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Quantum mechanics places a fundamental limit on the precision of
continuous measurements. The Heisenberg uncertainty principle
dictates that as the precision of a measurement of an observable
(for example, position) increases, back action creates increased
uncertainty in the conjugate variable (for example, momentum).
In interferometric gravitational-wave detectors, higher laser
powers reduce the position uncertainty created by shot noise (the
photon-counting error caused by the quantum nature of the laser)
but necessarily do so at the expense of back action in the form
of quantum radiation pressure noise (QRPN)!. Once at design
sensitivity, the gravitational-wave detectors Advanced LIGO?,
VIRGO? and KAGRA* will be limited by QRPN at frequencies
between 10 hertz and 100 hertz. There exist several proposals to
improve the sensitivity of gravitational-wave detectors by mitigating
QRPN>~1° but until now no platform has allowed for experimental
tests of these ideas. Here we present a broadband measurement of
QRPN at room temperature at frequencies relevant to gravitational-
wave detectors. The noise spectrum obtained shows effects due
to QRPN between about 2 kilohertz and 100 kilohertz, and the
measured magnitude of QRPN agrees with our model. We now
have a testbed for studying techniques with which to mitigate
quantum back action, such as variational readout and squeezed
light injection’, with the aim of improving the sensitivity of future
gravitational-wave detectors.

Gravitational-wave (GW) detectors such as Advanced LIGO con-
tinuously monitor the position of test masses using electromagnetic
radiation. The Heisenberg uncertainty principle limits the precision
of such a continuous measurement owing to the quantization of light.
Uncertainty in the number of photons reflecting from a mirror exerts
a fluctuating force due to radiation pressure on the mirror, causing
mechanical motion"!""12, This force leads to a noise source for GW
measurements, namely, QRPN. GW interferometers typically use as
much laser power as possible in order to minimize the shot noise and
maximize the signal-to-noise ratio for GWs. Advanced LIGO and other
second and third generation interferometers will be limited by QRPN
at low frequency when running at their full laser power.

Given the imperative for more-sensitive GW detectors, it is impor-
tant to study the effects of QRPN in a system similar to Advanced LIGO,
which will be limited by QRPN across a wide range of frequencies far
from the mechanical resonance frequency of the test mass suspension.
Studying quantum mechanical motion is challenging, however, owing
to the fact that classical noise sources such as environmental vibrations
and thermally driven fluctuations'® usually dominate over quantum
effects. Previous observations of QRPN have observed such subtle
quantum effects, even at room temperature, but these experiments have
thus far been limited to high frequencies (megahertz to gigahertz) and
in a narrow band around a mechanical resonance!*-"7.

In this work, we present a broadband and off-resonance meas-
urement of QRPN in the audio frequency band. We have developed
low-loss single-crystal microresonators with sufficiently minimized

thermal noise that the quantum effects can be observed at room tem-
perature. The optomechanical system, shown in detail in Fig. 1, is a
Fabry-Pérot cavity with a mechanical oscillator as one of the cavity
mirrors. The optomechanical cavity is just under 1 cm long and consists
of a high-reflectivity single-crystal microresonator that serves as the
input coupler and a macroscopic mirror with a 1-cm radius of curva-
ture as the back reflector. The cavity is made slightly shorter than the
1-cm radius of curvature of the large mirror in order to achieve a small
spot size on the microresonator while maintaining stable cavity modes.
The microresonator consists of a roughly 70-pm-diameter mirror pad
suspended from a single-crystal GaAs cantilever with a thickness of
220 nm, a width of 8 pm and a length of 55 pm. The mirror pad is made
up of 23 pairs of quarter-wave optical thickness GaAs/Alj 9,Gag osAs
layers for a transmission of 250 parts per million (p.p.m.) and exhibits
both low optical losses and a high mechanical quality factor'-2!. The
microresonator has a mass of 50 ng, a natural mechanical frequency
of 876 Hz and a measured mechanical quality factor of 16,000 at room
temperature (295 K). The cavity has a finesse of 13,000 and half-width
at half-maximum (HWHM) linewidth of 580 kHz.

