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1. Introduction

Grothendieck’s Homotopy Hypothesis posits an equivalence of homotopy theories between homotopy 

n-types and weak n-groupoids. We pursue a similar vision in the stable setting. Inspiration for a sta-

ble version of the Homotopy Hypothesis begins with [38,30] which show, for 1-categories, that symmetric 

monoidal structures give rise to infinite loop space structures on their classifying spaces. Thomason [42]

proved this is an equivalence of homotopy theories, relative to stable homotopy equivalences. This suggests 

that the categorical counterpart to stabilization is the presence of a symmetric monoidal structure with all 

cells invertible, an intuition that is reinforced by a panoply of results from the group-completion theorem 

of May [31] to the Baez-Dolan stabilization hypothesis [1,6] and beyond. A stable homotopy n-type is a 

spectrum with nontrivial homotopy groups only in dimensions 0 through n. The corresponding symmetric 
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monoidal n-categories with invertible cells are known as Picard n-categories. We can thus formulate the 

Stable Homotopy Hypothesis.

Stable Homotopy Hypothesis. There is an equivalence of homotopy theories between Picn, Picard n-categories 

equipped with categorical equivalences, and Spn
0
, stable homotopy n-types equipped with stable equivalences.

For n = 0, the Stable Homotopy Hypothesis is the equivalence of homotopy theories between abelian 

groups and Eilenberg–Mac Lane spectra. The case n = 1 is described by the second two authors in [25]. 

Beyond proving the equivalence of the homotopy theories, they constructed a dictionary in which the 

algebraic invariants of the stable homotopy 1-type (the two homotopy groups and the unique k-invariant) 

can be read directly from the Picard category. Moreover, they gave a construction of the stable 1-type of 

the sphere spectrum.

The main result of this paper, Theorem 6.1, is the Stable Homotopy Hypothesis for n = 2. In this 

case, the categorical equivalences are biequivalences. The advantage of being able to work with categorical 

equivalences is that the maps in the homotopy category between two stable 2-types modeled by strict 

Picard 2-categories are realized by symmetric monoidal pseudofunctors—not general zigzags. In fact, the 

set of homotopy classes of maps between two strict Picard 2-categories D and D′ is the quotient of the set 

of symmetric monoidal pseudofunctors D → D′ modulo monoidal pseudonatural equivalence.

In future work we will develop 2-categorical models for the 2-type of the sphere and for fiber/cofiber 

sequences of stable 2-types. We can apply these to give algebraic expressions for the secondary operations 

arising from a stable Postnikov tower and for the low-dimensional algebraic K-groups of a commutative 

ring. Moreover, via the theory of cofibers (cokernels) associated with a Postnikov tower, we may shed new 

light on the theory of symmetric monoidal tricategories.

Our proof of the 2-dimensional stable homotopy hypothesis is a culmination of previous work in [20]

and [21]. Although we have attempted to make the current account as self-contained as possible, we rely 

heavily on this and other previous work. We include selective reviews as needed. The proof of the main 

theorem functions as an executive summary of the paper, and the reader may find it helpful to begin reading 

there.

1.1. The homotopy hypothesis and categorical stability

The Stable Homotopy Hypothesis (SHH) in dimension 2 establishes an equivalence between items (iii)

and (iv) of the following conjecturally equivalent homotopy theories:

i. 3-connected topological 6-types and topological weak equivalences;

ii. weak 6-groupoids with only a single cell in dimensions 0 to 3 and 6-categorical equivalences;

iii. stable topological 2-types and stable weak equivalences; and

iv. Picard 2-categories and 2-categorical equivalences.

The equivalence of homotopy theories between items (i) and (iii) is an immediate consequence of the 

Freudenthal Suspension Theorem (FST). Equivalences between (i) and (ii) or between (ii) and (iv) are 

the subjects of, respectively, the Unstable Homotopy Hypothesis (UHH) and the Baez-Dolan Stabilization 

Hypothesis (BDSH). Both of these have been studied in lower dimensions, but nothing approaching dimen-

sion 6 for fully algebraic notions of higher category has appeared as of this writing. The following schematic 

diagram sketches these statements.
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Analogues of the Baez-Dolan Stabilization Hypothesis have been proved for Tamsamani’s weak 

n-categories [39,40], for certain algebras over operads in (∞, n)-categories [12], and for Rezk’s Θn-categories 

[6]. However, it is unknown how these homotopical notions of higher categories compare with fully algebraic 

weak n-categories for n > 2 (see [28] for a comparison in dimension 2). In particular, work of Cheng and 

the first author [9,10] shows clearly that, in codimension greater than 1, additional subtleties arise even in 

the formulation of the Stabilization Hypothesis for fully algebraic notions of weak n-category. In the ab-

sence of a comparison between algebraic and homotopical notions of higher category, using the homotopical 

definitions like Θn-categories does not address the core motivation for the (Stable) Homotopy Hypothesis: 

to compare fully topological notions with fully algebraic ones.

1.2. Outline

We begin with necessary topological background in Section 2, particularly recalling the theory of group-

completion and an elementary consequence of the relative Hurewicz theorem. Next we recall the relevant 

algebra of symmetric monoidal structures on 2-categories in Section 3, including a discussion of both the fully 

weak case (symmetric monoidal bicategories) and what might be called the semi-strict case (permutative 

Gray-monoids).

The core construction in this paper is a “Picardification.” That is, the construction of a Picard 2-category 

from a general permutative Gray-monoid, while retaining the same stable homotopy groups in dimensions 

0, 1, 2. This entails a group-completion, and to apply previous work on group-completion we develop an 

independent theory of symmetric monoidal bicategories arising from E∞ algebras in 2-categories in Section 4. 

This theory is an extension of techniques first developed by the first and third authors for the little n-cubes 

operad [22].

Our subsequent analysis in Section 5 uses the fundamental 2-groupoid of Moerdijk–Svensson [33] (Sec-

tion 5.1), the K-theory for 2-categories developed in [20] (Section 5.2), and the topological group-completion 

theorem of May [31] (Section 5.3). We combine these to conclude with the proof of the main theorem in 

Section 6.

1.3. Acknowledgments

The authors would like to thank Peter May, Mikhail Kapranov, and Chris Schommer-Pries for helpful 

conversations.

2. Topological background

In this section we review basic topological background needed for the work in this paper. We will use 

topological spaces built using the geometric realization of a simplicial nerve for 2-categories, and we begin 

by fixing notation and reviewing the monoidal properties of the relevant functors. We then turn to group 

completion and Postnikov truncations, both of which play a key role in this work.



N. Gurski et al. / Journal of Pure and Applied Algebra 223 (2019) 4348–4383 4351

2.1. Topological spaces and nerves of 2-categories

Notation 2.1. For spaces, we work in the category of compactly-generated weak Hausdorff spaces and denote 

this category Top.

Notation 2.2. We let sSet denote the category of simplicial sets.

Notation 2.3. We let | −| and S denote, respectively, the geometric realization and singular functors between 

simplicial sets and topological spaces.

Notation 2.4. We let Cat denote the category of categories and functors, and let 2Cat denote the category 

of 2-categories and 2-functors. Note that these are both 1-categories.

The category of 2-categories admits a number of morphism variants, and it will be useful for us to have 

separate notations for these.

Notation 2.5. We let 2Cat ps denote the category of 2-categories with pseudofunctors and let 2Catnps denote 

the category of 2-categories with normal pseudofunctors, that is, pseudofunctors which preserve the identities 

strictly. We let 2Cat nop denote the category of 2-categories and normal oplax functors. Note that these are 

all 1-categories.

The well-known nerve construction extends to 2-categories (in fact to general bicategories) in a number 

of different but equivalent ways [16,7].

Notation 2.6. We let N denote the nerve functor from categories to simplicial sets. By abuse of notation, 

we also let N denote the 2-dimensional nerve on 2Catps. This nerve has 2-simplices given by 2-cells whose 

target is a composite of two 1-cells, as in the display below.

·

·

·

⇑

This is the nerve used by [33] in their study of the Whitehead 2-groupoid (see Section 5.1). A detailed study 

of this nerve, together with 9 other nerves for bicategories, appears in [7] with further work in [8].

Proposition 2.7. The functors

• | − | : sSet → Top

• S : Top → sSet

• N : 2Cat ps → sSet

are strong symmetric monoidal with respect to cartesian product. The adjunction between geometric real-

ization and the singular functor is monoidal in the sense that the unit and the counit are monoidal natural 

transformations.

Proof. The fact that S and N preserve products follows from the fact that they are right adjoints. The 

statements about | −| and the (co)unit are standard (see for example [11, Section 3.4]), but depend on good 

categorical properties of compactly-generated Hausdorff spaces. ✷
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Notation 2.8. We will write B for the classifying space of a 2-category, so BC = |NC| for a 2-category C.

2.2. Group-completions and Postnikov truncations

In this section we review and fix terminology for group-completion, Postnikov truncation, and the atten-

dant notions of equivalence for spaces.

Definition 2.9. A map of homotopy associative and homotopy commutative H-spaces f : X → Y is a (topo-

logical) group-completion if

• π0(Y ) is a group and f∗ : π0(X) → π0(Y ) is an algebraic group-completion, and

• for any field of coefficients k, the map

H∗(X; k)[π0(X)−1] → H∗(Y ; k)

induced by f∗ is an isomorphism.

Remark 2.10. The group-completion of a given homotopy associative and homotopy commutative 

H-space X, if one exists, is unique up to weak homotopy equivalence by the Whitehead theorem. The 

definition was motivated by the work of Barratt and Barratt–Priddy [2,4] and of Quillen [35], who proved 

that for a homotopy commutative simplicial monoid M , the map M → ΩBM satisfies the homology con-

dition of Definition 2.9. The work of [31,38] constructs group-completions for E∞-spaces, and both of these 

are foundational for results which we use in this paper (see Theorems 5.19 and 5.25).

Notation 2.11. Let X be a homotopy associative and homotopy commutative H-space. If a topological 

group-completion of X exists, we denote it by X → ΩBX.

Definition 2.12. Let Pn denote the nth Postnikov truncation on the category of spaces. This is a localizing 

functor, and the Pn-equivalences are those maps f : X → Y which induce isomorphisms on πi for 0 ≤ i ≤ n

and all choices of basepoint. We likewise define Pn-equivalences for maps of simplicial sets.

We will also require the slightly weaker, and more classical, notion of n-equivalence.

Definition 2.13. Let n ≥ 0. A map of spaces f : X → Y is an n-equivalence if, for all choices of basepoint 

x ∈ X, the induced map

πq(X, x) → πq(Y, f(x))

is a bijection for 0 ≤ q < n and a surjection for q = n. Note that this notion does not satisfy the 2-out-of-3 

property in general.

