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Abstract

The strengthening of metals by nano-scale obstacles is mainly attributed

to the impediment to glide dislocations offered by these obstacles. It is impor-

tant to understand the mechanisms for dislocation bypass of obstacles having

nano-scale dimension, including the atomic-scale structure changes sustained

by both obstacles and dislocations after the bypass process. Recently, atomic-

scale modeling has provided much insight into obstacle interactions involving

a single dislocation. However, the more naturally occurring scenarios involv-

ing a sequence of encounters with arrays of moving dislocations are not as

well understood owing to prohibitively large length scale requirements for

atomistic models. In this study, we utilize a novel multiscale concurrent

atomistic-continuum method to simulate a sequence of interactions between

glide dislocations in an array with a spherical nano-obstacle (either a void or

∗Corresponding author
Email address: shuozhixu@ucsb.edu (Shuozhi Xu)

Preprint submitted to Acta Materialia July 24, 2019



an impenetrable precipitate) in Al. In the case of a void, the bypassing array

of dislocations progressively weakens the void until it splits the originally

spherical void into two hemispheres. We present an analytical model for the

depinning stress for the first dislocation in the array. In the case of a large

impenetrable precipitate, sequential dislocations in the array bypass via al-

ternating mechanisms of Orowan looping and Hirsch looping. The residual

dislocation loop created around the precipitate by the bypass of the first dis-

location is completely removed by the passage of the subsequent dislocation.

These mechanisms can benefit the design of materials that are reinforced

with nanophase inhomogeneities to achieve ultra high strength.

Keywords: Multiscale modeling, dislocation/obstacle interactions,

dislocation pile-up, FCC metals

1. Introduction

The strength of crystalline materials is governed by the motion of disloca-

tions, which tend to move in arrays on a preferred slip plane for many practi-

cal alloy systems with low to medium intrinsic stacking fault energy (ISFE).

One of the most effective methods for strengthening crystalline materials is

to introduce small obstacles with nanoscale dimensions [1]. These obstacles

are typically immobile and are introduced into individual crystals by alloy-

ing, quenching, or irradiation [2]. When the material is deformed, stress

drives dislocations to these obstacles and a higher stress level is needed for

dislocation bypass. The higher the additional stress, the more effective is the

obstacle at strengthening. Thus, design of high-performance, high-strength

materials relies on understanding the effectiveness of nm-sized obstacles to
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hindering or blocking motion of dislocation arrays. For nearly a century, the

literature reflects conventional understanding of a single dislocation interact-

ing with an obstacle [3]. However, the effect of the interaction between the

first dislocation and the obstacle on subsequent dislocation/obstacle interac-

tions is less well understood.

When the obstacle is a void, two edge dislocation/void interaction mech-

anisms exist for mid-plane encounters, distinguished by whether or not the

dislocation climbs, as illustrated in Fig. 1. In both mechanisms, the dislo-

cation, with Burgers vector magnitude b, creates two surface steps with size

b on the ‘incoming’ and ‘outgoing’ sides of the void. However, the outgoing

surface step forms either on the original slip plane (Fig. 1(c1)) or on a slip

plane that is h′ away from the original one as a result of dislocation climb

(Fig. 1(c2)), which tends to occur when it is easy for jogs to form along

a dislocation line [4]. In previous atomistic simulations of dislocation/void

interactions, dislocation climb was observed in body-centered cubic (BCC)

Fe, W, and Mo [5, 4], but not in face-centered cubic (FCC) Cu [6]. The

dissociation of dislocations into Shockley partials in FCC metals increases

dislocation climb energy barrier because both partial dislocations need to

climb to complete the climb of the extended dislocation [7]. Indeed, it was

found that the probability of dislocation climb in an FCC metal increases

with higher ISFE, especially when the center of the void is located on the

compressive side of the edge dislocation [8, 9]. Bacon et al. [3] predicted

that an edge dislocation may climb upon exiting a void in FCC metals with

medium to high ISFE, such as Al. Hence, it would be interesting to test this

hypothesis by modeling dislocation/void interactions in Al.
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Obstacles other than voids may not be sheared by glide dislocations. In

the literature, there exist two main interaction mechanisms between a dislo-

cation and an impenetrable precipitate. Based on continuum linear elastic

dislocation theory, Mott and Nabarro [10] and Orowan [11] proposed that

each interacting dislocation leaves behind an Orowan shear loop, and so the

bypass of a sequence of glide dislocations results in a set of concentric shear

loops around the precipitate. This multi-dislocation interaction scenario,

which is the same for dislocations with any character angle, leads to what

is known as Orowan strain hardening. Humphreys and Hirsch [12] proposed

an alternative mechanism in which, if all dislocations are edge-oriented, each

dislocation/precipitate interaction leads to two pairs of prismatic loops, one

on each side of the obstacle. This multi-dislocation interaction, which in-

volves the cross-slip of the screw components of dislocations, is known as

Hirsch looping. Both Orowan and Hirsch looping are illustrated in Fig. 2.

Post-mortem experimental studies diverge in their support of such theories,

with some observing both Orowan shear loops and Hirsch prismatic loops

while others reporting neither type of residual defect [13, 12, 14, 15].

Continuum-based modeling techniques such as discrete dislocation dy-

namics (DDD), level-set method, phase-field modeling, and larger scale crys-

tal plasticity have been used to model dislocation/precipitate interactions.

These continuum-based models typically assume that the bypass mechanism

does not change as more dislocations interact with the precipitate. For ex-

ample, in DDD simulations, when an array of edge dislocations sequentially

bypasses an impenetrable precipitate, either Orowan looping [16, 17, 18] or

Hirsch looping [19] occurs, depending on whether cross-slip is permitted. As
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revealed by level-set-based [20, 21] and DDD simulations [22], the specific

looping mechanism also depends on the interplanar distance h between the

slip plane and the plane containing the precipitate center, as well as the co-

herency stress (due to the mismatch in elastic properties between the matrix

and precipitate) and image stress (due to the change in the strain energy of

a dislocation near a second-phase precipitate).

