
2r log3 n)

Esuper (u, v) ∈ E(V, V[∆super,n)) O(n
3 logn

∆2
super

) = O(n1+ 1
r log n) O(∆super log n) = O(n1− 1

2r log n)

I Definition 8 (Deserted and Crowded vertices). A vertex v ∈ V[∆med,∆super] is deserted if
at least half of its neighbors in Γ∆med,1(v) are of degree at most ∆super; i.e., |Γ∆med,1(v) ∩
V[1,∆super]| ≥ ∆med/2. Otherwise, the vertex is crowded.

Criteria for edges. We aim to take care of edges for which both endpoints are in V[∆med,∆super].
To categorize our edges for the purpose of constructing 5-spanners, we need the following
partition of these vertices.

Let Vdsrt (resp., Vcrwd) be the set of deserted (resp., crowded) vertices in V[∆med,∆super].
Given a vertex, we can verify whether it is in any of these sets using O(∆med) probes by
checking the degrees of v and each vertex in Γ∆med,1(v). We then assign each (u, v) ∈ E
into one of the four cases {low, bckt, rep, super} as given in Table 2 It is straightforward to
verify that when ∆low = ∆med (namely when we choose r = 3, which also yields the required
performance), these four cases take care of all edges in E. We note that Hrep assumes that
Hsuper is included: Erep is taken care by Hrep ∪Hsuper, not by Hrep alone.

LCA for Ebckt: the cluster partitioning method. The algorithm is as follows.

Only vertices of degree at most ∆super are chosen to be in S with probability p =
Θ((log n)/∆med). Since at least half the vertices in Γ∆med,1(v) for any v ∈ Vdsrt have degree
smaller than ∆super, we have that w.h.p. |S(v)| = Θ(log n) the cluster-membership test
can be done with constant number of probes. Let us denote by C(s) = {s}∪{v : s ∈ S(v)}
the cluster of center s.

The partitioning of clusters into buckets is defined in a consistent way (regardless of the
given query edge); for instance, create a list of vertices in the cluster, sort them according
to their IDs, divide the list into buckets of size ∆med possibly except for the last one.
Note that we partition C(s) and C(t) separately – we do not combine their elements.
Similarly, once we obtain buckets containing u and v, the order in which we check the
adjacency of u′ and v′ must be consistent. To this end, define the ID of an edge (u, v) as
(ID(u),ID(v)), where the comparison between edge IDs is lexicographic. Thus, this step
only adds the edge of minimum ID between the two clusters.

We also set the precondition (u, v) ∈ E(V[∆med,n), V[∆med,n)), and consistently only allow
candidate pairs (u′, v′) ∈ E(V[∆med,n), V[∆med,n)), to ensure that the lexicographically first
edge of this exact specification is added if one exists. We do not restrict to Ebckt, which
require both endpoints to be deserted vertices, because checking whether (u′, v′) ∈ Ebckt
would take Θ(∆med) probes instead of constant probes. We restrict to edges whose
endpoints have degrees at least ∆med instead of considering the entire E so that S would
be well-defined.
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Local construction of Hbckt. Each v ∈ V[1,∆super] is added to S with probability
p = Θ(log n/∆med).
(A) If u ∈ S(v) or v ∈ S(u), answer YES.
(B) If (u, v) ∈ E(V[∆med,n), V[∆med,n)):

Compute S(u) and S(v) by iterating through Γ∆med,1(u) and Γ∆med,1(v).
For each pair of s ∈ S(u) and t ∈ S(v):

Partition each of the clusters C(s) and C(t) into buckets of size (mostly) ∆med.
Denote the buckets containing u and v by Bucket(u, s) and Bucket(v, t), respec-
tively.
Iterate through each pair of u′ ∈ Bucket(u, s) and v′ ∈ Bucket(v, t) and check if
(u′, v′) ∈ E(V[∆med,n), V[∆med,n)). Answer YES if the edge of minimum ID found
is (u′, v′) = (u, v).

I Lemma 9. For 1 ≤ ∆med ≤
√
n ≤ ∆super ≤ n, there exists a subgraph Hbckt ⊆ G such

that w.h.p.:
(i) Hbckt has O(n

2 log2 n
∆2

med
) edges,

(ii) Hbckt takes care of Ebckt; that is, for every (u, v) ∈ Hbckt, dist(u, v,Hbckt) ≤ 5, and
(iii) for a given edge (u, v) ∈ E, one can test if (u, v) ∈ Hbckt by making O((∆super +

∆2
med) log2 n) probes.

