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a b s t r a c t

Two-phase sampling is a cost-effective method of data collection using outcome-

dependent sampling for the second-phase sample. In order to make efficient use of

auxiliary information and to improve domain estimation, mass imputation can be used

in two-phase sampling. Rao and Sitter (1995) introduce mass imputation for two-phase

sampling and its variance estimation under simple random sampling in both phases. In

this paper, we extend the Rao–Sitter method to general sampling design. The proposed

method is further extended to mass imputation for categorical data. A limited simulation

study is performed to examine the performance of the proposed methods.

© 2019 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Two-phase sampling, first introduced by Neyman (1938), is a convenient and economical sampling design where the
sample selection is conducted in two phases. In phase one, a large sample is collected from the target population and
a relatively inexpensive auxiliary variable x is measured. In phase two, a smaller sample is drawn from the first-phase
sample and the study variable y, which is expensive to measure, is collected.

Two-phase sampling or double sampling increases the precision of estimates by using auxiliary information available
from the first-phase sample. Two-phase sampling is also called outcome-dependent sampling since the second-phase
sampling design depends on the observations from the first-phase sampling. Hidiroglou (2001) and Legg and Fuller (2009)
provided comprehensive overviews of two-phase sampling.

The structure of two-phase sampling can be seen as a missing data problem. Since y’s are observed only in the second-
phase sample and are missing in the remaining part of the first-phase sample, we can regard the two-phase sample
as a planned missing data problem and apply methods for handling missing data. One popular technique is to create
imputation for the missing values in the first-phase sample. It is also called as mass imputation (Kim & Rao, 2012) since
it requires generating a large number of imputed values.

In large-scale surveys, it is sometimes convenient or requested to produce estimates for various domains. Estimates
for domains, or small area, can be computed using various techniques, including mass imputation (Moore & Robbins,
2004). Breidt, McVey, and Fuller (1996) also considered using imputation method for domain estimation under two-phase
sampling and showed that the estimates obtained using mass imputation provide better estimates at finer levels of detail.

Mass imputation is also applicable to survey data integration problem, in which two surveys are combined for enhanced
estimation. Chipperfield, Chessman, and Lim (2012) developed mass imputation for data integration combining two
independent surveys with common measurements. They considered the composite estimation after mass imputation for
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improved estimation. Kim and Rao (2012) also discussed mass imputation under non-nested two-phase sampling and the
conditions for design consistency.

Rao and Sitter (1995) introduced a mass imputation method for two-phase sampling when both phases use the simple
random sampling design. In this paper, we extend it to the complex sampling designs in each of the two phases. We
propose mass imputation using a ‘‘working’’ regression model and replication variance estimation method for the mass
imputation estimator. In addition, we extend the proposed method to cover categorical data mass imputation.

The rest of the paper is organized as follows. In Section 2, we introduce notation used throughout the paper
and introduce two-phase regression estimator and its known properties. In Section 3, we present the proposed mass
imputation estimator with its asymptotic properties. In Section 4, replication variance estimation for the proposed mass
imputation estimator is discussed. In Section 5, an extension to categorical data mass imputation is discussed and in
Section 6, an illustrative example is provided. Results from a simulation study is presented in Section 7 and concluding
remarks are made in Section 8.

2. Basic setup

To discuss the setup for two-phase sampling, consider a finite population, denoted by FN = {(x1, y1), . . . , (xN , yN )},
where x is a column vector of dimension p and y is a scalar. Let A1 denote the index set of the first-phase sample of size n1

collected from the finite population. For the first-phase sample A1, we assume that the first-order inclusion probability of
unit i, denoted by π1i = P(i ∈ A1), is known for all element i ∈ A1. From the first-phase sample, we select a second-phase
sample by a probability sampling design with known conditional first-order inclusion probability π2i|1i = P(i ∈ A2|i ∈ A1).
The conditional first-order inclusion probability is random in the sense that it depends on the observations from the
first-phase sample. We assume that π2i|1i are available throughout the first-phase sample.

