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ABSTRACT

Machine learning and artiicial intelligence are invaluable for com-

puter systems optimization: as computer systems expose more

resources for management, ML/AI is necessary for modeling these

resources’ complex interactions. The standard way to incorporate

ML/AI into a computer system is to irst train a learner to accurately

predict the system’s behavior as a function of resource usageÐe.g.,
to predict energy eiciency as a function of core usageÐand then

deploy the learned model as part of a systemÐe.g., a scheduler. In
this paper, we show that (1) continued improvement of learning

accuracy may not improve the systems result, but (2) incorporating

knowledge of the systems problem into the learning process im-

proves the systems results even though it may not improve overall

accuracy. Speciically, we learn application performance and power

as a function of resource usage with the systems goal of meeting la-

tency constraints with minimal energy. We propose a novel genera-
tive model which improves learning accuracy given scarce data, and

we propose a multi-phase sampling technique, which incorporates

knowledge of the systems problem. Our results are both positive

and negative. The generative model improves accuracy, even for

state-of-the-art learning systems, but negatively impacts energy.

Multi-phase sampling reduces energy consumption compared to

the state-of-the-art, but does not improve accuracy. These results

imply that learning for systems optimization may have reached a

point of diminishing returns where accuracy improvements have

little efect on the systems outcome. Thus we advocate that future

work on learning for systems should de-emphasize accuracy and

instead incorporate the system problem’s structure into the learner.

CCS CONCEPTS

• Computing methodologies → Machine learning; • Com-

puter systems organization → Heterogeneous (hybrid) sys-

tems; Embedded systems; Real-time system architecture; •

Hardware → Chip-level power issues.
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Machine learning; real-time systems; energy; heterogeneous archi-

tectures; resource allocation
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1 INTRODUCTION

Computer systems optimization is increasingly multidimensional:

systems must deliver reliable performance (e.g., quality-of-service
or latency guarantees) while minimizing energy consumption. To

meet these conlicting goals, computer architects expose resources

for software management. System software is then responsible for

coniguring these resources to operate at an optimal point in the

performance-energy tradeof space.

Systems expose a wide variety of resourcesÐincluding, but not

limited to heterogeneous core types, multiple sockets, conigurable

memory hierarchies, adjustable clockspeedsÐand these resources

have complex, non-linear efects on performance and energy. For

example, on little cores clockspeed might uniformly increase perfor-

mance, while on big cores high clockspeeds might induce thermal

throttling, causing performance to decline. These types of resource

interactions create local optima and make it diicult (or impossible)

for gradient-based optimization and other heuristics to ind a true

optimal resource allocation. Indeed, several studies show that the

increasing variety and complexity of conigurable resources has

rendered venerable heuristics inefective [9, 24, 32, 37, 45, 47].

In recent years, machine learning techniques have shown the

potential to increase system robustness by replacing resource man-

agement heuristics. Machine learning can model resources’ com-

plicated, non-linear interactions to avoid local optima and deliver

a true optimal solution. Indeed, as systems complexity has grown

researchers have proposed a variety of machine learning methods

for system resource management [6, 12, 17, 18, 21, 25, 31, 33, 45, 47,

49, 50, 52, 67]. While this prior work shows that machine learning

is efective for modeling complicated tradeofs, there are several

challenges that must be addressed to continue improving learning

for computer system resource management, including:

• Scarce Data: To increase learning accuracyÐi.e., the learned
model’s ability to predict ground truth for some unseen ap-

plication and system conigurationÐa robust set of training

data is required. Collecting this training data is expensive: it

requires observing a benchmark set in many diferent con-

igurations, during which the machine to be modeled is not

doing useful work. Additionally, the training benchmarks

must exhibit a wide range of behavior, so that they can make

accurate predictions for previously unseen applications.

