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1. Introduction

Grothendieck’s Homotopy Hypothesis posits an equivalence of homotopy theories between homotopy
n-types and weak n-groupoids. We pursue a similar vision in the stable setting. Inspiration for a sta-
ble version of the Homotopy Hypothesis begins with [38,30] which show, for 1-categories, that symmetric
monoidal structures give rise to infinite loop space structures on their classifying spaces. Thomason [42]
proved this is an equivalence of homotopy theories, relative to stable homotopy equivalences. This suggests
that the categorical counterpart to stabilization is the presence of a symmetric monoidal structure with all
cells invertible, an intuition that is reinforced by a panoply of results from the group-completion theorem
of May [31] to the Baez-Dolan stabilization hypothesis [1,6] and beyond. A stable homotopy n-type is a
spectrum with nontrivial homotopy groups only in dimensions 0 through n. The corresponding symmetric
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monoidal n-categories with invertible cells are known as Picard n-categories. We can thus formulate the
Stable Homotopy Hypothesis.

Stable Homotopy Hypothesis. There is an equivalence of homotopy theories between Pic™, Picard n-categories
equipped with categorical equivalences, and Sp, stable homotopy n-types equipped with stable equivalences.

For n = 0, the Stable Homotopy Hypothesis is the equivalence of homotopy theories between abelian
groups and Eilenberg-Mac Lane spectra. The case n = 1 is described by the second two authors in [25].
Beyond proving the equivalence of the homotopy theories, they constructed a dictionary in which the
algebraic invariants of the stable homotopy 1-type (the two homotopy groups and the unique k-invariant)
can be read directly from the Picard category. Moreover, they gave a construction of the stable 1-type of
the sphere spectrum.

The main result of this paper, Theorem 6.1, is the Stable Homotopy Hypothesis for n = 2. In this
case, the categorical equivalences are biequivalences. The advantage of being able to work with categorical
equivalences is that the maps in the homotopy category between two stable 2-types modeled by strict
Picard 2-categories are realized by symmetric monoidal pseudofunctors—not general zigzags. In fact, the
set of homotopy classes of maps between two strict Picard 2-categories D and D’ is the quotient of the set
of symmetric monoidal pseudofunctors D — D’ modulo monoidal pseudonatural equivalence.

In future work we will develop 2-categorical models for the 2-type of the sphere and for fiber/cofiber
sequences of stable 2-types. We can apply these to give algebraic expressions for the secondary operations
arising from a stable Postnikov tower and for the low-dimensional algebraic K-groups of a commutative
ring. Moreover, via the theory of cofibers (cokernels) associated with a Postnikov tower, we may shed new
light on the theory of symmetric monoidal tricategories.

Our proof of the 2-dimensional stable homotopy hypothesis is a culmination of previous work in [20]
and [21]. Although we have attempted to make the current account as self-contained as possible, we rely
heavily on this and other previous work. We include selective reviews as needed. The proof of the main
theorem functions as an executive summary of the paper, and the reader may find it helpful to begin reading
there.

1.1. The homotopy hypothesis and categorical stability

The Stable Homotopy Hypothesis (SHH) in dimension 2 establishes an equivalence between items (ii7)
and (iv) of the following conjecturally equivalent homotopy theories:

1. 3-connected topological 6-types and topological weak equivalences;

1. weak 6-groupoids with only a single cell in dimensions 0 to 3 and 6-categorical equivalences;
5i. stable topological 2-types and stable weak equivalences; and
7. Picard 2-categories and 2-categorical equivalences.

The equivalence of homotopy theories between items (i) and (i77) is an immediate consequence of the
Freudenthal Suspension Theorem (FST). Equivalences between (i) and (i/) or between (i) and (iv) are
the subjects of, respectively, the Unstable Homotopy Hypothesis (UHH) and the Baez-Dolan Stabilization
Hypothesis (BDSH). Both of these have been studied in lower dimensions, but nothing approaching dimen-
sion 6 for fully algebraic notions of higher category has appeared as of this writing. The following schematic
diagram sketches these statements.
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Analogues of the Baez-Dolan Stabilization Hypothesis have been proved for Tamsamani’s weak
n-categories [39,40], for certain algebras over operads in (0o, n)-categories [12], and for Rezk’s ©,,-categories
[6]. However, it is unknown how these homotopical notions of higher categories compare with fully algebraic
weak n-categories for n > 2 (see [28] for a comparison in dimension 2). In particular, work of Cheng and
the first author [9,10] shows clearly that, in codimension greater than 1, additional subtleties arise even in
the formulation of the Stabilization Hypothesis for fully algebraic notions of weak n-category. In the ab-
sence of a comparison between algebraic and homotopical notions of higher category, using the homotopical
definitions like ©,,-categories does not address the core motivation for the (Stable) Homotopy Hypothesis:
to compare fully topological notions with fully algebraic ones.

1.2. Outline

We begin with necessary topological background in Section 2, particularly recalling the theory of group-
completion and an elementary consequence of the relative Hurewicz theorem. Next we recall the relevant
algebra of symmetric monoidal structures on 2-categories in Section 3, including a discussion of both the fully
weak case (symmetric monoidal bicategories) and what might be called the semi-strict case (permutative
Gray-monoids).

The core construction in this paper is a “Picardification.” That is, the construction of a Picard 2-category
from a general permutative Gray-monoid, while retaining the same stable homotopy groups in dimensions
0, 1, 2. This entails a group-completion, and to apply previous work on group-completion we develop an
independent theory of symmetric monoidal bicategories arising from E, algebras in 2-categories in Section 4.
This theory is an extension of techniques first developed by the first and third authors for the little n-cubes
operad [22].

Our subsequent analysis in Section 5 uses the fundamental 2-groupoid of Moerdijk—Svensson [33] (Sec-
tion 5.1), the K-theory for 2-categories developed in [20] (Section 5.2), and the topological group-completion
theorem of May [31] (Section 5.3). We combine these to conclude with the proof of the main theorem in
Section 6.

1.8. Acknowledgments

The authors would like to thank Peter May, Mikhail Kapranov, and Chris Schommer-Pries for helpful
conversations.

2. Topological background

In this section we review basic topological background needed for the work in this paper. We will use
topological spaces built using the geometric realization of a simplicial nerve for 2-categories, and we begin
by fixing notation and reviewing the monoidal properties of the relevant functors. We then turn to group
completion and Postnikov truncations, both of which play a key role in this work.
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2.1. Topological spaces and nerves of 2-categories

Notation 2.1. For spaces, we work in the category of compactly-generated weak Hausdorff spaces and denote
this category Top.

Notation 2.2. We let sSet denote the category of simplicial sets.

Notation 2.3. We let | —| and S denote, respectively, the geometric realization and singular functors between
simplicial sets and topological spaces.

Notation 2.4. We let Cat denote the category of categories and functors, and let 2Cat denote the category
of 2-categories and 2-functors. Note that these are both 1-categories.

The category of 2-categories admits a number of morphism variants, and it will be useful for us to have
separate notations for these.

Notation 2.5. We let 2(Cat,s denote the category of 2-categories with pseudofunctors and let 2Cat,,s denote
the category of 2-categories with normal pseudofunctors, that is, pseudofunctors which preserve the identities
strictly. We let 2Cat,op denote the category of 2-categories and normal oplax functors. Note that these are
all 1-categories.

The well-known nerve construction extends to 2-categories (in fact to general bicategories) in a number
of different but equivalent ways [16,7].

Notation 2.6. We let N denote the nerve functor from categories to simplicial sets. By abuse of notation,
we also let IV denote the 2-dimensional nerve on 2Cat,s. This nerve has 2-simplices given by 2-cells whose
target is a composite of two 1-cells, as in the display below.

N

This is the nerve used by [33] in their study of the Whitehead 2-groupoid (see Section 5.1). A detailed study
of this nerve, together with 9 other nerves for bicategories, appears in [7] with further work in [8].

Proposition 2.7. The functors

o | —|: sSet — Top
e S: Top — sSet
o N: 2Cat,s — sSet

are strong symmetric monoidal with respect to cartesian product. The adjunction between geometric real-
ization and the singular functor is monoidal in the sense that the unit and the counit are monoidal natural
transformations.

Proof. The fact that S and N preserve products follows from the fact that they are right adjoints. The
statements about | — | and the (co)unit are standard (see for example [11, Section 3.4]), but depend on good
categorical properties of compactly-generated Hausdorff spaces. O
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Notation 2.8. We will write B for the classifying space of a 2-category, so BC = |N@| for a 2-category C.
2.2. Group-completions and Postnikov truncations

In this section we review and fix terminology for group-completion, Postnikov truncation, and the atten-
dant notions of equivalence for spaces.

Definition 2.9. A map of homotopy associative and homotopy commutative H-spaces f: X — Y is a (topo-
logical) group-completion if

o wo(Y) is a group and f.: mo(X) — mp(Y) is an algebraic group-completion, and
o for any field of coefficients k, the map

H (X5 k)[mo(X) '] = Ho(Y:k)
induced by f, is an isomorphism.

Remark 2.10. The group-completion of a given homotopy associative and homotopy commutative
H-space X, if one exists, is unique up to weak homotopy equivalence by the Whitehead theorem. The
definition was motivated by the work of Barratt and Barratt—Priddy [2,4] and of Quillen [35], who proved
that for a homotopy commutative simplicial monoid M, the map M — QBM satisfies the homology con-
dition of Definition 2.9. The work of [31,38] constructs group-completions for E.-spaces, and both of these
are foundational for results which we use in this paper (see Theorems 5.19 and 5.25).

Notation 2.11. Let X be a homotopy associative and homotopy commutative H-space. If a topological
group-completion of X exists, we denote it by X — QBX.

