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ABSTRACT ARTICLE HISTORY
The slip condition at the interface of a multiphase flow can occur in situa- Received 17 September 2018
tions including micro-and nano-fluidic flow, flow over hydrophobic surfa- Accepted 19 December 2018

ces, rising bubbles in quiescent liquid, and polymer extrusion processes.
The aim of this work is to implement the free-slip boundary condition with
an adaptive Cartesian grid method. The Navier-Stokes (NS) equations are
solved by a cell-centered collocated finite volume method with adaptive
mesh refinement. The arbitrarily-shaped solids imbedded in the computa-
tional domain are treated by the cut-cell method where the geometric
properties of cut-cells near the boundary are computed through robust
geometric operations. In discretized NS equations, the second-order-accur-
ate center difference method is used to estimate the surface fluxes of the
regular Cartesian cells in the bulk region, whereas the least-squares
method is used to estimate the fluxes of the cut-cells near the boundary.
A local coordinate system aligned with the normal and tangential direc-
tions of the solid boundary is defined for each cut-cell in order to properly
implement the free-slip condition. The tangential velocities at the curved
solid boundary are obtained using the free-slip condition and the principal
curvatures of the solid surface. The proposed numerical method is imple-
mented in the open-source code Gerris. Numerical tests have been carried
out to validate our method. The tests confirm the excellent performances
of the proposed method. Although our work focuses on the free-slip con-
dition, the extension of the proposed method to more general slip condi-
tions is straightforward.

1. Introduction

Over the past decades, numerical methods based on non-boundary-conforming Cartesian grids to
solve inviscid and viscous flows with complex immersed solid boundaries become increasingly
popular in the computational fluid dynamics (CFD) community, since they have the potential to
truly automate CFD analysis with good accuracy, high efficiency, robust reliability, and minimum
human intervention [1-11]. Furthermore, the simplicity of Cartesian mesh facilitates the imple-
mentation of adaptive mesh refinement (AMR) techniques [12-14] in numerical methods that
allow an automatic adjustment of the grid resolution according to evolution of the characteristics
of flow structures as well as geometric features of embedded solids during the solution process.
The combination of Cartesian grids and AMR leads to a powerful approach for efficiently solving
flow problems with multiple space- and time-scales in complex geometry. It is especially useful
when a priori knowledge of the flow phenomena is not even known before the simulation. As a
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result, numerous AMR based Cartesian grid methods have been proposed to address a wide range
of fluid flow problems in the literature in recent years [15-29]. This trend of adopting adaptive
Cartesian grid methods for CFD analysis is emerging in the CFD industry too. For example, a
number of new commercial CFD codes completely based on adaptive Cartesian grids have been
made available in the CFD software market over the past few years [30,31].

As the solid boundaries are usually not aligned with grid lines of the Cartesian mesh, the main
challenge of Cartesian grid methods is how to deal with arbitrary boundaries. Depending on how
the boundary conditions are imposed on solid surfaces, the existing Cartesian grid methods are
often classified into two categories: the immersed boundary methods (IBM) and cut-cell methods
[32]. IBM is pioneered by Peskin [1] and has now become an established approach for flow simu-
lations involving complex stationary or moving boundaries through great efforts made by many
researchers [3,8,33-37], just to name a few. Generally IBMs can be divided into two groups [32]:
(a) continuous forcing approach where the governing equations are modified by adding force
terms to account for the effect of the immersed boundaries; and (b) discrete forcing approach
where the desired boundary condition is imposed through the use of a layer of ghost cells in the
solid without modifying the governing equations. In the first approach the boundary is smeared
over several cells (hence a diffuse boundary), whereas a sharp boundary can be represented in the
second approach. As Mittal and Iaccarino point out in [32], the inherent disadvantage for these
Cartesian grids based IBMs is no strict conservation laws for the cells in the vicinity of the
immersed boundary. As a result, the Cartesian cut-cell methods are proposed to strictly conserve
mass, momentum, and energy even at the immersed boundaries by adopting the finite-volume
approach to discretize the governing equations [4-7, 15, 16, 20-23, 27-29].

In cut-cell methods, the cells intersected by the solid boundaries (usually referred to as cut-
cells) are truncated so that they conform to the boundary shape. The discretization in the cut-
cells needs special treatments, whereas the discretization in regular cells away from the bounda-
ries follows standard five-point stencil (in 2D) or seven-point stencil (in 3D). The cut-cell meth-
ods begin with the geometric calculation (e.g., open volume and area fractions, centroids) of cut
cells. Recent advances in computational geometry provide efficient and robust algorithms for
such computations [38]. As the Cartesian grids are cut arbitrarily by complex solid boundaries, it
is inevitable to have a number of small cut cells after truncation. To avoid a too small time step
due to the CFL restriction condition enforced by small cut cells, it is mandatory to properly
merge them with their neighboring cells. The cell-merging techniques as well as computations of
geometric properties of cut cells often pose a challenge in implementation of the cut-cell methods
in computer programs, especially in 3D geometry. In recent years, there has been a growing num-
ber of researchers who have successfully developed cut-cell methods for 3D flow simulations
involving complex geometries [6,20-23,27-29].

