Generative and Multi-phase Learning for Computer Systems

Optimization
Yi Ding Nikita Mishra Henry Hoffmann
University of Chicago University of Chicago University of Chicago
dingy@uchicago.edu nmishra@cs.uchicago.edu hankhoffmann@cs.uchicago.edu

ABSTRACT

Machine learning and artificial intelligence are invaluable for com-
puter systems optimization: as computer systems expose more
resources for management, ML/AI is necessary for modeling these
resources’ complex interactions. The standard way to incorporate
ML/Al into a computer system is to first train a learner to accurately
predict the system’s behavior as a function of resource usage—e.g.,
to predict energy efficiency as a function of core usage—and then
deploy the learned model as part of a system—e.g., a scheduler. In
this paper, we show that (1) continued improvement of learning
accuracy may not improve the systems result, but (2) incorporating
knowledge of the systems problem into the learning process im-
proves the systems results even though it may not improve overall
accuracy. Specifically, we learn application performance and power
as a function of resource usage with the systems goal of meeting la-
tency constraints with minimal energy. We propose a novel genera-
tive model which improves learning accuracy given scarce data, and
we propose a multi-phase sampling technique, which incorporates
knowledge of the systems problem. Our results are both positive
and negative. The generative model improves accuracy, even for
state-of-the-art learning systems, but negatively impacts energy.
Multi-phase sampling reduces energy consumption compared to
the state-of-the-art, but does not improve accuracy. These results
imply that learning for systems optimization may have reached a
point of diminishing returns where accuracy improvements have
little effect on the systems outcome. Thus we advocate that future
work on learning for systems should de-emphasize accuracy and
instead incorporate the system problem’s structure into the learner.

CCS CONCEPTS

« Computing methodologies — Machine learning; - Com-
puter systems organization — Heterogeneous (hybrid) sys-
tems; Embedded systems; Real-time system architecture; »
Hardware — Chip-level power issues.

KEYWORDS

Machine learning; real-time systems; energy; heterogeneous archi-
tectures; resource allocation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6669-4/19/06. .. $15.00
https://doi.org/10.1145/3307650.3326633

39

ACM Reference Format:

Yi Ding, Nikita Mishra, and Henry Hoffmann. 2019. Generative and Multi-
phase Learning for Computer Systems Optimization. In The 46th Annual
International Symposium on Computer Architecture (ISCA °19), June 22-26,
2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages. https://doi.
org/10.1145/3307650.3326633

1 INTRODUCTION

Computer systems optimization is increasingly multidimensional:
systems must deliver reliable performance (e.g., quality-of-service
or latency guarantees) while minimizing energy consumption. To
meet these conflicting goals, computer architects expose resources
for software management. System software is then responsible for
configuring these resources to operate at an optimal point in the
performance-energy tradeoff space.

Systems expose a wide variety of resources—including, but not
limited to heterogeneous core types, multiple sockets, configurable
memory hierarchies, adjustable clockspeeds—and these resources
have complex, non-linear effects on performance and energy. For
example, on little cores clockspeed might uniformly increase perfor-
mance, while on big cores high clockspeeds might induce thermal
throttling, causing performance to decline. These types of resource
interactions create local optima and make it difficult (or impossible)
for gradient-based optimization and other heuristics to find a true
optimal resource allocation. Indeed, several studies show that the
increasing variety and complexity of configurable resources has
rendered venerable heuristics ineffective [9, 24, 32, 37, 45, 47].

In recent years, machine learning techniques have shown the
potential to increase system robustness by replacing resource man-
agement heuristics. Machine learning can model resources’ com-
plicated, non-linear interactions to avoid local optima and deliver
a true optimal solution. Indeed, as systems complexity has grown
researchers have proposed a variety of machine learning methods
for system resource management [6, 12,17, 18, 21, 25, 31, 33, 45, 47,
49, 50, 52, 67]. While this prior work shows that machine learning
is effective for modeling complicated tradeoffs, there are several
challenges that must be addressed to continue improving learning
for computer system resource management, including:

e Scarce Data: To increase learning accuracy—i.e., the learned
model’s ability to predict ground truth for some unseen ap-
plication and system configuration—a robust set of training
data is required. Collecting this training data is expensive: it
requires observing a benchmark set in many different con-
figurations, during which the machine to be modeled is not
doing useful work. Additionally, the training benchmarks
must exhibit a wide range of behavior, so that they can make
accurate predictions for previously unseen applications.

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

o Asymmetric Benefits: Most learning problems require equal
accuracy for all inputs. Furthermore, achieving better results
for one input class represents a biased learner, a condition
to be avoided, in general. In learning for systems, however,
not all resource configurations are useful, in the sense of rep-
resenting optimal tradeoffs (e.g., between performance and
power).! Ideally, a computer system would only use configu-
rations on the optimal frontier and ignore all non-optimal
configurations; i.e., unlike general learning problems, bias-
ing the learner towards configurations representing optimal
tradeoffs is beneficial. The challenge is that we do not know
which configurations are optimal to begin.

We address these two challenges by presenting two techniques
that improve a variety of learning methods for computer system
management. First, we propose a novel generative model that ad-
dresses the scarce data challenge by generating training data that
improves learning accuracy. The key insight for the generative
model is determining how to generate data that is sufficiently dif-
ferent from the training set, but still realistic enough to predict
unseen behavior. Second, we propose multi-phase sampling to ad-
dress asymmetric benefits by splitting sampling into two phases:
first, separating the optimal configurations from the rest and second,
improving the prediction accuracy of the optimal points.

We test these techniques by implementing them for both an ARM
big.LITTLE mobile and an Intel x86 server. We use five different
published learning systems to both predict performance and power
consumption for unseen benchmark applications and to schedule
resources to meet application latency requirements with minimal
energy. We compare the results of these published learners to the
same learners augmented with our proposed generative model and
multi-phase sampling. Our results show the following:

o The generative model improves predictions for all learners
on both the mobile and server systems. The average increase
in prediction accuracy is 8 percentage points.

e Multi-phase sampling improves energy savings on both the
mobile and server systems. On average—across all learners
and systems—this technique produces energy that is 26%
closer to optimal than the published learners for system
resource allocation and energy management [17, 18, 47].

Additionally, our data support the following observations:

o While increasing learning accuracy generally reduces energy,
there is a point of diminishing returns.

e Thus, even though the generative model improves even the
best prior learner’s accuracy, the continued accuracy improve-
ment does not reduce energy.

e Because multi-phase sampling biases the learner towards
optimal configurations it reduces overall accuracy, yet signifi-
cantly improving energy savings.

This study is strong evidence that after achieving a certain level
of accuracy, it is no longer profitable for systems researchers to im-
prove learning systems without accounting for the structure—i.e., the
geometry of optimal tradeoffs for the systems problem to be solved. In
our example of meeting latency requirements with minimal energy,

The set of optimal tradeoffs could either be Pareto-optimal, or more strictly, the set
of inputs on the lower (or upper) convex hull of the tradeoff space, depending on the
specific problem formulation. We simply use the term optimal tradeoffs as the ideas in
this paper are common to both cases.

40

Yi Ding, Nikita Mishra, and Henry Hoffmann

the learners only need to produce accurate results for the configu-
rations on the frontier of optimal performance and power tradeoffs.
Once we have separated the optimal configurations, further ac-
curacy improvements provide no additional energy savings and
simply waste resources learning for no advantage. This problem is
exacerbated because for any one given application most points are
not on the optimal frontier. Thus, optimizing for learning accuracy
improves predictions for points that are not practically useful. In
summary, this work makes the following contributions:

e Proposing a novel generative model for improving predic-
tions of performance and power given scarce data.

e Demonstrating how the structure of constrained optimiza-
tion problems in computing systems creates asymmetric
benefits: accurately predicting optimal configurations is es-
sential while accuracy for other points is of little value.

e Proposing multi-phase sampling for biasing learners towards
the useful points.

e Demonstrating the generality of the proposed techniques
by using them to further improve existing predictive mod-
eling approaches for allocating resources to meet latency
requirements with minimal energy on two different hard-
ware platforms.

2 RELATED WORK AND MOTIVATION

Several studies provide evidence that heuristic-based resource man-
agement can break down as the underlying computing systems
become more complicated [9, 32, 37, 45, 47, 65]. For example, a
popular heuristic is race-to-idle, which meets latency constraints
by completing computations as fast as possible and then transition-
ing to a low-power idle state (or sleep state) until the next piece
of work is available. Race-to-idle is especially effective on hard-
ware that lacks energy-proportionality; i.e., the hardware is most
energy-efficient when it runs as fast as possible and slowing down
reduces power, but actually increases energy [3, 23, 30]. Recent
work demonstrates that newer processor designs—especially het-
erogeneous processors with a mix of both high-performance and
low-power cores—have poor energy behavior under this heuristic
[9, 37]. This work demonstrates that if it were possible to accurately
model the performance and power tradeoffs of all possible resource
assignments, a true optimal resource assignment can reduce energy
consumption by large integer factors compared to heuristic meth-
ods which often get stuck in local optima. In other words, resource
allocation heuristics are brittle and not portable across different
hardware devices, as demonstrated in both academic studies [32]
and in commercial examples [24].