Definition 2.12. Let P,, denote the nth Postnikov truncation on the category of spaces. This is a localizing
functor, and the P, -equivalences are those maps f: X — Y which induce isomorphisms on 7; for 0 <i <mn
and all choices of basepoint. We likewise define P,-equivalences for maps of simplicial sets.

We will also require the slightly weaker, and more classical, notion of n-equivalence.

Definition 2.13. Let n > 0. A map of spaces f: X — Y is an n-equivalence if, for all choices of basepoint
x € X, the induced map

Wq(va) — 7Tq(Y» f(x))

is a bijection for 0 < ¢ < n and a surjection for ¢ = n. Note that this notion does not satisfy the 2-out-of-3
property in general.

Clearly every (n + 1)-equivalence is a P,-equivalence, and every P,-equivalence can be replaced, via
Postnikov truncation, by a zigzag of (n + 1)-equivalences. Indeed, the collection of P,-equivalences is the

closure of the collection of (n + 1)-equivalences with respect to the 2-out-of-3 property.

Remark 2.14. For a map of spaces f: X — Y, the following are equivalent.

e The map f is an n-equivalence.
« For all choices of basepoint 2 € X, the homotopy fiber of f over x is an (n — 1)-connected space.
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o The pair (M f, X) is n-connected, where M f denotes the mapping cylinder of f. That is, mo(X) surjects
onto mo(M f) and the relative homotopy groups m,(M f, X) are trivial for 0 < ¢ < n.

We require the following result connecting n-equivalences with group-completion, particularly the subse-
quent corollary. The case n = oo follows from Whitehead’s theorem, but we have not discovered a reference
for finite n. We give a proof below.

Proposition 2.15. Let n > 0 and let f: X — Y be an Es map. If f is an n-equivalence then the group-
completion QBf: QBX — QBY is an n-equivalence.

Definition 2.16. A space Y is said to be k-coconnected if m;Y =0 for ¢ > k.

Corollary 2.17. Let n > 0 and let f: X — Y be an Eo map. If f is a P,-equivalence and Y is
(n + 1)-coconnected, then QBf: QBX — QBY is a P,-equivalence.

Our proof of Proposition 2.15 makes use of the relative Hurewicz theorem, specifically a corollary below
which we have also not discovered in the literature.

Theorem 2.18 (Relative Hurewicz [23, Theorem 4.87]). Suppose (X, A) is an (n — 1)-connected pair of
path-connected spaces with n > 2 and xo € A, and suppose that w1 (A, xg) acts trivially on 71 (X, A, o).
Then the Hurewicz homomorphism

7T1'(X, A7 l’o) — Hl(X, A)
s an isomorphism for i < n.

Remark 2.19. This result can be extended to the case when the action of m (A, xg) is nontrivial, and is
stated as such in [23]. We will not need that additional detail.

Definition 2.20. We say that a map f: X — Y is a homology-n-equivalence if Hy(f) is an isomorphism for
q < n and a surjection for ¢ = n.

Corollary 2.21 (Hurewicz for maps). Let f: X — Y be a map of path-connected spaces. If f is an
n-equivalence with n > 1 then f is a homology-n-equivalence. When X and Y are path-connected H -spaces
and f is an H-map, then the converse also holds.

Proof. Consider the comparison of long exact sequences below. The condition that f is an n-equivalence

is equivalent to the condition that m;(Mf, X,z9) = 0 for ¢ < n. The condition that f is a homology
n-equivalence is equivalent to the condition that H;(M f, X) = 0 for i < n.

> i (M f, X, ) —— mi(X, 20) m(Mf,x0) — m(Mf, X, x0) —> -+~

| |

— Hi (M f, X) H;(X) H;(MY) HMfX)— -

Therefore the first statement is a direct consequence of the relative Hurewicz theorem. The second holds
also by the relative Hurewicz theorem because the assumption that f is an H-map implies that the induced
action of m (X, x0) on m (M f, X, zo) is trivial [41, Section 9.2]. O
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Proof of Proposition 2.15. If f is an n-equivalence, each path component of f is an n-equivalence,
so by Corollary 2.21 each path component of f is a homology-n-equivalence. Therefore f itself is a
homology-n-equivalence. This implies the group-completion, 2B f, is a homology-n-equivalence because
on homology, the map

H.QBf: H (X)[ro(X)™'] — H.(Y)[mo(Y)™!]

is the map induced by localizing H, f with respect to 7y, and localization is exact. Since f is an E,, map, it
induces an H-map between the unit components of QBX and Q2BY. By the converse part of Corollary 2.21
for the unit component of QB f, this unit component must be an n-equivalence. Lastly, in any group-complete
H-space, translation by any point x induces a homotopy equivalence between the basepoint component and
the component of z. Hence all of the components of are all homotopy equivalent, and therefore QB f is an
n-equivalence. O

Notation 2.22. We let Sp, denote the category of connective spectra, i.e., the full subcategory of spectra
consisting of those objects X with 7, X = 0 for all n < 0.

Definition 2.23. We say that a map f: X — Y of connective spectra is a stable P, -equivalence when the
conditions of Definition 2.12 hold for stable homotopy groups; i.e., f induces an isomorphism on stable
homotopy groups m; for 0 < i < n. We let st P,-eq denote the class of stable P,-equivalences.

3. Symmetric monoidal algebra in dimension 2

One has a number of distinct notions of symmetric monoidal algebra in dimension 2, and it will be
necessary for us to work with several of these. The most general form is the notion of symmetric monoidal
bicategory, and we outline essential details of this structure in Section 3.1. Several of our constructions make
use of a stricter notion arising as monoids in 2Cat, and these are reviewed in Section 3.2.

One also has various levels of strength for morphisms, both with respect to functoriality and with respect
to the monoidal structure. In this paper, we can work solely with those morphisms of symmetric monoidal
bicategories—either strict functors or pseudofunctors—which preserve the symmetric monoidal structure
strictly (see Definition 3.10). In contrast with the weakest notion of morphism, that of symmetric monoidal
pseudofunctor, these stricter variants all enjoy composition which is strictly associative and unital.

There are many good reasons to consider versions which are stricter than the most general possible
notion. The most obvious is that the stricter structures are easier to work with, and in this case often allow
the use of techniques from the highly-developed theory of 2-categories. The second reason we work with
a variety of stricter notions is that many of these have equivalent homotopy theories to that of the fully
weak version; we address this point in Section 3.3. Even if some construction does not preserve a particular
strict variant of symmetric monoidal bicategory, but outputs a different variant with the same homotopy
theory, we can still make use of the stricter setting. Finally, stricter notions usually admit more transparent
constructions; the various K-theory functors for symmetric monoidal bicategories in [34,22,20] provide an
excellent example, with stricter variants admitting simpler K-theory functors.

3.1. Background about symmetric monoidal bicategories

In this section we review the minimal necessary content from the theory of symmetric monoidal bicat-
egories so that the reader can understand our construction of symmetric monoidal structure from operad
actions in Section 4. More complete details can be found in [32,37,27,10].
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Convention 3.1. We always use transformation to mean pseudonatural transformation (which we will only
indicate via components) and equivalence to mean pseudonatural (adjoint) equivalence, that is, a pseudo-
natural transformation with inverse up to isomorphisms satisfying triangle identities.

Definition 3.2 (Sketch, see [32], [37, Definition 2.5], or [10]). A symmetric monoidal bicategory consists of

e a bicategory B,

e a tensor product pseudofunctor B x B — B, denoted by concatenation,
e a unit object e € obB,

« an associativity equivalence «: (zy)z ~ z(yz),

e unit equivalences [: ex ~ x and r: z ~ xe,

« invertible modifications 7, u, A, p as follows,

(z(yz))w r((yz)w)

(zy) (zw)
(we)y —=— x(ey)
rid UM id!
xy = xy
(ex)y tid zy zy dr z(ye)

o b r be 4
e(zy) (zy)e
e a braid equivalence 3: zy ~ yz,

« two invertible modifications (denoted R_;__, R__,_) which correspond to two instances of the third
Reidemeister move,
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(yr)z —— y(xz

~

idB Bid

satisfying three axioms for the monoidal structure, four axioms for the braided structure, two axioms for
the sylleptic structure, and one final axiom for the symmetric structure.

Definition 3.3 (Sketch, see [37, Definition 2.5]). A symmetric monoidal pseudofunctor F: B — € consists
of

¢ a pseudofunctor F': B — C,

e a unit equivalence ee ~ F(es),

« an equivalence for the tensor product FxFy ~ F(xy),

o three invertible modifications between composites of the unit and tensor product equivalences, and
« an invertible modification comparing the braidings in B and €

satisfying two axioms for the monoidal structure, two axioms for the braided structure, and one axiom for
the symmetric (and hence subsuming the sylleptic) structure.

Definition 3.4 (Sketch, see [37, Definition 2.7]). A symmetric monoidal transformation n: F — G consists
of

¢ a transformation n: F' — G, and
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¢ two invertible modifications concerning the interaction between 7 and the unit objects on the one hand
and the tensor products on the other

satisfying two axioms for the monoidal structure and one axiom for the symmetric structure (and hence
subsuming the braided and sylleptic structures).

The following is verified in [37]. Note that we have not defined symmetric monoidal modifications as we
will not have any reason to use them in any of our constructions.

Lemma 3.5. There is a tricategory SMB of symmetric monoidal bicategories, symmetric monoidal pseudo-
functors, symmetric monoidal transformations, and symmetric monoidal modifications.

We will need to know when symmetric monoidal pseudofunctors or transformations are invertible in the
appropriate sense.

Definition 3.6. A symmetric monoidal biequivalence F: B — C is a symmetric monoidal pseudofunctor
such that the underlying pseudofunctor F' is a biequivalence of bicategories, i.e., has an inverse up to
pseudonatural equivalence.