A 1,064 nm Nd:YAG laser beam is used to both stabilize the
optomechanical cavity and measure the mechanical motion of the
microresonator. The cavity is detuned from resonance by 0.3 to 0.6
linewidths, and locked using a feedback loop that utilizes the restoring
force produced by a strong optical spring®?, which shifts the mechan-
ical resonance of the microresonator up to 145 kHz at high power.
We choose to detune the cavity primarily because it is nearly impossi-
ble to avoid a strong optical-spring effect owing to the weak restoring
force provided by the cantilever supporting the microresonator. We
would need to keep the cavity locked to resonance within 2 x 1073
linewidths, or about 10 Hz, to avoid having an optical spring as stiff
as the cantilever, and any deviations around this point would produce
strong variations in the optical-spring stiffness. Instead, by intention-
ally detuning the cavity by nearly 0.5 linewidths, we operate near the
peak optical-spring stiffness, where the cavity is relatively insensitive to
variations in detuning, as described in Methods. The error signal for the
feedback loop is detected using photodetector PDy in transmission of
the cavity and photodetector PDy; in reflection. The error signal is fed
back to an amplitude and phase modulator, as shown in Fig. 1.

The final measurement configuration uses only the reflected light
because the transmitted light has relatively large shot noise due to the
small transmission (50 p.p.m.) of the end mirror, which may pollute
the measurement. Reflection locking with the phase modulator is less
robust, and we are not able to acquire lock directly without first using
the transmission locking and amplitude modulator. We measure the
displacement noise spectrum by detecting the light that is reflected
from the cavity. After the cavity is locked, the signal from PDy; is sent
to a spectrum analyser for analysis. We measure an uncalibrated noise
spectrum by first measuring the amplitude spectral density of the out-
put from PD);. We calibrate the spectrum by dividing it by the transfer
function from the laser-cavity piezo to PDy;. This method treats the
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Fig. 1 | Experimental set-up. Laser light passes through an amplitude
modulator (AM), phase modulator (PM) and a second AM before entering
the cavity, which sits on a suspended platform inside a vacuum chamber
(shown in grey). The optomechanical cavity consists of a microresonator
(shown in the inset) and a macroscopic mirror mounted on a piezoelectric
transducer (PZT). An intensity stabilization servo (ISS) is used to
minimize classical intensity fluctuations and stabilize the laser power to
shot noise. The transmission (reflection) is detected by photodetector

PDy, (PDy) and passed through a servo amplifier (SA) before being sent to
the AM (PM) for feedback. The cavity is initially locked using PDy, but is
switched to using PDy; for the final measurement.

optical spring as a feedback loop??, and by factoring out its effect, we
restore the observed displacement spectrum to what it would be in the
absence of the optical spring and our electronic feedback. The laser
piezo has been calibrated in frequency, which allows the resulting signal
to be calibrated to displacement by using the cavity length.

To understand the resulting measurement of the microresonator
motion, we must carefully account for various noise sources.
Specifically, we consider QRPN, thermal noise, shot noise, dark noise
of the photodiode readout, and classical intensity and frequency fluc-
tuations of the laser. Thermal noise, governed by the fluctuation dissi-
pation theorem, sets a limit on the precision of force and displacement
measurements®, and is also one of the main limitations in this exper-
iment. We rely on direct measurements of thermal noise to quantify its
effects. To measure thermal noise, we operate the cavity with about
10 mW of circulating power, a level at which the QRPN is small com-
pared to the Brownian motion of the microresonator. One challenge in
accurately accounting for the thermal noise is that as the circulating
power in the cavity is increased, the beam position on the microreso-
nator shifts slightly, and the coupling of the pitch and yaw modes of the
microresonator changes. To account for this, we measure the thermal
noise at different alignments with 10 mW of circulating power to match
the desired alignment at higher power, and ultimately use these
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measurements to constrain a model. The measured thermal data are
used at most frequencies, except those near the pitch, yaw and side-to-
side resonances, as described in Methods. The observed thermal noise
agrees with a structural damping model'*** from 200 Hz to 30 kHz.
Modelled thermal noise (X;,) is used near the resonances because it is
difficult to reproduce the exact alignment at low and high powers.
Structural damping models contain a frequency-independent loss
angle, and for a harmonic oscillator have a displacement amplitude
spectral density of

4ky T}

Xp(w)= (1)
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where kg is the Boltzmann constant, T is temperature, m is mass,
Qs the quality factor, w = 27f, where fis the measurement frequency;,
and wy, is the angular frequency of the mechanical mode!®. Above
30 kHz, we observe thermal noise that deviates from the structural
damping model, which appears to be consistent with thermoelastic
damping of the drumhead mode of the microresonator. In the noise
budget, we use the measured thermal noise at these frequencies. The
resulting thermal noise, which is used in our noise budget, is shown
in Fig. 2.