Clearly every (n + 1)-equivalence is a Pn-equivalence, and every Pn-equivalence can be replaced, via 

Postnikov truncation, by a zigzag of (n + 1)-equivalences. Indeed, the collection of Pn-equivalences is the 

closure of the collection of (n + 1)-equivalences with respect to the 2-out-of-3 property.

Remark 2.14. For a map of spaces f : X → Y , the following are equivalent.

• The map f is an n-equivalence.

• For all choices of basepoint x ∈ X, the homotopy fiber of f over x is an (n − 1)-connected space.
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• The pair (Mf, X) is n-connected, where Mf denotes the mapping cylinder of f . That is, π0(X) surjects 

onto π0(Mf) and the relative homotopy groups πq(Mf, X) are trivial for 0 < q ≤ n.

We require the following result connecting n-equivalences with group-completion, particularly the subse-

quent corollary. The case n = ∞ follows from Whitehead’s theorem, but we have not discovered a reference 

for finite n. We give a proof below.

Proposition 2.15. Let n ≥ 0 and let f : X → Y be an E∞ map. If f is an n-equivalence then the group-

completion ΩBf : ΩBX → ΩBY is an n-equivalence.

Definition 2.16. A space Y is said to be k-coconnected if πiY = 0 for i ≥ k.

Corollary 2.17. Let n ≥ 0 and let f : X → Y be an E∞ map. If f is a Pn-equivalence and Y is 

(n + 1)-coconnected, then ΩBf : ΩBX → ΩBY is a Pn-equivalence.

Our proof of Proposition 2.15 makes use of the relative Hurewicz theorem, specifically a corollary below 

which we have also not discovered in the literature.

Theorem 2.18 (Relative Hurewicz [23, Theorem 4.37]). Suppose (X, A) is an (n − 1)-connected pair of 

path-connected spaces with n ≥ 2 and x0 ∈ A, and suppose that π1(A, x0) acts trivially on π1(X, A, x0). 

Then the Hurewicz homomorphism

πi(X, A, x0) → Hi(X, A)

is an isomorphism for i ≤ n.

Remark 2.19. This result can be extended to the case when the action of π1(A, x0) is nontrivial, and is 

stated as such in [23]. We will not need that additional detail.

Definition 2.20. We say that a map f : X → Y is a homology-n-equivalence if Hq(f) is an isomorphism for 

q < n and a surjection for q = n.

Corollary 2.21 (Hurewicz for maps). Let f : X → Y be a map of path-connected spaces. If f is an 

n-equivalence with n ≥ 1 then f is a homology-n-equivalence. When X and Y are path-connected H-spaces 

and f is an H-map, then the converse also holds.

Proof. Consider the comparison of long exact sequences below. The condition that f is an n-equivalence 

is equivalent to the condition that πi(Mf, X, x0) = 0 for i ≤ n. The condition that f is a homology 

n-equivalence is equivalent to the condition that Hi(Mf, X) = 0 for i ≤ n.

· · · πi+1(Mf, X, x0) πi(X, x0) πi(Mf, x0) πi(Mf, X, x0) · · ·

· · · Hi+1(Mf, X) Hi(X) Hi(Mf) Hi(Mf, X) · · ·

Therefore the first statement is a direct consequence of the relative Hurewicz theorem. The second holds 

also by the relative Hurewicz theorem because the assumption that f is an H-map implies that the induced 

action of π1(X, x0) on π1(Mf, X, x0) is trivial [41, Section 9.2]. ✷
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Proof of Proposition 2.15. If f is an n-equivalence, each path component of f is an n-equivalence, 

so by Corollary 2.21 each path component of f is a homology-n-equivalence. Therefore f itself is a 

homology-n-equivalence. This implies the group-completion, ΩBf , is a homology-n-equivalence because 

on homology, the map

H∗ΩBf : H∗(X)[π0(X)−1] −→ H∗(Y )[π0(Y )−1]

is the map induced by localizing H∗f with respect to π0, and localization is exact. Since f is an E∞ map, it 

induces an H-map between the unit components of ΩBX and ΩBY . By the converse part of Corollary 2.21

for the unit component of ΩBf , this unit component must be an n-equivalence. Lastly, in any group-complete 

H-space, translation by any point x induces a homotopy equivalence between the basepoint component and 

the component of x. Hence all of the components of are all homotopy equivalent, and therefore ΩBf is an 

n-equivalence. ✷

Notation 2.22. We let Sp
0

denote the category of connective spectra, i.e., the full subcategory of spectra 

consisting of those objects X with πnX = 0 for all n < 0.

Definition 2.23. We say that a map f : X → Y of connective spectra is a stable Pn-equivalence when the 

conditions of Definition 2.12 hold for stable homotopy groups; i.e., f induces an isomorphism on stable 

homotopy groups πi for 0 ≤ i ≤ n. We let st Pn-eq denote the class of stable Pn-equivalences.

3. Symmetric monoidal algebra in dimension 2

One has a number of distinct notions of symmetric monoidal algebra in dimension 2, and it will be 

necessary for us to work with several of these. The most general form is the notion of symmetric monoidal 

bicategory, and we outline essential details of this structure in Section 3.1. Several of our constructions make 

use of a stricter notion arising as monoids in 2Cat , and these are reviewed in Section 3.2.

One also has various levels of strength for morphisms, both with respect to functoriality and with respect 

to the monoidal structure. In this paper, we can work solely with those morphisms of symmetric monoidal 

bicategories—either strict functors or pseudofunctors—which preserve the symmetric monoidal structure 

strictly (see Definition 3.10). In contrast with the weakest notion of morphism, that of symmetric monoidal 

pseudofunctor, these stricter variants all enjoy composition which is strictly associative and unital.

There are many good reasons to consider versions which are stricter than the most general possible 

notion. The most obvious is that the stricter structures are easier to work with, and in this case often allow 

the use of techniques from the highly-developed theory of 2-categories. The second reason we work with 

a variety of stricter notions is that many of these have equivalent homotopy theories to that of the fully 

weak version; we address this point in Section 3.3. Even if some construction does not preserve a particular 

strict variant of symmetric monoidal bicategory, but outputs a different variant with the same homotopy 

theory, we can still make use of the stricter setting. Finally, stricter notions usually admit more transparent 

constructions; the various K-theory functors for symmetric monoidal bicategories in [34,22,20] provide an 

excellent example, with stricter variants admitting simpler K-theory functors.

3.1. Background about symmetric monoidal bicategories

In this section we review the minimal necessary content from the theory of symmetric monoidal bicat-

egories so that the reader can understand our construction of symmetric monoidal structure from operad 

actions in Section 4. More complete details can be found in [32,37,27,10].
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Convention 3.1. We always use transformation to mean pseudonatural transformation (which we will only 

indicate via components) and equivalence to mean pseudonatural (adjoint) equivalence, that is, a pseudo-

natural transformation with inverse up to isomorphisms satisfying triangle identities.

Definition 3.2 (Sketch, see [32], [37, Definition 2.3], or [10]). A symmetric monoidal bicategory consists of

• a bicategory B,

• a tensor product pseudofunctor B × B → B, denoted by concatenation,

• a unit object e ∈ obB,

• an associativity equivalence α : (xy)z ≃ x(yz),

• unit equivalences l : ex ≃ x and r : x ≃ xe,

• invertible modifications π, μ, λ, ρ as follows,

((xy)z)w

(x(yz))w x((yz)w)

x(y(zw))

(xy)(zw)

α id

α

id α

α α

⇒

π

(xe)y x(ey)

xy xy

α

r id

id

id l

⇒

μ

(ex)y xy

e(xy)

l id

α l

⇒

λ

xy x(ye)

(xy)e

id r

r α

⇒

ρ

• a braid equivalence β : xy ≃ yx,

• two invertible modifications (denoted R−|−−, R−−|−) which correspond to two instances of the third 

Reidemeister move,
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(xy)z

(yx)z y(xz)

y(zx)

x(yz) (yz)x

β id

α

id β

α

β

α

⇒

Rx|yz

x(yz)

x(zy) (xz)y

(zx)y

(xy)z z(xy)

id β

α•

β id

α•

β

α•

⇒
Rxy|z

• and an invertible modification (the syllepsis, v)

xy xy

yx

id

β β⇒

v

satisfying three axioms for the monoidal structure, four axioms for the braided structure, two axioms for 

the sylleptic structure, and one final axiom for the symmetric structure.

Definition 3.3 (Sketch, see [37, Definition 2.5]). A symmetric monoidal pseudofunctor F : B → C consists 

of

• a pseudofunctor F : B → C,

• a unit equivalence eC ≃ F (eB),

• an equivalence for the tensor product FxFy ≃ F (xy),

• three invertible modifications between composites of the unit and tensor product equivalences, and

• an invertible modification comparing the braidings in B and C

satisfying two axioms for the monoidal structure, two axioms for the braided structure, and one axiom for 

the symmetric (and hence subsuming the sylleptic) structure.

Definition 3.4 (Sketch, see [37, Definition 2.7]). A symmetric monoidal transformation η : F −→ G consists 

of

• a transformation η : F −→ G, and
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• two invertible modifications concerning the interaction between η and the unit objects on the one hand 

and the tensor products on the other

satisfying two axioms for the monoidal structure and one axiom for the symmetric structure (and hence 

subsuming the braided and sylleptic structures).

The following is verified in [37]. Note that we have not defined symmetric monoidal modifications as we 

will not have any reason to use them in any of our constructions.

Lemma 3.5. There is a tricategory SMB of symmetric monoidal bicategories, symmetric monoidal pseudo-

functors, symmetric monoidal transformations, and symmetric monoidal modifications.

We will need to know when symmetric monoidal pseudofunctors or transformations are invertible in the 

appropriate sense.

Definition 3.6. A symmetric monoidal biequivalence F : B → C is a symmetric monoidal pseudofunctor 

such that the underlying pseudofunctor F is a biequivalence of bicategories, i.e., has an inverse up to 

pseudonatural equivalence.

Definition 3.7. A symmetric monoidal equivalence η : F −→ G between symmetric monoidal pseudofunctors 

is a symmetric monoidal transformation η : F −→ G such that the underlying transformation η is an 

equivalence. This is logically equivalent to the condition that each component 1-cell ηb : Fb → Gb is an 

equivalence 1-cell in C.

The results of [17] can be used to easily prove the following lemma, although the first part is also verified 

by elementary means in [37].

Lemma 3.8. Let F, G : B → C be symmetric monoidal pseudofunctors, and η : F −→ G a symmetric monoidal 

transformation between them.