Most published studies on Cartesian grids mentioned early impose the standard no-slip
boundary condition at the solid surface. It is well known that the slip condition at the multiphase
interface (e.g., liquid-solid, liquid-gas, gas-solid, etc.) of multiphase flows can occur in some cases
such as micro- and nano-scales [39], hydrophobic surfaces [40,41], rising bubbles in quiescent
liquid [42,43], and polymer extrusion processes [44]. Very limited studies on Cartesian grid meth-
ods, however, are reported on imposing slip conditions at the solid boundary. Hartmann et al.
[21,22] implemented Neumann boundary conditions using a cut-cell/ghost-cell method. In their
method, ghost cells are created to implement Dirichlet and Neumann conditions along the solid
boundary by reflecting the cut cells along the boundary segments. Recently, Kempe et al. [43]
developed a numerical method to successfully impose the free-slip boundary condition in the
framework of continuous forcing IBM. In fact, the enforcement of the free-slip boundary condi-
tion at the curved boundaries is not trivial and requires considerable efforts. To our best know-
ledge, there has been no report of implementation of free-slip boundary condition using cut-
cell methods.
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The objective of this paper is to develop a numerical method to impose the free-slip boundary
condition at complex solid boundaries with the Cartesian cut-cell method. The open-source code
Gerris [20,23] is adapted to achieve the objective. In the past, we have successfully modified the
original code for simulation of microscopic multiphase flows dominated by surface tension
[45-48]. Gerris uses the Cartesian grid based finite-volume method with octree-based AMR tech-
nique to solve the Navier-Stokes equations. In our cut-cell method for treating the solid geome-
tries, the least-squares method is employed to calculate surface fluxes through the partial faces of
the cut-cells and boundary segments inside the cut cells according to the boundary conditions at
the solid surface. To implement the free-slip condition at the solid wall, the velocity vectors are
projected into a local coordinate systems based on the normal and tangential directions of the
local solid surface. The boundary velocities can then be obtained using the free-slip condition
and the principal curvatures of the solid surface. Once the boundary velocities are known, surface
fluxes in cut-cells can be computed using the face centered gradients obtained by the proposed
least-squares method. This paper is organized as follows. First, the governing equations and
boundary conditions are given in Section 2. Subsequently, the description of the numerical
method of implementing the slip boundary condition is presented in Section 3. Then, three
numerical examples are presented to validate the proposed method in Section 4. Finally, the con-
clusions are drawn in Section 5.

2. Governing equations

We consider unsteady incompressible, Newtonian fluids which are governed by the continuity
equation

V-u=0 (1)

and the momentum equation
0
pa—ltl+p(u-V)u:—Vp+V-r 2)

where u=(u, v, w) is velocity vector in Cartesian coordinate system (x, y, z). t is the time, p is
the pressure, p is the density. V is the gradient operator. t is the deviatoric stress tensor which
obeys the following law for Newtonian fluids

T =2uD (3)

with p the fluid viscosity and D the rate-of-strain tensor given by
1
D= 3 (Vu+ Vu?) (4)

The specification of boundary conditions is mandatory to solve Egs. (1) and (2). As mentioned
before, most solutions in the literature on Cartesian grid methods are based on Dirichlet type no-
slip condition at the solid boundary

u=0 (5)

This imposes that the fluid adheres to the wall, together with the impermeability condition.
The free-slip boundary condition on the impermeable solid wall can be expressed by
u-n=0 (6)
(t-m)xn=0 (7)
where 1 is the unit normal vector of the local solid surface. Eq. (6) implies that the flow velocity
in the normal direction of the boundary is zero, i.e., impermeable boundary. Eq. (7) means that
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the tangential stress of fluid at the boundary is zero, i.e., no shear force is exerted from the fluid
to the boundary.

When the shear force at the boundary is not exactly zero, such boundary is often referred to
as the slip boundary. The slip condition is generally characterized by a slip length which can be
thought as a fictitious distance between the physical solid boundary and an imaginary surface
inside the solid where the tangential velocity is zero. The mathematical form of the general slip
condition on the impermeable boundary can be written as

uxn:%(rn)xn (8)

where L is the slip length or friction coefficient. Eq. (8), often called the Navier slip law, repre-
sents a relationship between slip velocity at the solid boundary and shear stress at the wall. When
Ly=0, Eq. (8) implies the velocity vector in tangential direction of the solid boundary is zero, i.e.,
no-slip condition (Eq. (5)). When L, approaches to infinity, Eq. (8) becomes identical as Eq. (7),
i.e., free-slip condition.