Let w1i denote the sampling weight for the first-phase sample and it is the reciprocal of the first-order inclusion
probability for the first-phase sample; w1i = π−1

1i . Also, w2i|1i is defined as the conditional sampling weight for the
second-phase sample that is the reciprocal of the conditional inclusion probability of the second-phase sample, that is
w2i|1i = π−1

2i|1i.
We are interested in estimating the finite population total of y, denoted by Y = ∑N

i=1 yi. When the study variable y is
observed in the second-phase sample, the population total Y can be estimated using the two-phase regression estimator
defined by

Ŷtp,reg = Ŷ2 + (X̂1 − X̂2)
′β̂ , (1)

where X̂1 = ∑
i∈A1 w1ixi, (X̂2, Ŷ2) = ∑

i∈A2 w1iw2i|1i(xi, yi), and β̂ is obtained using the observations from the second-phase

sample. Note that β is a column vector of dimension p and notation x′ denotes the transpose of x. To study the asymptotic
properties of the two-phase regression estimator in (1), we assume a sequence of finite populations and samples defined
in Fuller (2009) with bounded fourth moments of (xi, yi). Under some regularity conditions, we can establish that

Ŷtp,reg = Ŷ2 + (X̂1 − X̂2)
′βN + (X̂1 − X̂2)

′(β̂ − βN )

= Ŷ2 + (X̂1 − X̂2)
′βN + Op(n

−1
2 N),

where βN is the probability limit of β̂. Thus, the two-phase regression estimator Ŷtp,reg is design-consistent for Y regardless

of the form of β̂.

3. Proposed method

In this section, we present a new approach for mass imputation under two-phase sampling. Mass imputation estimator
for the population total Y is composed of the observed y values of the second-phase sample and the imputed values for
the rest of the first-phase sample. Thus, a mass imputation estimator for population total using a regression model is
written by

Ŷimp =
∑
i∈A2

w1iyi +
∑
i∈Ã2

w1iŷi, (2)

where Ã2 = A1

⋂
Ac
2, ŷi = x′

iβ̂ and β̂ is to be determined later. The first component is a weighted sum of the real

observations in A2 and the second term is a weighted sum of imputed values in Ã2.
Our goal is to find a sufficient condition that makes the imputation estimator (2) algebraically equivalent to the

two-phase regression estimator in (1).

Lemma 1. If β̂ satisfies∑
i∈A2

w1i(w2i|1i − 1)(yi − x′
iβ̂) = 0, (3)

then the mass imputation estimator Ŷimp in (2) is algebraically equivalent to the two-phase regression estimator defined in (1).
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Proof. Condition (3) can be expressed as∑
i∈A2

w1iwi2|1(yi − ŷi) =
∑
i∈A2

w1i(yi − ŷi).

Thus,

Ŷimp =
∑
i∈A2

w1iyi +
∑
i∈Ã2

w1iŷi

=
∑
i∈A1

w1iŷi +
∑
i∈A2

w1i(yi − ŷi)

=
∑
i∈A1

w1iŷi +
∑
i∈A2

w1iwi2|1(yi − ŷi)

= Ŷ2 + (X̂1 − X̂2)
′β̂,

which establishes the equivalence between the mass imputation estimator and the two-phase regression estimator. �

Note that condition (3) is satisfied if β̂ is of the form

β̂ =
⎛
⎝∑

i∈A2
w1ixix′

i

⎞
⎠

−1 ∑
i∈A2

w1ixiyi (4)

and w2i|1i − 1 is included in the column space of xi, which means that w2i|1i − 1 = x′
ia for some p-dimensional vector a.

Under condition (3), the mass imputation estimator (2) is also design-consistent for the population total Y . Condition (3)
is similar in spirit to internal bias calibration (IBC) condition of Firth and Bennett (1998).

The mass imputation using ŷi as the imputed values for yi can be called deterministic imputation. We can also apply
the idea of fractional imputation (Fuller & Kim, 2005) for mass imputation. To do this, we can write

ŶFI =
∑
i∈A2

w1iyi +
∑
i∈Ã2

w1i(ŷi +
∑
j∈A2

w∗
ij êj), (5)

where êi = yi − x′
iβ̂ and w∗

ij is the fractional weight assigned to êj in unit i ∈ Ã2. If we choose

w∗
ij = w1j(w2j|1j − 1)/

∑
j∈A2

[w1j(w2j|1j − 1)],

then, by (3), we have
∑

j∈A2 w∗
ij êj = 0 and (5) is algebraically equivalent to the mass imputation estimator (2). By including

the residual terms in the fractional imputation, we can estimate other parameters such as percentiles or distribution
functions. However, it leads to have an aggregated dataset as it requires to impute n2 values for one unit, so the dataset
can be huge after the fractional imputation.

Note that we can express (5) as

ŶFEFI =
∑
i∈A2

w1iyi +
∑
i∈Ã2

w1i

∑
j∈A2

w∗
ijy

∗
ij, (6)

where y∗
ij = ŷi + êj. Because (6) uses all possible imputed values for imputation, it can be called fully efficient fractional

imputation (FEFI) estimator (Fuller & Kim, 2005).