Quantum noise is the other dominant noise source in the exper-
iment, and we use an input—output model for comparison to our
measurements. The model calculates quantum noise using a set of
equations that relate the output fields to the input fields*>?®. The model
requires knowledge of the optical losses, detuning and the power cir-
culating in the cavity, in addition to the microresonator’s mechanical
susceptibility. The cavity losses, detuning and circulating power are
constrained by measurements of the optical spring. The parameters
for the microresonator are constrained by the thermal noise measure-
ment. The details of these measurements are presented in Methods,
along with analysis of the effects of uncertainty in these parameters.
The model then predicts the level of QRPN, as shown in Fig. 2 for
220 mW of circulating power. To further verify the model of QRPN,
we also measure the response of our system to intensity fluctuations
of the input laser beam, multiply that measurement with the level of
shot noise for the input power, and calibrate the resulting projected
noise level. This results in an independent measurement for the level
of QRPN that agrees with the modelled result. The details of the meas-
urement are presented in Methods.

In order to observe quantum back action, we measure the cavity
displacement noise at five cavity circulating powers of 10 mW, 73 mW,
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Fig. 2 | Measured and budgeted noise. Contributions of various noise
sources to the displacement of the microresonator, shown as amplitude
spectral densities, are shown for the case with 220 mW circulating

power. The resonances at 3.7 kHz, 15 kHz and 28 kHz are higher-order
mechanical modes of the microresonator. Each of these noise sources (see
key) is discussed in detail in Methods and in Extended Data Fig. 1.
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Fig. 3 | Power scaling. Five measurements at circulating powers of
10 mW, 73 mW, 110 mW, 150 mW and 220 mW show how each of the
noise sources scales with cavity circulating power. Each noise source is
integrated between 21 kHz and 22 kHz. Error bars on the measured data
represent statistical uncertainty (s.d.). The dashed black curve is the
expected total noise without including the contribution from QRPN. The
shaded grey region around the black curve represents the uncertainty in
the total displacement noise due to uncertainty in the level of QRPN from
the model.

110 mW, 150 mW and 220 mW. For each power level, the input power is
multiplied by the same factor. Owing to the shifting alignment resulting
from static radiation pressure, the optical losses in the cavity change as
a function of power. This effect is quantified through measurements
of the optical spring. The detuning varies from about 0.6 to 0.35 line-
widths when going from low to high power, but this only affects the
level of QRPN by 4-4%, as explained in Methods. The measured noise at
220 mW, shown as the orange curve in Fig. 2, shows that the measured
noise agrees with the sum of all known noise sources. Below 10 kHz,
thermal noise is the biggest contributor to the displacement noise, but
the effect of QRPN is still visible in the displacement noise measure-
ment down to 2 kHz, where it accounts for about 20% of the measured
displacement noise. The measured classical radiation pressure noise
from classical intensity fluctuations of the laser and laser frequency
noise?’ are below the other noise sources across the measurement band,
as shown in Extended Data Fig. 1.

To demonstrate that the observed QRPN scales with the expected
square root of power!, we compare the noise at each power level.
The data are shown in Fig. 3, where the displacement noise spectrum
has been integrated over a 1 kHz band between 21 kHz and 22 kHz.
The observed data are consistent with the predicted scaling, and
the QRPN is the largest noise source for circulating powers above
150 mW. For the measurement at 220 mW shown in Fig. 3, QRPN
represents 48% of the total noise, while the thermal noise accounts
for 27%, with the remaining 25% composed of the sum of the sub-
dominant noise sources. We sum in quadrature the contribution of
each of the noise sources to compute the total expected noise. We find
that our five displacement noise measurements, shown as orange stars
in Fig. 3, agree with the total expected noise (black curve) with the
statistical measurement error taken into account. The measurement
error is calculated by repeating the measurement multiple times and
is dominated by the fluctuations in the transfer function measurement
that is used to calibrate the spectrum. The dashed black curve shown
in Fig. 3 is the predicted displacement noise without a contribution
from QRPN. The measurements of the displacement noise rule out
the model without QRPN.

In addition to showing that the noise scales correctly with optical
power, a variety of other tests were performed to further verify that
that we are observing QRPN. First, we put constraints on shot noise,
dark noise, and classical laser intensity and frequency noise, as seen in
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Extended Data Fig. 1. Second, we fit the noise we attribute to QRPN
to a power law in frequency, and require the resulting fit to match the
measured data to within 10% in the 1-100 kHz frequency range. The
resulting frequency scaling (f~1°° % %2) matches the expected frequency
dependence (f ), and excludes the frequency dependence of thermal
noise ( f’S/ 2). Third, we also rule out that this could be an effect of
excess bulk heating of the microresonator by verifying that the thermal
noise at low frequencies remains the same within +2% measurement
uncertainties (see Methods). Using the optical-spring measurement to
constrain the cavity losses also allows us to rule out absorption pho-
tothermal effects®® because any excess damping would be observed
in mechanical response measurements. Finally, we perform a trans-
fer function measurement by amplitude modulating the input light
and measuring the response at PDy;. By comparing to a similar trans-
fer function while the cavity is far from resonance, we show that the
cavity coherently amplifies the amplitude modulations, indicating the
presence of an optomechanical parametric process. Additionally, we
can project the expected level of QRPN by multiplying this transfer
function with the magnitude of the vacuum fluctuations that enter the
cavity, and dividing by our calibration transfer function. We find that
this projection matches the QRPN model.