The mechanisms by which dislocations overcome nano-scale obstacles

necessarily involve potentially significant atomic-scale structural changes in

both the obstacle and dislocation during the interaction. Thus, atomic-scale

calculations via either molecular dynamics (MD) or molecular statics (MS)

methods are the most suitable predictive approaches for exploring possible

interaction mechanisms. Based on MD simulations in Ni, Proville and Bakó

[23] observed that the second dislocation, after bypassing a Ni3Al coherent

precipitate (1.5 nm radius) with an Orowan loop, formed two jogs but the

state of the original Orowan loop was not described. Using MS for Mg, Groh

[24] studied the interaction of a second basal dislocation with an impenetra-

ble obstacle (2 nm radius) wrapped by an Orowan loop and observed Hirsch

looping, in which the Orowan loop was removed by formation of prismatic

loops. The second glide dislocation also formed jogs and transported the

prismatic loop away from the obstacle. However, interaction mechanisms

of subsequent dislocations were not explored. By studying an impenetrable

obstacle (1.5 nm radius) in Cu via the MD method, Hatano [25] found that

the Hirsch looping mechanism is favored over the Orowan looping if the lo-

cal stress field is asymmetric with respect to the slip plane, which may be

the case if the externally applied stress is asymmetric with respect to this
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configuration or h is too large; after Hirsch looping, the dislocations that

glide away contained jogs and left a row of sessile prismatic loops behind.

Taken together, these results suggest that the interaction mechanisms of an

obstacle with an array of moving dislocations cannot be understood based

on only a single dislocation/precipitate interaction. In particular, it is com-

mon practice to extrapolate such that these same interactions are assumed

to occur repeatedly with each successive dislocation and the obstacle remains

unchanged. There is no apparent reason to expect that either situation hap-

pens. Direct observation by experimental techniques during deformation at

the needed time and length scales are extremely challenging, at the present

time, and have not shed sufficient light on understanding of sequential by-

pass mechanisms. In addition, large scale atomistic simulations of sequential

obstacle interactions with dislocations have been limited to date, since they

would be too computationally intensive owing to the long range nature of

the stress field in a dislocation array [26, 27].

Recently, a novel concurrent atomistic-continuum (CAC) approach was

developed to increase the length scale that can be addressed using atomic-

scale simulations. The CAC method employs a unified atomistic-continuum

integral formulation, with the underlying interatomic potential as the only

constitutive rule [28]. In contrast to most other atomistic/continuum cou-

pling multiscale materials modeling approaches, CAC features a two-way

exchange of dislocations between the atomistic and coarse-grained domains

without having to apply mesh refinement to the latter [29]. It is useful for

problems in which full atomistic resolution is required only in some regions

(e.g., near obstacles), with coarse-graining employed elsewhere to support
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representation of the long-range stress fields of moving dislocation arrays

[30]; in particular, CAC has been applied to slip transfer of sequential dislo-

cations across a Σ3{111} coherent twin boundary and a Σ11{113} symmetric

tilt grain boundary [31, 32]. In this work, we employ the CAC method to ex-

amine the favorable bypass mechanisms used by moving arrays of dislocations

to overcome nano-scale obstacles.

To build more comprehensive understanding, we analyze two extreme

cases, one in which the obstacle is significantly more compliant than the

matrix (i.e., a void), and the other in which the obstacle is much stiffer

(i.e., an impenetrable precipitate). While seemingly hypothetical, these two

cases are common in many materials [33, 34]. We show that for an order of

magnitude range in void diameter (0.56 nm ≤ D ≤ 5.6 nm), the void retains

its size but accumulates steps after successive interactions with dislocations

in a planar array; moreover, the strength of a sheared void decreases as the

number of accumulated steps increases. A fully split void weakly hinders

subsequent dislocation motion. In the case of an impenetrable precipitate

(D ≥ 1.12 nm), a repeated sequence of dislocation interactions is observed

that leaves the glide dislocation and obstacle free of residual debris. This is

accomplished by formation of an Orowan loop after the bypass of the first

dislocation, followed by its removal after the bypass of the second dislocation

via the Hirsch looping mechanism.

2. METHODOLOGY

Fig. 3 shows the computational model for sequential dislocation/obstacle

interactions. The problem is partitioned into an atomistic domain and a
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coarse-grained domain [35]. In the former, atomic positions are updated

in the same way as in MD or MS, whereas in the latter, neither displace-

ment continuity nor strain compatibility is required between finite elements.

As a result, discontinuities may form between finite elements, allowing for

nucleation and propagation of displacement discontinuities (e.g., disloca-

tions and intrinsic stacking faults) through a lattice [36]. In this work,

3D rhombohedral second nearest neighbor finite elements with all faces on

the {111} planes are adopted for an FCC lattice [37]. Atoms are filled in

at jagged interstices along the boundary to facilitate application of peri-

odic boundary conditions (PBCs) along the x direction, while all other cell

boundaries are assumed traction-free. The simulation cell size lies within a

68.95 nm× 170.92 nm× 48.64 nm cuboid with lattice orientations of x[1̄12],

y[110], and z[1̄11̄]. It contains about 14,500 elements with 2197 atoms per

element and about 2.8 million atoms, i.e., about 2.9 million degrees of free-

dom. Note that an equivalent full atomistic model would contain about 35

million atoms.

In all simulations, the obstacle, either a void or an impenetrable precipi-

tate, is assigned a spherical shape with diameter D. In the cell, it is centered

at point P , which is set at 50 nm from the rightmost cell boundary along the

y direction and equidistant in the x and z directions from the cell boundaries.

First, all finite elements within a sphere centered with a diameter D′ are re-

fined to the atomic scale, to let the obstacle deform and dislocations evolve

freely [38]. D′ = 4D and 8D for the void and the precipitate, respectively.

To create a void, all atoms within a sphere with diameter D are removed. To

create an impenetrable precipitate, all atoms within a sphere with diameter
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D are affinely deformed following the simulation cell, yet their interatomic

forces are zeroed at each step.