4. Replication variance estimation

In this section, we consider replication variance estimation of the mass imputation estimator in (2). Let the replicate
variance estimator for the first-phase sample estimator of total be

V̂1(T̂1) =
L∑

k=1

ck(T̂
(k)

1 − T̂1)
2 (7)

where T̂
(k)

1 = ∑
i∈A1 w

(k)

1i yi is the kth replicate of estimated total T̂1 = ∑
i∈A1 w1iyi, L is the number of replications, and ck

is the replication factor.
The jackknife variance estimator for the mass imputation estimator using the second-phase sample can be written as

V̂ (Ŷimp) =
L∑

k=1

ck(Ŷ
(k)

imp − Ŷimp)
2, (8)
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where

Ŷ
(k)

imp =
∑
i∈A2

w
(k)

1i yi +
∑
i∈Ã2

w
(k)

1i x
′
iβ̂

(k)
(9)

and β̂
(k) = (

∑
i∈A2 w

(k)

1i xix
′
i)

−1
∑

i∈A2 w
(k)

1i xiyi. Note that Ŷ
(k)

imp is the kth replicate of Ŷimp using the kth replicated weight of

w1i. We can show that the jackknife variance estimator is consistent for the variance of the mass imputation estimator.

For simplicity we now assume that a Poisson sampling is used in the second-phase. Fuller (1998) argued that Poisson

sampling for second-phase sample is a good approximation and has little impact on the variance estimation of the mean

under two-phase sampling.

Theorem 1. Assume that a finite population of zi = (xi, yi) is a random sample from an infinite population with 4+ δ, δ > 0,

moments and E(π2i|1i) = κi. Assume that w2i|1i − 1 is in the column space of xi in computing β̂ in (4). Denote n1 = |A1|,
n2 = |A2| and T̂1z = ∑

i∈A1 w1izi is a total estimator of variable z obtained from the first-phase. Assume that

E[|T̂1z − T1z |2|FN ] = O(n−1
1 N2),

and

V (T̂1y|FN ) ≤ KMV (T̂y,SRS |FN ), (10)

for a fixed KM, where V (T̂y,SRS |FN ) is the variance of the Horvitz–Thompson estimator based on a simple random sample of size

n1. Assume that the variance of a linear estimator of the total is a quadratic function of y and assume that

n1N
−2V (

∑
i∈A1

w1iyi|FN ) =
N∑
i=1

N∑
j=1

Ωijyiyj (11)

where the coefficients Ωij satisfy

N∑
i=1

|Ωij| = O(N−1). (12)

Let V̂1(T̂1) be the first-phase sample replicate estimator of the variance of T̂1 given in (7) and satisfy

E

⎡
⎣(

V̂1(T̂1)

V (T̂1|FN )
− 1

)2 ∣∣∣∣∣FN

⎤
⎦ = o(1) (13)

for any y with bounded fourth moments. Assume that the replicates for the first-phase sample estimator of the total, T̂1, satisfy

max
k

E[{ck(T̂ (k)

1 − T̂1)
2}2|FN ] < KT L

−2[V (T̂1|FN )]2 (14)

for some constant KT , uniformly in N. Also, assume that

max
k

ck = O(1). (15)

Then, the jackknife variance estimator of form (8) satisfies

V̂JK (Ŷimp) = V (Ŷimp | FN ) −
N∑
i=1

κ−1
i (1 − κi)e

2
i + op(n

−1
2 N2), (16)

where ei = yi − ȲN − (xi − X̄N )βN .

The proof of Theorem 1 is presented in the Appendix. Assumptions (10)–(12) are the regularity conditions for the

variance of the Horvitz–Thompson estimator in the first-phase sample. Assumption (13) implies that the first-phase

replication variance estimator is consistent and assumption (14) implies that all components of the replication variance

estimator are of the same order, uniformly contribute and no component dominates the others. Assumption (15) is about

the order of the replication factor and it is satisfied for the Jackknife variance estimator. These assumptions are quite

standard in two-phase sampling literature and can be found in Kim, Navarro, and Fuller (2006).