Since the first proposals of interferometric GW detectors, QRPN
has been known to present a fundamental limit to the low-frequency
sensitivity of GW detectors. For the past two decades, the measurement
of QRPN at frequencies relevant for GW detectors has eluded increas-
ingly sensitive experiments. The presented ability to measure QRPN at
frequencies in the GW band opens up the possibility of experimental
tests of QRPN-reduction schemes® '°. This ability has already led to
measurements of ponderomotive squeezing®’, cancellation of QRPN*,
and the suppression and amplification of QRPN with squeezed light*!.
From a fundamental standpoint, the measurement of QRPN amounts
to observation of quantum vacuum fluctuations inducing motion of a
macroscopic object.
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METHODS

Noise budget. In addition to the QRPN and thermal noise shown in Fig. 2, sub-
dominant noise sources contribute to the measured displacement noise spectrum.
A full noise budget for the 220 mW measurement is shown in Extended Data Fig. 1.
The largest of the subdominant noise sources is the combination of shot noise and
dark noise that is present on PDy. Extended Data Fig. 1 includes a measurement
of the combined shot noise and dark noise. Factoring out the effect of the opti-
cal spring using the calibration discussed in the main text causes the white shot
noise to have the frequency dependence shown in Extended Data Fig. 1. Classical
laser intensity noise and laser frequency noise lie below the other noise sources.
Extended Data Fig. 1 includes our measurement of the classical laser intensity noise
and laser frequency noise level for the Nd:YAG ring laser?’.

With all of the noise sources accounted for, we find that QRPN is the dominant

noise source over a wide range of frequencies with 220 mW of light circulating
in the cavity, as seen in Fig. 2 and Extended Data Fig. 1. To quantify the effect of
QRPN across our measurement band as a function of power, we provide a con-
tour plot showing the ratio of QRPN to the total measured displacement noise in
Extended Data Fig. 5.
Thermal noise. As described in the main text, thermal noise sets a limit on the pre-
cision of mechanical experiments and can overwhelm attempts to measure quan-
tum effects if it is too large. As one of the principal noise sources in this experiment,
we must measure the thermal noise across our measurement band and account for
it in our noise budget analysis. One difficulty in accounting for the thermal noise
is that the cavity alignment shifts slightly as the circulating power is increased and
the cantilever is deflected by radiation pressure. Even a small change in alignment
can change the coupling of higher-order mechanical modes, specifically the yaw,
pitch and side-to-side modes, as shown in Extended Data Fig. 2.

We model the thermal noise using a finite element model of the microresonator
that is based on dimensions obtained from a micrograph of the resonator and is
further constrained by measurements of the frequencies and quality factors of
the fundamental mode and the next three higher-order modes. We include the
material properties of the GaAs and AlGaAs (such as density, Young’s modulus,
anisotropy, and so on) in the model. The total thermal noise spectrum is then
calculated using equation (1) by summing the contribution of each mechanical
mode in quadrature as'

N 4k, Tw?
x‘Zh(w):Z BLWi

i wmQ, (w?—wh?+

wh (2)
@

where w;, Q; and m; are the resonance frequency, quality factor and mass of each
mode. We infer the modal mass for each mode by using the thermal noise meas-
urement presented below, and are able to reproduce the inferred modal masses by
changing the beam position in the finite element model.

The thermal noise curve shown in Fig. 2 in the main text is a combination of a
measurement at frequencies away from the higher-order mechanical modes and
a model at frequencies around the yaw, pitch and side-to-side modes. The mod-
elled thermal noise is used around the mechanical modes because the thermal
noise must be measured at a low circulating power of 10 mW, and it is difficult
to reproduce precisely the same alignment at different power levels. The modal
mass of the higher-order modes is set in the model by comparing the magnitude
and width of the higher-order mode resonance peaks in the displacement noise
measurement shown in orange in Fig. 2 with those in the model, at frequencies
dominated by thermal noise.