39



ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA Yi Ding, Nikita Mishra, and Henry Hofmann

• Asymmetric Beneits: Most learning problems require equal

accuracy for all inputs. Furthermore, achieving better results

for one input class represents a biased learner, a condition

to be avoided, in general. In learning for systems, however,

not all resource conigurations are useful, in the sense of rep-

resenting optimal tradeofs (e.g., between performance and

power).1 Ideally, a computer system would only use conigu-

rations on the optimal frontier and ignore all non-optimal

conigurations; i.e., unlike general learning problems, bias-

ing the learner towards conigurations representing optimal

tradeofs is beneicial. The challenge is that we do not know

which conigurations are optimal to begin.

We address these two challenges by presenting two techniques

that improve a variety of learning methods for computer system

management. First, we propose a novel generative model that ad-
dresses the scarce data challenge by generating training data that

improves learning accuracy. The key insight for the generative

model is determining how to generate data that is suiciently dif-

ferent from the training set, but still realistic enough to predict

unseen behavior. Second, we propose multi-phase sampling to ad-

dress asymmetric beneits by splitting sampling into two phases:

irst, separating the optimal conigurations from the rest and second,

improving the prediction accuracy of the optimal points.

We test these techniques by implementing them for both an ARM

big.LITTLE mobile and an Intel x86 server. We use ive diferent

published learning systems to both predict performance and power

consumption for unseen benchmark applications and to schedule

resources to meet application latency requirements with minimal

energy. We compare the results of these published learners to the

same learners augmented with our proposed generative model and

multi-phase sampling. Our results show the following:

• The generative model improves predictions for all learners

on both the mobile and server systems. The average increase

in prediction accuracy is 8 percentage points.

• Multi-phase sampling improves energy savings on both the

mobile and server systems. On averageÐacross all learners

and systemsÐthis technique produces energy that is 26%

closer to optimal than the published learners for system

resource allocation and energy management [17, 18, 47].

Additionally, our data support the following observations:

• While increasing learning accuracy generally reduces energy,

there is a point of diminishing returns.
• Thus, even though the generative model improves even the

best prior learner’s accuracy, the continued accuracy improve-
ment does not reduce energy.
• Because multi-phase sampling biases the learner towards

optimal conigurations it reduces overall accuracy, yet signii-
cantly improving energy savings.

This study is strong evidence that after achieving a certain level

of accuracy, it is no longer proitable for systems researchers to im-

prove learning systems without accounting for the structureÐi.e., the
geometry of optimal tradeofs for the systems problem to be solved. In
our example of meeting latency requirements with minimal energy,

1The set of optimal tradeofs could either be Pareto-optimal, or more strictly, the set
of inputs on the lower (or upper) convex hull of the tradeof space, depending on the
speciic problem formulation. We simply use the term optimal tradeofs as the ideas in
this paper are common to both cases.

the learners only need to produce accurate results for the conigu-

rations on the frontier of optimal performance and power tradeofs.

Once we have separated the optimal conigurations, further ac-

curacy improvements provide no additional energy savings and

simply waste resources learning for no advantage. This problem is

exacerbated because for any one given application most points are

not on the optimal frontier. Thus, optimizing for learning accuracy

improves predictions for points that are not practically useful. In

summary, this work makes the following contributions:

• Proposing a novel generative model for improving predic-

tions of performance and power given scarce data.

• Demonstrating how the structure of constrained optimiza-

tion problems in computing systems creates asymmetric

beneits: accurately predicting optimal conigurations is es-

sential while accuracy for other points is of little value.

• Proposing multi-phase sampling for biasing learners towards

the useful points.

• Demonstrating the generality of the proposed techniques

by using them to further improve existing predictive mod-

eling approaches for allocating resources to meet latency

requirements with minimal energy on two diferent hard-

ware platforms.