3. Numerical method

As we mentioned early, the proposed numerical method is implemented using the open-source
code Gerris [20,23]. The code solves the Navier-Stokes equations (Eqgs. (1) and (2)) using a cell-
centered collocated finite volume method with an octree-based (fully threaded tree data structure
[18]) AMR Cartesian grid. The solid geometry embedded in the computational grid is handled by
the cut-cell method. In this section, we first give a brief overview of the numerical method of
Gerris for solving NS equations. Interested readers can find more details in [20,23]. We then
explain how to calculate the gradient fluxes through the partial faces of the cut-cells and bound-
ary segments inside the cut cells according to the boundary conditions at the solid surface. The
numerical scheme of imposing the free-slip boundary condition is implemented using a local
coordinate system based on the orientation of the local solid boundary. Although we describe the
numerical implementation using a uniform Cartesian grid, the extension to octree-based adaptive
grid is straightforward, following the same approach detailed in [20].

3.1. Solution scheme of governing equations

Eq. (2) is discretized using a time-staggered formulation on the collocated Cartesian grid (primi-
tive variables located at the cell center) as

n+l__n
pn+1/2 {“ 5 u + (w2, v)un+l/2:| _ _vpn+l/2 v ['un+1/2(Dn + Dn+1)] (9)

where At is the time increment of time step, the superscript denotes the time-step number. Eq.
(9) is solved using a classical fractional-step projection method. First, a provisional velocity u* is
computed using

P
i [—u Atu + (u”*l/z-V)u"H/z} =V [WV2(D" + D)) (10)

and the velocity u""" at time 7+ 1 can be obtained by correcting provisional velocity u*

At
- prH1/2

Vpn+1/2 (11)

where superscript * denote the provisional quantities. Since D* of Eq. (10) is an unknown term
depending on u* as expressed by Eq. (4), Eq. (10) is re-arranged by moving all provisional terms
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to the left hand side of the equation and the rest of terms obtained from previous time step to
the right hand side (RHS). Once applying the finite volume method, we can obtain the following
integral equation for each computational cell

n+1/2

n+1/2
JP x wdv 4 %Mn+l/2(n . D*)dS = +'un+l/2(n .D")dS + [P At u"dv— +pn+l/2un+1/2(n Cu™2)ds

cv cs cs v cs

(12)

where cv and ¢s denote the cell volume and the cell surface, respectively. n is the outward normal
vector of the cell surface. In Eq. (12), the volume integrals of viscous diffusion and advection
terms are converted to the surface integrals using Gauss’s theorem. The viscous term in the dis-
cretized momentum equation is solved by the implicit Crank-Nicholson scheme with a second-
order accuracy in time. The advection term in Eq. (12) is estimated explicitly using a second-
order upwind conservative Godunov scheme [20]. Eq. (12) is a Helmholtz-type equation and is
solved using a variant of the multilevel Poisson solver [23]. The time step (At) is controlled by
the Courant-Friendrichs-Lewy (CFL) condition to ensure the numerical stability.

In the second projection step, the pressure p"*'/> at time n -+ 1/2 is obtained by taking the
divergence of Eq. (11) and using the incompressibility constraint Eq. (1) as follows

At
v Lnﬂ/z VP”“/Z} =V-u (13)
The resulted Poisson equation is solved using the octree-based multigrid scheme [20]. Once
the pressure p"/? is known, the divergence-free velocity field u”™" can be obtained by correcting
provisional velocity u* with Eq. (11). To avoid the classic problem of decoupling of the pressure
and velocity due to collocated grids, an approximate projection method is used here [20]. An
auxiliary face-centered velocity wuy is first calculated by averaging the cell-centered velocity field
u*, and then used to calculate the divergence in RHS of Eq. (13). After the cell-centered pressure
p"% at time n+41/2 is solved using Eq. (13), the face-centered velocity u}’“ at time n+1 is
obtained by correcting auxiliary face-centered velocity uj using face-centered pressure gradient.

In cut-cell methods, cells in the computational domain can be classified into three groups as
shown in Figure la: (1) fluid cells that are located completely in the fluid region; (2) solid cells
that are located in the solid region and usually removed from the computation; and (3) cut cells
that are intersected by the solid boundary. For cut-cells, robust geometric operations are used in
Gerris to compute geometric properties (e.g., open-volume fraction, area fractions of cell faces,
centroid of cell volume, and midpoints of cell faces, etc.). When estimating surface fluxes to solve
Eq. (12), the geometric property data of cut-cells allows to reconstruct the boundary using a ser-
ies of piecewise linear segments similar to the volume-of-fluid approach. The primitive variables
are stored at the centroid of the truncated cells, whereas these variables are stored at the cell cen-
ter of regular Cartesian cells that are not cut by the solid boundary. The surface fluxes through
the faces bounding the cut-cells are estimated at the midpoints of these faces. Small cut-cells are
inevitable for arbitrarily complex solid boundaries. To avoid too restrictive time step required by
the CFL stability due to small cut cells, any small cut cell is combined with its largest neighbor
cell into a single merged cell [20]. Therefore, the CFL condition is not controlled by the small cut
cell but its merged cell.