The increasing complexity of computing systems creates a need
for principled approaches to replace heuristics and motivates the
study of machine learning and artificial intelligence within re-
source management systems—especially those concerned with per-
formance and energy. Due to its merits in modeling complicated
tradeoffs and avoiding locally optimal resource configurations, ma-
chine learning is an attractive alternative to heuristic solutions. We
begin this section by finding commonalities in recent work apply-
ing ML/AI to computing systems optimization problems. We then
show an example of a system/application pair which is difficult

Generative and Multi-phase Learning for Computer Systems Optimization

to model and demonstrate how important it is for the learner to
capture the structure of the systems problem.

2.1 ML/AlI-based Systems Management

This section details many recent examples of learning approaches
for system management. The common thread for all examples is
that the learning system is just a part of the overall solution: the
learning components produce models which are used to augment
solutions to typical systems problems; e.g., resource allocation [14,
15, 17, 39, 42, 44, 45, 47, 49, 51-53, 61, 63, 64, 67], configuration
[1, 11, 19, 21, 25, 40, 41, 43, 50, 55-57, 60, 62, 66], scheduling [17,
18, 31, 54, 58, 59]. Several of these approaches are for offline system
design—e.g., determining the optimal number and type of cores in a
heterogeneous processor [55, 56]—but this paper focuses primarily
on building models appropriate for dynamic resource allocation in
a fixed processor design.

A common approach to integrating learning into systems man-
agement is to use low-level features (e.g., caches misses, instruction
per clock) to predict high-level behavior (e.g., throughput, power,
latency) [6, 12, 13, 21, 33, 40, 41, 46, 50, 52, 67]. For example, Koala
uses regression to transform such features of mobile phones into
predictions of application performance and power, which are used
to allocate resources to meet performance, energy, or power goals
[52]. Similarly, Dubach et al. use low-level features to train a model
of a configurable super-scalar that is then used to minimize energy
by adapting to application phases [21]. Finally, the Flicker architec-
ture has configurable lanes and uses learned models to configure
those lanes in a way that dynamically maximizes performance for
a given power budget [50].

An alternative approach learns models of high-level behavior
from observing similar applications [17, 18, 45, 47], hardware con-
figurations [58, 63], or both [19, 49]. For example, Paragon [17]
and its follow-up, Quasar [18], use the Netflix algorithm [4] to
determine efficient schedules for a new application from models
of similar applications [17]. The Performance Impact Estimation
(PIE) system uses an application’s performance on one core type
to predict the same application’s behavior on a different microar-
chitecture [58]. Finally, Carat models combinations of applications
and mobile devices to determine energy savings opportunities for
other combinations [49].

Whether using low- or high-level metrics, data scarcity can be
a challenge to deploying learning methods in computer systems.
Generative methods represent a class of learning techniques that
produce new data to improve learning during the training phase [26,
35]. Some generative techniques have been proposed for learning
in systems; e.g., generating code to produce better learning systems
for optimized compilation [16]. The generative technique proposed
in this paper is a novel modification of Gaussian Mixture Models,
which is designed specifically for amplifying rare behavior within
our training sample.

In all examples, the learning approach is just part of the overall
solution. The methodologies in these approaches can be divided
into two stages: (1) learn a model optimizing for accuracy, then (2)
use that model to solve a systems problem. While all approaches are
primarily concerned with solving a systems problem, the general

41

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

True Tradeoffs —e—True Optimal -O ModelA X Model B

Normalized Power
© o © o o o o o
- N w B v (<)) ~N o
*

\

x\)

*®

*®

o

0.4 0.6
Normalized Performance

0.8 1

Figure 1: Learning performance/power tradeoffs for SRAD on an
ARM big.LITTLE system. The dots show the true tradeoffs. The
solid line shows the true optimal frontier. Model A is a learner that
is accurate except for the optimal frontier. Model B captures the op-
timal frontier and gets all other tradeoffs wrong.

approach appears to be training a learning model to maximize accu-
racy, then using the learned model to solve a systems problem. The
primary contribution of this paper is to show that (1) techniques
that improve accuracy (even by quite a lot) do not necessarily pro-
duce better solutions to constrained optimization problems arising
in computing systems and (2) making the learner aware of the
system optimization problem’s structure produces better results,
even if it does not produce the best accuracy. Thus, we advocate
not training a model for maximum accuracy, but using feedback to
improve the ultimate metric of interest—possibly producing less ac-
curate predictions, but better overall systems solutions.

2.2 Motivational Example

We demonstrate how high learning accuracy does not guarantee a
good systems outcome. We run a real application on a real system
and construct two hypothetical learned models. We then use those
models in an open-source scheduler ([32]) to meet latency con-
straints with minimal energy. Both models predict the application’s
true power and performance tradeoffs as a function of the system
configuration. In this example and the rest of the paper, a configura-
tion is an allocation of specific hardware resources to an application.
The specific resources and allowable settings will vary for different
hardware platforms, but they can include things like how many
physical cores are available, the clockspeed of those cores, whether
hyperthreading is enabled or not, etc. Model A perfectly predicts
every point except those on the frontier of optimal tradeoffs. Those
true optimal tradeoffs are predicted to be just far enough away from
their true values to be viewed as non-optimal. The second model
perfectly predicts the frontier of optimal tradeoffs, but predicts all
other points as having minimal performance and maximum power.
The first model gets near perfect accuracy, but high energy; the
second model has poor accuracy and optimal energy.

Specifically, we consider the SRAD application (from Rodinia
[10]) running on an ARM big.LITTLE system with four LITTLE
cores (with 13 clockspeeds) and four big cores (with 19 clockspeeds).

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

This application is interesting for several reasons. First, it performs
well with four cores, but does not scale down. Thus, it is hard to
predict performance on four cores from two core samples. Second,
SRAD gets high energy efficiency using four LITTLE cores at max-
imum speed, but when using four big cores at maximum speed
thermal throttling drops performance dramatically. Thus, the rela-
tionship between clockspeed and performance on LITTLE cores is
not a good predictor of that relationship on big cores.

Figure 1 shows the normalized performance (x-axis) and power
(y-axis) tradeoffs. Each point is a configuration (combination of
core allocation and clockspeed) and its position represents its per-
formance and power tradeoffs. The dots show all possible config-
urations, while the solid line shows the frontier of true optimal
tradeoffs (found through exhaustive search). This figure illustrates
a key intuition behind the insights presented in this paper: for any
one application most points do not represent optimal tradeoffs. In this
example, only 10 of 128 configurations are on the optimal frontier.

We now construct our first example learner: Model A, which
uses the true, measured data for the non-optimal points and then
deliberately moves the optimal points just far enough that they will
not be selected by the scheduler. We measure Model A’s accuracy
using goodness-of-fit (see Section 6.5) and find it is 99% accurate.
We measure energy by feeding this model to a scheduler (from [32])
and having it select combinations of configurations to meet latency
requirements and minimize energy. We vary latency requirements
across the range of possible behaviors and ensure they are met at
least 99% of the time. We then measure the energy and compare
to optimal—i.e., that obtained with a perfect model. We find that
Model A uses 22% more energy than optimal.

Model B uses the true data for the optimal configurations, all oth-
ers are assigned minimal performance and maximum power. Model
B’s goodness-of-fit is essentially 0—not surprising, as most points
are inaccurately predicted. All the optimal points are predicted with
no error, however, so the energy is the same as optimal.

This example illustrates the most important intuition behind the
remainder of the paper. First, high accuracy does not necessarily
imply a good systems result. Second, low accuracy does not neces-
sarily mean a bad systems result. These observations demonstrate
the problem of asymmetric benefits: the system disproportionately
benefits from improving accuracy of the small set of configurations
on the optimal frontier.