Definition 3.7. A symmetric monoidal equivalence n: F' — G between symmetric monoidal pseudofunctors
is a symmetric monoidal transformation 7: F© — G such that the underlying transformation 7 is an
equivalence. This is logically equivalent to the condition that each component 1-cell n,: F'b — Gb is an
equivalence 1-cell in C.

The results of [17] can be used to easily prove the following lemma, although the first part is also verified
by elementary means in [37].

Lemma 3.8. Let F,G: B — € be symmetric monoidal pseudofunctors, andn: F — G a symmetric monoidal
transformation between them.

o F:B — C is a symmetric monoidal biequivalence if and only if it is an internal biequivalence in the
tricategory SMB.

e n: FF — G is a symmetric monoidal equivalence if and only if it is an internal equivalence in the
bicategory SMB(B, C).

We have defined a symmetric monoidal biequivalence to be a symmetric monoidal pseudofunctor which is
also a biequivalence. The content of this lemma is that the weak inverse can also be chosen to be symmetric
monoidal, as well as all the accompanying transformations and modifications.

Definition 3.9. Let Ho SMB denote the category of symmetric monoidal bicategories with morphisms given by
equivalence classes of symmetric monoidal pseudofunctors under the relation given by symmetric monoidal
pseudonatural equivalence. Note that in this category, every symmetric monoidal biequivalence is an iso-
morphism.

Definition 3.10. A strictly symmetric monoidal pseudofunctor F': B — € between symmetric monoidal bi-
categories is a pseudofunctor of the underlying bicategories that preserves the symmetric monoidal structure
strictly, and for which all of the constraints are either the identity (when this makes sense) or the unique
coherence isomorphism obtained from the coherence theorem for pseudofunctors [26,18]. A strict functor is
a strictly symmetric monoidal pseudofunctor for which the underlying pseudofunctor is strict.
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Remark 3.11. There is a monad on the category of 2-globular sets whose algebras are symmetric monoidal
bicategories. Strict functors can then be identified with the morphisms in the Eilenberg—Moore category for
this monad, and in particular symmetric monoidal bicategories with strict functors form a category. This
point of view is crucial to the methods employed in [37].

Notation 3.12. The principal variants we will use are listed below.

o We let $SMBicat,s denote the category of symmetric monoidal bicategories and strictly symmetric
monoidal pseudofunctors. Note that the composition of these is given by the composite of the underlying
pseudofunctors and then the unique choice of coherence cells making them strictly symmetric.

o We let SMBicat, denote the subcategory of SMBicat,, whose morphisms are strict functors.

o We let SM2Catp,, respectively SM2Cat,, denote the full subcategories of SMBicat,,s, respectively SMBicat,
with objects whose underlying bicategory is a 2-category.

We note two subtleties regarding subcategories of strict functors. The first is that the inverse of a strictly
symmetric monoidal strict biequivalence is not necessarily itself strict. However, we will see in Corollary 3.34
that the homotopy category obtained by inverting strict biequivalences in SMBicat is equivalent to Ho SMB.

Second, note that the multiplication map of a symmetric monoidal bicategory or 2-category A is a
pseudofunctor

AxA— A.

In both SMBicats and SM2Cats, we consider strictly functorial morphisms which commute strictly with this
multiplication pseudofunctor. The work in [20] shows that, relative to all stable equivalences, it is possible to
restrict the structure further and still represent every stable homotopy type. Relative only to the categorical
equivalences, however, we must retain some pseudofunctoriality in the multiplication.

8.2. Background on permutative Gray-monoids

In this section we give a definition that is a semi-strict version of symmetric monoidal bicategories. Here
too we give the minimal necessary background for our current work. For details, see [14,13,18], or [20,
Section 3.

Definition 3.13. Let A, B be 2-categories. The Gray tensor product of A and B, written A ® B is the
2-category given by

o 0-cells consisting of pairs a ® b with a an object of A and b an object of B;

o 1-cells generated under composition by basic 1-cells of the form f®1:a®b—a' @b for f:a — a' in
Aand1®g:a®b—a®l for g:b— b in B; and

e 2-cells generated by basic 2-cells of the form a ® 1 for 2-cells o in A; 1 ® § for 2-cells d in B; and new
2cells Sy, (f 8 D1 @9) = (1@ g)(f @ 1).

These cells satisfy axioms related to composition, naturality and bilinearity; for a complete list, see [18,
Section 3.1] or [20, Definition 3.16].

The assignment (A, B) — A ® B extends to a functor of categories

2Cat X 2Cat — 2(Cat
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which defines a symmetric monoidal structure on 2¢Cat. The unit for this monoidal structure is the terminal
2-category. The Gray tensor product has a universal property that relates it to the notion of cubical functor.

Definition 3.14. Let A, Ay and B be 2-categories. A cubical functor F: A; x Ay — B is a normal
pseudofunctor such that for all composable pairs ( f1, f2), (g1, 92) of 1-cells in Ay x Az, the comparison 2-cell

¢: F(f1, f2) o F(g1,92) = F(f1 0491, fa0g2)
is the identity whenever either f; or gy is the identity.

Theorem 3.15 ([18, Theorem 3.7], [20, Theorem 3.21]). Let A, B and C be 2-categories. There is a cubical
functor

C:AXB—ARB

natural in A and B, such that composition with c¢ induces a bijection between cubical functors A x B — C
and 2-functors A @ B — C.

Remark 3.16. There exists a 2-functor i: A ® B — A x B natural in A and B such that i o ¢ = id and
coi = id (see [18, Corollary 3.22]). This map makes the identity functor Id on 2Cat a lax symmetric monoidal
functor

(2Cat, x) — (2Cat, ®)

with the constraint
Id(A) @ Id(B) — Id(A x B)

given by 4. Similarly, ¢ gives the constraint that makes the inclusion

(2Cat, ®) — (2Catps, X)
into a lax symmetric monoidal functor [19].
Definition 3.17. A Gray-monoid is a monoid object in (2Cat, ®). This consists of a 2-category C, a 2-functor

@:C®C—C,

and an object e of C satisfying associativity and unit axioms.

Via the bijection in Theorem 3.15, we can view a Gray-monoid as a particular type of monoidal bicategory
such that the monoidal product is a cubical functor and all the other coherence cells are identities [18,
Theorem 8.12].

Definition 3.18. A permutative Gray-monoid € consists of a Gray-monoid (€, @, e) together with a 2-natural
isomorphism,

Ce 7 C®e

N
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where 7: € ® € — C® C is the symmetry isomorphism in 2¢Cat for the Gray tensor product, such that the
following axioms hold.

e The following pasting diagram is equal to the identity 2-natural transformation for the 2-functor .

e The following equality of pasting diagrams holds where we have abbreviated the tensor product to
concatenation when labeling 1- or 2-cells.

E®3 9T E®3 E®3 97, 03

Tid/' B \@:d e W
(3®2 E®3 o
7 Bid

= ®id
e®2
A _
\ \ B sid = l o
s3]

®24>€ G®ZT>G

\G}jd

id® e®2

Remark 3.19. In [20,21] the definition of permutative Gray-monoid includes a third axiom relating 5 to the
unit e. This axiom is implied by the other two axioms and is therefore unnecessary.

Definition 3.20. A strict functor F : € — D of permutative Gray-monoids is a 2-functor F': € — D of the
underlying 2-categories satisfying the following conditions.

e F(ee) = ep, so that F strictly preserves the unit object.
e The diagram

coe L2 LpeoD

commutes, so that F' strictly preserves the sum.
e The equation

B« (FQF)=F«p°
holds, so that F' strictly preserves the symmetry. This equation is equivalent to requiring that

ﬁ?x,Fy = F( S,y)

as 1-cells from Fox ® Fy = F(x @ y) to Fy ® Fax = F(y ® z).



N. Gurski et al. / Journal of Pure and Applied Algebra 223 (2019) 43484383 4361

Notation 3.21. The category of permutative Gray-monoids, PG, is the full subcategory of SM2Cat; whose
objects are permutative Gray-monoids.

The following two results follow from straightforward calculations and are used in Section 4.2.

Proposition 3.22. The underlying 2-category functor PGM — 2Cat is monadic in the usual, 1-categorical
sense.

Lemma 3.23. Let F': X XY — Z be a pseudofunctor between bicategories.

o For any object x of X, F induces a pseudofunctor F(x,—): Y — Z. The pseudofunctor F(x,—) is strict
if F' is, hence a 2-functor if X, Y are 2-categories.

e Forany 1-cell f: x — &', F induces a pseudonatural transformation F(f,—) from F(x,—) to F(a',—);
if f is an equivalence in X, then the pseudonatural transformation F(f,—) is an equivalence. The
transformation F(f,—) is strict if F is, hence a 2-natural transformation if F is strict and X,Y are
2-categories; furthermore, if f is also an isomorphism then F(f,—) is a 2-natural isomorphism.

e For any 2-cell a: f = f', F induces a modification F(«,—) from F(f,—) to F(f’,—); if a is invertible
in X, then the modification F(«, —) is an isomorphism.

One uses the modifier “Picard” for symmetric monoidal algebra where all objects and morphisms are
invertible. We have several notions in dimension 2, each consisting of those objects which have invertible 0-,
1-, and 2-cells.

Definition 3.24. Let (D, ®, e) be a Gray-monoid.

i. A 2-cell of D is invertible if it has an inverse in the usual sense.
7. A 1-cell f: z — y is invertible if there exists a 1-cell g: y — = together with invertible 2-cells go f = id,,
fog=id,. In other words, f is invertible if it is an internal equivalence (denoted with the ~ symbol)
in D.
7ii. An object x of D is invertible if there exists another object y together with invertible 1-cells x ®y ~ e,
ydbre.