• F : B → C is a symmetric monoidal biequivalence if and only if it is an internal biequivalence in the 

tricategory SMB.

• η : F −→ G is a symmetric monoidal equivalence if and only if it is an internal equivalence in the 

bicategory SMB(B, C).

We have defined a symmetric monoidal biequivalence to be a symmetric monoidal pseudofunctor which is 

also a biequivalence. The content of this lemma is that the weak inverse can also be chosen to be symmetric 

monoidal, as well as all the accompanying transformations and modifications.

Definition 3.9. Let Ho SMB denote the category of symmetric monoidal bicategories with morphisms given by 

equivalence classes of symmetric monoidal pseudofunctors under the relation given by symmetric monoidal 

pseudonatural equivalence. Note that in this category, every symmetric monoidal biequivalence is an iso-

morphism.

Definition 3.10. A strictly symmetric monoidal pseudofunctor F : B → C between symmetric monoidal bi-

categories is a pseudofunctor of the underlying bicategories that preserves the symmetric monoidal structure 

strictly, and for which all of the constraints are either the identity (when this makes sense) or the unique 

coherence isomorphism obtained from the coherence theorem for pseudofunctors [26,18]. A strict functor is 

a strictly symmetric monoidal pseudofunctor for which the underlying pseudofunctor is strict.
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Remark 3.11. There is a monad on the category of 2-globular sets whose algebras are symmetric monoidal 

bicategories. Strict functors can then be identified with the morphisms in the Eilenberg–Moore category for 

this monad, and in particular symmetric monoidal bicategories with strict functors form a category. This 

point of view is crucial to the methods employed in [37].

Notation 3.12. The principal variants we will use are listed below.

• We let SMBicat ps denote the category of symmetric monoidal bicategories and strictly symmetric 

monoidal pseudofunctors. Note that the composition of these is given by the composite of the underlying 

pseudofunctors and then the unique choice of coherence cells making them strictly symmetric.

• We let SMBicat s denote the subcategory of SMBicatps whose morphisms are strict functors.

• We let SM2Catps, respectively SM2Cat s, denote the full subcategories of SMBicatps, respectively SMBicat s, 

with objects whose underlying bicategory is a 2-category.

We note two subtleties regarding subcategories of strict functors. The first is that the inverse of a strictly 

symmetric monoidal strict biequivalence is not necessarily itself strict. However, we will see in Corollary 3.34

that the homotopy category obtained by inverting strict biequivalences in SMBicats is equivalent to Ho SMB.

Second, note that the multiplication map of a symmetric monoidal bicategory or 2-category A is a 

pseudofunctor

A × A → A.

In both SMBicats and SM2Cats, we consider strictly functorial morphisms which commute strictly with this 

multiplication pseudofunctor. The work in [20] shows that, relative to all stable equivalences, it is possible to 

restrict the structure further and still represent every stable homotopy type. Relative only to the categorical 

equivalences, however, we must retain some pseudofunctoriality in the multiplication.

3.2. Background on permutative Gray-monoids

In this section we give a definition that is a semi-strict version of symmetric monoidal bicategories. Here 

too we give the minimal necessary background for our current work. For details, see [14,13,18], or [20, 

Section 3].

Definition 3.13. Let A, B be 2-categories. The Gray tensor product of A and B, written A ⊗ B is the 

2-category given by

• 0-cells consisting of pairs a ⊗ b with a an object of A and b an object of B;

• 1-cells generated under composition by basic 1-cells of the form f ⊗ 1 : a ⊗ b → a′ ⊗ b for f : a → a′ in 

A and 1 ⊗ g : a ⊗ b → a ⊗ b′ for g : b → b′ in B; and

• 2-cells generated by basic 2-cells of the form α ⊗ 1 for 2-cells α in A; 1 ⊗ δ for 2-cells δ in B; and new 

2-cells Σf,g : (f ⊗ 1)(1 ⊗ g) ∼= (1 ⊗ g)(f ⊗ 1).

These cells satisfy axioms related to composition, naturality and bilinearity; for a complete list, see [18, 

Section 3.1] or [20, Definition 3.16].

The assignment (A, B) �→ A ⊗ B extends to a functor of categories

2Cat × 2Cat −→ 2Cat
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which defines a symmetric monoidal structure on 2Cat . The unit for this monoidal structure is the terminal 

2-category. The Gray tensor product has a universal property that relates it to the notion of cubical functor.

Definition 3.14. Let A1, A2 and B be 2-categories. A cubical functor F : A1 × A2 −→ B is a normal 

pseudofunctor such that for all composable pairs (f1, f2), (g1, g2) of 1-cells in A1 ×A2, the comparison 2-cell

φ : F (f1, f2) ◦ F (g1, g2) ⇒ F (f1 ◦ g1, f2 ◦ g2)

is the identity whenever either f1 or g2 is the identity.

Theorem 3.15 ([18, Theorem 3.7], [20, Theorem 3.21]). Let A, B and C be 2-categories. There is a cubical 

functor

c : A × B −→ A ⊗ B

natural in A and B, such that composition with c induces a bijection between cubical functors A × B −→ C

and 2-functors A ⊗ B −→ C.

Remark 3.16. There exists a 2-functor i : A ⊗ B −→ A × B natural in A and B such that i ◦ c = id and 

c ◦i ∼= id (see [18, Corollary 3.22]). This map makes the identity functor Id on 2Cat a lax symmetric monoidal 

functor

(2Cat , ×) −→ (2Cat , ⊗)

with the constraint

Id(A) ⊗ Id(B) → Id(A × B)

given by i. Similarly, c gives the constraint that makes the inclusion

(2Cat , ⊗) −→ (2Cat ps, ×)

into a lax symmetric monoidal functor [19].

Definition 3.17. A Gray-monoid is a monoid object in (2Cat , ⊗). This consists of a 2-category C, a 2-functor

⊕ : C ⊗ C → C,

and an object e of C satisfying associativity and unit axioms.

Via the bijection in Theorem 3.15, we can view a Gray-monoid as a particular type of monoidal bicategory 

such that the monoidal product is a cubical functor and all the other coherence cells are identities [18, 

Theorem 8.12].

Definition 3.18. A permutative Gray-monoid C consists of a Gray-monoid (C, ⊕, e) together with a 2-natural 

isomorphism,

C ⊗ C C ⊗ C

C

τ

⊕⊕
⇒β
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where τ : C ⊗ C → C ⊗ C is the symmetry isomorphism in 2Cat for the Gray tensor product, such that the 

following axioms hold.

• The following pasting diagram is equal to the identity 2-natural transformation for the 2-functor ⊕.

C ⊗ C C ⊗ C C ⊗ C

C

τ τ

⊕
⊕

⊕

id

⇒β ⇒β

• The following equality of pasting diagrams holds where we have abbreviated the tensor product to 

concatenation when labeling 1- or 2-cells.

C
⊗3

C
⊗3

C
⊗3

C
⊗2

C
⊗2

C
⊗2 C

C
⊗3

C
⊗3

C
⊗3

C
⊗2

C
⊗2 C

C
⊗2

τ id τ id

idτ idτ

⊕id ⊕id

⊕ ⊕⊕id ⊕id

⊕ ⊕

id⊕

τ

⊕

⊕id

id⊕
id⊕

⊕

=

=

=

=

=

⇒β

⇒βid

⇒idβ

Remark 3.19. In [20,21] the definition of permutative Gray-monoid includes a third axiom relating β to the 

unit e. This axiom is implied by the other two axioms and is therefore unnecessary.

Definition 3.20. A strict functor F : C → D of permutative Gray-monoids is a 2-functor F : C → D of the 

underlying 2-categories satisfying the following conditions.

• F (eC) = eD, so that F strictly preserves the unit object.

• The diagram

C ⊗ C D ⊗ D

C D

F ⊗ F

⊕D⊕C

F

commutes, so that F strictly preserves the sum.

• The equation

βD ∗ (F ⊗ F ) = F ∗ βC

holds, so that F strictly preserves the symmetry. This equation is equivalent to requiring that

βD

F x,F y = F (βC

x,y)

as 1-cells from Fx ⊕ Fy = F (x ⊕ y) to Fy ⊕ Fx = F (y ⊕ x).
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Notation 3.21. The category of permutative Gray-monoids, PGM , is the full subcategory of SM2Cats whose 

objects are permutative Gray-monoids.

The following two results follow from straightforward calculations and are used in Section 4.2.

Proposition 3.22. The underlying 2-category functor PGM → 2Cat is monadic in the usual, 1-categorical 

sense.

Lemma 3.23. Let F : X × Y → Z be a pseudofunctor between bicategories.

• For any object x of X, F induces a pseudofunctor F (x, −) : Y → Z. The pseudofunctor F (x, −) is strict 

if F is, hence a 2-functor if X, Y are 2-categories.

• For any 1-cell f : x → x′, F induces a pseudonatural transformation F (f, −) from F (x, −) to F (x′, −); 

if f is an equivalence in X, then the pseudonatural transformation F (f, −) is an equivalence. The 

transformation F (f, −) is strict if F is, hence a 2-natural transformation if F is strict and X, Y are 

2-categories; furthermore, if f is also an isomorphism then F (f, −) is a 2-natural isomorphism.

• For any 2-cell α : f ⇒ f ′, F induces a modification F (α, −) from F (f, −) to F (f ′, −); if α is invertible 

in X, then the modification F (α, −) is an isomorphism.

One uses the modifier “Picard” for symmetric monoidal algebra where all objects and morphisms are 

invertible. We have several notions in dimension 2, each consisting of those objects which have invertible 0-, 

1-, and 2-cells.

Definition 3.24. Let (D, ⊕, e) be a Gray-monoid.

i. A 2-cell of D is invertible if it has an inverse in the usual sense.

ii. A 1-cell f : x → y is invertible if there exists a 1-cell g : y → x together with invertible 2-cells g ◦f ∼= idx, 

f ◦ g ∼= idy. In other words, f is invertible if it is an internal equivalence (denoted with the ≃ symbol) 

in D.

iii. An object x of D is invertible if there exists another object y together with invertible 1-cells x ⊕ y ≃ e, 

y ⊕ x ≃ e.

Notation 3.25 (Picard objects in dimension 2 [21, Definition 2.19]).

• Pic Bicat s denotes the full subcategory of SMBicats consisting of those symmetric monoidal bicategories 

with all cells invertible; we call these Picard bicategories.

• Pic 2Cat s denotes the full subcategory of SM2Cats consisting of symmetric monoidal 2-categories with all 

cells invertible; we call these Picard 2-categories.