3 LEARNING BY EXAMPLE

This paper builds off prior systems work that learns by example
[17, 18,47, 49, 58]. The Paragon project applies this idea to resource
management in cloud computing [17]. Paragon takes inspiration
from recommender systems, specifically the solution to the Netflix
challenge [4]. The Netflix approach learns movie recommendations
by finding people with similar taste and using those similarities to
predict how people would respond to new movies—i.e., it recom-
mends movies based on scores for common movies. More formally,
the problem is structured as a matrix (shown in Figure 2a) where
each row represents a movie, each column is a person and the entry
at a particular row and column is the person’s numerical rating for
that movie. Many entries are missing, and the learner’s job is to es-
timate them. The intuition is that if two people have similar ratings

42

Yi Ding, Nikita Mishra, and Henry Hoffmann

Known Applications

w Application

Movies
Computer System Configurations

(a) Movie Recommendations

(b) Computer Systems

Figure 2: Matrix Formulation of Learning by Example. Shaded re-
gions represent known data, while blank entries represent missing
data. In the movie recommendations system, the rows are movies
and the columns are users. Each entry represents a user’s score
for a given movie; many entries will be empty and the learner’s
goal is to use known scores to fill in the missing entries. In the
computer systems example, the rows are resource configurations
and the columns are applications. Each entry represents an appli-
cation’s performance (or power) for a given resource assignment.
In this case, most entries are known from running common bench-
marks. When a new application arrives, the learner’s goal is to sam-
ple the new application in a small number of configurations and fill
in the missing entries. In that way, the learner uses the known appli-
cations’ responses to resources to predict the new application’s re-
sponse to the same resources. In this problem formulation, learning
techniques that work well for recommender systems can be easily
adapted to computer system resource management.

for some common movies, they will likely have similar ratings for
movies that one person has not seen.

Paragon shows that this structure can be applied to computer
systems where we have a configurable computer system and many
benchmark applications [17]. Given some new, unseen application,
we want to sample a small number of configurations and estimate
the behavior in all others. Having done so, we can use those esti-
mates to perform configuration, scheduling or resource allocation
optimally. As shown in Figure 2b now each row is a system configu-
ration (e.g., an assignment of cores and clockspeed to an application)
and each column is an application. In this case, we may have com-
plete information about some set of benchmarks, but incomplete
information about the new application that we can only sample in
a small number of configurations.

The main benefit of this approach is generality. The configura-
tions can be quite broad, including assignment of resources to an
application in a server [47] or mobile system [45], assignment of a
request to a node in a heterogeneous data center [17], or a combi-
nation of resource assignment and application co-scheduling in the
data center [18]. These techniques can be applied to a broad range
of computer systems without deep knowledge of the underlying
architecture, but simply listing what configurations are available.

Two downsides of this approach are mentioned in the introduc-
tion: scarce data and asymmetric benefits. The effort needed to
fill in the known data is much larger for computer systems than
it is for making movie recommendations, meaning computer sys-
tems must work with scarce data. Also, for recommender systems
all data points are equally useful—there is no reason to favor one

Generative and Multi-phase Learning for Computer Systems Optimization

Divide Known Data CleaeMMs - Swap Common. Concatenate

Behavior

Behavior

Figure 3: Workflow of proposed generative model.

movie over another. In computer systems, however, typically only
a handful of configurations are actually useful, and Figure 1 is a
concrete example of this asymmetric response. The vast majority
of configurations do not fall on the frontier of optimal tradeoffs
and their estimations can be highly inaccurate without affecting
the optimality of the computer system.

In Section 4 we present a technique to generate representative
data and deal with the challenge of scarce data. Section 5 shows
how to divide a sample budget to bias the learner towards those
configurations that are most important for the system problem to
be ultimately solved.

4 GENERATING DATA FOR ACCURACY

We describe a general way to improve the accuracy of learning
by example for computing systems (as formulated in the previous
section). Specifically, we use the statistical properties of the known
data to generate new “known” data. While generating data is easy
(e.g., it could be trivially done with a random number generator),
the challenge is to generate data that is both different from the
known applications and yet still realistic. The generated data must
be different to increase the learner’s accuracy when it encounters
an application with new behavior. The generated data must be
realistic to ensure it captures some plausible behavior that might
be exhibited by an unseen application.

To generate different, yet plausible behavior, we propose the
use of a Gaussian Mixture Model (GMM) as part of the workflow
illustrated in Figure 3. We first divide the data set into disjoint
chunks. We then use Gaussian mixture models (GMMs) to capture
the density of different behaviors in those chunks. A GMM is a
weighted sum of Gaussians. A standard GMM would capture the
data in our known data set. To generate new data, we swap the
highest and lowest weights. This swap amplifies behavior that was
present, but rare, in our original data set, while damping the impact
of common behavior. The intuition is that this swap should meet the
challenge of generating different, but plausible data by amplifying
the importance of existent, but rare behavior. We then use this
modified GMM to generate new data, represented as extra columns
in the matrix formulation of Figure 2b. This larger matrix is trivially
compatible with existing matrix completion algorithms.

We give a brief overview of GMMs (which can be skipped for
familiar readers). We then provide more detail on how to use a
GMM to generate realistic, but diverse data.

4.1 GMM Overview

When analyzing a data set, a common assumption is that each
observation comes from a Gaussian distribution, but assuming a
single distribution is restrictive and may not make intuitive sense.
Alternatively, we can model each observation as being drawn from

43

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

afinite set—or mixture—of models. For example, consider the height
of an adult. Since men are typically taller than women, we capture
height as a mixture of two components. If we randomly choose
an adult, there is a 50% chance of choosing a man or woman, and
these proportions are called mixture proportions/weights. In this
example, the model is a weighted combination of two Gaussian
distributions—hence, the name Gaussian mixture model (GMM).

In a GMM, each observation is generated by first choosing one
of the Gaussians, and then sampling from it. Given N data points
x; €RP,i=1,...,N,a GMM assumes K components, where the
proportion (or weight) of the k-th component is wy.. Notice that
the proportions/weights represent the probability that x; belongs
to the k-th component. Thus:

K
pxi) = Y wig(xilpe, k) (1)

k=1

where x; is the observation, wy. is the mixture weight, and g(x; |y, Zx)
is the component Gaussian. Each component Gaussian is a D-variate
Gaussian function of the form

(xi —) =7 (i =))

N =

9Xilpg, 2) = ——F—— exp (-
(2m) 7 |22
where the mixture weights are non-negative and sum to one.

The GMM is parameterized by mean py, co-variance X and
mixture weights wy. from all components, which cannot be written
in closed form. Therefore, the Expectation Maximization algorithm
is used to find these values [28].

4.2 Generating Data with a GMM

We now address the scarce data challenge with a generative model
based on a GMM. Given a data matrix where rows are configurations
and columns are applications, we take the following steps.
Divide. The data matrix is split into smaller chunks according to
their configurations. The data within each chunk should have simi-
lar distribution. For example, the rows with same number of cores
can belong to the same chunk. The chunk size can be determined by
any clustering algorithm such as k-means [2] or BSCAN [22]. Given
the known configuration distribution, we use k-means clustering
since it allows us to determine k—i.e., the number of chunks—by
incorporating this prior knowledge.

Learn. For each chunk, fit a GMM to obtain each mixture compo-
nent. The number of components is decided by cross validation: the
data matrix is split into training and validation sets, and different
numbers of components are selected to find the best based on the
corresponding training and validation likelihood values.

Swap. For each chunk, find the components with minimum and
maximum proportions (weights) and swap those extreme values to
create a new GMM. This step is crucial since it aims to increase data
variations. Intuitively, a component with maximal proportion has
actually been reflected substantially from the original data, whereas
a component with minimum proportion represents rare behavior.
As such, the data generated from this new GMM should amplify
the data that have little influence in the original data.

Generate. For each chunk, generate new data based on the GMM
with with new mixture proportions from the above step.

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Matrix Completion with N/2
original samples and N/2
estimated best configs
Known Applications

Estimated
Behavior for New
Application

Select N/2
Best Configs

Matrix Completion with
Sample Size N/2

Known Applications

w Application

Computer System Configurations

Computer System Configurations

Figure 4: Workflow of proposed multi-phase sampling scheme.

Concatenate. Append the new data chunks with the original data
to complete the process.

4.3 Discussion and Limitations

We propose a novel modification of existing GMM methods that
amplifies rare behavior in our training set. We do not use the GMM
to make predictions itself, however, because GMMs are not good
tools for predicting unseen behavior. Rather, their value is in char-
acterizing existing data and especially for finding sub-populations
within a larger population. Our novelty is using this method to find
rare behavior and then changing the weights to amplify the rare
behavior, generating data that is realistic, but different from the
measured data. This process diversifies the training set (without
additional measurement) and improves learning accuracy.

There are limitations to this approach, of course. The proposed
method will make it more likely that the learners pick up on rare
behavior in the original data set. If the test data has behavior that is
non-existent in the training set, then this approach is not expected
to significantly improve accuracy. In future work, this approach
could perhaps be improved by generating completely new data that
is still realistic. One approach might be capturing existing behavior
and “phase shifting” it so that trends remain, but the peak behaviors
occur at different configurations that never exhibit peak behavior
in the original training set.

5 MULTI-PHASE SAMPLING

Figure 4 illustrates multi-phase sampling, which biases the learner
towards the most important points for the system optimization
problem that we ultimately care about. We assume the same setup
as the prior sections: there is a known body of applications for which
we have performance and power data in all configurations and the
goal is to observe a new application in a small number of configu-
rations and then predict the behavior in all other configurations.
Configurations are again an assignment of system resources—e.g.,
a specific allocation of cores, core types, and clockspeeds—to an
application.