Proof.
(i) Size. In (A) we add |S(v)| = Θ(log n) edges for each v ∈ Vdsrt, which constitutes to

O(n log n) edges in total. In (B), we add one edge between each pair of buckets. We
now compute the total number of buckets. The total size of clusters

∑
s∈S |C(s)| ≤

|S| +
∑
v∈V[∆med,n)

|S(v)| = O(n log n), so there can be up to O((n log n)/∆med) full
buckets of size ∆med. As buckets are formed by partitioning |S| clusters, there are up
to |S| = Θ((n log n)/∆med) remainder buckets of size less than ∆med. Thus, there are
Θ((n log n)/∆med) buckets, and O(((n log n)/∆med)2) edges are added in (B).

(ii) Stretch. Suppose that (u, v) is omitted. Fix centers s ∈ S(u) and t ∈ S(v), then the
lexicographically-first edge (u′, v′) ∈ E(Bucket(u, s),Bucket(v, t)) must have been added
to Hbckt, forming the path 〈u, s, u′, v′, t, v〉 (or shorter, if there are repeated vertices),
yielding dist(u, v,Hbckt) ≤ 5.

(iii) Probes. Computing S(u) and S(v) takes O(∆med) probes. For each pairs of centers,
we scan through the entire neighbor-lists Γ(s) and Γ(t) and collect all vertices in their
respective clusters. This takes O(∆super) probes each because we restrict to centers of
degree at most ∆super. Given the clusters, we identify the buckets containing u and v
each of size O(∆med). We then check through candidates (u′, v′) between these buckets,
taking O(∆2

med) Adjacency probes. So, each pair of centers requires O(∆super + ∆2
med)

total probes. We repeat the process for |S(u)| · |S(v)| = O(log2 n) pairs of centers w.h.p.,
yielding the claimed probe complexity. J

LCA for Erep: the Representative method. We first explain the computation of the
representative set Reps(v) for a croweded vertex v ∈ Vcrwd, i.e., a collection of neighbors of
v that have degree at least n5/6. Using the random bits and the vertex ID, we sample a
set Rv of Θ(log n) (not necessarily distinct) indices in [∆med] at random (for details, see
Sec. 4). Denote the neighbor-list of v by {x′1, . . . , x′deg(v)}, then define Reps(v) = {x′i : i ∈
Rv and deg(x′i) ≥ ∆super}. Then since at least half of the vertices in Γ∆med,1(v) are of degree
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𝑣

𝑣′

𝑡

𝑢, 𝑣 ∈ 𝐸bckt?

Γ+ 𝑡

C 𝑡

Γ+ 𝑠

adjacency test to find and keep 
the edge with minimum ID

𝑢′

𝑢
𝑠

C 𝑠

(repeat for every pair of centers of 𝑢, 𝑣)

size ≤ 𝑛5/6

size ≤ 𝑛5/6

total #buckets = 𝑂
𝑛 log 𝑛

𝑛1/3 =  𝑂 𝑛  2 3

Bucket 𝑢, 𝑠
bucket size ≤ 𝑛1/3

Bucket 𝑣, 𝑡

Figure 3 Illustration for the local construction of Hbckt. Green lines show the partition of clusters
into buckets.

at least ∆super, w.h.p. Reps(v) 6= ∅. For consistency, we allow the same definition for Reps(v)
for any v ∈ V[∆med,n) as well, even if it may result in empty sets of representatives. Hence
computing Reps(v) takes O(log n) probes12.

Let Esuper = {(u, v) ∈ E | max{deg(u), deg(v)} ≥ n5/6} and apply the 3-spanner
algorithm algorithm of Sec. 2 to construct a subgraph Hsuper that takes care of the edges
Esuper. To construct Hsuper the algorithm (fully described13 in Sec. 2) samples a set S′ of
centers by picking each v ∈ V independently with probability O(log n/n5/6). For every v
with deg(v) ≥ n5/6, let S′(v) be the sampled neighbors in S′ ∩ Γ1(v) where Γ1(v) is the
first block of size n5/6 in Γ(v). This allows us to check membership to a cluster of s ∈ S′
using a single adjacency probe. The idea would be to extend the 1-radius clusters of S′ by
one additional layer consisting of the crowded vertices connected to the cluster via their
representatives.

For convenience, for a crowded v, define RS(v) = ∪x′∈Reps(v)S
′(x′), the set of (multiple)

centers of any of v’s representatives. Observe that by adding the edge (v, x′) to Hrep for
every x′ ∈ Reps(v), it yields that dist(v, s,Hrep ∪Hsuper) ≤ 2 for any s ∈ RS(v).