Interactions are sensitive to obstacle size and so this study considers ob-

stacle sizes spanning an order of magnitude, i.e., from 0.56 to 5.6 nm. Table 1

summarizes Nobs, the number of atoms deleted to form a void or the num-

ber of atoms belonging to the precipitate. The upper range of D selected

for the present calculations (i.e., 5.6 nm) is defined such that no superfluous

dislocations will nucleate under the stresses applied in our simulations. The

computational analysis used to select these sizes is described in Appendix A.

Next, an array of Ndis identical, like-signed, edge dislocations is placed

in front of the obstacle. This means they have the same Burgers vector

b = (a0/2)[110] and lie on the same (1̄11̄) slip plane. The area is created by

applying the corresponding isotropic displacement fields to all atoms/nodes

[39]. In most simulations, Ndis = 5, but in some cases, as we will explain

later, Ndis may have a smaller value. Initially, the dislocations are straight

and equally spaced by 23 nm, with the leftmost one located 12 nm from

the leftmost cell boundary and the rightmost one 17 nm from the obstacle

center P . Since PBCs are applied along the x direction, the dislocations are

infinitely long and the obstacles form an infinitely long periodic array, as

previously mentioned.

The material chosen for this study is FCC Al for its near ideal isotropic

elasticity [40]. Its lattice parameter is a0 = 4.05 Å. The calculations em-

ploy the embedded-atom method interatomic potential by Mishin et al. [41].

As discussed in Section 1, the coherency/image stresses and the asymmetry

of the local stress field may influence the dislocation/obstacle interactions
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[20, 21, 25, 22]. To minimize these effects, in our idealized models, (i) the

coherency/image stresses are removed by letting the material for the impen-

etrable obstacle be Al, and (ii) the slip plane passes, or lies at most d111/2

from, the obstacle center, where d111 = a0/
√
3 is the interplanar distance

between two adjacent {111} planes. As will be discussed in Section 3.2, the

distance between the slip plane and the plane containing the obstacle center

becomes non-negligible when D reduces to 0.56 nm, and the corresponding

dislocation/precipitate interaction mechanism differs from those for larger D.

All CAC simulations are carried out using PyCAC [42, 43]. Atoms/nodes

within 3 nm from the upper, lower, and leftmost boundaries are allowed to

move within the x-z plane, but not along the y direction. First, a quasistatic

CAC simulation with the conjugate gradient algorithm [37] is performed to

attain stable dislocation cores and obstacle configurations. After energy min-

imization, the dislocations are no longer equally spaced along the y direction

but are distributed as a result of the constraints imposed by the leftmost

boundary, the obstacle, and the Peierls barrier. Then, in a dynamic CAC

simulation, a homogeneous simple shear strain γzy is applied on the cell to

drive the dislocations towards the obstacle. The strain rate is 107 s−1 and the

timestep size is 5 fs. Note that CAC simulations allow for a larger timestep

size than MD simulations [1, 38], as validated in Appendix B. After each

deformation increment step, the atoms at the rightmost boundary are not

restrained and therefore all glide dislocations can exit the cell after bypass-

ing the obstacle. These calculations are carried out using an NVT ensemble,

with a constant temperature 10 K maintained via Langevin dynamics. Sim-

ulation results are visualized using OVITO [44], with the defects identified
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by the adaptive common neighbor analysis (a-CNA) method [45].

3. Results and discussion

3.1. Dislocation/void interactions

When a dislocation meets a void, one of two mechanisms are possible for

mid-plane encounters, as illustrated in Fig. 1. In CAC simulations, for all

Ndis dislocations and all void sizes D, we find that dislocation climb does

not occur, in agreement with a recent MD simulation in Al and Al-Mg alloy

[46]. These climb-free interactions allow for direct comparisons between CAC

simulations and analytic continuum models of dislocation shearing, most of

which consider the interaction between an isolated dislocation impinging on

an unsheared spherical or circular void. In sequential dislocation/void inter-

actions, however, the void is unsheared only for the first incoming dislocation,

whose interaction with the void is found to follow the conventional process

for all void size D, i.e., the portion of the dislocation that comes in contact

with the void shears the void, while the two non-contacting segments of the

dislocation continue to glide and travel around the void. These two gliding

arms of the dislocation come into contact with each other and annihilate.

This event marks a critical breaking point in which the two moving parts of

the dislocation reconnect to continue glide, virtually unaltered, on the same

glide plane. The included angle formed between two dislocation segments at

this point is referred to as the depinning angle, φc, as illustrated in Fig. 4.

At the depinning point, the applied resolved shear stress is taken as the de-

pinning stress, τc. The dislocation leaves two steps of size b on the surface of

the void, with no void shrinkage. For example, in Fig. 5, the original spher-
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ical void with D = 3.36 nm contains 1214 vacancies, and the deformed, two

hemispherical half voids, which are slightly shifted by b, contain 602 and 612

vacancies, respectively.

Fig. 6 shows that the depinning stress for the first dislocation depends

on both Ndis and D. Thus, we refer to the depinning stress as τc,Ndis
in what

follows. As D increases, a larger portion of the dislocation segment must

shear the void before the dislocation can reconnect with itself and breakaway.

Hence, the larger the void, the larger τc,Ndis
, as would be intuitively expected.

In addition, continuum models [47] predict that the lower the depinning

stress, the larger the depinning angle, which is confirmed in Fig. 5.

For a planar dislocation array, the effect of void size D on τc,Ndis
for the

first dislocation encountering the void can be treated analytically using linear

elasticity dislocation theory. A unit dislocation segment (the green box in

Fig. 4) moving along d with length l and Burgers vector b experiences an

applied force Fapp, the total force imposed by all other dislocations in the

array Fdis, resistance from dislocation line tension Flin, and dynamics-induced

force Fdyn which represents the combined effects of phonon/electron dragging,

radiation friction, inertial effects [48], etc. At the depinning configuration, a

balance of forces yields

Fapp + Fdis + Fdyn − Flin = 0 (1)

where the first two forces can be expressed using the Peach-Koehler formula
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following [49]

Fapp = (σapp · b)× l = τc,Ndis
bd (2)