In the first phase, given a sampling budget N and a new, unknown
application, we take N/2 samples. Each learning algorithm can have
its own sampling strategy for this phase and we use the sampling
strategies established in the literature for each learner studied.
After obtaining the sampled configurations, we run each learner to
get an initial estimation of performance and power for the target
application. With these estimations, we compute the estimated
energy efficiency for each configuration as:

estimated performance

@

efficiency =
Y estimated power

44

Yi Ding, Nikita Mishra, and Henry Hoffmann

1: Input: Known and unknown applications, sampling budget N.

2. while True do
3 Phase-1:

e Sample half of the budget N/2 configurations.

e Run learner to get an initial estimation.

e Rank configurations by estimated energy efficiency.
4 Phase-2:

e Sample the N/2 most energy efficient configs.

e Run learner again to obtain the final estimation.
s: end while
6: Output: Estimation of performance and power.

Algorithm 1: Multi-phase sampling approach.

Then, we rank the unseen application’s configurations in terms of
their energy efficiency.

In the second phase, we collect additional N/2 samples from the
most energy efficient configurations. We then use all N samples to
run the learner again to obtain the final performance and power
estimates for all configurations for the new application.

The intuition behind this approach is that the N/2 configurations
sampled in Phase 2 will be biased towards the optimal frontier
of performance/power tradeoffs. Thus, Phase 2’s learning should
favor these points (where the sampling concentrated) compared to
traditional approaches.

More formally, meeting latency constraints with minimal energy
can be written as a linear optimization problem where the decision
variables are the amount of time to spend in any configuration
[37]. Furthermore, the optimal solution to this problem will only
consider configurations that appear on the optimal frontier of the
performance/power tradeoff space (as illustrated in Figure 1). Thus,
the first phase of the proposed approach is designed to create an
initial estimate of the optimal frontier and, therefore, an estimate of
the small number of states that may be used in an optimal solution.
We rank configurations by energy efficiency because we do not
know the true optimal frontier, but we do know that the points
on the frontier must be the most energy efficient. This two-phase
approach we evaluate here could be extended to have arbitrarily
many stages, at a cost of additional overhead for each stage. It is
also possible to extend the initial phases to use metrics other than
energy efficiency. For example, it may produce better results if we
used a metric that balanced energy efficiency with an attempt to
spread the sampled configurations out across the range of possible
performance. We leave these explorations for future work.

6 EXPERIMENTAL SETUP

Our goal is to show: (1) the generative model improves learning
accuracy while (2) multi-phase sampling improves energy. Further-
more, we want to demonstrate that these two results generalize to
multiple systems, applications, and learners.

6.1 Systems

Our mobile device is an ODROID-XU3 with a Samsung Exynos 5
Octa processor, based on an ARM big LITTLE architecture, running
Ubuntu 14.04. The 4 big cores support 19 clockspeeds, the 4 LITTLE

Generative and Multi-phase Learning for Computer Systems Optimization

ones have 13. Thus the mobile configurations are combinations of
cores, core types, and clockspeed for the cores.

The server is a dual-socket Linux 3.2.0 system with two Intel
Xeon E5-2690 processors, supporting hyperthreads and TurboBoost.
Each socket has 8 cores/16 hyperthreads and a 20 MB last-level
cache. Because the server system is dual socket, it also has two
memory controllers. Therefore, configurations on this system rep-
resent a combination of the number of sockets, the cores per socket,
whether hyperthreads are used, the clockspeed for each socket, and
the number of memory controllers. We allow the learners to use
TurboBoost, but it is seen—through the cpufrequtils package—as
just the highest clockspeed available.

Through their presentation of different resources and different
resource types, these two systems stress the learners’ abilities to
handle a wide variety of configurations. We only consider systems
configurations and not application-level ones. In other words, the
configurations are assignments of available system resources to an
application. For example, on the mobile system a configuration is
an assignment of big or LITTLE cores, plus the clockspeed of those
cores. On the server system a configuration is a number of sockets,
memory controllers, cores per socket, hyperthreads (on or off), and
clockspeed.

6.2 Applications

We test a variety of applications on both the mobile and server
systems using benchmarks drawn from Parsec [5], Rodinia [10],
ParMiBench [34], and MineBench [48]. Parsec and Rodinia contain
a number of general purpose workloads. ParMiBench contains
multithreaded versions of the embedded MiBench benchmarks [29],
and represent workloads common to mobile computing. MineBench
contains ML and data mining workloads that represent analytics
problems for server systems. All applications are multi-threaded.
We use four threads on the mobile and thirty-two threads on the
server system. We choose four threads for mobile because the big
and LITTLE clusters on our platform each have four cores and
the use of four threads stresses the learners’ abilities to determine
when to migrate between clusters. We strike a balance between
achieving some overlap of the application sets on each processor
type and stressing the different use cases for each. The primary
limiting factor on application testing is establishing ground truth
to evaluate the learners, which is done by running each application
in all possible configurations for all inputs. For many applications
it takes days to establish ground truth on mobile (and never less
than hours).

On mobile we use a variety of typical mobile and embedded
workloads including video encoding (x264), route planning bf's, and
encryption sha. We also use some more computationally intensive
tasks which are not typically run on mobile systems today, but
stress the learning algorithms and demonstrate workloads that
will likely be pushed to mobile (or the edge) in the near future.
These include advanced signal processing (lud), image processing
(srad), video analytics (bodytrack), machine learning (backprop
and kmeans) . The server system includes a number of exemplary
workloads like data analytics (apr, btree, kmeans, svmrfe,and
many others). We also include a search webserver (swish++) and
some scientific computing benchmarks (cfd, nn).

45

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

0.9
§§ 0.6
< L
e || ”” | | ”
|
\ a> U
9 &o‘? :‘;\?\g\:g &5\%‘%‘0 _@Q e’b(\ %\\) \\\ eﬁ»‘ ‘\qe
o \é S

Figure 5: Lack-of-fit for performance vs clock-speed on mobile.

7& Q‘OQ \0‘\\&\6” ‘@e 3@5 ‘&QOQ (\"\05 0}: & \5?’ 'zé((c\ \;‘\ xet (@ \5 4&"'1,@‘
- NSRS

\?,e%o

0.8
0.6
0.4
0.2

lack-of-fit
(1-R2)

o & ;;\@

Figure 6: Lack-of-fit for performance vs clock-speed on server.

In our experiments we consider only a single, multi-threaded ap-
plication at a time. Whether on mobile or server, our goal is to meet
an application latency target with minimal energy by configuring
system resources appropriately. Given the latency requirements,
we currently consider a single application at a time and leave multi-
programmed scheduling for future work.

6.3 Application and System Diversity

To demonstrate the diversity in workloads we compute a simple
linear regression for each application’s performance and clock-
speed on both systems. The intuition is that if an application scales
linearly with clockspeed, it is likely compute-intensive, while no
scaling would indicate memory intensity. We quantify this intuition
using lack-of-fit, which is simply 1 — R?, where R is the correlation
coefficient for this simple linear model. Low numbers mean the lin-
ear model fits well, indicating compute-intensive workloads. High
numbers indicate the opposite.

Figures 5 and 6 show the results for the applications on mobile
and server, respectively. The figures show a wide variety of behav-
ior from very compute-intensive to very memory-intensive, with
several examples falling in between these extremes.

In addition, we demonstrate the diversity of benchmarks and
the difference between machines by finding the true optimal per-
formance/power tradeoffs for all benchmarks (on average across
all inputs) on both systems. Figures 7 and 8 show the frequency
with which each configuration appears on the frontier of optimal
tradeoffs. We note that 63 (out of 128 total) configurations appear
on at least one mobile application’s optimal frontier, while 96 (out
of 1024) configurations appear on at least one server application’s
optimal frontier. The shape of these distributions is further evi-
dence of the different qualities of the architectures. Mobile has two
clusters of configurations that appear on the optimal frontier while
the server has a more uniform distribution.

We further demonstrate the difficulty of the learning problem by
measuring the number of configurations that appear on the optimal
frontier for each application on each system. Figure 9 shows this
data for the mobile while Figure 10 shows the data for the server.
The largest number of configurations for any application on mobile

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

15
10

Applications
w

0 20 40 60

Configurations

80 100 120

Figure 7: Distribution of optimal configurations for mobile.

15
10

Applications

5

0 200 400 600 800 1,000

Configurations

Figure 8: Distribution of optimal configurations for server.
15

10
L Ll
\ 3

\4&‘& ‘o&s&&‘f 5;@‘\&\" A\ rﬁ%@“ﬁ 6%{\% P \\,b Q& &,& 5‘7’ ?’g\ c\é.sx\\‘e

(S

Configurations

Figure 9: Optimal configuration count for mobile applications.