3.2. Evaluation of viscous fluxes for cut cells

Solution of Eq. (12) requires the integration of surface fluxes (i.e., momentum and viscous diffu-
sion) over cell surfaces. The upwind conservative Godunov scheme is used to calculate the
momentum fluxes as detailed in [20]. For estimation of the viscous fluxes, we use the least-
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Figure 1. lllustration of computational cells near the immersed solid boundary in the cut-cell method: (a) the computational
stencil for the least-squares method for estimation of surface fluxes through cell faces of cell o (and the stencil is highlighted by
the gray shaded region), and (b) surfaces enclosing the cut-cell where the arrows represent the outward normal direction
of surfaces.

squares method due to its flexibility in terms of the local adaptive mesh topology and the
immersed boundary. When a cell face is between two regular Cartesian cells, the viscous fluxes
can be estimated by the second-order accurate center difference method. However, special treat-
ment needs to be developed to calculate surface fluxes for a cut-cell. Surfaces enclosing any cut-
cell can be classified into two types as shown in Figure 1b: Cartesian cell faces (that may be cut
by the boundary) and a planar portion of the solid boundary inside the cut cell. Therefore, for
cut-cells we can split the computation of integration of viscous fluxes over surfaces into fluxes
through cell faces and fluxes through the segment of the solid boundary. If we use the symbol ¢
to represent a component of velocity vector u, the viscous term in Eq. (12) can be written for
each cut-cell as

El;,u(n -Vo)ds = MZded¢ +u Jn - Vds (14)
d

cs r

where d is the direction of the Cartesian coordinate, sq is the surface fraction ratio of the cell face
in the direction d that represents the fluid portion of the cell face, V ¢ represent the gradient
evaluated at the midpoint of a cell face in the direction d, and I is the solid boundary segment
in the cut-cell. In RHS of Eq. (14), the first part corresponds to the viscous fluxes through the
faces of the regular Cartesian cell and the second part corresponds to the fluxes through the pla-
nar segment of the solid boundary. In the following sections we describe the proposed approaches
to estimate the surface fluxes using the two dimensions, however it is straightforward to extend
these schemes to three dimensions.

3.2.1. Computation of gradients at cell faces

The least-squares scheme is used to estimate the gradient flux of ¢ at the midpoint of the cell
face. For the two-dimensional case, in a local region consisting of a group of cells immediately
surrounding the current cut-cell o as shown in Figure 1a, variable ¢ is assumed to vary according
to the following function
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Figure 2. Schematic of estimation of surface fluxes through the solid boundary segment using the least-squares method in the
local coordinate system L = (€, n) that is defined by the tangential and normal directions of the local boundary. The velocity vec-
tor ug at cell center o needs to be converted into u, = (ug,ug) in the local system L.

$(x,y) = a0 + arx + azy + asxy (15)

where a, to a3 are unknown coefficients. These coefficients can be obtained by first minimizing a
cost function given by

M= ¢ b))’ (16)
jeCo

where ¢; is the value of ¢ at the centroid of cell j, C, represents a group of immediate neighbors
associated with the cut-cell o. x; and y; are the coordinates of the centroid of cell j, so ¢(x; y;) is
the value of Eq. (15) at the cell centroid. Il represents the sum of the squares of the errors
between values of ¢ of cells in group C, and values obtained by Eq. (15). The coefficients a; in
Eq. (15) can be obtained by solving 0I1/0a; =0, i.e.,

XioXx Xy 2| [a S
XN XN XAy XNy a| | T
Xy Xy Xy Xy | e | Xy
Yy Xy Lxy; x| 63 2. Py

Once the coefficients are solved from the above equation, we can easily obtain the gradient of
¢ at the midpoint m of the cell face using Eq. (15)

99
Ox

(17)

0
=a + ﬂsta—f =a; + azxy, (18)

m m

where x,,, and y,, are the coordinates of the midpoint m of the cell face in the direction d. With
the gradient of ¢ known, the gradient flux through the cell face the can be calculated using the
first part of RHS of Eq. (14).
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Solid boundary

Figure 3. The local coordinate system (n, &, £) is built based on the normal and tangential directions of the solid segment in a
cut-cell. The tangential directions are along the principal curvature directions. R, and R, are curvature radii of the curved
solid boundary.