Fdis = (

Ndis−1
∑

i

σi · b)× l (3)

where σapp is the applied stress tensor and σi is the stress tensor at the first

dislocation caused by the ith dislocation in its wake. In addition,

Flin ≈ κΓd (4)

where Γ is the dislocation line tension (in units of energy per unit length)

and κ is the local curvature of the unit dislocation segment (in units of per

unit length). Assume that the bow-out dislocation configuration forms an

arc-shape, i.e., κ ≈ 2 cos(φc/2)/L and the gliding edge dislocation obtains

near-screw character. Then a first-order estimate of the line tension of an

undissociated screw dislocation is the dislocation line energy, i.e. [50],

Γ =
µb2

4π
ln

(

R0

r0

)

(5)

where elastic isotropy has been assumed, µ is the isotropic equivalent shear

modulus, R0 and r0 are the radii of the dislocation strain field and dislo-

cation core, respectively. Following Bacon et al. [51], we take R0 = D̄ =

(D−1 + L−1)−1 and r0 = b, where the intervoid ligament distance L equals

the simulation cell edge length along the x direction minusD. Note that both

D and L affect dislocation line tension. Therefore, the depinning stress, for

the interaction with the first incoming dislocation in a planar array of Ndis

dislocations, is

τc,Ndis
=

µb cos(φc/2)

2πL
ln

(

D̄

b

)

− |Fdis + Fdyn|
b

(6)
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In most continuum models, a dislocation quasi-statically bypasses a void

in the absence of other dislocations; hence, Ndis = 1, and both Fdyn and Fdis

are zero. It follows that Eq. 6 becomes

τc,1 =
µb cos(φc/2)

2πL
ln

(

D̄

b

)

(7)

In reality, however, φc is usually unknown a priori. Bacon et al. [51] and

Scattergood and Bacon (SB) [52] assumed that the depinning only occurs

when φc = 0, which gives

τSB =
µb

2πL
ln

(

D̄

b
+∆

)

(8)

where the constant ∆ = 1.52 is related to the surface energy of the void [53].

Recently, Crone, Munday, and Knap (CMK) [54] more accurately accounted

for the image forces on the dislocation due to the free surface of the void and

proposed a slightly modified model, i.e.,

τCMK =
µb

2π(L+D/2)
ln

(

D̄

b

)

(9)

which was shown to provide good agreement with numerical simulations

based on DDD [54] and CAC [55, 56]. Thus, the CMK model will be used

for dislocation/void interactions in what follows.

Fig. 6 shows that τCMK captures well the void size effect, only slightly

overestimating the CAC-based τc,1. The agreement is good considering that

Eq. 9 omits dislocation dynamic effects and makes simplifying assumptions

in calculating line tension and curvature. However, as Ndis increases, the de-

pinning stress for the first dislocation decreases significantly and τCMK differs

greatly from CAC-based predictions. The discrepancy is mainly attributed

to the lack of Fdis in Eq. 9. When Ndis > 1, all dislocations have the same
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Burgers vector and glide on the same slip plane. As such, the dislocations

in the wake of the first one apply a repulsive force on the latter, Fdis, that

pushes the dislocation forward. Calculating Fdis requires knowing the posi-

tions of all other dislocations in the array when the first dislocation interacts

with the void. A reasonable approximation can be obtained by considering

the equilibrium static positions of the dislocations in a single-ended pile-up.

Based on static continuum elasticity theories, Eshelby et al. [57] showed that

the stress on the leading dislocation equals the applied stress multiplied by

the number of dislocations in the same pile-up, i.e.,

Fapp + Fdis = NdisFapp (10)

which can be re-written as

Fdis = (Ndis − 1)Fapp = (Ndis − 1)τc,Ndis
bd (11)

Substituting Eq. 11 into Eq. 6 yields

τc,Ndis
=

1

Ndis

[

µbκ

4π
ln

(

D̄

b

)

− |Fdyn|
b

]

(12)

which suggests that the effect of the dislocation array is to divide the depin-

ning stress by Ndis. The same formulation can be applied to Eq. 9, giving

τCMK,Ndis
=

τCMK

Ndis

=
µb

2πNdis(L+D/2)
ln

(

D̄

b

)

(13)

It is worth noting that in formulating Eq. 13, (i) Fdyn is still omitted,

which would lead to an overestimate of the depinning stress, and (ii) actual

Fdis may be lower than the prediction of Eq. 11 since dislocations in a moving

array in front of a shearable void glide farther apart than those in a static
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single-ended pile-up, resulting in an underestimation of the depinning stress.

Despite these, Fig. 6 shows that τCMK,Ndis
better predicts the depinning stress

when Ndis > 1 than τCMK (Eq. 9).

Next, we investigate subsequent dislocation interactions with the sheared

void and depinning stresses required for these dislocations to bypass. Similar

to the first dislocation, each sequential dislocation shears the void by the same

amount b, despite the fact that the void has been damaged by the passage

of preceding dislocations. This finding implies that the number of sequential

dislocations in an array needed to completely split the original spherical

void into two separated, hemispherical voids equals ⌈D/b⌉, provided that the

void incurs no additional changes in shape or size. Indeed, when D = 0.56

and 1.12 nm, the void is completely split into two halves after the second

and the fourth dislocation passage, respectively, as shown in Fig. 7. When

D = 5.6 nm, after being sheared by five sequential moving edge dislocations,

the original void acquires two surface steps, each of which has size 5b, and

thus, it has evolved into two hemispheres that are shifted against each other

but not separated, as shown in Fig. 8. Completely splitting this void would

require in total 20 bypassing dislocations.

The depinning stress τc,Ndis
of each subsequent dislocation with the al-

ready sheared void is, however, neither the same as the first dislocation with

the perfect void nor the same as the dislocation before it. Following sequen-

tial dislocation bypass, the forces applied on the interacting dislocation by

other dislocations in the same array, i.e., Fdis, rapidly decreases to zero and

then becomes negative, leading to an increase in τc,Ndis
. This trend is a com-

bined result of the fact that (i) there are fewer dislocations on the incoming
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side of the void and (ii) the dislocations that have already bypassed the void

exert a back stress on the ones that have yet to bypass. Thus, based on Fdis

alone, it would be expected that τc,Ndis
increases as more dislocations bypass

the void.