15

5
|. el ||||I|

%R 05\& N xe‘ \@ CQ‘@\ »@‘ RN
& Q

Configurations

;‘ \‘;(\A\QC)'L@

Q QQ’ ;\@

C

%QQ@Q £ ‘iq& <& c“b
IR

o

Figure 10: Optimal configuration count for server applications.

is 16, 15 for the server. This data indicates that while a large number
of configurations appear on some optimal frontier, for any one
application just a fraction of this total are relevant.

In summary, this data shows that these two systems will stress
the learning algorithms’ generality. The applications exhibit a wide
range of behaviors, the two systems have different behavior, and of
the large number of possible configurations, only a small number
appear on any one application’s optimal frontier.

6.4 Learning Models Studied

We evaluate our proposed framework on five following learning
models, where the first four are matrix completion based algorithms,
and the last one is a Bayesian approach:

(1) MCGD: an approximate matrix completion algorithm solved via
gradient descent [36].

(2) MCMF: a matrix completion algorithm solved by factorizing the
matrix into bi-linear form [38].

(3) Nuclear: an exact matrix completion algorithm by minimizing
the matrix’s nuclear norm [7, 8]. This technique has been demon-
strated to provide good systems outcomes in scheduling for data
centers [17, 18].

(4) WNNM: an exact matrix completion algorithm by minimizing
the matrix’s weighted nuclear norm [27].

46

Yi Ding, Nikita Mishra, and Henry Hoffmann

(5) HBM: a hierarchical Bayesian model for recovering optimal per-
formance/power tradeoffs [47].
To the best of our knowledge, this is the first comprehensive eval-

uation of matrix completion algorithms for systems.

For each learner, we evaluate four variations:

(1) Vanilla: the vanilla framework that only uses the basic learners
to estimate the missing entries for speed/power.

(2) GM: uses the generative model to augment the data matrix and
then apply the learners to perform estimation.

(3) MP: use multi-phase sampling framework to perform estimation.

(4) MP-GM: use generative model to augment the data matrix and
then apply the multi-phase sampling framework to perform esti-
mation.

6.5 Evaluation Metrics

For each application, we evaluate prediction accuracy by using
adjusted R? [20], which measures the goodness-of-fit between the
ground-truth y and estimated value y:

lly - 311>)
lly = 5112 /"
where n is the number of configurations (length of vector y) and y
is the mean vector of y.

We evaluate energy savings by running every application in
every resource configuration. To compare across applications, we
normalize energy:

R? = max (0,1 - (3

€
(measured 1)’ (4)
€optimal

Normalized energy = 100% *

where epeasured is measured energy and egpiimal is the optimal
energy. This metric shows the percentage of energy over optimal
by subtracting 1.

6.6 Evaluation Methodology

We collect the true performance and power for all applications in all
configurations for both the mobile and server systems. All accuracy
and energy evaluations are all done with respect to this data, which
is collected through exhaustive measurement. When evaluating the
accuracy and energy savings, we use leave-one-out cross validation.
To test application i, we form a set of all other applications excluding
i, so all other applications form the full columns of the data matrix
from Figure 2b. We then sample i in several configurations to form
the partial, last column from Figure 2b.

We then use the algorithms mentioned above with combinations
of our proposed techniques to estimate each application’s behavior
in unsampled configurations. These estimations are passed to an
open-source resource allocator, which assigns resources to meet
goals [32]. For each application we vary the performance goal to
require from 10-95% utilization to meet the goal in the worst case.
For this work, we assume we know the worst case timing for any
input and application if processed with all available resources. Thus,
we are assured (and we manually verify) that the scheduler will
meet the performance requirements and we focus on the energy
savings. This methodology prevents a learner from “cheating” by
passing the scheduler a model that reduces energy by delivering
low performance.

Generative and Multi-phase Learning for Computer Systems Optimization

BE vanila BB om BB mp BB mP-om

100.0
E 2 900
< g
£ 2
80.0
100.0
. TN ("
£g %00 A ent| BR i B
H H H i H
< %8 Z8 74 H 7t
80.0 A 7ui % 7 él

MCGD
Figure 11: Performance and power accuracy on mobile (higher is
better).

MCMF Nuclear WNNM HBM

BB vania BB om BB mp BB mP-om

100.0 ’E -
gg 800 %5 i EH
£ g 600 H H H
£ 5 400 H 7= '
5 H B
s A g 4 eI 7

0.0

100.0
zm -
s 800 : 7 7 A %
« & oo 7% 7 78 7 %
El - 'H v H i 'H
- 40.0 'H 7 7 ’Il 7=
& 0 74 7 H H 73
X u n] u
00 %2 I/ =7 =7 S LI =7

MCGD MCMF WNNM
Figure 12: Performance and power accuracy on server (higher is
better).

Nuclear HBM

7 EVALUATION

We start this section with some high-level summary results. We then
present detailed results for learning accuracy and energy. We then
perform a sensitivity analysis to show how the learners behave as a
function of their sampling budget. We finally evaluate the overhead
of all techniques.

7.1 Summary Results

7.1.1 Accuracy. We show the estimation accuracy for performance
and power on both mobile and server in Figure 11 and Figure 12.
The x-axes show the learner, while the y-axes show the average
accuracy across all applications. There is a bar for each variation
of: Vanilla, GM, MP, and MP-GM.

The results for the vanilla Nuclear and HBM learners are basi-
cally equivalent to published work using those same learners in
similar scenarios [45, 47], which gives us confidence that our im-
provements are representative. Indeed, we see that the GM method
greatly improves accuracy for all learners on mobile. On server,
GM improves accuracy for MCMF from, effectively, zero to some-
thing non-zero. multi-phase sampling does not, in general improve
accuracy. Somewhat counter-intuitively, the combination of GM
and multi-phase sampling also does not improve accuracy. Table 1
shows the average improvement in percentage points for each
technique. From this table it is clear that GM has a large effect on
accuracy—more than 8 percentage points on average—while the
other techniques have little effect.

Weighted Nuclear Norm Minimization is the best vanilla learner,
but—to our knowledge—this technique has not been applied to

47

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 1: Average percentage points of accuracy improvement.

GM MP MP-GM
. Performance 1.8 1.4 2.3
Mobile b ver 43 0.6 3.4
Server Performance 9.0 -0.2 -0.3
Power 20.5 -0.4 0.1
Average 8.9 0.4 1.4

BE vanita BB om BB mp BB mp-om

Energy Above
Optimal (%)

MCGD MCMF Nuclear WNNM HBM

Figure 13: Energy compared to optimal on mobile (lower is better).
BB vanila B8 om BE mp 08 mp-om

30.0

20.0

10.0

Energy Above
Optimal (%)

MCGD

MCMF Nuclear WNNM HBM

Figure 14: Energy compared to optimal on server (lower is better).

computer systems optimization before. However, the proposed GM
method improves even this best-of-class technique. In addition, the
GM method brings other techniques, which have been applied to
systems (Nuclear [17, 18] and HBM [47]) to the similar levels of
accuracy. We conclude that GM can have a dramatic effect on the
accuracy of performance and power predictions.

7.1.2 Energy. Figures 13 and 14 show the average energy over
optimal (y-axis) for each technique (x-axis) on the mobile and server.

These figures show two key points: (1) despite the GM method’s
much higher accuracy, it often has a higher energy than the vanilla
learner and (2) even though it is generally lower in accuracy, the
multi-phase method has lower energy than the vanilla methods.
These trends are starkly visible in Table 2, which shows the im-
provement in energy compared to the vanilla learners. This table
compares the energy of the augmented method (GM, MP, MP-GM)
to the energy of the vanilla method and shows how much closer
the augmented method is to idle. The results are expressed as a
percentage so that we can compare the effects of poor learners to
good ones. Negative numbers show that the energy is worse using
the method than just using the plain learner. The table shows that
the multi-phase sampling method gets much closer to optimal than
GM or even the combination of GM and MP. In fact, on average,
the GM method has a substantial negative effect on energy.

Table 2: Average energy improvement. (Higher is better).