3.2.2. Computation of gradients at boundary segment
We use a different approach to estimate the gradient flux at the midpoint s of the solid boundary
segment in the current cut-cell o, as the boundary condition at the solid wall needs to be consid-
ered. To facilitate the implementation of the free-slip condition (discussed in Section 3.3), we
introduce a local coordinate system L for each boundary segment in cut-cells with two orthonor-
mal basis vectors & and n being the local tangential and normal directions of the solid wall
respectively in 2D case as shown in Figure 2. Suppose the value of ¢ at the midpoint of the
boundary segment is known as ¢, from the boundary condition. If ¢ represents a component of
a vector (i.e., velocity), we need first to convert the vector into the local coordinate system L as
shown in Figure 2. So the value of ¢ in the vicinity of the solid boundary can be evaluated in the
local system L using the Taylor series expansion about the midpoint s of boundary segment I" as
¢ 9¢

D(&n) = ds+ o7 | AL+

Rk an SAn (19)

s

where A¢ and Ay are the distance between the location (&, 1) and the midpoint s in the local tan-
gential and normal directions, respectively. Note: we need to convert the coordinates of centroids
in the cell group C, from the global system G into the local system L. As in Section 3.2.1, we still
use the least-squares scheme to compute the gradients 0¢/0f and O¢/On at the point s. After
choosing a group of cells immediately neighboring the current cut-cell o, we minimize the follow-
ing residual function

M= wld;— oG m)]’ (20)
i<,

where wj is a weighting factor for neighbor cell j. We choose w;= 1/((A&)*+(An)?). The choice of
weighting factor places the greater weight on the neighbors that are nearer the segment midpoint
s of the cut-cell o in the stencil. The minimization of Eq. (20) yields
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of =

Figure 4. Schematic of the open-surface fractions of cell faces of a cut-cell where the solid volume is highlighted by the gray
shaded region.
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with Ag; = ¢; — ¢. Once the derivative O¢p/0On along the wall-normal direction is solved from the
above equation, the gradient flux through the boundary segment I' can be calculated by w(d¢/
onI'a (i.e., the second part of RHS of Eq. (14)), where I'y is the surface area of I'.

3.3. Scheme for imposing the free-slip condition

The free-slip boundary condition on the impermeable solid wall requires the velocity vector com-
ponent in the wall-normal direction is zero and the tangential components of the stress vector
71 at the wall vanish, as indicated in Egs. (6) and (7). As we mentioned early, the complex solid
wall is represented by a series of piecewise linear segments in our Cartesian cut-cell method. To
implement the free-slip condition, we create a local coordinate system L that is aligned with the
normal and tangential directions of the boundary segment as shown in Figure 3. L has the
orthogonal basis vectors 1, & and {, where n is the outward unit vector normal to the wall,
whereas & and { are two unit vectors tangential to the wall. For each cut-cell, the open-surface
fractions (i.e., ratio of the area open for flow to the total area) of six cell faces are calculated and
stored at the beginning of the simulation as shown in Figure 4. The wall-normal direction 1 in
the cut-cell can be expressed in terms of the global Cartesian coordinate system G using the sur-
face fractions as following

= (T P )] @2)

with

A= T (- + (- o) (3)
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where sf is the open-surface fraction of the cell faces, superscrits 4+, —, are the positive- and nega-
tive-direction of the global Cartesian axis x, y, z, respectively. To determine the two tangential
vectors & and {, we first arbitrarily choose one of the global axis directions as an initial guess of
the tangential vector, e.g., & = (1, 0, 0), and then & can be calculated by nx(&xn). Note: if
EsxN=0, we choose another axis direction as the initial guess. Once the tangential vector & is
known, the other tangential vector { can be easily determined by n x &.

A key to implement the free-slip condition is to determine the tangential velocities ”r and ul-
at the solid boundary in terms of the local coordinate system L. The local normal velocityul. =0
for the impermeable wall (Eq (6)). Once ul-and ”r are determmed from the boundary condi-
tions, the velocity vector u” at the wall can be expressed by (0, uf, ”r) Then, we can use the
basis vectors 1, &, and { to transform the velocity vector u” in the local system L to u® in the glo-
bal system G. Finally, the viscous fluxes through the wall in each cut-cell can be computed as dis-
cussed in Section 3.2.2. Therefore, the implementation of the free-slip condition amounts to
properly calculate the tangentialuérand u‘;in the local coordinate system L [43].

For the free shear-stress condition, Eq. (7) can be decomposed into two equations for two tan-
gential directions as

(t-m)-&=0and (1-n)-{=0 (24)

If the solid boundary is planar, the shear stress at the &-n plane can be written as the wall-nor-
mal derivative of the tangential velocity in the local system L, ie, ¢ = ndu /. So the first
equation of (24) becomes 14, = 1A/ =0, which can be discretized by the one-sided finite dif-
ferences at the boundary segment of the cut-cell as

IS
u;—up

dor

where u$ is the ¢-component of the velocity vector (i.e., wall-tangential velocity) at the cut-cell
centroid o in the local coordinate system, d,r is the distance from the centroid o to the boundary
segment as shown in Figure 2. We can obtain a similar equation at the {-n plane. Therefore, the
two tangential velocities uf-and ugrat the solid surface can be related to the tangential components
of the velocity vector at the cut-cell centroid in the local system L as