2 RELATED WORK AND MOTIVATION

Several studies provide evidence that heuristic-based resource man-

agement can break down as the underlying computing systems

become more complicated [9, 32, 37, 45, 47, 65]. For example, a

popular heuristic is race-to-idle, which meets latency constraints

by completing computations as fast as possible and then transition-

ing to a low-power idle state (or sleep state) until the next piece

of work is available. Race-to-idle is especially efective on hard-

ware that lacks energy-proportionality; i.e., the hardware is most

energy-eicient when it runs as fast as possible and slowing down

reduces power, but actually increases energy [3, 23, 30]. Recent

work demonstrates that newer processor designsÐespecially het-

erogeneous processors with a mix of both high-performance and

low-power coresÐhave poor energy behavior under this heuristic

[9, 37]. This work demonstrates that if it were possible to accurately

model the performance and power tradeofs of all possible resource

assignments, a true optimal resource assignment can reduce energy

consumption by large integer factors compared to heuristic meth-

ods which often get stuck in local optima. In other words, resource

allocation heuristics are brittle and not portable across diferent

hardware devices, as demonstrated in both academic studies [32]

and in commercial examples [24].

The increasing complexity of computing systems creates a need

for principled approaches to replace heuristics and motivates the

study of machine learning and artiicial intelligence within re-

source management systemsÐespecially those concerned with per-

formance and energy. Due to its merits in modeling complicated

tradeofs and avoiding locally optimal resource conigurations, ma-

chine learning is an attractive alternative to heuristic solutions. We

begin this section by inding commonalities in recent work apply-

ing ML/AI to computing systems optimization problems. We then

show an example of a system/application pair which is diicult
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Figure 19: Sensitivity analysis of performance accuracy for mobile and server systems. The x-axis is the sample size.

These results illustrate a complicated aspect of our study. The
sample complexity plots show that, while all learners have a point
of diminishing returns, they occur at diferent locations for dif-
ferent learners. In this section, we are investigating sample sizes
where some learners have suicient samples and others do not.
At this point, for example, GM really improve MCGD’s energy be-
cause it was not at the point of diminishing returns. Other learners
are beyond that point though, and even in this case we see that
multi-phase sampling signiicantly improves energy on the hardest
apps. These results indicate that multi-phase sampling is robust to
reduced sample sizes.

7.6 Overhead

We collect the overhead for all combinations of systems, learners,
and proposed augmentations. These overheads are listed in Table 6
and Table 7 for the mobile and server, respectively. The tables show
the time amortized over all conigurations. These results show that
the GM and multi-phase methods add some overhead compared to
the vanilla learning systems, but these results are not surprising
and we believe the overhead is tolerable for the beneits.

For example, the GM method is expensive because the EM algo-
rithm on which it relies is quite expensive. However, GM creates
new columns in the known data matrix. An alternative to approach
is to ind a new application to add to the known data by exhaustively
characterizing it in all conigurations. On the systems we study,
this exhaustive characterization takes hours up to a day, and there
is no guarantee that the new application will exhibit signiicantly
diferent behavior than the common case in the data set. Compared
this approach of manually adding data to the known applications,
GM is orders of magnitude faster and provides better statistical
guarantees that it will generate useful data.

Multi-phase sampling also adds overhead because it runs these
fairly computationally expensive learners twice, once in each phase.
One direction of future work is to look at further optimizations to
this approach. Perhaps diferent learning techniques can be com-
bined to greater efect. For example WNNM is the highest accuracy
and less expensive than HBM, so using multi-phase sampling with
WNNM in Phase 1 and HBM in Phase 2 might produce better accu-
racy and energy savings with lower overhead.

Table 6: Learner overhead for mobile system (in ms).

Vanilla GM MP MP − GM
MCGD 1.1 1.9 2.3 2.9
MCMF 0.1 0.7 0.1 0.7
Nuclear 2.2 3.0 3.4 4.6
WNNM 1.2 2.7 2.3 3.8
HBM 2.5 3.8 4.8 6.1

Table 7: Learner overhead for server system (in ms).