GM MP MP-GM
Mobile -14% 41% 22%
Server —22% 11% —6.5%

7.2 Detailed Accuracy Results

We find that power is, generally, much easier to predict than perfor-
mance. Therefore we present only performance accuracy detailed

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Yi Ding, Nikita Mishra, and Henry Hoffmann

BE vania B8 om BB mp BB mMP-om
g 100 i] m -] [] - Ml]]
2 = n] i L] n] I]] [0 (1] "
gz 75 u i H i Hi u i H H H H H il H H
% E n] n] n 1]] n]]] n n] "
g n n n n] n u] n] n n]] n n]]
< 5 it 1 L 1 z 1 [£ 1 ! 1 [[H 5 i H H H
= 100 = M] n] u m " M _ - o _ M N
w o n n] n] n Ll] n] n n]] n I]]
= u>‘ n n] n] n 1]] n n]] n n | n] "
g 75 it Hi H i H i Hi H H i H H H H il H i H H
E = n n] n] n n]] n n]] n n] n] "
g n n n n] n Ll] n] n n] "] n n] n]]
2 5 it L £ 1 z] [£ 1 H 1 [[ii £ 1 [H i H H
< 100
8
B
L
< 50
= 100 }
s = I
24 75 1
£ ¢ |
< 50 i
g\; 100 n] n n]] L] |]
-z § i H i i - W H i i H 5 A u H .
= 5)] n] n 1 u n] n 'l]] n n L] "
-] 75 n n] n] n u] n] n n] m] n n -]]
T E i i H it H i Hi H H iH H H i H H il H u H H
- H BH DHI B EHY | EHY BHD U OPH DR PR BVHT O EPHY EH N B B PHY B
S) X X N * o) & S N S N < > S CR
Q\LQ‘OQ S c\(\o\e &@% &5\6\ @‘a Sl o\cRo .\?,d’ 6‘@(\ e%‘\s(\ b@d‘ \‘.od W R S 5“6?50 6\‘& (\,Z;o“
o ¥ & © 2 «® N & « \(& ’Lbb‘ - . > -
¥ ¥
Figure 15: Comparison of performance accuracy per application for mobile system (higher is better).
BE vanita B8 om HA mp BB MP-om
= 1
£ 00 H m H A if = A m N - A
a 3\. n n = u n I - [n] n n [} N n " M
gzs 75 il it H H i i i H H i H H il H H i H il ;
% S ul i] ul n u 1w] [1]] u 1] u u n n = 1] n
n n] u n If n] n n] [} n L]] n n] n n
< 5 1 it = [i] it I [i 0 ' it [£ i H H [‘
< 100
g 7 I
< 50
= 100
5 5 ; :
R RRE i - i Hi o o 2
zZ g H H H H H - H Hi H H i . m - H
2 5 1 i = [1 [i = [l i1 ! £ i1 H ii A [H
5 100 v I
27 5 : ;
Z : i :
i i |
= 100
=
< 50
X > e 3 > N 53 S| < I3 O S
P IR RN & & PRV R RN RPN o X \@ NN SO)
W&Q &° o&“ A & w* (\c\é\ ML &Q&\ s v
S ‘\\\)\ Qq;‘ é&‘e’b S

Figure 16: Comparison of performance accuracy per application for server system (higher is better).

results to save space. Figures 15 and 16 show the performance es-
timation accuracy for all 5 learning algorithms on the mobile and
server system, respectively. The x-axis shows each benchmark and
the y-axis shows the accuracy. Each benchmark has four bars, one
for each of Vanilla, GM, MP, and MP-GM.

These figures show the prediction accuracy is over 80% for all
learners on mobile, with a wider range on server. In particular,
MCMF and Nuclear have lower prediction accuracy than the other
learners for both performance and power on the server. This finding
is consistent with the characterizations in Figures 9 and 10 where
the mobile data is clustered, but the server data is evenly distributed.

48

7.3 Detailed Energy Results

As can be seen in the accuracy results, some applications are much
easier to predict than others. To save space we show just the energy
savings for the hardest to estimate applications, which we define as
those that have lack-of-fit greater than 0.5 for mobile and greater
than 0.6 for server. Figures 17 and 18 show these energy results.

These results not only provide detail showing the energy be-
havior for the toughest applications, they also demonstrate that
multi-phase sampling is robust to these difficult applications. While
the energy for the worst applications is, not surprisingly, higher
than the average energy, multi-phase sampling still saves consid-
erable energy. For example, the average energy over optimal for
HBM-MP on mobile is 3.7%, while the average energy for these
hardest applications is 4.3%.

Generative and Multi-phase Learning for Computer Systems Optimization

vanila B8 cm BB mp BB mp-cm

80
40

MCGD

Nuclear
Above optimal (%) Above optimal (%) Above optimal (%) Above optimal (%) Above optimal (%)

80
40

MCMF

60
30

40
20

WNNM

40

HBM

/
20 7
5
/

s N @& & WO D
Rig @&a‘ & &&(\e \ @5 B

Figure 17: Energy savings per application for mobile system (lower
is better).

BB vanila B8 om BB mp BE mMP-oMm

MCMF MCGD

Nuclear

WNNM

HBM

Above optimal (%) Above optimal (%) Above optimal (%) Above optimal (%) Above optimal (%)

Figure 18: Energy savings per application for server system (lower
is better).

7.4 Accuracy and Energy for Best Learners

As mentioned above, MCGD and MCMF are clearly weaker learners
than the other three. These results are not terribly surprising as
Nuclear [17, 18] and HBM [45, 47] have both been used in prior
systems work, while WNNM only recently appeared in the ML
literature [27]. In this section we evaluate the accuracy and energy
results considering only these, best-in-class learners and omitting
MCGD and MCMF.

49

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

When removing MCGD and MCMF the numbers change, but
the broad conclusions are even stronger. Specifically, GM improves
performance/power accuracy by on mobile and server as shown
in Table 3. The energy savings for GM are worse when removing
MCGD and MCMF as shown in Table 4. MP’s accuracy is almost the
same, but the energy improvements are 30% and 12% on mobile and
server, respectively. The MP-GM results are not significantly differ-
ent in this scenario. Thus, when focusing on the most sophisticated
learners, the accuracy improvements are slightly smaller. MP’s en-
ergy improvements are smaller in magnitude, but relatively much
more significant. We believe these results support the conclusion
that improving state-of-the-art learners’ accuracy does not improve
systems outcomes—for the constrained optimization problems ex-
plored in this paper—but accounting for the problem structure (in
this case, by modifying the sampling procedure) does improve the
system outcome.

Table 3: Accuracy improvement for best learners.

GM MP MP-GCM
. Performance 2.4 1.2 1.7
Mobile b e 41 0.6 2.4
Server Performance 9.6 —0.6 -1.2
Power 3.4 -1.2 -0.7
Average 4.8 0.0 0.6

Table 4: Energy improvement for the best learners.

GM MP MP-GM
Mobile -45% 31% 0.0%
Server —31% 12% -8.3%

7.5

7.5.1 Sample-Complexity Results. One of the key parameters of
all learners is the number of samples it must measure to produce
accurate estimates. All of the above measurements were taken with
the mobile and server systems configured to sample 20 and 120
configurations, respectively. In Figure 19, we show the accuracy
(averaged over all benchmarks) for performance (power is omitted
for space) estimation as a function of sample size. Since our accuracy
measurement is adjusted R?, it is not surprising to see zeros in
MCGD and MCMF on server for small sample sizes. We also observe
that GM and MP-GM always perform better than Vanilla and MP
across different sample sizes, which justifies the ability of generative
models to improve accuracy.

Sensitivity to Sample Size

7.5.2 Energy Savings for Reduced Samples. We now explore energy
savings for reduced samples. While it is not feasible to measure
energy savings at every possible sample size, we reduce the sample
sizes by half and rerun all the above experiments. The results for
mobile are very similar to the results already presented: WNNM-
GM has highest accuracy, while HBM-MP has the lowest energy.

Table 5: Average energy improvement with reduced samples.

GM MP MP-GM
Average Case 17% 15% 2%
Worst Apps 15% 21% -8%

Table 5 shows the results for the server with half the sample size.
The table shows the energy improvement relative to vanilla for
each of our proposed techniques. There is one row for the average
case and another for the worst applications (again those that had
the worst energy for WNNM-Vanilla).

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

Yi Ding, Nikita Mishra, and Henry Hoffmann

—6— Vanilla GM MP —A— MP - GM
100 100 100 100
S —a e
275 = oz T . :
2328 9 3 5 9% / 2 90 Z 90
== = z = G
< A A [i: !
g — 80 80 80 50
0 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
100 100 100 100g—g—t—0—8—0 100
= H—0Q 5 P A==
5 >0 = 5 =
v
233 50 / g s0 g 50 £ 50 2 50
& 2= = z. = &
<
<
0 0
20 40 60 80 100 120 20 40 60 80 100 120

0 0 8—¢ 8—Q
20 40 60 80 100 120 20 40 60 80 100 120

0; S
20 40 60 80 100 120

Figure 19: Sensitivity analysis of performance accuracy for mobile and server systems. The x-axis is the sample size.

These results illustrate a complicated aspect of our study. The
sample complexity plots show that, while all learners have a point
of diminishing returns, they occur at different locations for dif-
ferent learners. In this section, we are investigating sample sizes
where some learners have sufficient samples and others do not.
At this point, for example, GM really improve MCGD’s energy be-
cause it was not at the point of diminishing returns. Other learners
are beyond that point though, and even in this case we see that
multi-phase sampling significantly improves energy on the hardest
apps. These results indicate that multi-phase sampling is robust to
reduced sample sizes.

7.6 Overhead

We collect the overhead for all combinations of systems, learners,
and proposed augmentations. These overheads are listed in Table 6
and Table 7 for the mobile and server, respectively. The tables show
the time amortized over all configurations. These results show that
the GM and multi-phase methods add some overhead compared to
the vanilla learning systems, but these results are not surprising
and we believe the overhead is tolerable for the benefits.