• Pic PGM denotes the full subcategory of PGM consisting of those permutative Gray-monoids with all 

cells invertible; we call these strict Picard 2-categories.

3.3. The homotopy theory of symmetric monoidal bicategories

In this section we discuss the homotopy theories for symmetric monoidal algebra in dimension 2 and 

obtain a number of equivalence results. To begin, we recall quasistrictification results from [37] and [20], 

which show how to replace a symmetric monoidal bicategory with an appropriately equivalent permutative 

Gray-monoid.

Theorem 3.26 ([37, Theorem 2.97], [20, Theorem 3.14]). Let B be a symmetric monoidal bicategory.
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i. There are two endofunctors, B �→ Bc and B �→ Bqst, of SMBicat s. Any symmetric monoidal bicategory 

of the form Bqst is a permutative Gray-monoid.

ii. There are natural transformations (−)c ⇒ id, (−)c ⇒ (−)qst. When evaluated at a symmetric monoidal 

bicategory B, these give natural strict biequivalences

B ← B
c → B

qst.

iii. For a symmetric monoidal pseudofunctor F : B → C, there are strict functors F c : Bc → Cc, F qst :

Bqst → Cqst such that the right hand square below commutes and the left hand square commutes up to 

a symmetric monoidal equivalence.

B B
c

B
qst

C C
c

C
qst

F c
F qstF ≃

Theorem 3.27 ([20, Theorem 3.15]). Let B be a permutative Gray-monoid.

i. There is a strict functor ν : Bqst → B such that

B
c

B
qst

B

ν

commutes, where the unlabeled morphisms are those from Theorem 3.26. In particular, ν is a strict 

symmetric monoidal biequivalence.

ii. For a symmetric monoidal pseudofunctor F : B → C with B, C with both permutative Gray-monoids, 

the square below commutes up to a symmetric monoidal equivalence.

B
qst B

C
qst C

ν

FF qst

ν

≃

We also require an additional detail about quasistrictification which follows from the construction in [37, 

Theorem 2.97] and the proof of [37, Proposition 2.77].

Lemma 3.28. Let A, B and C be permutative Gray-monoids, and let F : A → B and G : B → C be symmetric 

monoidal pseudofunctors. Then (GF )qst is symmetric monoidal equivalent to GqstF qst. Moreover, if G is a 

strict functor, then (GF )qst = GqstF qst.

We now turn to equivalences of homotopy theories. In Proposition 3.31 and Corollary 3.34 we show that 

the homotopy category of SMBicats is equivalent to Ho SMB. In Lemma 3.35 we show that the homotopy 

theory of Pic PGM , respectively PGM , is equivalent to that of Pic SMBicat s, respectively SMBicat s, with a wide 

choice of classes of weak equivalences.

Definition 3.29. Let PGM denote the tricategory whose objects are permutative Gray-monoids and whose 

1-, 2-, and 3-cells are those of SMB. Likewise let HoPGM denote the full subcategory of Ho SMB whose 

objects are permutative Gray-monoids; its morphisms are given by equivalence classes of pseudofunctors.
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Definition 3.30. For a category C and a class of morphisms W in C, we write Ho(C, W) for the localization 

of C with respect to W; we note that this is not necessarily locally small. This category is the homotopy 

category of the homotopy theory (C, W). See [36] for the general theory supporting this notion, or [20, 

Section 2.1] for an overview.

Proposition 3.31. There is an isomorphism of categories

Ho(PGM , cat eq) ∼= HoPGM.

Proof. We define a functor

Φ: HoPGM → Ho(PGM , cat eq)

to be the identity on objects. For permutative Gray-monoids A and B, let [A, B] denote HoPGM(A, B), and 

let {A, B} denote Ho(PGM , cat eq)(A, B). As a mnemonic, note that [A, B] is a set of equivalence classes of 

morphisms, while {A, B} is, a priori, defined by zigzags of strict functors. We define a function

ΦA,B : [A,B] → {A,B}

below, using the quasistrictification (−)qst of Theorem 3.26.

Recall that when A is a permutative Gray-monoid, there is a strict symmetric monoidal biequivalence 

ν : Aqst → A which is natural in strict functors (Theorem 3.27). For a symmetric monoidal pseudofunctor 

F : A → B, we let ΦA,B(F ) be the class of the zigzag

A A
qst

B
qst B

ν F qst ν

in Ho(PGM , cat eq). We must check that this function is well-defined on equivalence classes of morphisms 

which will be used to prove that the functions ΦA,B assemble to define a functor. We will show that this 

functor is a bijection, hence Φ defines an isomorphism of categories.

We begin with an observation about the collection of functions Φ−,−. Let F : A → B be a symmetric 

monoidal pseudofunctor and S : B → C is a strict functor. By Theorem 3.26, Lemma 3.28, and the naturality 

of ν with respect to strict functors, we have the following equalities in Ho(PGM , cat eq):

ΦA,C(SF ) = ν(SF )qstν−1 = νSqstF qstν−1 = SνF qstν−1 = SΦA,B(F ). (3.32)

We now apply the observation in Display (3.32) to a path object construction. Given a symmetric 

monoidal bicategory B, the path object BI is another symmetric monoidal bicategory with

• objects (b, b′, f) where b, b′ are objects and f : b → b′ is an equivalence,

• 1-cells (p, p′, α) : (b, b′, f) → (c, c′, g) where p : b → c, p′ : b′ → c′, and α : p′f ∼= gp, and

• 2-cells (Γ, Γ′) : (p, p′, α) ⇒ (q, q′, β) where Γ: p ⇒ q, Γ′ : p′ ⇒ q′ commuting with α, β in the obvious 

way.

Tedious calculation shows that if B is a permutative Gray-monoid, then so is BI . There are strict projection 

functors to each coordinate which are both symmetric monoidal biequivalences e0, e1 : BI → B, and the 

inclusion i : B → BI which sends b to (b, b, idb) which is also a strict symmetric monoidal biequivalence if 

B is a permutative Gray-monoid. Since e0i = e1i = idB, we get that e0 = e1 in Ho(PGM , cat eq). Finally, 

given symmetric monoidal pseudofunctors F, G : A → B and a symmetric monoidal equivalence α between 
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them, we have a symmetric monoidal pseudofunctor Aα : A → BI such that e0Aα = F , e1Aα = G, and the 

values of Aα on the nontrivial morphism in I are given by the components of α.

B

B

A B
I

F

G

e0

e1

Aα

Given a symmetric monoidal equivalence α between F and G, we now apply the observation in Display 

(3.32) to the pseudofunctor Aα and deduce that the following holds in Ho(PGM , cat eq):

νF qstν−1 = ν (e0Aα)qst ν−1

= e0νAqst
α ν−1

= e1νAqst
α ν−1

= ν(e1Aα)qstν−1

= νGqstν−1.

Thus if two symmetric monoidal pseudofunctors are equivalent, then their images in Ho(PGM , cat eq) are 

equal and therefore ΦA,B is well-defined. This implies that Φ is functorial because (GF )qst is equivalent to 

GqstF qst once again by Lemma 3.28. This finishes the construction of a functor HoPGM → Ho(PGM , cat eq).

A functor in the other direction is even easier to construct. Once again we take the function on objects 

to be the identity. For a strict functor F , we take the image to be F considered as a symmetric monoidal 

pseudofunctor; for the formal inverse of a strict biequivalence F , we take the image to be the equivalence 

class of weak inverses for F in PGM. Note that all weak inverses are equivalent, so this is well-defined up to 

equivalence. Now νF qst = Fν in PGM , again by naturality of ν with respect to strict functors, so if G is a 

weak inverse for F in PGM then

FνGqstν−1 = νF qstGqstν−1 = ν(FG)qstν−1 = νν−1 = idA

in Ho(PGM , cat eq) and νGqstν−1 is also the formal inverse for F . This calculation shows that the composite 

function

{A,B} → [A,B] → {A,B}

is the identity. The composite

[A,B] → {A,B} → [A,B]

is also the identity since F is equivalent to νF qstν−1 for any symmetric monoidal pseudofunctor F by 

Theorem 3.27 (ii). ✷

Remark 3.33. The construction of the path object BI is mentioned in [37, Remark 2.69] where it is claimed 

that this path object can be used to equip the category of symmetric monoidal bicategories and strict 

functors with a transferred Quillen model structure. As far as we are aware, this claim is incorrect, as the 

map B → BI is not strict without further restrictions on B. For example, this inclusion will not strictly 

preserve the monoidal structure unless ida⊕idb = ida⊕b which does not hold in a generic symmetric monoidal 

bicategory.
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Corollary 3.34. There is an equivalence of categories between Ho(SMBicat s, cat eq) and Ho SMB.

Proof. In both cases, every object is isomorphic to a permutative Gray-monoid, and thus we have equiva-

lences for the vertical inclusions of subcategories in the following display.

Ho SMB Ho(SMBicat s, cat eq)

HoPGM Ho(PGM , cat eq)

≃ ≃

Φ

The isomorphism Φ from Proposition 3.31 therefore induces an equivalence for the dashed arrow shown 

above. ✷

Lemma 3.35. The inclusions

PGM →֒ SMBicat s, Pic PGM →֒ Pic Bicat s

induce equivalences of homotopy theories

(PGM ,W ∩ PGM ) →֒ (SMBicat s,W),

(Pic PGM ,W ∩ Pic PGM ) →֒ (Pic Bicat s,W)

for any class of morphisms W that includes all biequivalences.

Proof. By Theorems 3.26 and 3.27, we have natural strict biequivalences

A ←− A
c −→ A

qst

for any symmetric monoidal bicategory A, and a natural strict biequivalence Bqst → B for any permutative 

Gray-monoid B. This implies that the inclusion and quasistrictification induce weak equivalences between 

the Rezk nerves of (PGM , W ∩PGM ) and (SMBicat s, W), and hence give an equivalence of homotopy theories 

(see, e.g., [20, Corollary 2.9]). The same argument implies the final equivalence of homotopy theories because 

the property of being Picard is invariant under biequivalences. ✷

The most important case of such a W is the class of P2-equivalences we define now.

Definition 3.36. A functor (of any type) F : A → B of bicategories is a P2-equivalence if the induced map of 

topological spaces NF : NA → NB is a P2-equivalence, i.e., induces an isomorphism on πn for n = 0, 1, 2

and all choices of basepoint.