From (16), the bias of V̂JK (Ŷimp) is O(N) and it can be estimated unbiasedly by
∑

i∈A2 w1iπ
−2
2i|1i(1 − π2i|1i)ê2i , where

êi = yi − x′
iβ̂. The bias term in (16) is negligible if the first-phase sampling rate, n1/N , is negligible. Then, the replicate

variance estimator in (8) can be used directly for the variance of mass imputation estimator under two-phase sampling.
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We now consider variance estimation of the FEFI estimator in (6). The kth replicate of the FEFI estimator is

Ŷ
(k)

FEFI =
∑
i∈A2

w
(k)

1i yi +
∑
i∈Ã2

w
(k)

1i

∑
j∈A2

w
∗(k)
ij y∗

ij, (17)

where

w
∗(k)
ij = w

(k)

1j (w2j|1j − 1)/
∑
j∈A2

[w(k)

1j (w2j|1j − 1)] (18)

is the kth replicate of fractional weight. Note that the imputed values are not changed for each replication, only
the fractional weights are changed. The following theorem provides the asymptotic property of the replicate variance
estimator of the FEFI estimator.

Theorem 2. Assume that

β̂
(k) − β̂ = Op(n

−1
2 ). (19)

Then, the jackknife variance estimator of the FEFI estimator, which has a form of V̂FEFI = ∑L
k=1 ck(Ŷ

(k)

FEFI − ŶFEFI )
2, satisfies

V̂FEFI = V (ŶFEFI ) −
N∑
i=1

κ−1
i (1 − κi)e

2
i + op(n

−1
2 N2), (20)

where κi and ei are defined in Theorem 1.

The proof of Theorem 2 is presented in the Appendix.
Theorem 2 establishes the asymptotic equivalence of the FEFI variance estimator using (17) and the variance estimator

(8) for mass imputation. By Theorem 2, the proposed FEFI variance estimator is design-consistent under two-phase
sampling.

5. Categorical data mass imputation

We now extend the proposed mass imputation method to handle categorical data. Note that the regression imputation

using ŷi = xiβ̂ does not necessarily produce imputed values belonging to the range of y values and cannot be used directly
to handle categorical y-values. To discuss the problem, let y take values on {1, 2, . . . , K }. We assume a ‘‘working’’ model
for P(Y = l | x):

P(Y = l | x) = pl(x; β)

with
∑K

l=1 pl(x; β) = 1. For example, for binary y, we may use a logistic regression model

P(Y = 1 | x) = exp(x′β)
1 + exp(x′β)

.

Now, suppose that we are interested in estimating θl = P(Y = l) from the survey data. The sampling design is the same
two-phase sampling in Section 2. The only difference is that the study variable y is categorical. The two-phase regression
estimator of θl can be defined as

θ̂l,tp,reg =
∑
i∈A1

w1ipl(xi; β̂) +
∑
i∈A2

w1iπ
−1
2i|1i

{
I(yi = l) − pl(xi; β̂)

}
, (21)

for some β̂. Note that θ̂l,tp,reg is design-consistent for θl, regardless of whether the working model is true or not.
Similarly to (2), we can construct mass imputation estimator of θl as follows.

θ̂l,I,reg =
∑
i∈A2

w1iI(yi = l) +
∑
i∈Ã2

w1ipl(xi; β̂). (22)

Two estimators, (21) and (22), are algebraically equivalent if the following condition holds:∑
i∈A2

w1i

(
π−1
2i|1i − 1

) {
I(yi = l) − pl(xi; β̂)

}
= 0. (23)

More generally, we can use∑
i∈A2

w1i

(
π−1
2i|1i − 1

)
S(β̂; xi, yi) = 0 (24)

as the pseudo score equation for model parameter β in the working model f (y | x; β), where S(β; x, y) = ∂ log f (y |
x; β)/∂β is the score function of β in the parametric working model f (y | x; β). Condition (24) is the IBC condition
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Table 1
Data for the illustrative example.

Element Phase 1 Phase 1 Phase 2 Phase 2 y

ID Stratum Weight Group Weight

1 1 300 1

2 1 300 1 600 7.2

3 1 300 1 600 6.8

4 1 300 2

5 1 300 2 525 8.6

6 1 300 2

7 1 300 2 525 8.0

8 1 300 3 550 6.2

9 1 300 3 550 6.5

10 1 300 3

11 1 300 3 550 5.9

12 1 300 3

13 2 200 1

14 2 200 1 400 5.2

15 2 200 1

16 2 200 1 400 5.5

17 2 200 1

18 2 200 2

19 2 200 2 350 5.7

20 2 200 2 350 6.3

21 2 200 3

22 2 200 3

23 2 200 3 366.7 5.3

24 2 200 3

25 2 200 3 366.7 4.9

26 2 200 3 366.7 5.0

of Firth and Bennett (1998) for the parametric model approach in two-phase sampling. It is also related to doubly robust
imputation in the context of missing data imputation (Kim & Haziza, 2014).