Notation 3.25 (Picard objects in dimension 2 [21, Definition 2.19]).
e Pic Bicat, denotes the full subcategory of SMBicat, consisting of those symmetric monoidal bicategories
with all cells invertible; we call these Picard bicategories.
e Pic 2Cat, denotes the full subcategory of SM2Cat, consisting of symmetric monoidal 2-categories with all
cells invertible; we call these Picard 2-categories.
e Pic PGM denotes the full subcategory of PGM consisting of those permutative Gray-monoids with all
cells invertible; we call these strict Picard 2-categories.

3.8. The homotopy theory of symmetric monoidal bicategories

In this section we discuss the homotopy theories for symmetric monoidal algebra in dimension 2 and
obtain a number of equivalence results. To begin, we recall quasistrictification results from [37] and [20],
which show how to replace a symmetric monoidal bicategory with an appropriately equivalent permutative
Gray-monoid.

Theorem 3.26 ([37, Theorem 2.97], [20, Theorem 3.14]). Let B be a symmetric monoidal bicategory.
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i. There are two endofunctors, B — BE and B — B, of SMBicat,. Any symmetric monoidal bicategory
of the form BIst is a permutative Gray-monoid.
ii. There are natural transformations (—)° = id, (=) = (—)?'. When evaluated at a symmetric monoidal

bicategory B, these give natural strict biequivalences
B <+ B — B,

iii. For a symmetric monoidal pseudofunctor F' : B — @, there are strict functors F¢ : B¢ — @¢, Fast .
BIst — G5t such that the right hand square below commutes and the left hand square commutes up to

a symmetric monoidal equivalence.

B Be Bast
Fl ~ lFC qust
e ce east

Theorem 3.27 ([20, Theorem 3.15]). Let B be a permutative Gray-monoid.

i. There is a strict functor v: BI%t — B such that

BC qut

N~

commutes, where the unlabeled morphisms are those from Theorem 3.26. In particular, v is a strict

symmetric monoidal biequivalence.
7. For a symmetric monoidal pseudofunctor F : B — C with B, C with both permutative Gray-monoids,

the square below commutes up to a symmetric monoidal equivalence.

.qut v B
Fqsfl o lF
eqst = e

We also require an additional detail about quasistrictification which follows from the construction in [37,
Theorem 2.97] and the proof of [37, Proposition 2.77].

Lemma 3.28. Let A, B and C be permutative Gray-monoids, and let F': A — B and G: B — € be symmetric
monoidal pseudofunctors. Then (GF)% is symmetric monoidal equivalent to GI*F15t. Moreover, if G is a
strict functor, then (GF)4%¢ = GIstFast,

We now turn to equivalences of homotopy theories. In Proposition 3.31 and Corollary 3.34 we show that
the homotopy category of SMBicat, is equivalent to HoSMB. In Lemma 3.35 we show that the homotopy
theory of Pic PGM , respectively PGM , is equivalent to that of Pic SMBicat,, respectively SMBicat;, with a wide
choice of classes of weak equivalences.

Definition 3.29. Let PGM denote the tricategory whose objects are permutative Gray-monoids and whose
1-, 2-, and 3-cells are those of SMB. Likewise let HoOPGM denote the full subcategory of HoSMB whose
objects are permutative Gray-monoids; its morphisms are given by equivalence classes of pseudofunctors.
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Definition 3.30. For a category C and a class of morphisms W in €, we write Ho(C, W) for the localization
of € with respect to W; we note that this is not necessarily locally small. This category is the homotopy
category of the homotopy theory (€, W). See [36] for the general theory supporting this notion, or [20,
Section 2.1] for an overview.

Proposition 3.31. There is an isomorphism of categories
Ho(PGM, cat eq) = HoPGM.
Proof. We define a functor
®: HoPGM — Ho(PGM, cat eq)

to be the identity on objects. For permutative Gray-monoids A and B, let [A, B] denote HOPGM(A, B), and
let {A, B} denote Ho(PGM, cat eq)(A, B). As a mnemonic, note that [A, B] is a set of equivalence classes of
morphisms, while {A, B} is, a priori, defined by zigzags of strict functors. We define a function

(I)‘/LB: [.A,'B] — {A,B}

below, using the quasistrictification (—)?! of Theorem 3.26.

Recall that when A is a permutative Gray-monoid, there is a strict symmetric monoidal biequivalence
v: A% — A which is natural in strict functors (Theorem 3.27). For a symmetric monoidal pseudofunctor
F: A— B, welet @4 5(F) be the class of the zigzag
Fqst

14 14

A Aast Bast B
in Ho(PGM, cat eq). We must check that this function is well-defined on equivalence classes of morphisms
which will be used to prove that the functions ® 4 ¢ assemble to define a functor. We will show that this
functor is a bijection, hence ® defines an isomorphism of categories.

We begin with an observation about the collection of functions ®_ _. Let F': A — B be a symmetric
monoidal pseudofunctor and S: B — C is a strict functor. By Theorem 3.26, Lemma 3.28, and the naturality

of v with respect to strict functors, we have the following equalities in Ho(PGM, cat eq):
P e(SF)=v(SF)®'y! = pSstFesty~! = SyF1ty =1 = S® 4 5 (F). (3.32)

We now apply the observation in Display (3.32) to a path object construction. Given a symmetric
monoidal bicategory B, the path object B’ is another symmetric monoidal bicategory with

o objects (b, f) where b,b" are objects and f: b — b’ is an equivalence,

o l-cells (p,p',): bV, f) = (¢,c/,g) where p: b— ¢, p': b/ = ¢/, and a: p' f = gp, and

o 2-cells (I,I): (p,p,a) = (q,¢,8) where T': p = ¢, T": p’ = ¢ commuting with «, 8 in the obvious
way.

Tedious calculation shows that if B is a permutative Gray-monoid, then so is BY. There are strict projection
functors to each coordinate which are both symmetric monoidal biequivalences ey, e;: B! — B, and the
inclusion i: B — B! which sends b to (b,b,id) which is also a strict symmetric monoidal biequivalence if
B is a permutative Gray-monoid. Since egi = e1i = idg, we get that eg = e; in Ho(PGM, cat eq). Finally,
given symmetric monoidal pseudofunctors F,G: A — B and a symmetric monoidal equivalence o between
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them, we have a symmetric monoidal pseudofunctor A, : A — B! such that egAd, = F, 1A, = G, and the
values of A, on the nontrivial morphism in I are given by the components of a.

F
B
2
R ‘f‘%,,,,,BI
o
G B

Given a symmetric monoidal equivalence o between F' and G, we now apply the observation in Display
(3.32) to the pseudofunctor A, and deduce that the following holds in Ho(PGM, cat eq):

vFet ™ = v (egdy)?t vt
qst,,—1
eV ALy
qst,,—1
e1v ALy
v(egAy)tv1
= vGesty—1L,

Thus if two symmetric monoidal pseudofunctors are equivalent, then their images in Ho(PGM, cat eq) are
equal and therefore ® 4 5 is well-defined. This implies that ® is functorial because (GF)?" is equivalent to
G5t F95t once again by Lemma 3.28. This finishes the construction of a functor HoOPGM — Ho(PGM, cat eq).

A functor in the other direction is even easier to construct. Once again we take the function on objects
to be the identity. For a strict functor F, we take the image to be F' considered as a symmetric monoidal
pseudofunctor; for the formal inverse of a strict biequivalence F', we take the image to be the equivalence
class of weak inverses for F' in PGM. Note that all weak inverses are equivalent, so this is well-defined up to
equivalence. Now vF% = Fv in PGM, again by naturality of v with respect to strict functors, so if G is a
weak inverse for F' in PGM then

FrGety—! = ppestqesty,—1 = V(FG)QStV_l =l =idy

in Ho(PGM, cat eq) and vG95ty 1 is also the formal inverse for F'. This calculation shows that the composite
function

{A, B} — [A,B] = {A, B}
is the identity. The composite
[A,B] = {A, B} = [A, B]

is also the identity since F is equivalent to vF'y~1 for any symmetric monoidal pseudofunctor F' by
Theorem 3.27 (ii). O

Remark 3.33. The construction of the path object B! is mentioned in [37, Remark 2.69] where it is claimed
that this path object can be used to equip the category of symmetric monoidal bicategories and strict
functors with a transferred Quillen model structure. As far as we are aware, this claim is incorrect, as the
map B — BT is not strict without further restrictions on B. For example, this inclusion will not strictly
preserve the monoidal structure unless id, ®id, = id,qp which does not hold in a generic symmetric monoidal
bicategory.
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Corollary 3.34. There is an equivalence of categories between Ho(SMBicat s, cat eq) and Ho SMB.

Proof. In both cases, every object is isomorphic to a permutative Gray-monoid, and thus we have equiva-
lences for the vertical inclusions of subcategories in the following display.

HoPGM e

Ho(PGM, cat eq)

12
1

HoSMB ------- > Ho(SMBicat s, cat eq)

The isomorphism ® from Proposition 3.31 therefore induces an equivalence for the dashed arrow shown
above. O

Lemma 3.35. The inclusions
PGM — SMBicats, Pic PGM — Pic Bicat
induce equivalences of homotopy theories

(PGM, W N PGM) — (SMBicats, W),
(Pic PGM , W N Pic PGM ) — (Pic Bicats, W)

for any class of morphisms W that includes all biequivalences.
Proof. By Theorems 3.26 and 3.27, we have natural strict biequivalences
A — A — AT

for any symmetric monoidal bicategory A, and a natural strict biequivalence B4t — B for any permutative
Gray-monoid B. This implies that the inclusion and quasistrictification induce weak equivalences between
the Rezk nerves of (PGM, WNPGM) and (SMBicats, W), and hence give an equivalence of homotopy theories
(see, e.g., [20, Corollary 2.9]). The same argument implies the final equivalence of homotopy theories because
the property of being Picard is invariant under biequivalences. 0O

The most important case of such a W is the class of Py-equivalences we define now.