Tén ‘;7 =0 = H =0 (25)

uf- = u$ and ”r =u (26)
where u$ and u are velocity tangential components at the cut cell centroid in the local system L.
us and u} are obtained by transforming the velocity vector in the global system into the vector in
the local system.
When the solid boundary is a general curved surface, the shear stresses are related to the
curvature radii of the surface. Kempe et al. [43] derived the relation between tangential velocites
ulf- and uf- at the boundary and velocity components uSand uiat the cell centroid as

; R v R ,
& 1 13 { 2 {

U = ———u° and up = u 27
r Rl =+ doF 0 r Rz =+ dgr 0 ( )

where R; and R, are two principal curvature radii of the boundary surface as shown in Figure 3.
It is clear that as R; and R, approaches to infinity for the planar surface, Eq. (27) reduces to Eq.
(26). To find the principal curvatures x; and k,, we use the least-squares fitting linear functions
to the normal vectors of the boundary segments in current cut-cell and its neighboring cut-cells
[49,50]. In this method, the normal vector behavior of the boundary segments in neighboring
cells is described by linear functions of two parameters in the local tangential plane (&-1 plane)
defined by the solid boundary in current cut-cell. Once applying the least-squares method to the
linear functions, the Weingarten curvature matrix can be obtained. Since the principal curvatures
k; and x, are the eigenvalues of the Weingarten matrix, the corresponding raddii of principal
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Figure 5. Laminar channel flow between two parallel plates: (a) geometry and boundary conditions and (b) grids used for the
case of skew angle 8 =30° (from left to right the grid size is 0.0315m, 0.0156 m, and 0.0078 m, respectively).

curvature R, and R, can be obtained by inverting the curvatures. As we only consider the rigid
solid boundary in the study, calculation of the principal curvature is performed only once after
the geometric computation of cut-cells is done at the begnning of the simulation.

Let us summarize the numerical scheme to implement the free-slip boundary condition here.
The procedure starts during the solution of the provisional velocity u* in Eq. (12) and includes
four steps: (a) First we transform the velocity vector uCat the cut-cell centroids in the global
coordinate system G into the vector ulin the local system L; (b) Then we can obtain boundary
tangential velocities of cut-cells in the local sytem L using Eq. (27) and hence the boundary vel-
ocity vector uk = (0, uf-, uf-)T; (c) Next we transform the boundary velocity vector uk in the local
system L to the velocity vectorul = (u’f,u){-,uf-)Tin the global system G; (d) Last the viscous
fluxes through the surfaces of cut-cells are estimated using the approach discusssed in Section
3.2. After these steps a new provisional velocity u* can be obtained by solving Eq. (12). As the
velocity vector u¢ in step (a) is obtained from the provisional velocity u* of the previous iterative
step, steps (a)-(d) are performed in each iteration to solve u* until the convergence of u*. As the
general slip condition (Eq. (8)) is similar to the free-slip condition, the proposed method can be
extended to implement the general slip condition with little effort.
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Figure 6. Comparison of velocity components along the line in x-direction between numerical simulations and analytical solu-
tions: (a) skew angle 0 =10, (b) skew angle 0 =20, (c) skew angle 6 =30, and (d) skew angle 0 =40 (u is the normalized vel-
ocity component in x-axis, v is the normalized velocity component in y-axis).

4, Results

In this section, we carry out a series of numerical examples to validate the proposed numerical
method to impose the free-slip condition using the adaptive cut-cell method. In these tests the
numerical results obtained from the proposed method are compared to either analytical solution
or published benchmark data, so the following relative error norms are defined

|Ei — E'|

(28)
B

where E; is the numerical solution of the variable E at the point i, E is the reference value of
variable E.

4.1. Skewed channel flow

In this example, we consider a laminar flow through a channel between two parallel infinite plates
that are placed skewed to the Cartesian grid as shown in Figure 5a4. Four skew angles 0 between
the channel flow direction ¢ and y-axis are considered: 0 =10", 0=20", 0 =30, and 0 =40 . The
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Figure 7. Variation of L, and L., norm errors of velocity with the number of cells in the channel height direction: (a) skew angle
0=10°, (b) skew angle 0 =20°, (c) skew angle 0 =30°, and (d) skew angle 6 =40°.

channel height h and channel length L, in y-axis are h=0.1m and L, =1m, respectively. The
fluid density and viscosity p = 1kg/m’ and p=1kg/ms, respectively. One plate is no-slip bound-
ary, wheras the other one is free-slip boundary. For the fully developed laminar channel flow, the
velocity along the channel direction ¢ is

h*\ 0 2
U@ = <ﬂ) 8_2 (1 = %) (0<n<h) (29)

where 7 is the distance from the free-slip boundary in the direction perpendicular to the flow dir-
ection, dp/0¢ is the pressure gradient along the flow direction. So the velocity components in x-y
coordinate system are u=U-sin0 in x-axis and v="U-cosf in y-axis. The pressure gradient of
1.0 pa/m is used in the example. The mean velocity ., = (h2/3)(8p/8§).