4. Symmetric monoidal structures from operad actions

In this section we describe how to extract symmetric monoidal structure from an operad action on 

a 2-category. We describe the motivating example of algebras over the Barratt–Eccles operad, but then 

abstract the essential features to a general theory. Our main applications appear in Section 5, where we 

use this theory and the topological group-completion theorem of May [31] to deduce information about the 

fundamental 2-groupoid of a group-completion.
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4.1. Background about operads

Definition 4.1. Let (V , ⋆, e) be a symmetric monoidal category. An operad P in V is a sequence {P (n)}n≥0

of objects in V such that P (n) has a (right) Σn-action, together with morphisms

γ : P (n) ⋆ P (k1) ⋆ · · · ⋆ P (kn) −→ P (k1 + · · · + kn)

and

1 : e −→ P (1)

that are appropriately equivariant and compatible. See [30] or [43] for a complete description.

A map of operads f : P −→ Q is given by a Σn-map fn : P (n) −→ Q(n) for each n ≥ 0 compatible with 

the operations and the identity.

A P -algebra is given by a pair (X, μ), where X is an object of V , and μ is a collection of morphisms

μn : P (n) ⋆ X⋆n −→ X

in V that are appropriately equivariant and compatible with γ and 1. A morphism of P -algebras (X, μ) −→

(X ′, μ′) is given by a morphism g : X −→ X ′ compatible with the maps μn and μ′
n.

In this paper we will be concerned with operads in (sSet , ×, ∗) and (Top, ×, ∗), as well as several variants 

for 2-categories, including (2Cat , ×, ∗), (2Cat , ⊗, ∗), and (2Cat ps, ×, ∗).

Notation 4.2. We let P -Alg(V , ⋆) denote the category of P -algebras in (V , ⋆) and their morphisms.1 If 

there is no confusion over the ambient symmetric monoidal category we also write P -Alg.

We now recall and fix notation for standard transfers of operadic structures; see e.g., [24,43].

Lemma 4.3. A map of operads f : P −→ Q induces a functor

f∗ : Q-Alg −→ P -Alg

that sends a Q-algebra (X, μ) to the P -algebra (X, ν), where νn is given by the composite

P (n) ⋆ X⋆n fn⋆id
−−−−→ Q(n) ⋆ X⋆n μn

−−→ X.

If f and g are composable maps of operads, then (g ◦ f)∗ = f∗ ◦ g∗.

Lemma 4.4. Let P be an operad in (V , ⋆), and let F, G : (V , ⋆) −→ (W , ♦) be lax symmetric monoidal 

functors, and α : F ⇒ G a monoidal natural transformation. Then

i. FP is an operad in (W , ♦);

ii. F induces a functor

F : P -Alg(V , ⋆) −→ FP -Alg(W ,♦)

that sends (X, μ) to (FX, ν), where νn is given by the composite

1 We do not include the monoidal unit in the notation as in all of our cases it will be the terminal object.
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FP♦(FX)♦n −→ F (P ⋆ X⋆n)
F μn

−−−→ FX;

and

iii. α induces a map of operads α : FP −→ GP , and a natural transformation α : F ⇒ α∗ ◦ G of functors

P -Alg(V , ⋆) −→ FP -Alg(W ,♦),

whose component at (X, μ) is given by αX .

Corollary 4.5. Any operad P in (2Cat , ×) gives rise to an operad (with the same underlying sequence of 

objects) in (2Cat , ⊗) and (2Cat ps, ×).

There are inclusions

P -Alg(2Cat , ×) −→ P -Alg(2Cat , ⊗) −→ P -Alg(2Cat ps, ×).

Proof. Following Remark 3.16, we can use the identity functor (2Cat , ×) −→ (2Cat , ⊗) and the inclusion 

(2Cat , ⊗) −→ (2Cat ps, ×) to transfer the algebra structures. ✷

Remark 4.6. Given the relationship between cubical functors and the Gray tensor product, we can specify 

the objects in the categories of algebras above as follows. In all cases, an algebra is given by a pair (X, μ), 

where X is a 2-category, and μ is a collection of morphisms μn : P (n) × Xn −→ X, which are 2-functors 

if working in (2Cat , ×), cubical functors if working in (2Cat , ⊗), or pseudofunctors if working in (2Catps, ×). 

In the first two cases, a map of algebras is given by a 2-functor X −→ X ′ commuting with μ, but for the 

latter case, a map of algebras is given by a pseudofunctor X −→ X ′.

Notation 4.7. Let P be an operad in (2Cat , ×). Let P - 2Cat denote the subcategory of P -Alg(2Cat ps, ×) given 

by all objects and those morphisms whose underlying pseudofunctor X −→ X ′ is a 2-functor.

Definition 4.8 (The Barratt–Eccles operad). Let O denote the operad in (Cat , ×) with O(n) being the trans-

lation category for Σn: the objects of O(n) are the elements of the symmetric group Σn, and there is a 

unique isomorphism between any two objects. By abuse of notation, we also denote by O the operad in 

(2Cat , ×) obtained by adding identity 2-cells. Note that O is also an operad in (2Cat , ⊗) and (2Cat ps, ×).

Because the nerve and geometric realization functors are strong monoidal, we have an operad |NO| = BO

in Top. Likewise, if A is an O-algebra in (2Cat ps, ×), then BA is a BO-algebra in Top.

Remark 4.9. The operad BO in Top was used implicitly in [3]. As an operad in Cat , O was independently 

introduced by May in [30,31]. In [31], May shows that a permutative category is an O-algebra [31, Lemmas 

4.3–4.5] and that BO is an E∞ operad [31, Lemma 4.8].

4.2. Symmetric monoidal structures from arbitrary operads

The relationship between O-algebras in Cat and permutative categories extends to the 2-categorical level. 

We describe this now, and then abstract the key features for general operads. To begin, note that an operad 

P in (2Cat , ×) induces a different monad P⊗ on 2Cat using a combination of the cartesian product and the 

Gray tensor product. Explicitly, P⊗ is defined via the formula

X �→
∐

n≥0

P (n) ×Σn
X⊗n

using the natural 2-functor
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(A × B) ⊗ (A′ × B
′) → (A ⊗ A

′) × (B ⊗ B
′) → (A × A

′) × (B × B
′).

Proposition 4.10. The category O⊗Alg of algebras for the monad O⊗ on 2Cat is isomorphic to PGM .

Proof. Note that objects e ∈ A are in bijection with 2-functors O(0) → A, and that 2-functors ⊕ : A ⊗A → A

together with a 2-natural isomorphism

A ⊗ A A ⊗ A

A

τ

⊕⊕
⇒β

where τ : A ⊗A → A ⊗A is the symmetry isomorphism in 2Cat for the Gray tensor product are in bijection 

with 2-functors

⊕̃ : O(2) ×Σ2
A

⊗2 → A

using the strict parts of Lemma 3.23. It is now straightforward to verify that the axioms for a permutative 

Gray-monoid are the same as those for an algebra over O⊗. ✷

Using Corollary 4.5 with Proposition 4.10, we can also regard a permutative Gray-monoid as an algebra 

with respect to the cartesian product. We will use this implicitly in our work below.

Corollary 4.11. Every permutative Gray-monoid is an algebra for the operad O acting on (2Cat ps, ×).

Although we have no use for it here, there is an analogous result for O-algebras in (2Cat , ×) and the 

stricter notion of permutative 2-category described in [20], which we state in the following proposition. This 

is the Cat -enriched version of the statement that permutative categories are precisely the O-algebras in 

(Cat , ×) (see Remark 4.9).

Proposition 4.12. The category of O-algebras in (2Cat , ×) is isomorphic to the category Perm2Cat of permu-

tative 2-categories and strict functors of such.

We now turn to the general question of how symmetric monoidal structures arise from operad actions on 

2-categories.

Definition 4.13. Let P be a property of 2-categories. We write P(≤ n) (including the case n = ∞) for the 

full subcategory of the category of operads consisting of those operads P for which P (k) has P for all k ≤ n.

Notation 4.14. Let C denote the property of being bicategorically contractible, i.e., X has C if the unique 

2-functor X → ∗ is a biequivalence.

Lemma 4.15. A nonempty 2-category X is contractible if and only if the following four conditions hold.

i. Any two objects are connected by a 1-cell.

ii. Every 1-cell is an equivalence.

iii. Every 2-cell is invertible.

iv. Any two parallel 1-cells are connected by a unique 2-isomorphism.

Example 4.16. The operad O of Definition 4.8 is in C(≤ ∞).
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Definition 4.17. A choice of multiplication χ in P consists of the following:

• a choice of an object i ∈ P (0);

• a choice of an object t ∈ P (2);

• an adjoint equivalence α : γ(t; t, 1) ≃ γ(t; 1, t) in P (3);

• adjoint equivalences l : γ(t; i, 1) ≃ 1 and r : 1 ≃ γ(t; 1, i) in P (1);

• invertible 2-cells π in P (4), μ in P (3), and λ and ρ in P (2), as depicted below;

• an adjoint equivalence β : t ≃ t · (12) in P (2);

• invertible 2-cells R−|−− and R−−|− in P (3), and v in P (2), as depicted below.

γ(t; γ(t; t, 1), 1)

γ(γ(t; t, 1); t, 1, 1)

=

γ(γ(t; t, 1); 1, t, 1)

γ(t; γ(t; 1, t), 1)

=

γ(γ(t; 1, t); 1, t, 1)

γ(t; 1, γ(t; t, 1))

=

γ(t; 1, γ(t; 1, t))

γ(γ(t; 1, t); 1, 1, t)

=

γ(γ(t; 1, t); t, 1, 1)

γ(γ(t; t, 1); 1, 1, t)

=

γ(id; α, id)

γ(α; id, id)

γ(id; id, α)

γ(α; id; id, id)
γ(α; id, id, id)

⇒
π

γ(γ(t; t, 1); 1, i, 1)

γ(t; γ(t; 1, i), 1)

=

γ(γ(t; 1, t); 1, i, 1)

γ(t; 1, γ(t; i, 1))

=

γ(t; 1, 1) γ(t; 1, 1)

γ(α; id, id, id)

γ(id; r, id)

id

γ(id; id, l)

⇒

μ

γ(t; γ(t; i, 1), 1)

γ(γ(t; t, 1); i, 1, 1)

=

γ(t; 1, 1)

γ(1; t)

=

γ(γ(t; i, 1); t)

γ(γ(t; 1, t); i, 1, 1)

=

γ(id; l, id)

γ(α; id, id, id)

γ(l, id)

⇒

λ

γ(t; 1, 1)

γ(1; t)

=

γ(t; 1, γ(t; 1, i))

γ(γ(t; 1, t); 1, 1, i)

=

γ(γ(t; 1, i); t)

γ(γ(t; t, 1); 1, 1, i)

=

γ(id; id, r)

γ(r, id)
γ(α; id, id, id)

⇒

ρ



4370 N. Gurski et al. / Journal of Pure and Applied Algebra 223 (2019) 4348–4383

γ(t; t, 1)

γ(t; t, 1) · (12)

γ(t; t · (12), 1)

=

γ(t; 1, t) · (12)

γ(t; 1, t · (12)) · (12)

γ(t; 1, t) · (132)

=

γ(t; 1, t)

γ(t; t, 1) · (132)

γ(t · (12); 1, t)

=

γ(id; β, id)

α · (12)

γ(id; id, β) · (12)

α

γ(β; id, id)

α · (132)

⇒

R−|−−

γ(t; 1, t)

γ(t; 1, t) · (23)

γ(t; 1, t · (12))

=

γ(t; t, 1) · (23)

γ(t; t · (12), 1) · (23)

γ(t; t, 1) · (123)

=

γ(t; t, 1)

γ(t; 1, t) · (123)

γ(t · (12); t, 1)

=

γ(id; id, β)

α• · (23)

γ(id; β, id) · (23)

α•

γ(β; id, id)

α• · (123)

⇒

R−−|−

t t

t · (12)

id

β β · (12)

⇒

v

Note that in all of the diagrams above, the equalities on objects follow from the axioms of an operad.