Definition 3.36. A functor (of any type) F': A — B of bicategories is a Py-equivalence if the induced map of
topological spaces NF: NA — NB is a Py-equivalence, i.e., induces an isomorphism on 7, for n = 0,1,2
and all choices of basepoint.

4. Symmetric monoidal structures from operad actions

In this section we describe how to extract symmetric monoidal structure from an operad action on
a 2-category. We describe the motivating example of algebras over the Barratt—Eccles operad, but then
abstract the essential features to a general theory. Our main applications appear in Section 5, where we
use this theory and the topological group-completion theorem of May [31] to deduce information about the

fundamental 2-groupoid of a group-completion.



4366 N. Gurski et al. / Journal of Pure and Applied Algebra 223 (2019) 43484383

4.1. Background about operads

Definition 4.1. Let (¥, %, e) be a symmetric monoidal category. An operad P in ¥ is a sequence {P(n)},>0
of objects in ¥ such that P(n) has a (right) ¥,-action, together with morphisms

v: Pn)x P(ky)* - x P(kyp) — P(k1+ -+ ky)
and
l: e — P(1)
that are appropriately equivariant and compatible. See [30] or [43] for a complete description.
A map of operads f: P — @ is given by a X,-map f,: P(n) — Q(n) for each n > 0 compatible with
the operations and the identity.
A P-algebra is given by a pair (X, ), where X is an object of ¥, and u is a collection of morphisms

tn: P(n)«» X" — X

in ¥ that are appropriately equivariant and compatible with v and 1. A morphism of P-algebras (X, u) —
(X', ') is given by a morphism g: X — X’ compatible with the maps u, and p,.

In this paper we will be concerned with operads in (sSet, x, *) and (7op, X, %), as well as several variants
for 2-categories, including (2Cat, ¥, *), (2Cat, ®, *), and (2Catps, X, *).

Notation 4.2. We let P-Alg(¥,*) denote the category of P-algebras in (7, %) and their morphisms.' If
there is no confusion over the ambient symmetric monoidal category we also write P-Alg.

We now recall and fix notation for standard transfers of operadic structures; see e.g., [24,43].
Lemma 4.3. A map of operads f: P — @ induces a functor
5 Q-Alg — P-Alg
that sends a Q-algebra (X, i) to the P-algebra (X,v), where v, is given by the composite

P(n) « x*n L4,

Q(n) « X*™ Ly X
If f and g are composable maps of operads, then (go f)* = f*og*.

Lemma 4.4. Let P be an operad in (¥ ,x), and let F,G: (¥, %) — (#,0) be lax symmetric monoidal
functors, and a: F = G a monoidal natural transformation. Then

i. F'P is an operad in (#',Q);
7. F induces a functor

F: P-Alg(V,%x) — FP-Alg(#,0)

that sends (X, u) to (FX,v), where v, is given by the composite

1 'We do not include the monoidal unit in the notation as in all of our cases it will be the terminal object.
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FPO(FX)O" — F(P+ X*) Ty px;

and
1. « induces a map of operads a: FP — GP, and a natural transformation a: F = o* o G of functors

P-Alg(¥,*x) — FP-Alg(#,9),
whose component at (X, p) is given by ax.

Corollary 4.5. Any operad P in (2Cat, X) gives rise to an operad (with the same underlying sequence of
objects) in (2Cat,®) and (2Catps, X).
There are inclusions

P-Alg(2cat, x) — P-Alg(2Cat, ®) — P-Alg(2Catps, X).

Proof. Following Remark 3.16, we can use the identity functor (2Cat, x) — (2Cat,®) and the inclusion
(2Cat, ®) — (2Catps, X) to transfer the algebra structures. O

Remark 4.6. Given the relationship between cubical functors and the Gray tensor product, we can specify
the objects in the categories of algebras above as follows. In all cases, an algebra is given by a pair (X, u),
where X is a 2-category, and p is a collection of morphisms p,: P(n) x X™ — X, which are 2-functors
if working in (2Cat, x), cubical functors if working in (2Cat, ®), or pseudofunctors if working in (2Catpg, X).
In the first two cases, a map of algebras is given by a 2-functor X — X’ commuting with u, but for the
latter case, a map of algebras is given by a pseudofunctor X — X”.

Notation 4.7. Let P be an operad in (2Cat, x). Let P- 2Cat denote the subcategory of P-Alg(2Catps, X) given
by all objects and those morphisms whose underlying pseudofunctor X — X’ is a 2-functor.

Definition 4.8 (The Barratt—Eccles operad). Let O denote the operad in (Cat, x) with O(n) being the trans-
lation category for X,: the objects of O(n) are the elements of the symmetric group %, and there is a
unique isomorphism between any two objects. By abuse of notation, we also denote by O the operad in
(2Cat, x) obtained by adding identity 2-cells. Note that O is also an operad in (2Cat, ®) and (2Catps, X).

Because the nerve and geometric realization functors are strong monoidal, we have an operad |[NO| = BO
in Top. Likewise, if A is an O-algebra in (2Cat,s, %), then BA is a BO-algebra in Top.

Remark 4.9. The operad BO in Top was used implicitly in [3]. As an operad in Cat, O was independently
introduced by May in [30,31]. In [31], May shows that a permutative category is an O-algebra [31, Lemmas
4.3-4.5] and that BO is an E operad [31, Lemma 4.8].

4.2. Symmetric monoidal structures from arbitrary operads

The relationship between O-algebras in Cat and permutative categories extends to the 2-categorical level.
We describe this now, and then abstract the key features for general operads. To begin, note that an operad
P in (2Cat, x) induces a different monad Pg on 2Cat using a combination of the cartesian product and the
Gray tensor product. Explicitly, Pg is defined via the formula

X [ P(n) xz, X"

n>0

using the natural 2-functor
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AXxB)RA xB)—= AQA) X (BRB') = (AxA) x (B xB).
Proposition 4.10. The category OgAlg of algebras for the monad Og on 2Cat is isomorphic to PGM .

Proof. Note that objects e € A are in bijection with 2-functors O(0) — A, and that 2-functors ®: AQA — A
together with a 2-natural isomorphism

ARA—T— AR A

DN

where 7: A®@ A — A® A is the symmetry isomorphism in 2Cat for the Gray tensor product are in bijection
with 2-functors

$:0(2) xx, A®? - A

using the strict parts of Lemma 3.23. It is now straightforward to verify that the axioms for a permutative
Gray-monoid are the same as those for an algebra over Og. O

Using Corollary 4.5 with Proposition 4.10, we can also regard a permutative Gray-monoid as an algebra
with respect to the cartesian product. We will use this implicitly in our work below.

Corollary 4.11. Every permutative Gray-monoid is an algebra for the operad O acting on (2Catpg, X).

Although we have no use for it here, there is an analogous result for O-algebras in (2Cat, x) and the
stricter notion of permutative 2-category described in [20], which we state in the following proposition. This
is the Cat-enriched version of the statement that permutative categories are precisely the O-algebras in
(Cat, x) (see Remark 4.9).

Proposition 4.12. The category of O-algebras in (2Cat, X) is isomorphic to the category Perm2Cat of permu-
tative 2-categories and strict functors of such.

We now turn to the general question of how symmetric monoidal structures arise from operad actions on
2-categories.

Definition 4.13. Let P be a property of 2-categories. We write P(< n) (including the case n = oo) for the
full subcategory of the category of operads consisting of those operads P for which P(k) has P for all k < n.

Notation 4.14. Let C denote the property of being bicategorically contractible, i.e., X has C if the unique
2-functor X — * is a biequivalence.

Lemma 4.15. A nonempty 2-category X is contractible if and only if the following four conditions hold.

1. Any two objects are connected by a 1-cell.
7. Fvery 1-cell is an equivalence.
1i1. Every 2-cell is invertible.
iv. Any two parallel 1-cells are connected by a unique 2-isomorphism.

Example 4.16. The operad O of Definition 4.8 is in C(< o00).
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Definition 4.17. A choice of multiplication x in P consists of the following:

« a choice of an object i € P(0);

« a choice of an object t € P(2);

« an adjoint equivalence a: y(¢;t,1) ~ v(t;1,¢) in P(3);

o adjoint equivalences I: y(¢;4,1) ~ 1 and r: 1 ~ ~(¢; 1,4) in P(1);

o invertible 2-cells 7 in P(4), p in P(3), and A and p in P(2), as depicted below;
« an adjoint equivalence §: t ~ ¢ - (12) in P(2);

o invertible 2-cells R_|__ and R__|_ in P(3), and v in P(2), as depicted below.

IR T RAGLLLL IOV PP
I I
t;y(t;1,t),1 t; 1, y(tt, 1
y(id; o, %w b LA Qd;id,cw
(t;y(t;t,1),1) I Y(t:1,5(t; 1, 1))
I I
y(y(t:t,1);t,1,1) Y(v(t;1,t);1,1,t)

a;id;id,id\>
" ) (4t 1,8);1,1,1)
Il

Y(y(t;t,1);1,1,t)

v(e;id, id, id)

;id, id, id .
y(y(t;t,1);1,4,1) LIS B y(y(t;1,t);1,4,1)
I I

y(t;y(t;1,4),1) v(t:1,y(t4,1))
’Y(id;r,% Ynu \d;id,l)
v(t:1,1) = y(t;1,1)
id; l,id
Y(t;v(t54,1),1) il ) v(t;1,1)
[ I
y(v(t;¢,1);4,1,1) (1)

(Y
/v(z,i:w

(e id, id, id) Y(y(t;4,1);t)
I
Y(v(t;1,t)54,1,1)

id;id, r
A(t:1,1) i) Y 1,9(51,1))
I I
v(m ,
Y(v(t; 1,4)5) v(vid, id, id)

I
Y(y(t;t,1);1,1,4)
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a-(12)

7(t5t7 1) ’ (12) ’Y(t; ]-at) : (12)
|

y(t;t-(12),1)

y(id; id, B) - (12)
~v(id; 8,1d)

vt 1,t-(12)) - (12)
) Y R I

v(t;1,t) - (132)
\ 4132)
v(t;t,1) - (132)
Il

v(t;1,t) y(t-(12);1,1)

—

v(t;t,

~+(B;1d, id)
V1,1 - (23) — B k1) (23)
I
v(t;1,t- (12)) 7v(id; 8,1d) - (23)
~(id; y
y(t;t-(12),1) - (23)
'7(*/3 17t) U R__|_ I
~y(t;t,1) - (123)
. %(123)
“ y(t;1,t) - (123)
I
v(t;t,1) D y(t-(12);t,1)
t-(12)
b id t

Note that in all of the diagrams above, the equalities on objects follow from the axioms of an operad.