For example, the GM method is expensive because the EM algo-
rithm on which it relies is quite expensive. However, GM creates
new columns in the known data matrix. An alternative to approach
is to find a new application to add to the known data by exhaustively
characterizing it in all configurations. On the systems we study,
this exhaustive characterization takes hours up to a day, and there
is no guarantee that the new application will exhibit significantly
different behavior than the common case in the data set. Compared
this approach of manually adding data to the known applications,
GM is orders of magnitude faster and provides better statistical
guarantees that it will generate useful data.

Multi-phase sampling also adds overhead because it runs these
fairly computationally expensive learners twice, once in each phase.
One direction of future work is to look at further optimizations to
this approach. Perhaps different learning techniques can be com-
bined to greater effect. For example WNNM is the highest accuracy
and less expensive than HBM, so using multi-phase sampling with
WNNM in Phase 1 and HBM in Phase 2 might produce better accu-
racy and energy savings with lower overhead.

50

Table 6: Learner overhead for mobile system (in ms).

Vanilla. GM MP MP-GM
MCGD 1.1 1.9 2.3 2.9
MCMF 0.1 0.7 0.1 0.7
Nuclear 2.2 3.0 3.4 4.6
WNNM 1.2 2.7 2.3 3.8
HBM 2.5 3.8 4.8 6.1

Table 7: Learner overhead for server system (in ms).

Vanilla. GM MP MP-GM
MCGD 0.9 1.2 1.8 2.0
MCMF 0.1 0.2 0.3 0.2
Nuclear 0.7 0.8 1.0 1.1
WNNM 0.3 0.6 0.6 0.9
HBM 13.2 15.4 19.0 23.9

7.7 Discussion

So far, detailed results have been presented using predictive mod-
eling to assign system-level resources to applications such that
latency constraints are met with minimal energy. We have com-
pared existing approaches to this problem to the same approaches
augmented with generative and multi-phase enhancements. For
this specific resource management problem the results suggest that:
o There is a point of diminishing returns in applying learning.
The MCGD and MCMF methods are clearly worse (in ac-
curacy and performance) than the other three. However,
even the best vanilla learner (WNNM) shows little energy
improvement over the others in its class (Nuclear and HBM).
o The generative model improves accuracy:. It is significant that
we can generate data (which has no measurement cost and
is many orders of magnitude faster than exhaustively mea-
suring an application) and improve learning accuracy.
The multi-phase method improves energy. By biasing the learner
to the configurations (resource allocations) that are likely
to be most energy efficient, this approach improves energy
consumption, as long as the learning technique to which it
is being applied is accurate enough. For example, our initial
results show that this technique has significant accuracy
savings, but we find that the energy savings can diminish

for some learners with reduced sample size.
o Improving accuracy does not necessarily improve energy con-
sumption. Because of asymmetric response and diminishing

Generative and Multi-phase Learning for Computer Systems Optimization

returns, it is possible to greatly improve accuracy by improv-
ing estimations of the configurations that are not on the
optimal frontier of performance and power.

o The systems outcome can be improved without improving the
learner’s accuracy. Multi-phase sampling does not improve
overall accuracy, but has a significant effect on energy even
for the best in class learners.

We expect the same broad behavior for any learners whose out-
put is used to solve a constrained optimization problem in computer
systems. The nature of such problems means that, for any appli-
cation, only a small number of configurations will appear on the
polytope of possible optimal solutions.

The key insight from this study is that only the small subset of
optimal configurations matter for systems outcomes—improving
accuracy for the non-optimal configurations is not helpful, but
getting the optimal set correct is essential. For straight optimization
problems—without constraints; e.g., find the most energy efficient
configuration—the results might not hold. Similarly, if we could
build computing systems such that all configurations were on the
frontier of optimal tradeoffs for all applications then the results
might not hold, as the accuracy of each configuration’s predicted
behavior would directly affect the solution to the optimization
problem.

8 CONCLUSION

As machine learning and Al researchers continue to produce as-
tonishing results, it is natural to simply apply each new learning
techniques to computing systems and reap the benefit. This process
typically follows an approach of training a learner for maximum
accuracy and then deploying it to build a model that some computer
management system (e.g., scheduler, configuration management,
or resource allocation) can use to improve its system outcomes.

We argue that the above process has reached a point of dimin-
ishing returns. Our example from Section 2 shows a hypothetical
counter example where a very inaccurate learner produces better
systems results than an accurate learner. The key difference be-
tween those learners is that one learner is aware of the structure of
the systems problem (it is a constrained optimization problem in
the performance/power space) and is accurate only for the configu-
rations that affect that structure.

We have shown how to build learners that produce better systems
results by acquiring knowledge of the systems problem. In the multi-
phase learning we propose, the first phase finds the likely most
significant points for the systems problem, while the second phase
explicitly samples those points. This technique represents one way
to incorporate knowledge of the systems problem into training
the learner and it leads to empirically better outcomes, even for
state-of-the-art systems from the literature.

This work is just one example of how to incorporate more sys-
tems knowledge into training learners. While we have applied it to
the problem of meeting latency constraints with minimal energy,
we believe the ideas would translate to any system that has to bal-
ance multiple, competing constraints. We hope this work inspires
other systems researchers to consider techniques for incorporating
system knowledge into learning solutions.

51

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

Acknowledgments

We thank our anonymous shepherd for both patience and the de-
tailed feedback that greatly improved this final version of the paper.
We also thank the anonymous reviewers for their helpful feedback
and Erik Altman for patiently serving as the point of contact be-
tween us and our shepherd. This research is supported by NSF
(CCF-1439156, CNS-1526304, CCF-1823032, CNS-1764039). Addi-
tional support comes from the Proteus project under the DARPA
BRASS program and a DOE Early Career award.

REFERENCES

[1] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski, Una-
May O’Reilly, and Saman Amarasinghe. 2012. Siblingrivalry: online autotuning
through local competitions. In CASES.

[2] David Arthur and Sergei Vassilvitskii. 2007. K-means++: The Advantages of Care-
ful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’07). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1027-1035. http://dl.acm.org/citation.cfm?id=1283383.
1283494

[3] L.A Barroso and U. Holzle. 2007. The Case for Energy-Proportional Computing.
Computer 40, 12 (Dec 2007), 33-37. https://doi.org/10.1109/MC.2007.443

[4] R. M. Bell, Y. Koren, and C. Volinsky. 2008. The BellKor 2008 solution to the Netflix
Prize. Technical Report. ATandT Labs.

[5] C.Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In PACT.

[6] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. 2008. Coordinated man-
agement of multiple interacting resources in chip multiprocessors: A machine
learning approach. In MICRO.

[7] J. Cai, E. Candes, and Z. Shen. 2010. A Singular Value Thresholding Algorithm
for Matrix Completion. SIAM Journal on Optimization 20, 4 (2010), 1956-1982.
https://doi.org/10.1137/080738970

[8] Emmanuel J Candés and Benjamin Recht. 2009. Exact matrix completion via
convex optimization. Foundations of Computational mathematics 9, 6 (2009), 717.

[9] Aaron Carroll and Gernot Heiser. 2013. Mobile Multicores: Use Them or Waste

Them. In Proceedings of the Workshop on Power-Aware Computing and Systems

(HotPower '13). ACM, New York, NY, USA, Article 12, 5 pages. https://doi.org/10.

1145/2525526.2525850

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous

Computing. In IISWC.

Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh, Che-Min Lin, and Shih-Wei Liao.

2015. Machine Learning-Based Configuration Parameter Tuning on Hadoop

System. In BigData Congress.

Jian Chen and Lizy Kurian John. 2011. Predictive coordination of multiple on-chip

resources for chip multiprocessors. In ICS.

Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. 2011. Modeling Program

Resource Demand Using Inherent Program Characteristics. SIGMETRICS Perform.

Eval. Rev. 39, 1 (June 2011), 1-12.

Seungryul Choi and Donald Yeung. 2006. Learning-Based SMT Processor Re-

source Distribution via Hill-Climbing. In ISCA.

Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011. Pack &

Cap: adaptive DVFS and thread packing under power caps. In MICRO.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.

Synthesizing benchmarks for predictive modeling. In Proceedings of the 2017

International Symposium on Code Generation and Optimization, CGO 2017, Austin,

TX, USA, February 4-8, 2017. 86—99.

Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware Sched-

uling for Heterogeneous Datacenters. In ASPLOS.

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient

and QoS-aware Cluster Management. In ASPLOS.

Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry Hoffmann, and Fred Chong.

2017. Memory Cocktail Therapy: A General Learning-Based Framework to

Optimize Dynamic Tradeoffs in NVM. In MICRO.

N.R. Draper and H. Smith. 1998. Applied regression analysis. Number v. 1 in Wiley

series in probability and statistics: Texts and references section. Wiley.

Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P.