In order to demonstrate that the slight changes in alignment resulting from high
circulating power do not introduce excess thermal or technical noise that could
mask the effect of QRPN, we measure the displacement noise at 10 mW circulat-
ing power with the microresonator position shifted to be as close as possible to
the alignment with 220 mW of circulating power, as determined by the observed
peak height and width of the pitch and yaw modes. By comparing the results of
that measurement with thermal noise measurements in the nominal alignment at
lower power, shown in Extended Data Fig. 3, we confirm that the thermal noise at
frequencies away from the resonances is consistent with the model for structural
damping (f %) and does not change in a way that is consistent with the observed
QRPN (f2). Producing a thermal noise level at 20 kHz that would be as large as
QRPN would require thermal noise with a frequency dependence inconsistent with
our observed data in Extended Data Fig. 3. Further, the degree of misalignment
necessary would introduce cavity losses much greater than observed.
Calibration and uncertainties. In order to properly model the expected level
of QRPN, we must know key properties of the mechanical and optical system,
specifically the mass of the microresonator, the power circulating in the cavity,
the total optical losses in the cavity, the length of the cavity and its detuning from
resonance. In this section, we describe how these quantities are measured, and the
effects of uncertainty in those measurements.

The mass of the microresonator is measured to within £10% using the meas-
ured thermal noise spectrum shown in Extended Data Fig. 3 at frequencies near
the fundamental resonance. The thermal noise, given in equation (1), depends on
the temperature, mechanical resonance frequency, quality factor and mass. The
temperature is well known, and there is insignificant heating of the cantilever with
the small circulating power used in measuring the thermal noise. The mechani-
cal resonance frequency and quality factor are measured to good precision using
ringdown measurements with an optical lever set-up. Therefore, we may use the
thermal noise measurements to constrain the mass of the microresonator to 50 ng.
The estimated 4-10% uncertainty is associated with systematic uncertainties arising
in calibrating the measured thermal noise. The measured mass is consistent with
a finite element model of the microresonator based on measured dimensions of
the microresonator that are determined from a micrograph.

The cavity length is constrained by measurements of the geometric size of the
cavity mode. Given the known radius of curvature of the back reflector mirror
(1 cm =+ 100 pum), the stability of the cavity puts an upper limit on the cavity length.
We further constrain the cavity length by measuring the size of the cavity mode,
which is imaged with a camera, and conclude that the overall cavity length must
be within 100 pum of the radius of curvature of the reflector. Using this method, we
conclude our cavity length is within 200 pm of 1 cm.

To constrain the optical parameters, we have found using measurements of the
optical spring to be the most accurate technique. To measure the optical spring,
we measure the frequency-dependent optical response of the system amplitude
modulating the light injected into the cavity using the second amplitude modu-
lator, as shown in Fig. 1. We measure a swept sine transfer function between the
injected modulation and the modulation detected in transmission of the cavity at
PDy before the feedback is switched to the phase modulator. This provides a clear
measurement of the optical-spring frequency and damping®*.

To obtain the other parameters, we first hold the power incident on the cavity
constant, while varying the cavity length by tuning the cavity piezo. By performing
an optical-spring measurement at each setting, we may find the cavity length and
transmitted power level (as measured by PDy ) that has the highest-frequency optical
spring. This allows us to set the detuning to a known value of 0.6 with an accuracy of
+7% for these settings, corresponding to a maximum in the optical-spring constant®
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where P is the circulating power in the cavity, c is the speed of light in vacuum,
Tiotal s the fraction of light leaving the cavity in one round trip (including loss and
mirror transmission), g is the laser wavelength, ¢, is the detuning of the cavity
in units of the HWHM linewidth +, and w is the measurement frequency. This
method is independent of knowledge of the optical power level and cavity losses.

Once the detuning is determined by the above method, we then constrain the
circulating power and cavity losses by matching the optical-spring frequency and
quality factor using the measured transfer function of the optical response. This is
possible because, while the real (K) and imaginary (I'og) parts of the optical-spring
constant vary identically with circulating power, they do not scale identically with
the cavity linewidth® (and hence losses), as described by:

2K/m

Tpg(w) = —2Sm
o T o (/)]

4)

Using this method, we constrain the circulating power to be 73 mW with an accu-
racy of 10% and total cavity losses to 470 p.p.m. = 10 p.p.m. The cavity losses are com-
posed of the transmission of the microresonator (T; &2 250 p.p.m.) and the transmission
of the end mirror (T, ~ 50 p.p.m.), with the remainder a combination of absorption,
scattering and diffraction loss (L = 170 p.p.m.). The observed total loss corresponds
to a cavity linewidth of 560 kHz + 10 kHz and is consistent with an independent
measurement of the cavity linewidth. The independent measurement was performed
by measuring the transfer function of amplitude fluctuations to PDy at frequencies
between 500 kHz and 10 MHz with the cavity operated at a high detuning.