Vanilla GM MP MP − GM
MCGD 0.9 1.2 1.8 2.0
MCMF 0.1 0.2 0.3 0.2
Nuclear 0.7 0.8 1.0 1.1
WNNM 0.3 0.6 0.6 0.9
HBM 13.2 15.4 19.0 23.9

7.7 Discussion

So far, detailed results have been presented using predictive mod-
eling to assign system-level resources to applications such that
latency constraints are met with minimal energy. We have com-
pared existing approaches to this problem to the same approaches
augmented with generative and multi-phase enhancements. For
this speciic resource management problem the results suggest that:
• There is a point of diminishing returns in applying learning.
The MCGD and MCMF methods are clearly worse (in ac-
curacy and performance) than the other three. However,
even the best vanilla learner (WNNM) shows little energy
improvement over the others in its class (Nuclear and HBM).
• The generative model improves accuracy. It is signiicant that
we can generate data (which has no measurement cost and
is many orders of magnitude faster than exhaustively mea-
suring an application) and improve learning accuracy.
• Themulti-phasemethod improves energy.By biasing the learner
to the conigurations (resource allocations) that are likely
to be most energy eicient, this approach improves energy
consumption, as long as the learning technique to which it
is being applied is accurate enough. For example, our initial
results show that this technique has signiicant accuracy
savings, but we ind that the energy savings can diminish
for some learners with reduced sample size.
• Improving accuracy does not necessarily improve energy con-
sumption. Because of asymmetric response and diminishing
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returns, it is possible to greatly improve accuracy by improv-
ing estimations of the conigurations that are not on the
optimal frontier of performance and power.
• The systems outcome can be improved without improving the
learner’s accuracy.Multi-phase sampling does not improve
overall accuracy, but has a signiicant efect on energy even
for the best in class learners.

We expect the same broad behavior for any learners whose out-
put is used to solve a constrained optimization problem in computer
systems. The nature of such problems means that, for any appli-
cation, only a small number of conigurations will appear on the
polytope of possible optimal solutions.

The key insight from this study is that only the small subset of
optimal conigurations matter for systems outcomesÐimproving

accuracy for the non-optimal conigurations is not helpful, but

getting the optimal set correct is essential. For straight optimization

problemsświthout constraints; e.g., ind the most energy eicient

conigurationÐthe results might not hold. Similarly, if we could

build computing systems such that all conigurations were on the

frontier of optimal tradeofs for all applications then the results

might not hold, as the accuracy of each coniguration’s predicted

behavior would directly afect the solution to the optimization

problem.

8 CONCLUSION

As machine learning and AI researchers continue to produce as-

tonishing results, it is natural to simply apply each new learning

techniques to computing systems and reap the beneit. This process

typically follows an approach of training a learner for maximum

accuracy and then deploying it to build a model that some computer

management system (e.g., scheduler, coniguration management,

or resource allocation) can use to improve its system outcomes.

We argue that the above process has reached a point of dimin-

ishing returns. Our example from Section 2 shows a hypothetical

counter example where a very inaccurate learner produces better

systems results than an accurate learner. The key diference be-

tween those learners is that one learner is aware of the structure of

the systems problem (it is a constrained optimization problem in

the performance/power space) and is accurate only for the conigu-

rations that afect that structure.

We have shown how to build learners that produce better systems

results by acquiring knowledge of the systems problem. In themulti-

phase learning we propose, the irst phase inds the likely most

signiicant points for the systems problem, while the second phase

explicitly samples those points. This technique represents one way

to incorporate knowledge of the systems problem into training

the learner and it leads to empirically better outcomes, even for

state-of-the-art systems from the literature.

This work is just one example of how to incorporate more sys-

tems knowledge into training learners. While we have applied it to

the problem of meeting latency constraints with minimal energy,

we believe the ideas would translate to any system that has to bal-

ance multiple, competing constraints. We hope this work inspires

other systems researchers to consider techniques for incorporating

system knowledge into learning solutions.
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