Remark 4.18. Our choice of multiplication is reminiscent of Batanin’s notion of a system of compositions on 

a globular operad [5]. In both instances, this extra structure on an operad is intended to pick out preferred 

binary operations, ensuring they exist as needed. Proposition 4.20 below also reflects the modification made 

by Leinster [29] in which contractibility of the operad already ensures enough operations.

Example 4.19. Consider the Barratt–Eccles operad O of Definition 4.8. There is a canonical choice of multi-

plication κ on O given by i = ∗ ∈ O(0) and t equal to the identity permutation in Σ2. All the equivalences 

are given by the unique 1-morphisms between the corresponding objects, and all the 2-cells are the identity 

(noting that the boundaries are equal because there is a unique 1-morphism between any two objects).

The idea behind this example can be generalized to a larger class of operads, and we explain this now.

Proposition 4.20. Let P be an operad in C(≤ 4). Then there exists a choice of multiplication on P .
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Proof. Since P (0) and P (2) are contractible, they are in particular non-empty, and hence we can pick 

objects i ∈ P (0) and t ∈ P (2). By Lemma 4.15 the equivalences α, l, r and β and the 2-isomorphisms π, μ, 

λ, ρ, R−|−−, R−−|− and v can be picked using contractibility. ✷

Proposition 4.21. Let f : P → Q be a map of operads in (2Catps, ×). If P has a choice of multiplication χ, 

then taking the images of all data involved gives a choice of multiplication f(χ) in Q.

Theorem 4.22. Let P be an operad in C(≤ 5). Then a choice of multiplication χ in P determines a functor

χ∗ : P -Alg(2Cat ps, ×) → SM2Cat ps

which is the identity on underlying 2-categories and pseudofunctors. We therefore have a functor

χ∗ : P - 2Cat → SM2Cat s .

Proof. First, observe that the second statement is a refinement of the first because P - 2Cat denotes the 

subcategory of P -Alg(2Cat ps, ×) whose morphisms are 2-functors (see Notation 4.7). To prove the first 

statement, we use χ to construct a symmetric monoidal structure on an arbitrary P -algebra (X, μ).

We define the monoidal product as the pseudofunctor μ2(t; −, −) obtained by applying Lemma 3.23 to the 

pseudofunctor μ2 : P (2) ×X2 → X. Explicitly, the monoidal product on objects is defined as xy = μ2(t; x, y). 

The unit object is defined as e = μ0(i).

The equivalences α, l, r and β are defined as the appropriate images of their namesakes in χ, as given 

by Lemma 3.23. For example, α : (xy)z → x(yz) is given by the pseudonatural equivalence μ3(α; −, −, −). 

Similarly, the invertible modifications π, μ, λ, ρ, R−|−−, R−−|− and v are given by the appropriate images 

of their namesakes in χ. For example, v is defined as μ2(v; −, −).

Contractibility of P (n) for n ≤ 5 implies that analogues of the axioms for the modifications in a symmetric 

monoidal bicategory are satisfied by the corresponding cells in P , which in turn implies that the same axioms 

are satisfied after applying μ.

Let F : X → Y be a P -algebra morphism, i.e., a pseudofunctor that commutes with the action of P . It 

is easy to check that this implies that F preserves strictly the symmetric monoidal structures on X and Y

given by the choice of multiplication χ. Thus we have a functor χ∗ : P -Alg(2Cat ps, ×) → SM2Cat ps. ✷

We now record several results which follow from Theorem 4.22 and its proof.

Proposition 4.23. Let f : P → Q in C(≤ 5), and assume P has choice of multiplication χ. As functors 

Q- 2Cat → SM2Cat s, we have an equality χ∗ ◦ f∗ = (f(χ))∗.

Proposition 4.24. Suppose that P1 and P2 are operads with choices of multiplication χ1 and χ2. Then the 

product P = P1 ×P2 has a choice of multiplication defined by the pointwise product of the data, χ = χ1 ×χ2.

Remark 4.25. As a special case of Proposition 4.23, the projections πi : P → Pi identify πi(χ) with χi.

Proposition 4.26. If P is an operad in C(≤ 5), X is a P -algebra, and χ1, χ2 are two different choices of mul-

tiplication in P , the identity pseudofunctor on X can be equipped with the structure of a symmetric monoidal 

biequivalence χ∗
1X → χ∗

2X relating the two symmetric monoidal structures. Moreover, this assignment is 

natural in X.

Proof. Note that contractibility of P gives 1-morphisms relating i1 with i2 and t1 with t2, which when 

applied to the algebra X give rise to the map that compares units and multiplications. The rest of the data 

and axioms of a symmetric monoidal biequivalence follow from contractibility as well. ✷
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Recall that κ denotes the canonical choice of multiplication for the Barratt–Eccles operad (Example 4.19), 

and we implicitly regard a permutative Gray-monoid as an O-algebra by Corollary 4.11.

Proposition 4.27. Let A be a permutative Gray-monoid. Then A = κ∗A. The composite

PGM → O-Alg(2Cat ps, ×)
κ∗

−−→ SM2Cat s

is the inclusion functor from PGM to SM2Cat s.

Proof. The underlying 2-categories of A and κ∗A are equal. It is clear by construction that the two sym-

metric monoidal structures are the same. ✷

5. Symmetric monoidal structures and group-completion

In this section we show how to construct a Picard 2-category with the same stable 2-type as a given 

permutative Gray-monoid. Our construction begins with a strict version of the fundamental 2-groupoid in 

Section 5.1. In Section 5.2 we analyze its effect on stable equivalences, and in Section 5.3 we apply the 

theory of Section 4 together with topological group-completion to obtain the desired Picard 2-category.

Definition 5.1. A strict 2-groupoid is a 2-category in which every 1- and 2-cell is strictly invertible, i.e., for 

every 1-cell f : a → b there is a 1-cell g : b → a such that gf , fg are both identity 1-cells, and similarly for 

2-cells. We define the category Str2Gpd to have strict 2-groupoids as objects and 2-functors as morphisms.

Remark 5.2. We should note that any 2-category isomorphic to a strict 2-groupoid is itself a strict 2-groupoid, 

but that a 2-category which is biequivalent to a strict 2-groupoid will not in general have 1-cells which are 

strictly invertible in the sense above, but only satisfy the weaker condition that we have called invertible in 

Definition 3.24: given f there exists a g such that fg and gf are isomorphic to identity 1-cells.

5.1. Background on the Whitehead 2-groupoid and nerves

We now recall the construction of a strict fundamental 2-groupoid for simplicial sets due to Moerdijk–

Svensson [33], known as the Whitehead 2-groupoid.

Definition 5.3 ([33, Section 1, Example (2)]). Let X be a topological space, Y ⊆ X a subspace, and S ⊆ Y

a subset. We define the Whitehead 2-groupoid W (X, Y, S) to be the strict 2-groupoid with

• objects the set S,

• 1-cells [f ] : a → b to be homotopy classes of paths f from a to b in Y , relative the endpoints, and

• 2-cells [α] : [f ] ⇒ [g] to be homotopy classes of maps α : I × I → X such that

i. α(t, 0) = f(t),

ii. α(t, 1) = g(t),

iii. α(0, −) is constant at the source of f (and hence also g),

iv. α(1, −) is constant at the target of f (and hence also g), and

v. homotopies H(s, t, −) between two such maps fix the vertical sides and map the horizontal sides 

into Y for each s.

Since the nerve functor N : Str2Gpd → sSet preserves limits and filtered colimits, it has a left adjoint. In 

[33], this left adjoint was explicitly computed using Whitehead 2-groupoids, and we recall their construction 

now.
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Notation 5.4. For a simplicial set X, let X(n) denote the n-skeleton of X.

Theorem 5.5 ([33, Theorem 2.3]). The functor W : sSet → Str2Gpd , defined by

W (X) = W (|X|, |X(1)|, |X(0)|),

is left adjoint to the nerve functor, N .

We will need several key properties of W from [33]; we summarize these in the next proposition.

Proposition 5.6 ([33]).

i. If X → Y is a weak equivalence of simplicial sets, then WX → WY is a biequivalence of 2-groupoids 

[33, Proposition 2.2 (iii)].

ii. For a strict 2-groupoid C, the strict 2-functor ε : WNC → C is a bijective-on-objects biequivalence, 

although its pseudoinverse is only a pseudofunctor [33, Displays (1.9) and (2.10)].

iii. For a simplicial set X, the unit ηX : X → NWX of the adjunction W ⊣ N is a P2-equivalence. In 

particular, if K is a 2-category then ηNK : NK → NWNK is a P2-equivalence [33, Corollary 2.6].

iv. The functor W is strong monoidal with respect to the cartesian product [33, Proposition 2.2 (i)].

Remark 5.7. For a strict 2-groupoid C, the 1-cells of WNC are freely generated by the underlying graph of 

the 1-cells of C [33, Display (2.10)].

Now the nerve functor is defined on all of 2Cat nop, not just the subcategory of 2-groupoids or strict 

2-groupoids. Thus we can define a functor 2Catnop → Str2Gpd using the composite W ◦ N . Perhaps surpris-

ingly, this composite is also a left adjoint even though N is a right adjoint.

Proposition 5.8. The functor WN extends to a functor 2Catnop → Str2Gpd , and is left adjoint to the inclusion 

i : Str2Gpd →֒ 2Cat nop.