For the measurements at high circulating power levels, we scaled both the input
power and the transmitted power by identical factors. Nominally, one might expect
this to keep the cavity detuning constant, but we found that the detuning varied by
a small amount. This change in detuning is attributed to the changing alignment
of the cavity beam on the microresonator as a result of the larger static radia-
tion pressure as the power is increased. The slight shift in beam position on the
microresonator can lead to changes in the cavity losses, probably due to diffraction
loss around the edge. This change in losses will in turn be accompanied by a change
in detuning in order to maintain the ratio of circulating power to input power.
To take this effect into account, we measure the optical-spring transfer function
as described above. Since the input power and the transmitted power are now
already determined (because they were scaled from the 73 mW circulating power



configuration), the optical detuning and optical losses are varied to match the
observed optical-spring transfer function to the model. From this analysis, we
determine the cavity detuning to be 0.45 linewidths, 0.43 linewidths and 0.35
linewidths to within 6%, and total losses (Tiots = T; + To, + L) to be 490 p.p.m.,
495 p.p.m. and 505 p.p.m. to within 10 p.p.m., for circulating power levels of
110 mW, 150 mW and 220 mW), respectively. The total losses correspond to cavity
linewidths of 585 kHz + 10 kHz, 590 kHz + 10 kHz and 600 kHz + 10 kHz for
circulating power levels of 110 mW, 150 mW and 220 mW, respectively.

We further investigate the effect of uncertainty in the cavity detuning and cavity
losses in our measurements and study its effect on the level of modelled QRPN.
By holding the transmitted power and input power constant, the level of optical
loss determines the required cavity detuning that will match the measurements.
In Extended Data Fig. 4 we show the modelled level of QRPN as we vary the loss
and detuning for the 220 mW case. With our estimated uncertainties in detuning,
we may conclude that the resulting uncertainty in the modelled QRPN is +4%,
well within our measurement uncertainty.

Our calibration method of using the laser-cavity piezo to measure the response

at PDy; manifestly removes the effect of the optical spring and our electronic
control loop. We calibrate by modulating the laser frequency and measuring its
frequency dependent response at PDy. This measurement relies on a change in
the laser frequency acting equivalently to a change in cavity length, scaled by the
factor L/wy. Thus, this transfer function directly allows us to measure the effect
of a given amount of displacement on our measurement PD, irrespective of the
control system. This is equivalent to any experiment that uses feedback control to
keep a system near its operational point.
Comparison to standard cavity optomechanics. The device used in this experiment
may not initially appear to be that useful for quantum cavity optomechanics because
of its modest mechanical quality factor and low resonance frequency. In this section,
we describe why standard metrics® are not effective in our case. We summarize com-
mon parameters in Extended Data Table 1. Notably, our system does not satisfy the
requirement'* for observing QRPN that (C/my,) X [1 + (2wm/k)*] ™! > 1, where Cis the
multiphoton cooperativity, iy, is the thermal phonon occupation, wy, is the mechanical
resonance frequency, and x is the FWHM cavity decay rate. This result should not
be surprising given that the system is in fact dominated by thermal noise at the bare
mechanical resonance frequency; and that these parameters are intended to be relevant in
aviscously damped system. It also would not be logical to use the optical-spring parame-
ters in place of the bare mechanical parameters because the region in which we measure
is below the optical-spring resonance frequency. This requirement could be modified
to account for the observed structural damping as C > f, X win/w X [1 4 Qum/k)?] 7Y,
which is satisfied in our system for sufficiently large w.

Here, we illustrate the key parameters of our system that make this measurement
possible. The full calculation of quantum noise must include the effect of vacuum
fluctuations that enter the system wherever there is a loss. We may simplify this
calculation for illustrative purposes by assuming an ideal cavity for which the only
loss is the transmission of the microresonator (that is, Tio1 = T). To calculate the
same level of QRPN as in our real system, we assume the circulating power and
cavity decay rate are the same in both cases. For the P;c = 220 mW circulating
power level at a detuning of 0.35 linewidths, this is equivalent to P, = 31 pW
incident on the cavity, obtained from the relationship
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where T is the transmission of the microresonator. The amplitude spectral density
for power fluctuations due to shot noise inside the cavity may then be calculated as