Remark 4.18. Our choice of multiplication is reminiscent of Batanin’s notion of a system of compositions on
a globular operad [5]. In both instances, this extra structure on an operad is intended to pick out preferred
binary operations, ensuring they exist as needed. Proposition 4.20 below also reflects the modification made
by Leinster [29] in which contractibility of the operad already ensures enough operations.

Example 4.19. Consider the Barratt—Eccles operad O of Definition 4.8. There is a canonical choice of multi-
plication k on O given by i = x € O(0) and ¢ equal to the identity permutation in X,. All the equivalences
are given by the unique 1-morphisms between the corresponding objects, and all the 2-cells are the identity
(noting that the boundaries are equal because there is a unique 1-morphism between any two objects).

The idea behind this example can be generalized to a larger class of operads, and we explain this now.

Proposition 4.20. Let P be an operad in C(< 4). Then there exists a choice of multiplication on P.
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Proof. Since P(0) and P(2) are contractible, they are in particular non-empty, and hence we can pick
objects 7 € P(0) and t € P(2). By Lemma 4.15 the equivalences «, [, r and 8 and the 2-isomorphisms 7, x,
A, p, Roy__, R__|_ and v can be picked using contractibility. O

Proposition 4.21. Let f: P — Q be a map of operads in (2Catys, X). If P has a choice of multiplication x,
then taking the images of all data involved gives a choice of multiplication f(x) in Q.

Theorem 4.22. Let P be an operad in C(< 5). Then a choice of multiplication x in P determines a functor
X" P-Alg(2Cat,s, X) — SM2Catps
which is the identity on underlying 2-categories and pseudofunctors. We therefore have a functor
X" P-2Cat — SM2Cat, .

Proof. First, observe that the second statement is a refinement of the first because P-2Cat denotes the
subcategory of P-Alg(2Catps, x) whose morphisms are 2-functors (see Notation 4.7). To prove the first
statement, we use y to construct a symmetric monoidal structure on an arbitrary P-algebra (X, ).

We define the monoidal product as the pseudofunctor us(t; —, —) obtained by applying Lemma 3.23 to the
pseudofunctor ug: P(2)x X? — X. Explicitly, the monoidal product on objects is defined as xy = ua(t; x, ).
The unit object is defined as e = pg(%).

The equivalences «, [, r and § are defined as the appropriate images of their namesakes in y, as given

by Lemma 3.23. For example, a: (zy)z — x(yz) is given by the pseudonatural equivalence ps(c; —, —, —).
Similarly, the invertible modifications 7, u, A, p, R_j__, R__,_ and v are given by the appropriate images
of their namesakes in x. For example, v is defined as ps(v; —, —).

Contractibility of P(n) for n < 5 implies that analogues of the axioms for the modifications in a symmetric
monoidal bicategory are satisfied by the corresponding cells in P, which in turn implies that the same axioms
are satisfied after applying u.

Let F': X — Y be a P-algebra morphism, i.e., a pseudofunctor that commutes with the action of P. It
is easy to check that this implies that F' preserves strictly the symmetric monoidal structures on X and Y
given by the choice of multiplication x. Thus we have a functor x*: P-Alg(2Catps, X) — SM2Cat,s. O

We now record several results which follow from Theorem 4.22 and its proof.

Proposition 4.23. Let f: P — @ in C(< 5), and assume P has choice of multiplication x. As functors
Q- 2Cat — SM2Cats, we have an equality x* o f* = (f(x))*.

Proposition 4.24. Suppose that Py and Py are operads with choices of multiplication x1 and x2. Then the
product P = Py X Py has a choice of multiplication defined by the pointwise product of the data, x = x1 X X2-

Remark 4.25. As a special case of Proposition 4.23, the projections 7;: P — P; identify m;(x) with x;.

Proposition 4.26. If P is an operad in C(< 5), X is a P-algebra, and x1, x2 are two different choices of mul-
tiplication in P, the identity pseudofunctor on X can be equipped with the structure of a symmetric monoidal
biequivalence x7X — x5X relating the two symmetric monoidal structures. Moreover, this assignment is
natural in X.

Proof. Note that contractibility of P gives 1-morphisms relating i; with i and ¢; with ¢5, which when
applied to the algebra X give rise to the map that compares units and multiplications. The rest of the data
and axioms of a symmetric monoidal biequivalence follow from contractibility as well. O
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Recall that x denotes the canonical choice of multiplication for the Barratt—Eccles operad (Example 4.19),
and we implicitly regard a permutative Gray-monoid as an O-algebra by Corollary 4.11.

Proposition 4.27. Let A be a permutative Gray-monoid. Then A = k*A. The composite

PGM — O-Alg(2Catys, X) KLy SM2Cat,
is the inclusion functor from PGM to SM2Cats.

Proof. The underlying 2-categories of A and x*A are equal. It is clear by construction that the two sym-
metric monoidal structures are the same. O

5. Symmetric monoidal structures and group-completion

In this section we show how to construct a Picard 2-category with the same stable 2-type as a given
permutative Gray-monoid. Our construction begins with a strict version of the fundamental 2-groupoid in
Section 5.1. In Section 5.2 we analyze its effect on stable equivalences, and in Section 5.3 we apply the
theory of Section 4 together with topological group-completion to obtain the desired Picard 2-category.

Definition 5.1. A strict 2-groupoid is a 2-category in which every 1- and 2-cell is strictly invertible, i.e., for
every l-cell f: a — b there is a 1-cell g: b — a such that gf, fg are both identity 1-cells, and similarly for
2-cells. We define the category Str2Gpd to have strict 2-groupoids as objects and 2-functors as morphisms.

Remark 5.2. We should note that any 2-category isomorphic to a strict 2-groupoid is itself a strict 2-groupoid,
but that a 2-category which is biequivalent to a strict 2-groupoid will not in general have 1-cells which are
strictly invertible in the sense above, but only satisfy the weaker condition that we have called invertible in
Definition 3.24: given f there exists a g such that fg and gf are isomorphic to identity 1-cells.

5.1. Background on the Whitehead 2-groupotd and nerves

We now recall the construction of a strict fundamental 2-groupoid for simplicial sets due to Moerdijk—
Svensson [33], known as the Whitehead 2-groupoid.

Definition 5.3 (/33, Section 1, Example (2)]). Let X be a topological space, Y C X a subspace, and S CY
a subset. We define the Whitehead 2-groupoid W (X,Y, S) to be the strict 2-groupoid with

e objects the set S,
o 1l-cells [f]: a — b to be homotopy classes of paths f from a to b in Y, relative the endpoints, and
o 2-cells [a]: [f] = [g] to be homotopy classes of maps «: I x I — X such that
i a(t,0) = f(t),
i at, 1) = g(t),
4. «(0,—) is constant at the source of f (and hence also g),
iv. a(l,—) is constant at the target of f (and hence also g), and
v. homotopies H(s,t,—) between two such maps fix the vertical sides and map the horizontal sides
into Y for each s.

Since the nerve functor V: Str2Gpd — sSet preserves limits and filtered colimits, it has a left adjoint. In
[33], this left adjoint was explicitly computed using Whitehead 2-groupoids, and we recall their construction
now.
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Notation 5.4. For a simplicial set X, let X (™ denote the n-skeleton of X.

Theorem 5.5 (/33, Theorem 2.3]). The functor W: sSet — Str2Gpd , defined by
W(X) =W(X],|x V] 1xO),

is left adjoint to the nerve functor, N.

We will need several key properties of W from [33]; we summarize these in the next proposition.

Proposition 5.6 (/33]).
i. If X =Y is a weak equivalence of simplicial sets, then WX — WY 1is a biequivalence of 2-groupoids

[33, Proposition 2.2 (iii)].

1. For a strict 2-groupoid C, the strict 2-functor e: WNC — € is a bijective-on-objects biequivalence,
although its pseudoinverse is only a pseudofunctor [33, Displays (1.9) and (2.10)].

1ii. For a simplicial set X, the unit nx: X — NWX of the adjunction W 4 N is a Ps-equivalence. In
particular, if X is a 2-category then nyx: NK — NWNX is a Py-equivalence [33, Corollary 2.6].

iv. The functor W is strong monoidal with respect to the cartesian product [33, Proposition 2.2 (i)].

Remark 5.7. For a strict 2-groupoid €, the 1-cells of WNC are freely generated by the underlying graph of
the 1-cells of € [33, Display (2.10)].

Now the nerve functor is defined on all of 2Caty.p, not just the subcategory of 2-groupoids or strict
2-groupoids. Thus we can define a functor 2Catyo, — Str2Gpd using the composite W o N. Perhaps surpris-

ingly, this composite is also a left adjoint even though N is a right adjoint.