Consider the query (u, v), and suppose that v = v′i is the ith neighbor in u’s neighbor-list,
Γ(u) = {v′1, . . . , v′deg(u)}. We then add (u, v) to Hrep if and only if v introduces a new center
through some representative; that is, RS(v′i) \ ∪j<iRS(v′j) 6= ∅. To verify this condition
locally, we first compute RS(v), and for each of {v′j}j<i, Reps(v′j). Then, we discard (u, v)
if for every center s ∈ RS(v), there exists x and v′j where x ∈ Reps(v′j) and s ∈ S′(x); the
last condition takes constant probes to verify. This gives the full LCA for constructing Hrep
below.

Local construction of Hrep. Each v ∈ V is added to S′ with probability p =
Θ((log n)/∆super).
(A) If v ∈ V[∆med,∆super] and u ∈ Reps(v), answer YES.
(B) If u, v ∈ V[∆med,∆super]:

Compute RS(v).
Denote the neighbor-list of u by {v′1, . . . , v′deg(u)}; identify i such that v = v′i.
For each vertex w ∈ {v′1, . . . , v′i−1}, if w ∈ V[∆med,∆super], compute Reps(w).
For each s ∈ RS(v), iterate to check for a vertex x in any of the Reps(w)’s obtained
above, such that s ∈ S′(x). Answer YES if there exists a vertex s where no such x
exists.

12The naïve solution traverses the entire ∆med first neighbors of v which is too costly.
13Upon replacing the degree threshold of n3/4 with n5/6.
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Figure 4 Illustration for the local construction of Hrep.

I Lemma 10. For 1 ≤ ∆med ≤ ∆super ≤ n, there exists a subgraph Hrep ⊆ G such that
w.h.p.:
(i) Hrep has O(n2/∆super · log n) edges,
(ii) Hrep ∪ Hsuper takes care of Erep; that is, for every (u, v) ∈ Erep, dist(u, v,Hrep ∪

Hsuper) ≤ 3, and
(iii) for a given edge (u, v) ∈ E, one can test if (u, v) ∈ Hrep by making O(∆super log3 n)

probes.

Proof.
(i) Size. W.h.p., in (A) we add at most

∑
v∈V[∆med,∆super]

|Reps(v)| ≤ n·O(log n) = O(n log n).
Similarly to the analysis of Hhigh, in (B) we add |S′| = O((n log n)/∆super) edges per
vertex u, so |E(Hrep)| = O(n2/∆super · log n).

(ii) Stretch. This claim follows from the argument given in the overview, and is similar to
the analysis of Hhigh.

(iii) Probes. Computing RS(v) takes O(log n) ·∆super = O(∆super log n) (recall that we only
check Γ∆super,1 of each reprsentative). Note also that |RS(v)| = O(log2 n) since v has
O(log n) representative, each of which belongs to Θ(log n) clusters. Computing Reps for
each neighbor w ∈ {v′j}j<i of u takes O(log n) probes each, which is O(∆super log n) in
total since deg(u) ≤ ∆super. This also introduces up to ∆super ·O(log n) representatives
in total. Checking whether each of the O(log2 n) centers in RS(v) is a center of each of
these O(∆super log n) representative takes, in total w.h.p., O(∆super log3 n) probes. J

Final 5-spanner results. To obtain an LCA for 5-spanners, we again invoke all of our
LCAs for the four cases. Applying Lemma 9 and 10, we obtain the following LCA result for
5-spanner in general graphs.

I Theorem 11. For every n-vertex simple undirected graph G = (V,E) there exists an LCA
for 5-spanner with O(n4/3 log2 n) edges and probe complexity O(n5/6 log3 n).

Again, by combining results for larger degrees, we obtain an LCA for 5-spanners with
smaller sizes on graphs with minimum degree at least n1/2−1/(2r).

I Theorem 12. For every r ≥ 1 and n-vertex simple undirected graph G = (V,E) with
minimum degree at least n1/2−1/(2r), there exists a (randomized) LCA for 5-spanner with
O(n1+1/r log2 n) edges and probe complexity of O(n1−1/(2r) log3 n).
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4 Bounded Independence

In this section, we show that all our LCA constructions succeed w.h.p. using Θ(log n)-wise
independent hash functions which only require Θ(log2 n) random bits. We use the following
standard notion of d-wise independent hash functions as in [38]. In particular, our algorithms
use the explicit construction of H by [38], with the parameters as stated in Lemma 14.