Since the channel flow is 2D, we carry out 2D simulations with an uniform grid as shown in
Figure 5b. In order to study the effect of grid size on the accuracy of the numerical solution, we
do not turn on the mesh adaptation in simulations. For each skew angle 0, four grid sizes
A=0.0315m, A=0.0156m, A=0.0078 m, and A=0.0039m are used to show the sptatial order
of accuracy of the proposed method, and hence the correspoding number of grid cells across the
channel height is 4, 8, 15, and 30, respectively. A parabolic velocity profile is applied at the inlet
boundary with the velocity vector aligned parallel to the channel direction. The outlet boundary
condition for velocity is a zero normal gradient. The numerical results are compared with analytic
results.
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Figure 8. Contour of velocity and pressure in the skewed channel flow with skew angle 6 =40°: (a) velocity contour, (b) velocity
vector in a zoomed-in region, and (c) pressure contour.

Figure 6 shows the comparison of the numerical and analytic velocity profiles for the two
components u and v along x-axis for channel flows with different skew angle 0. The velocity
components are normalized with the mean velocity u,y., and the coordinate position is normal-
ized with distance between two plates in x-direction, i.e., h/cosf. It is clear from Figure 6 that the
numerical results agree very well with the analytical solutions in the fine mesh. Figure 7 shows
the variations of L, and L., norm errors of predicted velocity with different grid size. It can be
seen that the numerical scheme is approximately second-order accurate in the L,-norm error.
However, the numerical scheme is less than second-order accurate in the L.,-norm error. It is
expected because the L.,-norm error of the solution is controlled by the error in cut-cells, which
is first-order accurate. The velocity and pressure contours are plotted in Figure 8. As can be seen,
velocity vectors are parallel to walls. The pressure gradient is aligned with the channel
axis direction.
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Figure 9. Contour of velocity of the creeping flow through a sphere with the free-slip condition: (a) velocity contour and (b) vel-
ocity vector in a zoomed-in region.

4.2. Flow passing a sphere

A laminar flow around a fixed sphere with a radius R is considered in this example. When the
Reynolds number based on the free-stream velocity U, is very small, ie., creeping flow, an
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Figure 10. For the creeping flow through a free-slip sphere, comparison of x-component of the velocity vector between analyt-
ical solutions and numerical simulations of different grid sizes: (a) normalized velocity at y =0 along x-direction and (b) normal-
ized velocity at x =0 along y-direction.

analytical solution of the flow can be found in the case of the free-slip condition at the sphere
surface [43]. The velocity can be expressed in a spherical coordinate system as

Uy cos O(r — R) Uy cos O(R — 2r)

= u@ =

T )

,andug = 0 30
r 2r ¢ (30)

where u, uy u¢ is radial, polar, and azimuthal velocity, respectively. r is radial distance, 0 is polar
angle, and ¢ is azimuthal angle. The origin of the spherical coordinate system is located at the
center of the sphere.
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Figure 11. For creeping flow through a sphere with the free-slip condition, variation of L, and L., norm errors of velocity with
the number of cells in sphere diameter.

In this example, we employ the 2D axisymmetric method to solve the flow with p=1kg/m’,
p=1kg/ms, R=0.5m, and U,,=0.2m/s. The Reynolds number based on U, and the diameter
of the sphere is Re=0.2. The computational domain is 12R x 12R with the sphere of radius R
positioned in the midpoint of the bottom boundary. As in the example of Section 4.1, the uni-
form grid with different grid size is still used to check the sptatial order of accuracy. Four grid
sizes A=0.0938m, A=0.0469m, A=0.0234m, and A=0.0117m are used in the test, so the cor-
responding number of cells along the sphere diameter is 10, 21, 42, and 85, respectively. As the
analytical solution is based on the free-stream conditions, to minimize the boundary effect due to
the limited spatial extension of the computational domain, the exact solution of Eq. (30) is used
as a Dirichlet boundary condition on the boundaries other than symmetric boundary. The same
approach has also been adopted by Kempe et al. in their numerical test [43].

Figure 9 plots the velocity contour in the entire simulation region as well as the velocity vector
in a local region near the solid wall. Figure 10 plot the x-component of velocity vector predicted
by analytical solutions and numerical simulations with different grid sizes. In Figure 10, the vel-
ocity is normalized with the free-stream velocity U, and the coordinate position is normalized
with the sphere radius R. It is clear that the numerical solution is in better agreement with the
analytical solution using the finer mesh. Figure 11 shows the variations of L, and L., norm errors
of velocity with different grid size. It can be seen again that the numerical scheme is the second-
order accurate in the L,-norm error and the first-order accurate in the L..-norm error.