Proposition 5.8. The functor WN extends to a functor 2Catyno, — Str2Gpd , and is left adjoint to the inclusion
i1 Str2Gpd — 2Catnop-

Proof. First note that NV extends to a full and faithful functor 2Cat,op — sSet by [16]. Thus we have natural
isomorphisms

Str2Gpd (WNA, B) = sSet(NA, NB) = 2Catpop(A,iB). O
Remark 5.9. Note that, in the above proof, B is a strict 2-groupoid so in particular every normal oplax
functor A — B is in fact a normal pseudofunctor. Thus we have a natural isomorphism Str2Gpd (W NA, B) =
2Catnps(A, iB) as well, so WN is also left adjoint to the inclusion Str2Gpd — 2Catyps.

Note since the nerve functor N: 2Catnep, — sSet is full and faithful, gy is in fact in the image of N.

Notation 5.10. Let e3.: X — WNX be the unique normal pseudofunctor (Remark 5.9) with Nejy = nyx.
Note that e* is strictly natural in normal pseudofunctors.

Remark 5.11. The triangle identities for 1 and € show that the composite ee* is the identity 2-functor. The
unit and counit of the adjunction W N ¢ are given, respectively, by e and e.

Lemma 5.12. The transformations €' and € are Ps-equivalences.
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Proof. Recall that n is a Ps-equivalence by Proposition 5.6 (). Since the nerve functor creates
Ps-equivalences of 2-categories, €' is also a Ps-equivalence. This implies that € is a Ps-equivalence by Re-
mark 5.11 and 2-out-of-3. O

This accomplishes the first goal of this section, to produce from a 2-category C a strict 2-groupoid W NC
and a pseudofunctor € — WNC which is a natural Ps-equivalence. We now turn to incorporating the
symmetric monoidal structure.

Proposition 5.13. The adjunction WN - i of Proposition 5.8 is monoidal with respect to the cartesian
product.

Proof. Note that N preserves products since it is a right adjoint (Proposition 2.7), and therefore W N
is strong monoidal by Proposition 5.6 (iv). Straightforward calculations show that ¢* and e are monoidal
transformations. 0O
Notation 5.14. Let
h: WN(=) = WS|N(-)| = WSB(-)

denote the natural transformation induced by the unit id = S| — |.

Applying symmetric monoidal functors to the operad O, we have the following corollary (see Lemma 4.4).
Corollary 5.15. There are operads WNQO and W SBQO. The transformations €, €*, and h induce operad maps

e: WNO = 0O, e: 0 —=WNO, and h: WNO — WSBO.

Notation 5.16. Let x denote the choice of multiplication in WNQO given by applying ' to the canonical
choice k (Proposition 4.21).

Proposition 5.17. Given a permutative Gray-monoid A, there is a natural zigzag of strict functors of symmet-
ric monoidal 2-categories as shown below. The left leg is a Ps-equivalence and the right leg is a biequivalence.

FWN(A)

y 7" (ha)

A= KA = KA R h*WSB(A).

Proof. Recall that we implicitly regard A as an O-algebra via Corollary 4.11. Therefore we have a zigzag
of W NO-algebra maps (note that these have underlying 2-functors) induced by the components of ¢ and h,
respectively,

e*A +— WN(A) — h*WSB(A).

We have A = k*A by Proposition 4.27. Note k*e* = k* because ee* = id (Remark 5.11). This gives a
zigzag of symmetric monoidal 2-categories and strict functors. Naturality follows from naturality of € and h.
Moreover, € is a Py-equivalence by Lemma 5.12 and h is a biequivalence because W sends weak equivalences
to biequivalences by Proposition 5.6 (7). O
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It is clear that the property of being Picard is preserved by biequivalences and, moreover, every
Ps-equivalence of Picard 2-categories is a biequivalence. Therefore we have the following corollary of Propo-
sition 5.17.

Corollary 5.18. If A is a strict Picard 2-category, then the span in Proposition 5.17 is a span of Picard
2-categories.

5.2. Ex-algebras and stable homotopy theory of symmetric monoidal bicategories

In this section, we show that the composite WS, combined with any choice of multiplication, sends stable
equivalences of F, spaces to stable P-equivalences of symmetric monoidal 2-groupoids.

Our notions of stable equivalence, stable n-equivalence, and P,-equivalence for strict functors of sym-
metric monoidal bicategories are created by the K-theory functors of [20,22], which construct infinite loop
spaces from bicategories and 2-categories. We begin with a review of these functors and then apply the
theory of E., algebras in Zop.

Theorem 5.19 (/22,20]). There is a functor K: SMBicats — Sp,. For a symmetric monoidal bicategory A,
KA is a positive 2-spectrum, with the property that

BA ~ KA(0) —» QKA(1)
is a group-completion. In particular, we have that
mn(KA) = 7, (QB(BA)),

where the latter are the unstable homotopy groups of the topological group-completion of the classifying
space BA.

Definition 5.20. A strict functor F': A — B of symmetric monoidal bicategories is a stable equivalence if
the induced map of spectra KF: KA — KB is a stable equivalence. Similarly, F' is a stable n-equivalence,
respectively stable P,-equivalence, if K F is so.

Lemma 5.21. Let F: A — B be a strict functor such that BF: BA — BB is a weak equivalence. Then F is
a stable equivalence, and hence, also a stable P,-equivalence for all n > 0.

Proof. The corresponding map of spectra KF' is a level equivalence. 0O
Restricting to permutative Gray-monoids, we obtain the main result in [20].
Theorem 5.22 (/20]). There is a functor K: PGM — Sp, which induces an equivalence of homotopy theories
(PGM, st eq) =~ (Sp,, st eq)
between permutative Gray-monoids and connective spectra, working relative to the stable equivalences.

Proposition 5.23 (/20, Remark 6.4]). When restricted to the subcategory PGM, the functor K of [22] is
equivalent to that of [20].

Definition 5.24. An operad Z in Top is an E operad if for all n > 0, the ¥,-action on Z(n) is free, and
2(n) is contractible.
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The following theorem appeared first in [31]. A modern (equivariant) version is in [15].

Theorem 5.25 ([31, Theorem 2.3], [15, Theorem 1.14, Definition 2.7]). Let 9 be an Eo operad in Top. There
is a functor

E: 2-Alg — Spectra
such for a P-algebra X and all n > 2,
X =E(X)(0) = Q"E(X)(n)
is a group-completion.

Definition 5.26. Let 2 be an E., operad in Top. A map f: X — Y of Z-algebras is a stable equivalence if
the associated map E(f) of spectra is so. Similarly, f is said to be a stable P,-equivalence if E(f) is so.

We use Theorem 5.25 to recognize stable equivalences and stable P,-equivalences of Z-algebras by their
induced maps on group-completions, as in the following result.

Corollary 5.27. A map f: X — Y of Z-algebras is a stable equivalence if and only if the associated map on
group-completions

QBf: QBX — QBY

is an unstable equivalence.
Similarly, f is a stable P,-equivalence if and only if

QBf: QBX — QBY
is an unstable P, -equivalence.

Applying Theorem 5.19, we can recognize stable P,-equivalences of symmetric monoidal bicategories in
the same way.

Corollary 5.28.
A strict functor F: A — B of symmetric monoidal bicategories is a stable P,-equivalence if and only if
the associated map on topological group-completions

QB(BF): QB(BA) — QB(BB)
is an unstable P, -equivalence.

Proposition 5.29. Let 9 be an E., operad, and let x denote any choice of multiplication for WS(2). If
a: X =Y is a map of P-algebras which is a stable equivalence, then x*W Sa: x*WSX — x*WSY is a
stable Py-equivalence in SM2Cat,.

Proof. By Corollary 5.28 and Corollary 5.27, it suffices to show that BW S« is a stable Ps-equivalence.
Consider the following diagram of algebras over |S2|, induced by naturality of the counit

S(-)| = id
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and the transformation
|S(=)| = BWS(-)

induced by the unit of W 4 N.

a

X Y
x| —2 sy
BWsx —EWSe, psy

The upper vertical arrows are unstable weak equivalences, therefore stable equivalences. The lower vertical
arrows are unstable Py-equivalences by Proposition 5.6 (iii). Since W takes values in 2-groupoids, BWSX
and BW SY are 3-coconnected. Therefore by Corollary 2.17 and Corollary 5.27 the lower vertical morphisms
are stable Py-equivalences. The assumption that « is a stable equivalence means that |Sa| must be too, and
hence both are stable Py-equivalences. The result then follows by 2-out-of-3 for stable Pr-equivalences. O

5.3. Group-completion for E algebras

In this section we recall the theory of group-completions of F, algebras in Zop and discuss its implications
for the symmetric monoidal 2-groupoids studied above. Let & be an arbitrary E, operad in Top.

Notation 5.30. Let 4, be the little n-cubes operad, and let % be the colimit (the maps are given by
inclusions of 6, into €,,+1). This is an E,, operad (see [30, Section 4]). Let P, = 2 X € and let p; and
p2 denote the two projections.

Theorem 5.31 (/31, Theorem 2.3]). If X is a P-algebra, then there is an algebra ¢X over P and a
Coo-algebra LX |, together with P -algebra maps

PIX <X % piLX

such that & is a homotopy equivalence and « is a group-completion. The assignments X — gX and X — LX
are functorial, and £ and o are natural.

Remark 5.32. The functors ¢ and L are constructed explicitly in [31]. The homotopy inverse of ¢ is also very
explicit, but it is not a Z.-algebra map.

Note that Corollary 5.27 implies that both £ and a above are stable equivalences of Z..-algebras. We
now specialize to the F, operad BO, and we let BO,, = BO X €. Since the functors W and S are strong
symmetric monoidal we obtain the following result.