IDefinition 13. ForN,M, d ∈ N such that d ≤ N , a family of functionsH={h : [N ]→ [M ]}
is d-wise independent if for all distinct x1, ..., xd ∈ [N ], the random variables h(x1), ..., h(xd)
are independent and uniformly distributed in [M ] when h is chosen randomly from H.

I Lemma 14 (Corollary 3.34 in [38]). For every γ, β, d ∈ N, there is a family of d-wise
independent functions Hγ,β =

{
h : {0, 1}γ → {0, 1}β

}
such that choosing a random function

from Hγ,β takes d ·max {γ, β} random bits, and evaluating a function from Hγ,β takes time
poly(γ, β, d).

Then, we exploit the following result to show the concentration of d-wise independent
random variables:

I Fact 15 (Theorem 5(III) in [36]). If X is a sum of d-wise independent random variables,
each of which is in the interval [0, 1] with µ = E(X), then:

(I) For δ ≤ 1 and d ≤ bδ2µe−1/3c, it holds that Pr[|X − µ| ≥ δµ] ≤ e−bd/2c.
(II) For δ ≥ 1 and d = dδµe, it holds that: Pr[|X − µ| ≥ δµ] ≤ e−δµ/3.

Bounded independence for hitting set procedures. Most of our algorithms are based on
the following hitting set procedure. For a given threshold ∆ ∈ [1, n], each vertex flips a coin
with probability p = (c log n)/∆ of being head and the set of all vertices with head outcome
join the set of centers S. Assuming the outcome of coin flips are fully independent, by the
Chernoff bound, the followings hold w.h.p.:
(HI) There are Θ(pn) sampled vertices S.
(HII) For each vertex of degree at least ∆, it has Θ(log n) centers among its first ∆ neighbors.
Here we show that to satisfy properties (HI) and (HII), it is sufficient to assume that
the outcomes of the coin flips are d-wise independent. By Lemma 14, to simulate d-wise
independent coin flips for all vertices, the algorithm only requires t = Θ(d(log n+ log 1/p))
random bits: more precisely, setting γ = Θ(log n) and β = log 1/p (for simplicity, lets
assume that log 1/p is an integer), there exits a family of d-wise independent functions
H =

{
h : {0, 1}Θ(logn) → {0, 1}log(1/p)

}
such that a random function h ∈ H can be specified

by a string of random bits of length t. In other words, each function h ∈ H maps the
ID of each vertex to the outcome of its coin flip according to a coin with bias p. Then,
from a string R of t random bits, the algorithm picks a function hR ∈ H at random to
simulate the coin flips of the vertices accordingly: the outcome of the coin flip of v is head if
hR(ID(v)) = 0 (which happens with probability p) and the coin flips are d-wise independent.
Setting d = c log n for some constant c > 1, we prove the following:

I Claim 16. If the coin flips are d-wise independent then properties (HI) and (HII) holds.
Furthermore, the sequence of n d-wise independent coin flips can be simulated using a string
of O(log2 n) random bits.
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Construction of representatives in Section 3. The analysis above also extends to the
process of computing Reps. Each crowded vertex chooses values c log n random indices (of its
neighbor-list) in [∆med], each of which has probability 1/2 of hitting a neighbor of degree at
least ∆super. Let {Zi}i∈[c logn] be indicators for these events and Z denote their sum, then
the expected sum E(Z) ≥ (c/2) log n. Imposing d-wise independence, Fact 15(I) implies that
w.h.p., Z > 0, so the representative set is non-empty. We apply the union bound to show
that Reps(v) 6= ∅ for every v ∈ Vcrwd, as desired.

References
1 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation

algorithms. In Proc. 23rd ACM-SIAM Sympos. Discrete Algs. (SODA), pages 1132–1139,
2012.

2 Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic over-
head. In Proc. 31st Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 514–522,
1990.

3 Baruch Awerbuch and David Peleg. Routing with polynomial communication-space trade-
off. SIAM J. Discrete Math., 5(2):151–162, 1992.

4 Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic randomized
algorithms for graph spanners. ACM Transactions on Algorithms (TALG), 8(4):35, 2012.

5 Surender Baswana and Sandeep Sen. A Simple and Linear Time Randomized Algorithm
for Computing Sparse Spanners in Weighted Graphs. Random Structures and Algorithms,
30(4):532–563, 2007.

6 Greg Bodwin and Sebastian Krinninger. Fully Dynamic Spanners with Worst-Case Update
Time. In Proc. 24th Annu. European Sympos. Algorithms (ESA), pages 17:1–17:18, 2016.

7 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing Local Dis-
tributed Algorithms under Bandwidth Restrictions. In 31st International Symposium on
Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, pages 11:1–
11:16, 2017.