4.3. Flow passing an ellipsoid

In this example, we solve the flow passing an oblate ellipsoidal solid with the free-slip boundary
condition, which is also used by Kempe et al. to validate their method [43]. The outer surface of
the oblate ellipsoid can be described by x°/a® + y*/b*> + Z*/b> =1, with a ratio of semi-major axis
to semi-minor axis b/a=2 and a=0.075m. So, the volume-equivalent diameter of a sphere is D,
= 0.24m. The computational domain is a cube with the edge length of 1m. The origin of the
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Figure 12. Low Re flow through an oblate ellipsoidal solid with the free-slip condition at solid surface: (a) the semi-minor axis
of the ellipsoid is aligned is aligned with y-axis (Case 1) and (b) the semi-minor axis of the ellipsoid is aligned is aligned with x-
axis (Case 2).

coordinate system is located at the center of the cube. The ellipsoid is positioned at the center of
the cube as well. As shown in Figure 12, we consider two scenarios in terms of the ellipsoid
orientation, i.e., the semi-minor axis is aligned with y-axis (Case 1) or with x-axis (Case 2). In
both cases, a uniform velocity of 1 m/s is applied at the inlet (x=—0.5) and the outlet (x=0.5),
and the free-slip boundary condition is applied to the rest of boundaries of the domain. The
density and the viscosity are p=1kg/m’ and p=0.0238kg/ms, respectively. Therefore, the
Reynolds number based on D, is small Re = 10 with the mean flow in x-direction. As there is no
analytical solution for such flow, Kempe et al. used the commercial code Fluent to solve this flow
with a body-fitted mesh [43]. So we use their body-fitted mesh based numerical solution to valid-
ate our method as well.

Full 3D simulations with adaptive grids are carried out to solve the flow passing the ellipsoid
with two orientations with respect to the mean flow direction (i.e., x-axis). The grids are adaptive
to the solid geometry and the velocity gradient in the domain. The grid size varies from
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Apmin=0.001953m to A, =0.03125m. Figure 13 plots the velocity contours on the planes y =0
and z=0 as well as the streamlines in the plane z=0.5 for two different ellipsoid orientations.
As the Reynolds number is small, the flow is laminar and remains attached to the solid surface of
the ellipsoid as shown in Figure 13. The comparisons of velocity profiles along lines y=z=0
and x=2z=0 predicted by the body-fitted method and our method for Case 1 and Case 2 are
plotted in Figures 14 and 15, respectively. There is a very good agreement of the velocity field
computed on the body-fitted mesh and the velocity field obtained with the cut-cell method.
The L, and L., norm errors of the velocity field predicted by our method in reference to the
solutions of the body-fitted mesh are 2.7 x 107> and 4.1 x 10~%, respectively. This highlights
the excellent performance of the proposed scheme to implement the free-slip condition at the
complex geometry.
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5. Conclusion

In this study, we have proposed a numerical scheme to impose the free-slip boundary condition
in the framework of the Cartesian cut-cell method for the complex geometries. The collocated
finite-volume method with an octree-based adaptive Cartesian grid is used to solve the Navier-
Stokes equations. The cut-cell method is employed to treat the solids imbedded in the back-
ground Cartesian grid. The standard center difference method is used to estimate the surface
fluxes in the regular Cartesian cells in the bulk of the computational domain for its efficiencies,
whereas the least-squares method is adopted to estimate the fluxes in cut-cells near solid bounda-
ries due to its flexibility in handling the arbitrarily truncated cells and the local adaptive mesh
topology. A local coordinate system aligned with the normal and tangential directions of the solid
boundary is defined for each cut-cell in order to properly implement the free-slip condition. The
velocity vectors of cut-cells in the Cartesian coordinate system are first transformed into the local
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system. For a non-planar solid boundary, the descritized equation from the free-slip condition
requires the knowledge of the principal curvatures of the boundary that are computed using the
least-squares fitting linear functions to the normal vectors of the solid boundary. Once the
boundary velocities are obtained, the surface fluxes through the solid segment in each cut-cell can
be computed. The proposed numerical algorithms are implemented in the open-source code
Gerris. To validate our method, we carry out three numerical tests including the skewed channel
flow, flow around a sphere, and flow around an ellipsoid. In the first two examples, 2D simula-
tions with the uniform grids are employed to show that the sptatial order of accuracy of our
method is generally second order in L,-norm error, whereas it is first order in L.,-norm error. In
the last example, numerical solutions using the 3D adaptive Cartesian grid are compared against
the results predicted by the body-fitted mesh method. Excellent agreement between the two dem-
onstrates the proposed numerical scheme can be applied to flows through complex 3D solid
objects with the free-slip boundaries. It is also straightforward to extend our method to impose
the general slip conditions at the solid boundaries.
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