Lemma 5.33. There are operads W S€y and WSBO in 2Cat, together with projections

p1: WSBO., — WSBO
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and
p2: WSBOy — WSCs.

Corollary 5.34. Given a permutative Gray-monoid A, there exists a natural zigzag of maps of WSBO -
algebras in (2Cat, X)

WS(qBA)
WSV WS(apa)
PiWS(BA) PiWS(LBA).

The left arrow is a biequivalence.

Proof. By Propositions 2.7 and 5.6 (iv), B, S and W are strong monoidal. For the biequivalence part,
S sends homotopy equivalences to weak equivalences, and W sends weak equivalences to biequivalences
(Proposition 5.6 (7)). O

Notation 5.35. Because W.S%, is in C(< 00), Proposition 4.20 guarantees that it has a choice of multipli-
cation. For the rest of this paper, let v denote a fixed such choice. For example, the content of [22, §2.2]
provides one such choice.

Notation 5.36. Let ¢ denote the choice of multiplication in W.SBO, given by the product of h(x) (Nota-
tions 5.14 and 5.16) and v. We call this the canonical choice of multiplication for WSBO.

Proposition 5.37. Given a permutative Gray-monoid A, there is a natural zigzag of symmetric monoidal
2-categories and strict monoidal 2-functors

WS(¢BA)
F(WS(Ega)) W(QBA))
K*h*WS(BA) = ¢"piWS(BA) cpsWS(LBA) = v*WS(LBA).

Moreover, v*WS(LBA) is a Picard 2-category, £ is a biequivalence and « is a stable Ps-equivalence.

Proof. The existence of this natural zigzag follows by applying Corollary 5.34 with the canonical choice of
multiplication ¢. By Proposition 4.23 we identify ¢*p} = k*h* and ¢*p} = v*.

We see that v*WS(LBA) is a 2-groupoid because WX is a 2-groupoid for every simplicial set X (see
Theorem 5.5). We note that v*W.S preserves my and that mo(v*WS(LBA)) = 7o(LBA) is a group because
LBA is group-complete. The product is induced by the monoidal structure, and therefore it follows that
objects have inverses up to equivalence. Thus v*WS(LBA) is a Picard 2-category.

The fact that ¢*W.S() is a biequivalence is immediate from Corollary 5.34, and the claim about ¢*WS(«)
follows from Proposition 5.29 because the map « of Theorem 5.31 is a group-completion and hence a stable
equivalence. 0O

Because the property of being Picard is preserved by biequivalences, we have the following corollary.
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Corollary 5.38. If A is a strict Picard 2-category, then the span in Proposition 5.37 is a span of Picard
2-categories.

6. Proof of the 2-dimensional stable homotopy hypothesis

Our main theorem is the following.
Theorem 6.1. There is an equivalence of homotopy theories
(Pic PGM, cat eq) ~ (Spg, st eq).

Proof. The proof follows from putting together several results in this section. To be precise, we combine
Propositions 6.2 and 6.4 below, which follow easily from previous work in [20,21], with Theorem 6.5, whose
proof depends on the content of Sections 3 through 5. O

Proposition 6.2. There is an equality of homotopy theories
(Pic PGM, cat eq) = (Pic PGM, st Pg-eq).

Proof. Recall that a 2-functor is a biequivalence if and only if it is essentially surjective and a local equiva-
lence. The formulas of [21, Lemma 3.2] show that the stable homotopy groups of a strict Picard 2-category
are computed by the algebraic homotopy groups (i.e. equivalence classes of invertible morphisms) in each
dimension. Therefore a strict functor between strict Picard 2-categories is a stable Ps-equivalence if and
only if it is a biequivalence. O

Lemma 6.3. The functor P of [20] preserves stable Ps-equivalences.

Proof. Using the notation of [20], let f: X — Y be a stable Ps-equivalence of I'-2-categories (certain
diagrams of 2-categories indexed on finite pointed sets; see [20, Definition 2.11]). Since stable Py-equivalences
of permutative Gray-monoids are created by the K-theory functor of [20], it suffices to check that KPf is
a stable Ps-equivalence. This is immediate from the naturality of the unit n with respect to strict I'-maps
([20, Corollary 7.14]): we have

nof=KPfon.

Since n is a stable equivalence, then K Pf is a stable Py-equivalence by 2-out-of-3, and therefore Pf is
too. O

Proposition 6.4. There are equivalences of homotopy theories

(PGM, st Pp-eq) ~= (Sps, st Pz-eq) ~ (P2, st eq).

Proof. The K-theory functor of [20, Proposition 6.13] creates stable Py-equivalences by definition.
Lemma 6.3 observes that the inverse P preserves stable Ps-equivalences as well. The first equivalence
then follows from the equivalences of [20] relative to stable Ps-equivalences. The second equivalence is a
reformulation of definitions. O

Theorem 6.5. There is an equivalence of homotopy theories

(Pic PGM, st Pa-eq) ~ (PGM, st Ps-eq).
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PGM

O- 2Cat W SBO- 2Cat W S€oo- 2Cat

*

W NO- 2Cat W SBO - 2Cat

SM2Cat ¢

Fig. 6.11. This diagram of categories, functors, and natural transformations summarizes the zigzag constructed in the proof of
Theorem 6.5.

To prove Theorem 6.5, we consider the serially-commuting diagram of homotopy theories and relative
functors below. Lemma 3.35 shows that the inclusions j in this diagram are equivalences of homotopy
theories, with inverse equivalences given by r = (—)9%¢. We will show that the inclusions i are equivalences
of homotopy theories.

(Pic PGM, st Pg-eq) d (PGM, st Pa-eq)
j r ; E ST j r (6 6)
(Pic Bicats, st Pg-eq) ; (SMBicats, st Pg-eq)

To do this, we first reduce to the problem of constructing a relative functor G which commutes with ¢ and
J up to natural zigzags of stable Py-equivalences.

Lemma 6.7. Suppose there is a relative functor G as shown in Display (6.6), and suppose that diagram
involving G, i, and j commutes up to a natural zigzag of stable Ps-equivalences. Then the inclusions labeled
1 are equivalences of homotopy theories.

Proof. Because the square involving ¢ and j commutes, it suffices to prove that the inclusion
1: (Pic Bicats, st Po-eq) — (SMBicats, st Po-eq)
is an equivalence of homotopy theories. We do this by showing that the composite Gr is an inverse for i up
to natural zigzag of stable Py-equivalences.
Let us write <3<+ to denote a natural zigzag of stable P»-equivalences. Then the proof of Lemma 3.35

shows we have

gr e id  and  rj ¢ id.
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By assumption, we have iG <++ j and Gi <+¢ j. Hence we have
iGr <54 jr «5>id  and  Gri = Gir <54 jr << id. O
Now we describe G and show that it satisfies the hypotheses of Lemma 6.7.
Definition 6.8. Let G = v*WS(LB-).

Recalling the relevant notation, this is the composite of the classifying space B, topological group com-
pletion L, singular simplicial set S, Whitehead 2-groupoid W, and choice of multiplication v* (applied to
a permutative Gray-monoid considered as an O-algebra via Corollary 4.11). By Proposition 5.37, this is a
functor from permutative Gray-monoids to Picard 2-categories. We will confirm that G is a relative functor
in the course of the proof of Theorem 6.5.

Remark 6.9. The attentive reader will note that v* takes values in the subcategory Pic 2Cats C Pic Bicats. We
implicitly compose with this inclusion because, although we suspect PGM, SM2Cats, and SMBicat, all have
equivalent homotopy theories (and likewise for the Picard subcategories of each), the proof of Lemma 3.35
does not specialize to SM2Cat.

Proof of Theorem 6.5. The necessary zigzags to apply Lemma 6.7 have already been constructed; we review
them now. Let A be a permutative Gray-monoid. To compare jA and iG(A), we require three operads: BO
is the geometric realization of categorical Barratt—Eccles operad O (Definition 4.8); % is the little infinite
cubes operad (Notation 5.30); and BOs = BO X € is their product.

We consider choices of multiplication induced by operad maps shown in Display (6.10) below (see Corol-
lary 5.15 and Lemma 5.33).

WSB0Os

NN

WSBO WS

This is a diagram of operads in 2Cat, that is, at level n the maps are given by 2-functors. With appropriate
choices of multiplication, we construct the required zigzag in two stages. First, we use k, given by applying
g to the canonical choice x (see Notation 5.16). By Proposition 5.17 we have the following zigzag of in
SM2Cat s, where the right leg is a biequivalence and the left leg is an unstable Ps-equivalence and therefore
a stable Ps-equivalence by Corollaries 2.17 and 5.27.

F*WN(A)
W w\)
A=kKA = KA K*h*W SB(A)

Second, we use ¢, described in Notation 5.36. By Proposition 5.37 we have the following zigzag in SM2Cat,
where the left leg is a biequivalence, and the right leg is a stable Ps-equivalence.
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W S(gBA)
c(WS(Epa)) c(WS(apa))

Fh*WS(BA) = ¢*piWS(BA) CpsWS(LBA) = v*WS(LBA)

Thus we have a natural zigzag of stable Ps-equivalences between iG and j. This also shows that G is a
relative functor since j preserves and i creates stable P»-equivalences.

As noted in Corollaries 5.18 and 5.38, this is a zigzag of Picard 2-categories when A is a strict Picard
2-category. Thus we also have a natural zigzag of stable Ps-equivalences between Gi and j. By Lemma 6.7,
this completes the proof. O

The key step, producing a zigzag of stable Py-equivalences between iG and j, is summarized in Fig. 6.11.

Composing with the inclusion SM2Cat; C SMBicat, the composite along the left hand side becomes the
inclusion j. Likewise, the composite v*W SLB along the right hand side becomes iG. The components of h
and WS(&) are biequivalences; the components of ¢ and W.S(«) are stable Pe-equivalences.
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