~ P.
Pcirc = 2}tl“‘}()Pin x Igurc (6)

in

where w is the laser frequency, and the first term is the power spectral density of
power fluctuations for the incident light, and the second term accounts for the
power amplification in the cavity. The power spectral density for the force on the
microresonator is then F' = 2B, /¢, and the resulting QRPN for frequencies above
the mechanical resonance is

2P, 1 [32hwyp
= X y(w) =~ = —lrdrc, 7
c X e Ti(l—i-bb (7)

where y (w) = 1/(mw?) is the mechanical susceptibility, and w is the measuremerzlt

Faren (W) =

m w
which agrees to within 10% of our full model. Although this calculation was
performed without consideration of the optical spring, its effects are removed in
our calibration as previously discussed, and it does not modify the ratio of quantum
to thermal noise at frequencies below the optical-spring resonance.

frequency. For our system, we obtain XqreN R 8 X 10716
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In order to observe QRPN, we must make the thermal noise sufficiently small.
For the structural damping model that we have found to be consistent with our
observed data, given in equation (1), the thermal noise displacement amplitude
spectral density scales as w™>'%, whereas the QRPN scales as w 2. This difference
indicates that the QRPN will dominate over thermal noise at high frequencies if
these scaling laws hold. At frequencies much larger than the fundamental reso-
nance, thermal noise from equation (1) can be approximated to:

_ 4k Tw?
Fg () = |25 (8)
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We may then write the ratio of QRPN to thermal noise as:
X WawP.
QNRPN _ Shdow circ 5 x 1 (9)
X [ kpTmT(1+6,)  wye

Contrary to traditional cavity optomechanics, a low mechanical resonance fre-

quency is advantageous. This calculation assumes a single mechanical degree of
freedom, but as we can see from the measurements, coupling from other modes
will also be important. In our system, the scaling law for thermal noise begins to
break down at around 30 kHz due to the coupling of the drumhead mode of the
microresonator. Despite that limitation, the scaling of thermal noise with frequency
is a key factor that allows QRPN to be measured.
Additional evidence of QRPN. To provide additional evidence that the displace-
ment noise that we are measuring is a result of QRPN, we perform three more
checks. First, we verify that this excess noise is not caused by optical heating of
the microresonator. Second, we measure a transfer function from the amplitude
modulations going into the cavity to our measurement photodetector PDy; and
show that the cavity acts as a parametric amplifier. Last, we use the same transfer
function to project how much displacement would be caused if the ingoing ampli-
tude fluctuations were shot noise limited.

The effect of bulk heating of the cantilever, which could mimic QRPN, must
be ruled out. Owing to the structural damping observed in our device, the mirror
motion is dominated by thermal noise below 10 kHz, while still being QRPN-
limited above. The low-frequency thermal noise may be used as a thermometer to
measure any heating as a result of higher circulating power. To explain the factor
of two increase in noise observed at 20 kHz between low and high power as a result
of heating, the temperature would have had to increase by a factor of 4. We can
rule out this large increase in temperature by observing that the measured noise at
frequencies dominated by thermal noise (between 1 kHz and 2 kHz for example)
only increases by 2%, which is within measurement uncertainty.

To show that the cavity acts as an optical parametric amplifier, we measure the
transfer function of amplitude modulations of the input light to the light detected
at PDy. This frequency-dependent transfer function is written as:

0Py,

TE i (w) = D

(10)

To perform this measurement, we modulate the amplitude of the input light
using the second amplitude modulator in Fig. 1 and measure the response at PDy;.
We then perform this measurement again with the cavity unlocked (far from reso-
nance), with the same amount of power incident on PDy;. The measurements show
that the cavity acts to parametrically amplify the intensity fluctuations incident on
the cavity by a constant factor of 4.2 at frequencies below the optical-spring fre-
quency. This parametric amplification is a result of the radiation pressure coupling.

Furthermore, to quantify the displacement noise resulting from this coupling,
we multiply TFap; by the shot noise level of the effective input power to the cavity.
We then apply our calibration transfer function TF, to the result to calibrate the
displacement noise into units of length. This procedure is outlined in the equations
below, where

oP
TE, (w) = —2M (11)
Ox
is the calibration transfer function, and
~ T
Fg= t%talzmuopin (12)

i

is the amount of effective vacuum fluctuations that enter the cavity. The projected
displacement noise is calculated as:

~ _ BgTEy
Xprojected (w) = ETT (13)



LETTER

The power used to calculate ﬁeff is scaled from the input power (Py,), because
the input port only accounts for part of the vacuum fluctuations that enter
the cavity; the rest enter from the other cavity losses. This calculation projects
the coupling of shot noise to the measurement via radiation pressure on the
cantilever. The result of this calculation, shown in Extended Data Fig. 6, agrees
with the modelled QRPN, and independently confirms the expected level of
QRPN.