Proof. First note that N extends to a full and faithful functor 2Catnop → sSet by [16]. Thus we have natural 

isomorphisms

Str2Gpd (WNA,B) ∼= sSet(NA, NB) ∼= 2Cat nop(A, iB). ✷

Remark 5.9. Note that, in the above proof, B is a strict 2-groupoid so in particular every normal oplax 

functor A → iB is in fact a normal pseudofunctor. Thus we have a natural isomorphism Str2Gpd (WNA, B) ∼=

2Cat nps(A, iB) as well, so WN is also left adjoint to the inclusion Str2Gpd →֒ 2Cat nps.

Note since the nerve functor N : 2Cat nop → sSet is full and faithful, ηNK is in fact in the image of N .

Notation 5.10. Let ε�
K

: K → WNK be the unique normal pseudofunctor (Remark 5.9) with Nε�
K

= ηNK. 

Note that ε� is strictly natural in normal pseudofunctors.

Remark 5.11. The triangle identities for η and ε show that the composite εε� is the identity 2-functor. The 

unit and counit of the adjunction WN ⊣ i are given, respectively, by ε� and ε.

Lemma 5.12. The transformations ε� and ε are P2-equivalences.
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Proof. Recall that η is a P2-equivalence by Proposition 5.6 (iii). Since the nerve functor creates 

P2-equivalences of 2-categories, ε� is also a P2-equivalence. This implies that ε is a P2-equivalence by Re-

mark 5.11 and 2-out-of-3. ✷

This accomplishes the first goal of this section, to produce from a 2-category C a strict 2-groupoid WNC

and a pseudofunctor C → WNC which is a natural P2-equivalence. We now turn to incorporating the 

symmetric monoidal structure.

Proposition 5.13. The adjunction WN ⊣ i of Proposition 5.8 is monoidal with respect to the cartesian 

product.

Proof. Note that N preserves products since it is a right adjoint (Proposition 2.7), and therefore WN

is strong monoidal by Proposition 5.6 (iv). Straightforward calculations show that ε� and ε are monoidal 

transformations. ✷

Notation 5.14. Let

h : WN(−) ⇒ WS|N(−)| = WSB(−)

denote the natural transformation induced by the unit id ⇒ S| − |.

Applying symmetric monoidal functors to the operad O, we have the following corollary (see Lemma 4.4).

Corollary 5.15. There are operads WNO and WSBO. The transformations ε, ε�, and h induce operad maps

ε : WNO → O, ε� : O → WNO, and h : WNO → WSBO.

Notation 5.16. Let κ̃ denote the choice of multiplication in WNO given by applying ε� to the canonical 

choice κ (Proposition 4.21).

Proposition 5.17. Given a permutative Gray-monoid A, there is a natural zigzag of strict functors of symmet-

ric monoidal 2-categories as shown below. The left leg is a P2-equivalence and the right leg is a biequivalence.

A κ∗
A κ̃∗ε∗

A

κ̃∗WN(A)

κ̃∗h∗WSB(A).

κ̃∗(εA) κ̃∗(hA)

= =

Proof. Recall that we implicitly regard A as an O-algebra via Corollary 4.11. Therefore we have a zigzag 

of WNO-algebra maps (note that these have underlying 2-functors) induced by the components of ε and h, 

respectively,

ε∗
A ←− WN(A) −→ h∗WSB(A).

We have A = κ∗A by Proposition 4.27. Note κ̃∗ε∗ = κ∗ because εε� = id (Remark 5.11). This gives a 

zigzag of symmetric monoidal 2-categories and strict functors. Naturality follows from naturality of ε and h. 

Moreover, ε is a P2-equivalence by Lemma 5.12 and h is a biequivalence because W sends weak equivalences 

to biequivalences by Proposition 5.6 (i). ✷
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It is clear that the property of being Picard is preserved by biequivalences and, moreover, every 

P2-equivalence of Picard 2-categories is a biequivalence. Therefore we have the following corollary of Propo-

sition 5.17.

Corollary 5.18. If A is a strict Picard 2-category, then the span in Proposition 5.17 is a span of Picard 

2-categories.

5.2. E∞-algebras and stable homotopy theory of symmetric monoidal bicategories

In this section, we show that the composite WS, combined with any choice of multiplication, sends stable 

equivalences of E∞ spaces to stable P2-equivalences of symmetric monoidal 2-groupoids.

Our notions of stable equivalence, stable n-equivalence, and Pn-equivalence for strict functors of sym-

metric monoidal bicategories are created by the K-theory functors of [20,22], which construct infinite loop 

spaces from bicategories and 2-categories. We begin with a review of these functors and then apply the 

theory of E∞ algebras in Top.

Theorem 5.19 ([22,20]). There is a functor K : SMBicat s → Sp
0
. For a symmetric monoidal bicategory A, 

KA is a positive Ω-spectrum, with the property that

BA ≃ KA(0) → ΩKA(1)

is a group-completion. In particular, we have that

πn(KA) ∼= πn(ΩB(BA)),

where the latter are the unstable homotopy groups of the topological group-completion of the classifying 

space BA.

Definition 5.20. A strict functor F : A → B of symmetric monoidal bicategories is a stable equivalence if 

the induced map of spectra KF : KA → KB is a stable equivalence. Similarly, F is a stable n-equivalence, 

respectively stable Pn-equivalence, if KF is so.

Lemma 5.21. Let F : A → B be a strict functor such that BF : BA → BB is a weak equivalence. Then F is 

a stable equivalence, and hence, also a stable Pn-equivalence for all n ≥ 0.

Proof. The corresponding map of spectra KF is a level equivalence. ✷

Restricting to permutative Gray-monoids, we obtain the main result in [20].

Theorem 5.22 ([20]). There is a functor K : PGM → Sp
0

which induces an equivalence of homotopy theories

(PGM , st eq) ≃ (Sp
0
, st eq)

between permutative Gray-monoids and connective spectra, working relative to the stable equivalences.

Proposition 5.23 ([20, Remark 6.4]). When restricted to the subcategory PGM , the functor K of [22] is 

equivalent to that of [20].

Definition 5.24. An operad D in Top is an E∞ operad if for all n ≥ 0, the Σn-action on D(n) is free, and 

D(n) is contractible.



4376 N. Gurski et al. / Journal of Pure and Applied Algebra 223 (2019) 4348–4383

The following theorem appeared first in [31]. A modern (equivariant) version is in [15].

Theorem 5.25 ([31, Theorem 2.3], [15, Theorem 1.14, Definition 2.7]). Let D be an E∞ operad in Top. There 

is a functor

E : D-Alg → Spectra

such for a D-algebra X and all n ≥ 2,

X = E(X)(0) → Ωn
E(X)(n)

is a group-completion.

Definition 5.26. Let D be an E∞ operad in Top. A map f : X → Y of D-algebras is a stable equivalence if 

the associated map E(f) of spectra is so. Similarly, f is said to be a stable Pn-equivalence if E(f) is so.

We use Theorem 5.25 to recognize stable equivalences and stable Pn-equivalences of D-algebras by their 

induced maps on group-completions, as in the following result.

Corollary 5.27. A map f : X → Y of D-algebras is a stable equivalence if and only if the associated map on 

group-completions

ΩBf : ΩBX → ΩBY

is an unstable equivalence.

Similarly, f is a stable Pn-equivalence if and only if

ΩBf : ΩBX → ΩBY

is an unstable Pn-equivalence.

Applying Theorem 5.19, we can recognize stable Pn-equivalences of symmetric monoidal bicategories in 

the same way.

Corollary 5.28.

A strict functor F : A → B of symmetric monoidal bicategories is a stable Pn-equivalence if and only if 

the associated map on topological group-completions

ΩB(BF ) : ΩB(BA) → ΩB(BB)

is an unstable Pn-equivalence.

Proposition 5.29. Let D be an E∞ operad, and let χ denote any choice of multiplication for WS(D). If 

α : X → Y is a map of D-algebras which is a stable equivalence, then χ∗WSα : χ∗WSX → χ∗WSY is a 

stable P2-equivalence in SM2Cats.

Proof. By Corollary 5.28 and Corollary 5.27, it suffices to show that BWSα is a stable P2-equivalence. 

Consider the following diagram of algebras over |SD |, induced by naturality of the counit

|S(−)| ⇒ id
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and the transformation

|S(−)| ⇒ BWS(−)

induced by the unit of W ⊣ N .

X Y

|SX| |SY |

BWSX BWSY

α

|Sα|

BW Sα

The upper vertical arrows are unstable weak equivalences, therefore stable equivalences. The lower vertical 

arrows are unstable P2-equivalences by Proposition 5.6 (iii). Since W takes values in 2-groupoids, BWSX

and BWSY are 3-coconnected. Therefore by Corollary 2.17 and Corollary 5.27 the lower vertical morphisms 

are stable P2-equivalences. The assumption that α is a stable equivalence means that |Sα| must be too, and 

hence both are stable P2-equivalences. The result then follows by 2-out-of-3 for stable P2-equivalences. ✷

5.3. Group-completion for E∞ algebras

In this section we recall the theory of group-completions of E∞ algebras in Top and discuss its implications 

for the symmetric monoidal 2-groupoids studied above. Let D be an arbitrary E∞ operad in Top.

Notation 5.30. Let Cn be the little n-cubes operad, and let C∞ be the colimit (the maps are given by 

inclusions of Cn into Cn+1). This is an E∞ operad (see [30, Section 4]). Let D∞ = D × C∞ and let p1 and 

p2 denote the two projections.

Theorem 5.31 ([31, Theorem 2.3]). If X is a D-algebra, then there is an algebra qX over D∞ and a 

C∞-algebra LX, together with D∞-algebra maps

p∗
1X qX p∗

2LX
ξ α

such that ξ is a homotopy equivalence and α is a group-completion. The assignments X �→ qX and X �→ LX

are functorial, and ξ and α are natural.

Remark 5.32. The functors q and L are constructed explicitly in [31]. The homotopy inverse of ξ is also very 

explicit, but it is not a D∞-algebra map.

Note that Corollary 5.27 implies that both ξ and α above are stable equivalences of D∞-algebras. We 

now specialize to the E∞ operad BO, and we let BO∞ = BO × C∞. Since the functors W and S are strong 

symmetric monoidal we obtain the following result.

Lemma 5.33. There are operads WSC∞ and WSBO∞ in 2Cat , together with projections

p1 : WSBO∞ → WSBO
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and

p2 : WSBO∞ → WSC∞.

Corollary 5.34. Given a permutative Gray-monoid A, there exists a natural zigzag of maps of WSBO∞-

algebras in (2Cat , ×)

p∗
1WS(BA)

WS(qBA)

p∗
2WS(LBA).