However, Fig. 9(a) shows that, with each passing dislocation, τc,Ndis
de-

creases. Hence, the change in the void shape must contribute to the decrease

of τc,Ndis
, so much so that it outweighs the opposing effect of a decreasing

Fdis. As illustrated in Fig. 4, the sheared void with surface steps can be de-

scribed as two adjacent hemispherical voids that share a common lenticular

region that still intersects the glide plane. After each dislocation bypass, two

geometric parameters change: the effective diameter Dw and the perimeter

of the shared region. In Figs. 9(a) and 9(b), respectively, τc,5 is plotted with

respect to D and Dw. Nevertheless, the differences between the two plots

are relatively small, suggesting that the change in Dw does not significantly

influence τc,Ndis
. Therefore, the change in the other geometric parameter,

i.e., the perimeter of the shared region, is considered to play a leading role

in decreasing τc,Ndis
as more dislocations bypass the void. This argument is

reasonable because this perimeter is proportional to the work required by the

dislocation to pass the void [54].

Taken together, our CAC calculations regarding sequential interactions

of dislocations in a planar array with a void indicate that the depinning state

depends on the void morphology, dynamic effects, and the number/positions

of gliding dislocations on both sides of the void. These factors are omitted

in conventional continuum dislocation/void interaction models (e.g., Eq. 9),

which only include one parameter D to represent the void geometry and as-
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sume a single dislocation glides quasi-statically in the material. The expres-

sion presented here, Eq. 13, extends understanding of previous continuum

models to include the effect of an array of dislocations, while also excluding

the dynamic effects.

3.2. Dislocation/precipitate interactions

Two distinct mechanisms for dislocation bypass — Orowan looping and

Hirsch looping — exist for the unit process of single dislocation/impenetrable

precipitate interactions, as illustrated in Fig. 2. In CAC simulations, we first

address which specific looping mechanism occurs for each dislocation bypass

in a sequence of dislocation interactions with the precipitate. The first set

of simulations considers the interactions of the array of moving dislocations

with the largest precipitate studied in this work (D = 5.6 nm). Fig. 10 shows

that the outcome of the interaction with the first dislocation is to form an

Orowan loop. Since the first dislocation has an edge character, the character

of the parts of the loop on the incoming and outgoing sides are primarily

edge-oriented and the remaining parts on the lateral sides of the precipi-

tate are screw-oriented. When the second edge dislocation approaches the

precipitate, it bows around the precipitate much like the first one; however,

in this case, the segments of the second dislocation that wrap around the

precipitate cause the screw components of the Orowan loop, left by the first

dislocation, to double cross slip above the glide plane (the compressive side

of the original dislocation array), as shown in Fig. 11(b). Cross-slipped dis-

location segments on the two sides of the precipitate subsequently annihilate

(Fig. 11(c)), forming an interstitial type prismatic loop on the incoming side

of the precipitate and a vacancy type prismatic loop on the outgoing side.
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The screw components of the second edge dislocation start to double cross

slip as well, but toward the tensile side of the dislocation, leading to the

formation of another pair of prismatic loops — again one of interstitial and

another of vacancy type (Fig. 11(d–e)). The cross-slip distance is just long

enough to overcome the obstacle height, so the diameter of each prismatic

loop is roughly D/2. Overall, bypass of the second dislocation removes the

Orowan loop left by the first dislocation and creates four prismatic loops

that can glide away. The second dislocation glides away undamaged and

does not contain jogs, clearing the periphery of the precipitate of defects.

The observed bypass mechanism agrees with a prior MS simulation [24] but

contrasts with the original Hirsch looping mechanism [12] in which the pre-

existing Orowan loop is expected to remain intact.

Subsequent bypassing dislocations would need to first interact with the

prismatic loops produced by the first two dislocations. As quantification, MD

simulations for a precipitate with size D = 3 nm have reported the critical

stress for dislocation/prismatic loop interactions to be one third that for dis-

location/precipitate interactions [25]. It follows that the dislocation bypasses

the precipitate, leaving an Orowan shear loop around it, repeating the same

mechanism that was observed in the first dislocation/precipitate interaction.

The fourth dislocation bypasses the precipitate following the Hirsch loop-

ing mechanism, transforming the newly formed Orowan loop into two pris-

matic loops, in the same manner as the second dislocation/precipitate inter-

action. As a result, after the fourth dislocation interaction, no shear loop re-

mains around the precipitate. Interaction with the fifth dislocation forms the

Orowan loop, as the first and third dislocations had done. Evidently, these
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simulations have identified an alternating bypass-pattern, consisting of defect

formation followed by ‘healing’. Table 2 illustrates the alternating Orowan

and Hirsch looping mechanisms for sequential dislocation/impenetrable pre-

cipitate interactions. We find that this bypass mechanism prevails for all

precipitate sizes that are sufficiently large compared to the core size of the

dislocation, i.e., D ≥ 1.12 nm.

As mentioned earlier, the sizes of the Orowan and prismatic loops formed

by each bypass scale with the precipitate diameter D. An interesting case,

therefore, arises whenD is on the order of the dislocation core width, i.e., D =

0.56 nm and the precipitate contains only seven atoms. Previous electronic

structure calculations showed that a vacancy cluster consisting of only a few

vacancies has a lower binding energy than a prismatic loop of vacancy type

containing the same number of vacancies [58]. Thus, it is expected that if

the Hirsch looping occurred for this small precipitate, point defect clusters of

similar size would form in lieu of prismatic loops. In CAC simulations, the

first dislocation bypasses the precipitate with D = 0.56 nm creating two self-

interstitials and two vacancies, as shown in Fig. 12. This suggests that the

bypass followed a Hirsch looping-like mechanism. All subsequent dislocation

bypasses follow the same Hirsch looping-like mechanism, leaving behind a

series of vacancy and interstitial point defect clusters.