Data availability

The data pertaining to this study are available from the corresponding authors
upon reasonable request.
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Extended Data Fig. 1 | Full noise budget. For the measurement with the displacement noise measurement are a result of parametric nonlinear
220 mW circulating power, each noise source that contributed to the sum coupling between various mechanical modes, and this coupling is

of subdominant noises in Fig. 2 is shown (see key). The narrow peaks in negligible at low circulating powers.
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Extended Data Fig. 2 | Dependence of thermal noise on circulating
power as caused by change in beam position. a, The total displacement
noise around the yaw mechanical mode for each of the four circulating
power levels (see key). b, As a but centred on the pitch mechanical mode.
In these measurements, thermal noise is the dominant noise source at
frequencies near the mechanical resonances. The thermal noise around
the pitch mode decreases from 73 mW to 110 mW of circulating power,
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and then increases at 220 mW. This change is consistent with the cavity
mode passing through the nodal point of this mode at an intermediate
power level. Each panel includes an image from the finite element

model depicting the motion associated with the mechanical mode. In
both images, the blue portion represents a positive displacement from
equilibrium (thin black outline), and the red area denotes a negative
displacement. The nodal line for the mechanical modes is drawn in white.
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Extended Data Fig. 3 | Comparison of thermal noise spectra at
different alignments. The effect of the change in beam position is seen

in the change of height of the peaks in the displacement spectrum at the
frequencies of the higher-order mechanical modes. The blue curve is taken
with 10 mW of circulating power with a cavity mode alignment similar to

the QRPN measurement with 220 mW circulating power. The green curve
is for an alignment to minimize the coupling of the pitch and yaw modes at
10 mW circulating power. The red curve is based on a model that sets the
modal mass of the higher-order modes so that the peaks match those in
the displacement measurement shown in Fig. 2.
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Extended Data Fig. 4 | Effect of uncertainty in detuning and loss. measured, is held constant in the model. To be conservative, the range in
Modelled quantum displacement noise at 20 kHz and 220 mW of values for the cavity loss and detuning in this figure are much larger than
circulating power is shown as a function of intracavity loss and cavity the constraints obtained by measurements of the optical spring.

detuning: the optical-spring frequency, which has been precisely
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Extended Data Fig. 5 | QRPN as a function of frequency and power.
This contour plot shows what fraction of the total measured displacement
noise power spectral density (PSD) is contributed by QRPN, as a function
of measurement frequency and circulating power. The quantity shown on
the colour scale at right is the ratio of the PSDs of the QRPN model to the
total measured noise. Whereas in the rest of this Letter we present the data
as amplitude spectral densities in order to put them in the perspective of
GW measurements, we use PSDs to calculate percentage and ratios, and

to make this figure, because all the noises are added in quadrature to make
up the total noise. We interpolate the data between the measurements at
73 mW, 110 mW, 150 mW and 220 mW. The vertical stripe at 876 Hz is an
artefact of the fundamental resonance not being perfectly resolved in the
measurement. The blue vertical stripes at 3.7 kHz, 15 kHz and 28 kHz are
higher-order mechanical modes of the microresonator. The contours are at
a spacing of 0.05 (5%).
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the calibration procedure, as described in Methods. The result of this
calculation agrees with the modelled QRPN.
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Extended Data Table 1 | Standard optomechanical parameters

Parameter

Nominal value

Mechanical resonance frequency
Mechanical quality factor
Mechanical damping rate

Cavity decay rate (HWHM)

27 % 876 Hz

1.6 x 104

27 % 0.055 Hz
y =2 % 580 kHz

Laser detuning from cavity resonance 0.3-0.6y
Optomechanical single-photon coupling strength 27 x 380 kHz
Linearized light-enhanced optomechanical coupling 27 % 3.5 MHz
Photon number circulating in cavity 8 x 107
Multiphoton cooperativity 7.4 x 108
Thermal phonon occupation 7.4 x10°

LETTER

The table shows the measured parameters for our optomechanical system. The parameters in the top half of the table are used in our predictions of noise in the system. The bottom half of the table
shows the common optomechanical parameters for comparison with the current state-of-the-art optomechanical systems. As explained in the text, the parameters from the bottom half are typically

used to characterize on-resonance systems and are not used in our calculations.
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