W S(ξBA) W S(αBA)

The left arrow is a biequivalence.

Proof. By Propositions 2.7 and 5.6 (iv), B, S and W are strong monoidal. For the biequivalence part, 

S sends homotopy equivalences to weak equivalences, and W sends weak equivalences to biequivalences 

(Proposition 5.6 (i)). ✷

Notation 5.35. Because WSC∞ is in C(≤ ∞), Proposition 4.20 guarantees that it has a choice of multipli-

cation. For the rest of this paper, let ν denote a fixed such choice. For example, the content of [22, §2.2]

provides one such choice.

Notation 5.36. Let c denote the choice of multiplication in WSBO∞ given by the product of h(κ̃) (Nota-

tions 5.14 and 5.16) and ν. We call this the canonical choice of multiplication for WSBO∞.

Proposition 5.37. Given a permutative Gray-monoid A, there is a natural zigzag of symmetric monoidal 

2-categories and strict monoidal 2-functors

κ̃∗h∗WS(BA) c
∗p∗

1WS(BA)

c
∗WS(qBA)

c
∗p∗

2WS(LBA) ν∗WS(LBA).

c
∗(W S(ξBA)) c

∗(W S(αBA))

==

Moreover, ν∗WS(LBA) is a Picard 2-category, ξ is a biequivalence and α is a stable P2-equivalence.

Proof. The existence of this natural zigzag follows by applying Corollary 5.34 with the canonical choice of 

multiplication c. By Proposition 4.23 we identify c∗p∗
1 = κ̃∗h∗ and c∗p∗

2 = ν∗.

We see that ν∗WS(LBA) is a 2-groupoid because WX is a 2-groupoid for every simplicial set X (see 

Theorem 5.5). We note that ν∗WS preserves π0 and that π0(ν∗WS(LBA)) ∼= π0(LBA) is a group because 

LBA is group-complete. The product is induced by the monoidal structure, and therefore it follows that 

objects have inverses up to equivalence. Thus ν∗WS(LBA) is a Picard 2-category.

The fact that c∗WS(ξ) is a biequivalence is immediate from Corollary 5.34, and the claim about c∗WS(α)

follows from Proposition 5.29 because the map α of Theorem 5.31 is a group-completion and hence a stable 

equivalence. ✷

Because the property of being Picard is preserved by biequivalences, we have the following corollary.
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Corollary 5.38. If A is a strict Picard 2-category, then the span in Proposition 5.37 is a span of Picard 

2-categories.

6. Proof of the 2-dimensional stable homotopy hypothesis

Our main theorem is the following.

Theorem 6.1. There is an equivalence of homotopy theories

(Pic PGM , cat eq) ≃ (Sp2
0
, st eq).

Proof. The proof follows from putting together several results in this section. To be precise, we combine 

Propositions 6.2 and 6.4 below, which follow easily from previous work in [20,21], with Theorem 6.5, whose 

proof depends on the content of Sections 3 through 5. ✷

Proposition 6.2. There is an equality of homotopy theories

(Pic PGM , cat eq) = (Pic PGM , st P2 -eq).

Proof. Recall that a 2-functor is a biequivalence if and only if it is essentially surjective and a local equiva-

lence. The formulas of [21, Lemma 3.2] show that the stable homotopy groups of a strict Picard 2-category 

are computed by the algebraic homotopy groups (i.e. equivalence classes of invertible morphisms) in each 

dimension. Therefore a strict functor between strict Picard 2-categories is a stable P2-equivalence if and 

only if it is a biequivalence. ✷

Lemma 6.3. The functor P of [20] preserves stable P2-equivalences.

Proof. Using the notation of [20], let f : X → Y be a stable P2-equivalence of Γ-2-categories (certain 

diagrams of 2-categories indexed on finite pointed sets; see [20, Definition 2.11]). Since stable P2-equivalences 

of permutative Gray-monoids are created by the K-theory functor of [20], it suffices to check that KPf is 

a stable P2-equivalence. This is immediate from the naturality of the unit η with respect to strict Γ-maps 

([20, Corollary 7.14]): we have

η ◦ f = KPf ◦ η.

Since η is a stable equivalence, then KPf is a stable P2-equivalence by 2-out-of-3, and therefore Pf is 

too. ✷

Proposition 6.4. There are equivalences of homotopy theories

(PGM , st P2 -eq) ≃ (Sp
≥0

, st P2 -eq) ≃ (Sp2
0
, st eq).

Proof. The K-theory functor of [20, Proposition 6.13] creates stable P2-equivalences by definition. 

Lemma 6.3 observes that the inverse P preserves stable P2-equivalences as well. The first equivalence 

then follows from the equivalences of [20] relative to stable P2-equivalences. The second equivalence is a 

reformulation of definitions. ✷

Theorem 6.5. There is an equivalence of homotopy theories

(Pic PGM , st P2 -eq) ≃ (PGM , st P2 -eq).



4380 N. Gurski et al. / Journal of Pure and Applied Algebra 223 (2019) 4348–4383

PGM

W SBO- 2CatO- 2Cat W SC∞- 2Cat

W NO- 2Cat W SBO∞- 2Cat

SM2Cat s

W S(LB−)

κ
∗

ε
∗

h
∗

p
∗

1
p

∗

2

ν
∗

κ̃
∗

c
∗

⇒ε
⇒h ⇒W S(ξ) ⇒W S(α)

=

=
=

Fig. 6.11. This diagram of categories, functors, and natural transformations summarizes the zigzag constructed in the proof of 
Theorem 6.5.

To prove Theorem 6.5, we consider the serially-commuting diagram of homotopy theories and relative 

functors below. Lemma 3.35 shows that the inclusions j in this diagram are equivalences of homotopy 

theories, with inverse equivalences given by r = (−)qst. We will show that the inclusions i are equivalences 

of homotopy theories.

(Pic Bicat s, st P2 -eq) (SMBicat s, st P2 -eq)

(Pic PGM , st P2 -eq) (PGM , st P2 -eq)

i

i

j jr r
G (6.6)

To do this, we first reduce to the problem of constructing a relative functor G which commutes with i and 

j up to natural zigzags of stable P2-equivalences.

Lemma 6.7. Suppose there is a relative functor G as shown in Display (6.6), and suppose that diagram 

involving G, i, and j commutes up to a natural zigzag of stable P2-equivalences. Then the inclusions labeled 

i are equivalences of homotopy theories.

Proof. Because the square involving i and j commutes, it suffices to prove that the inclusion

i : (Pic Bicat s, st P2 -eq) → (SMBicat s, st P2 -eq)

is an equivalence of homotopy theories. We do this by showing that the composite Gr is an inverse for i up 

to natural zigzag of stable P2-equivalences.

Let us write 
∼

↔↔ to denote a natural zigzag of stable P2-equivalences. Then the proof of Lemma 3.35

shows we have

jr
∼

↔↔ id and rj
∼

↔↔ id.
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By assumption, we have iG 
∼

↔↔ j and Gi 
∼

↔↔ j. Hence we have

iGr
∼

↔↔ jr
∼

↔↔ id and Gri = Gir
∼

↔↔ jr
∼

↔↔ id. ✷

Now we describe G and show that it satisfies the hypotheses of Lemma 6.7.

Definition 6.8. Let G = ν∗WS(LB−).

Recalling the relevant notation, this is the composite of the classifying space B, topological group com-

pletion L, singular simplicial set S, Whitehead 2-groupoid W , and choice of multiplication ν∗ (applied to 

a permutative Gray-monoid considered as an O-algebra via Corollary 4.11). By Proposition 5.37, this is a 

functor from permutative Gray-monoids to Picard 2-categories. We will confirm that G is a relative functor 

in the course of the proof of Theorem 6.5.

Remark 6.9. The attentive reader will note that ν∗ takes values in the subcategory Pic 2Cat s ⊂ Pic Bicat s. We 

implicitly compose with this inclusion because, although we suspect PGM , SM2Cat s, and SMBicats all have 

equivalent homotopy theories (and likewise for the Picard subcategories of each), the proof of Lemma 3.35

does not specialize to SM2Cat s.

Proof of Theorem 6.5. The necessary zigzags to apply Lemma 6.7 have already been constructed; we review 

them now. Let A be a permutative Gray-monoid. To compare jA and iG(A), we require three operads: BO

is the geometric realization of categorical Barratt–Eccles operad O (Definition 4.8); C∞ is the little infinite 

cubes operad (Notation 5.30); and BO∞ = BO × C∞ is their product.

We consider choices of multiplication induced by operad maps shown in Display (6.10) below (see Corol-

lary 5.15 and Lemma 5.33).

O

WNO

WSBO

WSBO∞

WSC∞

ε h p1 p2 (6.10)

This is a diagram of operads in 2Cat , that is, at level n the maps are given by 2-functors. With appropriate 

choices of multiplication, we construct the required zigzag in two stages. First, we use κ̃, given by applying 

ε� to the canonical choice κ (see Notation 5.16). By Proposition 5.17 we have the following zigzag of in 

SM2Cat s, where the right leg is a biequivalence and the left leg is an unstable P2-equivalence and therefore 

a stable P2-equivalence by Corollaries 2.17 and 5.27.

A κ∗
A κ̃∗ε∗

A

κ̃∗WN(A)

κ̃∗h∗WSB(A)

κ̃∗(εA) κ̃∗(hA)

= =

Second, we use c, described in Notation 5.36. By Proposition 5.37 we have the following zigzag in SM2Cats, 

where the left leg is a biequivalence, and the right leg is a stable P2-equivalence.
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κ̃∗h∗WS(BA) c
∗p∗

1WS(BA)

c
∗WS(qBA)

c
∗p∗

2WS(LBA) ν∗WS(LBA)

c
∗(W S(ξBA)) c

∗(W S(αBA))

==

Thus we have a natural zigzag of stable P2-equivalences between iG and j. This also shows that G is a 

relative functor since j preserves and i creates stable P2-equivalences.

As noted in Corollaries 5.18 and 5.38, this is a zigzag of Picard 2-categories when A is a strict Picard 

2-category. Thus we also have a natural zigzag of stable P2-equivalences between Gi and j. By Lemma 6.7, 

this completes the proof. ✷

The key step, producing a zigzag of stable P2-equivalences between iG and j, is summarized in Fig. 6.11.

Composing with the inclusion SM2Cats ⊂ SMBicat s, the composite along the left hand side becomes the 

inclusion j. Likewise, the composite ν∗WSLB along the right hand side becomes iG. The components of h

and WS(ξ) are biequivalences; the components of ε and WS(α) are stable P2-equivalences.
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