A question then arises as why the Orowan looping, which was found for

all interactions of the first dislocation in the array when D ≥ 1.12 nm, did

not take place. As discussed in Section 1, Hatano [25] found that the edge

dislocation bypassing is more susceptible to Hirsch looping if the local stress

field is asymmetric with respect to the glide plane, which may occur if h is too
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large. Indeed, when D = 0.56 nm, it is geometrically impossible to center

the precipitate on the glide plane. We found that h = d111/2 and hence

h/D = 0.21, which is large enough to trigger screw dislocation cross-slip and

hence the Hirsch looping mechanism [20]. By comparison, the precipitates

with D ≥ 1.12 nm are sufficiently large to be centered very close to the slip

plane, resulting in a near-symmetric stress field that favors Orowan looping

for the first dislocation. We note that as a practical matter for dislocations

interaction with fields of obstacles in a crystal, asymmetry should be expected

to be rather prevalent.

After revealing the sequence of looping mechanisms involved in bypassing

a precipitate by a dislocation array, we turn our attention to the depinning

stress. To the best of our knowledge, the SB model (Eq. 8) is the only avail-

able continuum model for dislocation/precipitate interactions. To account

for the long-range effect of the dislocation array, we follow Eq. 12 and divide

Eq. 8 by Ndis, i.e.,

τSB,Ndis
=

τSB
Ndis

=
µb

2πNdisL
ln

(

D̄

b
+∆

)

(14)

where ∆ = 0.7 [59]. Fig. 13(a) shows that, for the first dislocation bypass,

τSB,Ndis
better predicts the depinning stress when Ndis > 1 than τSB. In addi-

tion, compared to the CMK model (Eq. 9) for dislocation/void interactions,

predictions based on the SB model deviate more from CAC-predicted depin-

ning stress for dislocation/precipitate interactions, τc,Ndis
, especially when the

precipitate is small. Previous atomistic studies also showed that the SB-type

model yields better predictions when the obstacle is a void than when it is a

precipitate [60].

When Ndis > 1, subsequent dislocation bypass events follow an alternat-
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ing Orowan and Hirsch looping mechanism, as described earlier. In contrast

to the case of a void, the morphology of the impenetrable precipitate is not

changed by glide dislocations. In the meantime, the force applied on the

leading dislocation by other dislocations in its wake, Fdis, decreases after

each dislocation bypass. As a result, the depinning stress τc,Ndis
is expected

to increase as more dislocations glide to the outgoing side. Our CAC simula-

tion results, shown in Fig. 13(b), confirm this hypothesis. We note that each

dislocation bypass, following either Orowan or Hirsch mechanism, requires

similar τc,Ndis
, if the effects of the dislocation pile-up were excluded. More

specifically, for the same precipitate diameter, the depinning stresses for the

fifth dislocation when Ndis = 5 (the black filled circles in Fig. 13(b)) are

close to those for the first dislocation when Ndis = 1 (the black filled circles

in Fig. 13(a)). This result agrees with previous MD [23] and MS simulations

[24], in which the depinning stress for Hirsch looping was a few percent lower

than that for Orowan looping. In these atomistic simulations, however, the

second dislocation was introduced into the system after the first dislocation

had bypassed the obstacle, so long-range effects were not involved.

3.3. Further discussions

Our results reveal that the interaction of an obstacle with an array of

moving dislocations cannot be understood on the basis of only a single dis-

location/obstacle interaction. The mechanisms involved in sequential bypass

by an array of dislocations do not lead to defect accumulation around the ob-

stacle or in the gliding dislocations. When the obstacle is a void, it becomes

a progressively weaker barrier to subsequent dislocation bypass; with a suf-

ficient number of dislocation passages, it is eventually split into two smaller
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voids. When the obstacle is a sufficiently large impenetrable precipitate, the

residual defect left by the first dislocation is removed by the second disloca-

tion. More importantly we show that this alternating sequence can repeat on

a continuing basis since the prismatic loops that are created in the process do

not pose significant barriers to the impinging dislocation array. This suggests

that in this case the nanoprecipitate resistance to dislocation bypass does not

increase with the number of dislocation bypass interactions, in contrast to

the conventional understanding that a growing back stress arises from lay-

ered Orowan loops and results in strain hardening. With the alternating

dislocation bypass mechanism found here, the back stress would remain al-

most invariant as the number of bypass dislocation events increases. Since

the Orowan loop is the main contributor to the Bauschinger effect in precip-

itation strengthened materials [61], the transformation of the Orowan loop

into prismatic loops reduces the subsequent strain hardening and diminishes

the Bauschinger effect [62]. Our finding may in part explain why, in incre-

mentally pre-strained materials, the Bauschinger effect parameter converges

to a constant for large pre-strain [63].

In dislocation/precipitate interactions, a key unit process is cross-slip of

the side screw segments of the Orowan loop. It can be further envisioned

that the alternating pattern in Table 2 will be followed once the cross-slip

is initiated, regardless of the maximum number of stable layered Orowan

loops allowed to form. Our calculations involve nano-sized precipitates but

it is possible that interactions with larger, submicron ones may involve similar

sequences of events but with higher energetic requirements for the dislocation

to travel around or over (double cross-slip) a larger surface. Stochastic cross-
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slip-equipped DDD simulations of sequential screw dislocations bypassing

an impenetrable precipitate (D = 524 nm) in Cu showed that cross-slip

occurs when there are more than three layered Orowan loops [19]. In our

simulations involving edge dislocations and much smaller precipitates, the

maximum number of stable Orowan loops is 1.

The current study did not examine effects of material properties, misfit

between the matrix and precipitate (e.g., coherency/image stresses), temper-

ature, strain rate, or dislocation spacing, all of which affect the probability

for dislocations to climb and cross-slip, and hence the dislocation/precipitate

interactions found here. For cross slip, the dislocation core needs to con-

strict and this is a thermally activated process. It has been identified that a

higher ISFE [9], higher coherency/image stresses [19, 21], and higher temper-

ature/strain rate [64] increase the likelihood of dislocation cross-slip when a

dislocation impinges on either a void or a precipitate. These findings suggest

an anomalous higher bypass stress with higher temperature and suggest that

the healing bypass mechanisms reported in this paper might be promoted in

usual experiments involving coherency/image stresses, higher temperatures,

and lower strain rates.