O’Boyle. 2010. A Predictive Model for Dynamic Microarchitectural Adaptiv-

ity Control. In MICRO.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A Density-

based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-

ering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining (KDD’96).

AAAI Press, 226-231. http://dl.acm.org/citation.cfm?id=3001460.3001507

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power pro-

visioning for a warehouse-sized computer. In Proceedings of the 34th annual

(17

[18

[19

[20]

[21

~
5,

(23]

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA

[24]

[25]

[26

[27

[28]

[29

[30

[31]

[32

[33]

[34

[35]

[36

[37

[38]

[39

[40]

N
o=y

[42]

[43]

international symposium on Computer architecture (ISCA *07). ACM, New York,
NY, USA, 13-23. https://doi.org/10.1145/1250662.1250665

Andrei Frumusanu. 2018. Improving the Exynos 9810 Galaxy S9: Part 2 - Catching
Up With the Snapdragon. AnandTech (April 2018). https://www.anandtech.com/
show/12620/improving-the-exynos-9810-galaxy-s9-part-2

Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. 2009. A
case for machine learning to optimize multicore performance. In First USENIX
Workshop on Hot Topics in Parallelism (HotPar$S09).

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672-2680.

Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang.
2017. Weighted Nuclear Norm Minimization and Its Applications to Low Level
Vision. Int. J. Comput. Vision 121, 2 (Jan. 2017), 183-208.

Maya R. Gupta and Yihua Chen. 2011. Theory and Use of the EM Algorithm.
Found. Trends Signal Process. 4, 3 (March 2011), 223-296.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
2001. MiBench: A Free, Commercially Representative Embedded Benchmark
Suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop (WWC °01). IEEE Computer Society, Washington, DC,
USA, 3-14. https://doi.org/10.1109/WWC.2001.15

Urs Hoelzle and Luiz Andre Barroso. 2009. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines (1st ed.). Morgan and
Claypool Publishers.

Henry Hoffmann. 2015. JouleGuard: energy guarantees for approximate applica-
tions. In SOSP.

Connor Imes, David H. K. Kim, Martina Maggio, and Henry Hoffmann. 2015.
POET: A Portable Approach to Minimizing Energy Under Soft Real-time Con-
straints. In RTAS.

E. Ipek, O. Mutly, J. F. MartSnez, and R. Caruana. 2008. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In ISCA.

Syed Muhammad Zeeshan Igbal, Yuchen Liang, and Hakan Grahn. 2010.
ParMiBench - An Open-Source Benchmark for Embedded Multiprocessor Sys-
tems. IEEE Comput. Archit. Lett. 9, 2 (July 2010).

Tony Jebara. 2003. Machine Learning: Discriminative and Generative (Kluwer
International Series in Engineering and Computer Science). Kluwer Academic
Publishers, Norwell, MA, USA.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. 2010. Matrix
completion from noisy entries. Journal of Machine Learning Research 11, Jul
(2010), 2057-2078.

David H. K. Kim, Connor Imes, and Henry Hoffmann. 2015. Racing and Pacing
to Idle: Theoretical and Empirical Analysis of Energy Optimization Heuristics.
In CPSNA.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (Aug. 2009), 30-37.
https://doi.org/10.1109/MC.2009.263

B.C. Lee, J. Collins, Hong Wang, and D. Brooks. 2008. CPR: Composable perfor-
mance regression for scalable multiprocessor models. In MICRO.

Benjamin C. Lee and David M. Brooks. 2006. Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction. In ASPLOS.
Benjamin C. Lee and David M. Brooks. 2010. Applied inference: Case studies in
microarchitectural design. TACO 7, 2 (2010), 8:1-8:37. https://doi.org/10.1145/
1839667.1839670

Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin Schulz, Karan
Singh, and Sally A. McKee. 2007. Methods of inference and learning for perfor-
mance modeling of parallel applications. In Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP 2007, San
Jose, California, USA, March 14-17, 2007. 249-258.

J. Li and J.F. Martinez. 2006. Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In HPCA.

[44] J. F. Martinez and E. Ipek. 2009. Dynamic Multicore Resource Management:

[45]

A Machine Learning Approach. IEEE Micro 29, 5 (Sept 2009), 8-17.
//doi.org/10.1109/MM.2009.77

Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. 2018.
CALOREE: Learning Control for Predictable Latency and Low Energy. In ASP-
LOS.

https:

52

[46

(47

(48]

[49

[50

[51

[52

[53

[54]

[55

o
2

[57

[58

[59

[61

(62

[63

[64

[65

=
2

[67

Yi Ding, Nikita Mishra, and Henry Hoffmann

Nikita Mishra, John D. Lafferty, and Henry Hoffmann. 2017. ESP: A Machine
Learning Approach to Predicting Application Interference. In 2017 IEEE Interna-
tional Conference on Autonomic Computing, ICAC 2017, Columbus, OH, USA, July
17-21, 2017. 125-134.

Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry Hoffmann. 2015. A
Probabilistic Graphical Model-based Approach for Minimizing Energy Under
Performance Constraints. In ASPLOS.

R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary. 2006.
MineBench: A Benchmark Suite for Data Mining Workloads. In IISWC.

Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma.

2013. Carat: Collaborative Energy Dia;jgnosis for Mobile Devices. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys °13).

ACM, New York, NY, USA, Article 10, 14 pages. https://doi.org/10.1145/2517351.
2517354

Paula Petrica, Adam M. Izraelevitz, David H. Albonesi, and Christine A. Shoe-
maker. 2013. Flicker: A Dynamically Adaptive Architecture for Power Limited
Multicore Systems. In ISCA.

Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. 2001. Reducing Power
Requirements of Instruction Scheduling Through Dynamic Allocation of Multiple
Datapath Resources. In MICRO.

David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. 2009.
Koala: A Platform for OS-level Power Management. In EuroSys.

Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. 2013. Holistic Run-time
Parallelism Management for Time and Energy Efficiency. In ICS.

G. Tesauro. 2007. Reinforcement Learning in Autonomic Computing: A Manifesto
and Case Studies. IEEE Internet Computing 11 (2007). Issue 1.

Erik Tomusk, Christophe Dubach, and Michael F. P. O’Boyle. 2016. Four Metrics
to Evaluate Heterogeneous Multicores. TACO 12, 4 (2016), 37:1-37:25. https:
//doi.org/10.1145/2829950

Erik Tomusk, Christophe Dubach, and Michael F. P. O’Boyle. 2016. Selecting
Heterogeneous Cores for Diversity. TACO 13, 4 (2016), 49:1-49:25. https:
//doi.org/10.1145/3014165

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In SIGMOD.

Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel
Emer. 2012. Scheduling Heterogeneous Multi-cores Through Performance Impact
Estimation (PIE). In Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA ’12). IEEE Computer Society, Washington, DC, USA,
213-224. http://dlacm.org/citation.cfm?id=2337159.2337184

Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker. 2010. Scal-
able thread scheduling and global power management for heterogeneous many-
core architectures. In PACT.

Weidan Wu and Benjamin C Lee. 2012. Inferred models for dynamic and
sparse hardware-software spaces. In Microarchitecture (MICRO), 2012 45th Annual
IEEE/ACM International Symposium on. IEEE, 413-424.

Joshua J. Yi, David]. Lilja, and Douglas M. Hawkins. 2003. A Statistically Rigorous
Approach for Improving Simulation Methodology. In HPCA.

Nezih Yigitbasi, Theodore L Willke, Guangdeng Liao, and Dick Epema. 2013.
Towards machine learning-based auto-tuning of mapreduce. In MASCOTS.
Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance Under a
Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques. In
ASPLOS.

Xiao Zhang, Rongrong Zhong, Sandhya Dwarkadas, and Kai Shen. 2012. A
Flexible Framework for Throttling-Enabled Multicore Management (TEMM). In
ICPP.

Yangi Zhou, Henry Hoffmann, and David Wentzlaff. 2016. CASH: Supporting
TaaS Customers with a Sub-core Configurable Architecture. In ISCA.

Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In SoCC.

Yuhao Zhu and Vijay Janapa Reddi. 2013. High-performance and energy-efficient
mobile web browsing on big/little systems. In HPCA.

	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 ML/AI-based Systems Management
	2.2 Motivational Example

	3 Learning by Example
	4 Generating Data for Accuracy
	4.1 GMM Overview
	4.2 Generating Data with a GMM
	4.3 Discussion and Limitations

	5 Multi-phase Sampling
	6 Experimental Setup
	6.1 Systems
	6.2 Applications
	6.3 Application and System Diversity
	6.4 Learning Models Studied
	6.5 Evaluation Metrics
	6.6 Evaluation Methodology

	7 Evaluation
	7.1 Summary Results
	7.2 Detailed Accuracy Results
	7.3 Detailed Energy Results
	7.4 Accuracy and Energy for Best Learners
	7.5 Sensitivity to Sample Size
	7.6 Overhead
	7.7 Discussion

	8 Conclusion
	References