8 Bilel Derbel and Cyril Gavoille. Fast deterministic distributed algorithms for sparse span-
ners. Theoretical Computer Science, 2008.

9 Bilel Derbel, Cyril Gavoille, and David Peleg. Deterministic distributed construction of
linear stretch spanners in polylogarithmic time. In Proc. 21st Int. Symp. Dist. Comp.
(DISC), pages 179–192, 2007.

10 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of dis-
tributed sparse spanner construction. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August
18-21, 2008, pages 273–282, 2008.

11 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. Local computation of
nearly additive spanners. In Proc. 23rd Int. Symp. Dist. Comp. (DISC), 2009.

12 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Transactions on Algorithms (TALG), 7(2):20, 2011.

13 Michael Elkin and Ofer Neiman. Efficient Algorithms for Constructing Very Sparse Span-
ners and Emulators. In Proc. 28th ACM-SIAM Sympos. Discrete Algs. (SODA), pages
652–669, 2017.

14 P Erdös. On some extremal problems in graph theory. Israel Journal of Mathematics,
3(2):113–116, 1965.

15 Guy Even, Moti Medina, and Dana Ron. Deterministic stateless centralized local algorithms
for bounded degree graphs. In Proc. 22nd Annu. European Sympos. Algorithms (ESA),
pages 394–405, 2014.

ITCS 2019



58:20 Local Computation Algorithms for Spanners

16 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in
massively parallel computation and centralized local computation. Proc. 30th ACM-SIAM
Sympos. Discrete Algs. (SODA), 2019.

17 Oded Goldreich. A brief introduction to property testing. In Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages
465–469. Springer, 2011.

18 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

19 Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages 393–
398, 2012.

20 Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness
in general graphs. SIAM Journal on computing, 33(6):1441–1483, 2004.

21 Christoph Lenzen and Reut Levi. A Centralized Local Algorithm for the Sparse Spanning
Graph Problem. In Proc. 45th Int. Colloq. Automata Lang. Prog. (ICALP), pages 87:1–
87:14, 2018.

22 Reut Levi, Guy Moshkovitz, Dana Ron, Ronitt Rubinfeld, and Asaf Shapira. Constructing
near spanning trees with few local inspections. Random Structures & Algorithms, 50(2):183–
200, 2017.

23 Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Transactions on Algorithms (TALG), 11(3):24, 2015.

24 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local Algorithms for Sparse Spanning Graphs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM, pages 826–842, 2014.

25 Reut Levi, Dana Ron, and Ronitt Rubinfeld. A local algorithm for constructing spanners
in minor-free graphs. arXiv preprint, 2016. arXiv:1604.07038.

26 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local Computation Algorithms for
Graphs of Non-constant Degrees. Algorithmica, 77(4):971–994, 2017.

27 Yishay Mansour, Boaz Patt-Shamir, and Shai Vardi. Constant-time local computation
algorithms. In International Workshop on Approximation and Online Algorithms, pages
110–121, 2015.

28 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algo-
rithms to local computation algorithms. In Automata, Languages, and Programming - 39th
International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part
I, pages 653–664. Springer, 2012.

29 Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 260–273. Springer, 2013.

30 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
31 David Peleg and Alejandro A Schäffer. Graph spanners. Journal of graph theory, 13(1):99–

116, 1989.
32 David Peleg and Jeffrey D Ullman. An optimal synchronizer for the hypercube. SIAM

Journal on computing, 18(4):740–747, 1989.
33 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Dis-

tributed Computing, 22(3):147–166, 2010.
34 Omer Reingold and Shai Vardi. New techniques and tighter bounds for local computation

algorithms. Journal of Computer and System Sciences, 82(7):1180–1200, 2016.
35 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast Local Computation Algorithms.

In Innovations in Computer Science - ICS 2010, pages 223–238, 2011.

http://arxiv.org/abs/1604.07038


M. Parter, R. Rubinfeld, A. Vakilian, and A. Yodpinyanee 58:21

36 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds for
applications with limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

37 Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal
on Computing, 40(4):981–1025, 2011.

38 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

39 Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Combinatorial
Theory, Series B, 52(1):113–116, 1991.

ITCS 2019


	Introduction
	Our results and techniques
	LCAs for 3 and 5-Spanners for General Graphs
	LCA for O(k^2)-spanners
	Lower Bounds

	Model Definition and Preliminaries

	LCA for 3-Spanners
	Edge classification
	3-spanner for the edges E_high
	3-spanner for the edges E_super
	The Final LCA

	LCA for 5-Spanners
	Bounded Independence