The dislocations considered in this work are initially straight and of pure

edge character, and they are driven to sequentially interact with an obstacle.

Other character dislocations, such as screw and mixed, may yield different

interaction results. Nevertheless, in our simulations, an edge dislocation re-

orients to a mixed or screw character in the vicinity of the obstacle. Thus,

our choice of initially edge dislocations presents a myriad of interesting pos-

sible sequential bypass mechanisms. In contrast, a screw dislocation, or a
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mixed-type dislocation with dominant screw character, may predictably dou-

ble cross-slip over an impenetrable precipitate [33], but this remains to be

seen. It would also be beneficial to explore the problem of multiple disloca-

tions gliding in materials containing a random distribution of various types

of obstacle [65].

4. Conclusions

In summary, we employ a multiscale CAC method to reveal the mecha-

nisms by which a planar array of five glide dislocations with Burgers vector

magnitude b interact with a spherical obstacle of nanoscale diameter D in

FCC Al. When the obstacle is a void, all dislocations sequentially shear the

void into two hemispheres until the void becomes fully split into two sepa-

rate pieces which pose insignificant barriers to subsequent dislocation motion.

The number of dislocations required to achieve this is ⌈D/b⌉. This bypass

mechanism implies that the barrier strength of a void is dominated by its in-

teraction with the first dislocation in the array and by its size. Based on the

new insight gained we present an analytical model to predict the depinning

stress for the first dislocation. When the obstacle is an impenetrable precip-

itate centered on the glide plane, an alternating Orowan and Hirsch looping

mechanism occurs. The first, third, and fifth dislocations leave behind a

shear loop around the precipitate while the second and fourth dislocations

transform the newly formed Orowan loop into two prismatic loops, with it-

self bypassing the precipitate following the Hirsch looping mechanism. This

sequence suggests that after the bypass by a series of successive dislocations,

defects do not accumulate around the precipitate, unlike the classical case of
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a single dislocation/precipitate interaction. Also contrary to prior studies,

defects are not created in the dislocations that glide away. These results

are substantial in suggesting reconsideration of conventional thought on the

role of voids and precipitates in strain hardening and hysteresis behavior in

cyclic loading. The new understanding attained in this work can benefit

model-guided design of materials that develop voids due to irradiation, or

precipitates due to alloying.
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Appendix A. Model validation

Because voids and traction-free simulation cell boundaries may act as

sources for dislocations [66, 67, 68, 69], it is important to ensure in our simu-
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lations that no dislocation other than those in the pre-existing array is nucle-

ated. To this end, simulation cells containing an obstacle but no dislocation

array are investigated. In the case of a void, dislocations are homogeneously

nucleated inside the system when D = 0.56 and 1.12 nm, while dislocations

are nucleated from the void surface for larger D, as shown in Fig. A1. The

same change in the dislocation nucleation mode as D increases was also re-

ported in previous MD simulations of nanovoid growth in Cu [70], V [71],

and Ta [72]. In our work, among all D, the lowest applied shear strain γzy for

dislocation nucleation is 0.102. In the case of an impenetrable precipitate,

no dislocation is nucleated with the shear strain up to γzy = 0.13. In our

simulations, all five glide dislocations in the array have bypassed the obstacle

by γzy = 0.1.

In addition, as the D′/D ratio is fixed for the same type of obstacle,

the size of the atomistic domain D′ around the obstacle increases with the

obstacle size D. The question then arises as to whether the choice of D′

affects the simulation results. To this end, simulation cells containing an

array of five pre-existing dislocations but no obstacle are studied, with D′

varying from 2.24 to 17.92 nm. Fig. A2 shows that the stress-strain curves

for different D′ are close to each other, while the stacking fault width in

the atomistic domain is smaller than that in the coarse-grained domain, in

agreement with previous CAC simulations [37]. This suggests that resolving

an atomistic domain in a certain region does not significantly alter the stress-

strain response or the dislocation motion.
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Appendix B. Timestep size validation

To explore the effect of the timestep size ∆t, we perform additional

CAC simulations with ∆t = 1 and 2 fs, respectively, when Ndis = 5 and

D = 5.6 nm. In the case of a void, the depinning stresses τc taken at each

dislocation bypass are found to be similar to those predicted with ∆t = 5 fs,

as shown in Fig. B1. In the case of an impenetrable precipitate, the alter-

nating Orowan and Hirsch looping mechanisms were also observed with two

smaller ∆t. These suggest that the timestep size ∆t = 5 fs used in our CAC

simulations is sufficient for time integration.
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Figure 1: Illustrations of two edge dislocation/void interaction mechanisms, distinguished

by whether or not the dislocation undergoes a climb process. The green dotted line is the

original slip plane; the black solid and blue dashed circles are the current and original void

shape, respectively. In both mechanisms, the dislocation creates two surface steps with

magnitude b on the incoming and outgoing sides of the void, respectively. In (c1), the

dislocation does not climb and the outgoing surface step forms on the original slip plane;

in (c2), the dislocation climbs by h′ with respect to the original slip plane by absorbing

some vacancies from the void, leaving behind a surface step on the outgoing slip plane. In

(c2), the void shrinks by the violet area (denoted “shrinkage”). Note that in 3D, a jog is

formed on the dislocation line in (c2).
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Figure 2: Illustrations of two dislocation/impenetrable precipitate interaction mechanisms:

Orowan looping and Hirsch looping. Other mechanisms may apply if the precipitate is

too small. In (a), the red curve is the edge dislocation, with its extra half-plane above the

slip plane. Hence, the compressive and tensile sides of the dislocation stress field lie above

and below the slip plane, respectively. In Orowan looping, the dislocation bows around

the precipitate in (b1) and a shear loop is left behind in (b2). In Hirsch looping, the screw

components (red arrows) of the dislocation cross slip toward the (c1) compressive or (d1)

tensile side of the original slip plane; in (c2) and (d2), the two screw dislocation segments

with the same Burgers vector but opposite line directions move together to annihilate each

other; in (c3) and (d3), edge prismatic loops of interstitial (in black) and vacancy (in blue)

types are formed. Note that (b1) and (b2) hold for dislocations with any character angle

in Orowan looping, while the illustrated Hirsch looping mechanism only applies to edge

dislocations.
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Figure 3: Illustration of the simulation cell for interactions between five edge dislocations

in a planar array and an obstacle (filled black sphere centered at the red point P with

diameter D), which is either a void or an impenetrable precipitate. An atomistic domain

is meshed within a sphere centered at P with diameter D′ to let the obstacle deform

and dislocations evolve at full atomic resolution, while the coarse-grained domain with 3D

rhombohedral elements is employed elsewhere. Five initially equally spaced edge disloca-

tions in the coarse-grained domain having the same Burgers vector b = (a0/2)[110] are

placed on the same (1̄11̄) slip plane. Note that (i) owing to the PBCs applied along the

x direction, the dislocations are infinitely long and the obstacles form an infinitely long

periodic array, and (ii) after energy minimization, the dislocations become dissociated and

are no longer equally spaced along the y direction, as expected.
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Figure 4: Illustration of the critical dislocation depinning configuration when the disloca-

tion is about to exit a void. Projected on the slip plane, two hemispheres of the original

spherical void with initial diameter D are shifted against each other by Nbyb after Nby

dislocation bypasses; the yellow shaded lenticular region is the overlapped section between

the two hemispheres. b is the Burgers vector of the dislocation, l is the unit vector along

the dislocation line, d(⊥ l) is the unit vector along the dislocation moving direction, L

is the intervoid ligament distance, D is the initial void diameter, and φc is the depinning

angle.
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Figure 5: Snapshots of the first edge dislocation exiting a void with D = 3.36 nm when

Ndis varies from 1 to 5. The region inside the blue dashed arc is atomistically resolved; the

angle formed between the two green lines is the depinning angle φc. Atoms are colored by

a-CNA [45], with BCC, hexagonal close-packed, and disordered local structures in blue,

red, and white, respectively; all FCC atoms are deleted. The same color scheme is used

in all snapshots in the remainder of this paper, unless stated otherwise.
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Figure 6: CAC-based depinning stress with respect to the initial void diameter D taken

at the first dislocation exiting the void when Ndis varies from 1 to 5. The predictions by

Eq. 13 are also shown.
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Figure 7: Snapshots of five edge dislocations sequentially bypassing a void with D =

0.56 nm. After bypassed by the second dislocation, shown in (c), the original spherical

void, which contains seven vacancies, is split into two smaller hemispherical voids, with

the left and right ones containing four and three vacancies, respectively. In the insets,

atoms on the void surface are in magenta.
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Figure 8: Snapshots of five edge dislocations sequentially bypassing a void with D =

5.6 nm. After each dislocation bypass, two steps are created on the surface of the void. In

the insets, atoms on the void surface are in magenta.
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Figure 9: CAC-based depinning stress taken at each dislocation exiting the void when

Ndis = 5, with respect to (a) the initial void diameter D and (b) the effective void diameter

Dw. The predictions by Eq. 13 are also shown.
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Figure 10: Snapshots of the first edge dislocation bypassing an impenetrable precipitate

with D = 5.6 nm following the Orowan looping mechanism. In (b–d), the dislocation bows

around the precipitate; in (e), the dislocation glides away with a shear loop left behind.

Atoms on the precipitate surface are rendered in magenta.
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Figure 11: Snapshots of the second edge dislocation bypassing an impenetrable precipitate

with D = 5.6 nm following the Hirsch looping mechanism. In the first row, atoms on the

precipitate surface are rendered in magenta. In the second row, different dislocations are

distinguished by colors.
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Figure 12: Snapshots of the first edge dislocation bypassing an impenetrable precipitate

with D = 0.56 nm following the Hirsch looping mechanism. In (d), two self-interstitials

and two vacancies are formed in the vicinity of the precipitate. Atoms on the precipitate

surface are rendered in magenta.
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Figure 13: CAC-based depinning stress taken at each dislocation exiting the impenetrable

precipitate taken (a) at the first dislocation exiting the precipitate when Ndis varies from

1 to 5 and (b) at each dislocation exiting the precipitate when Ndis = 5. The predictions

by Eq. 14 (with ∆ = 0.7) are also shown.
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Table 1: Nobs, the number of atoms deleted to form a void or the number of atoms within

a precipitate, for different obstacle diameter D.

D (nm) 0.56 1.12 2.24 3.36 4.48 5.6

Nobs 7 39 362 1214 2841 5596
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Table 2: Alternating Orowan and Hirsch looping mechanisms of sequential dislocation

bypass of an impenetrable precipitate when D ≥ 1.12 nm. Shear loops, prismatic loops

of interstitial type, and prismatic loops of vacancy type, are in red, black, and blue,

respectively. The slip plane of the edge dislocation array is in grey.

Nby Bypass mechanism Result

1 Orowan looping
1 shear loop

2 Hirsch looping
4 prismatic loops

3 Orowan looping
4 prismatic loops + 1 shear loop

4 Hirsch looping
8 prismatic loops

5 Orowan looping
8 prismatic loops + 1 shear loop
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Figure A1: Yield stress with respect to the initial void diameter D for simulation cells

containing a void but no pre-existing dislocation. When D = 0.56 and 1.12 nm, disloca-

tions are nucleated homogeneously in the material; for larger D, dislocations are nucleated

from the void surface. The two insets are for D = 0.56 and 5.6 nm, taken on the threshold

of plasticity at γzy = 0.12 and 0.102, respectively.
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Figure A2: Stress-strain curves of the simulation cells containing an array of five pre-

existing dislocations but no obstacle. In each case, an atomistic domain is resolved within

the sphere centered at P with diameter D′. The curves for different D′ are close to

each other. The three insets, which show the first edge dislocation configurations at

γzy = 0.01, are for D′ = 2.24, 8.96, and 17.92 nm, respectively. The view is illustrated by

the coordinate system. The extended dislocation is found to have a smaller stacking fault

width in the atomistic domain than in the coarse-grained domain, as expected [37].
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Figure B1: CAC-based depinning stress as a function of the timestep size ∆t at each

dislocation exiting the void when Ndis = 5 and D = 5.6 nm.
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