The mass imputation estimator in (22) is design-consistent under (23) but the imputed value ŷi = pl(xi; β̂) is not
necessarily categorical. To create categorical imputed values and achieve design consistency, we can apply parametric
fractional imputation of Kim (2011) adopted to two-phase sampling. In fractional imputation for categorical data, for

each unit i ∈ Ã2, we create K values of (y∗
ij, w

∗
ij), for j = 1, . . . , K , where y∗

ij is the jth imputed value of yi and w∗
ij is the

fractional weight assigned to y∗
ij satisfying

∑K
j=1 w∗

ij = 1. In the proposed method, we use y∗
ij = j and w∗

ij = pj(xi; β̂), where

β̂ satisfies (23). Using the fractionally imputed data, we can estimate θl by

θ̂l,FI =
∑
i∈A2

w1iI(yi = l) +
∑
i∈Ã2

K∑
j=1

w1iw
∗
ij I(y

∗
ij = l). (25)

Note that, since y∗
ij = j, the fractionally imputed estimator (25) with w∗

ij = pj(xi; β̂) is algebraically equivalent to the mass
imputation estimator in (22). Because all the imputed values are categorical, the fractionally imputed dataset can be used
for estimating many different parameters such as proportions.

For variance estimation, we develop replication method for fractional imputation. In fractional imputation, only the
fractional weights are replicated and the imputed values are not changed for each replication. To construct the kth

replicate of w∗
ij = pj(xi; β̂), we first compute β̂

(k)
, the kth replicate of β̂, by solving (24) with w1i replaced by w

(k)

1i . The

replication fractional weights are given by w
∗(k)
ij = pj(xi; β̂

(k)
).

Using the replicated fractional weights, the kth replicate of θ̂l,FI is obtained as

θ̂
(k)

l,FI =
∑
i∈A2

w
(k)

1i I(yi = l) +
∑
i∈Ã2

K∑
j=1

w
(k)

i1 w
∗(k)
ij I(y∗

ij = l)

and applied to (7) to compute the variance estimator of θ̂l,FI .

6. An illustrative example

In this section, we use a toy example to illustrate the mass imputation estimator and its variance estimation under
two-phase sampling. The data are tabulated in Table 1, which is modified from Table 3.6 of Fuller (2009).

Suppose that the data were obtained by two-phase sampling where the first-phase sample contains 26 elements in
two strata (h = 1, 2) and the second-phase sample contains 14 elements in three groups (g = 1, 2, 3). Simple random
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Table 2
Data for the illustrative example with imputed values.

Element Phase 1 Phase 1 Phase 2 y∗
ID Stratum Weight Group

1 1 300 1 6.34

2 1 300 1 7.20

3 1 300 1 6.80

4 1 300 2 7.38

5 1 300 2 8.60

6 1 300 2 7.38

7 1 300 2 8.00

8 1 300 3 6.20

9 1 300 3 6.50

10 1 300 3 5.75

11 1 300 3 5.90

12 1 300 3 5.75

13 2 200 1 6.34

14 2 200 1 5.20

15 2 200 1 6.34

16 2 200 1 5.50

17 2 200 1 6.34

18 2 200 2 7.38

19 2 200 2 5.70

20 2 200 2 6.30

21 2 200 3 5.75

22 2 200 3 5.75

23 2 200 3 5.30

24 2 200 3 5.75

25 2 200 3 4.90

26 2 200 3 5.00

sampling is used in each group for selecting the second-phase sample and the second-phase sampling rate is four-in-eight,
four-in-seven, and six-in-eleven, for groups 1, 2, and 3, respectively. Weights for both phases are also presented in Table 1.

Let xi be the vector of covariate variable, xgi, which is an indicator variable having either 1 if element i is in group g , or
0 otherwise. A study variable y is continuous and observed only in the second-phase sample (A2), whereas it is missing

in the remaining part of the first-phase sample (Ã2).

We are interested in estimating the population mean of Y , θ = N−1
∑N

i=1 yi. In order to obtain the mass imputation
estimator for θ written by

θ̂imp = N−1

⎛
⎝∑

i∈A2
w1iyi +

∑
i∈Ã2

w1iŷi

⎞
⎠ , (26)

the missing values of yi in Ã2 should be filled in by imputed values, which are ŷi = xiβ̂. Using Eq. (4), we can calculate β̂
from the second-phase sample given by

β̂ =
⎛
⎝∑

i∈A2
w1ixix′

i

⎞
⎠

−1 ∑
i∈A2

w1ixiyi = (6.34, 7.38, 5.75).

Then the yi’s in Ã2 can be replaced by imputed values, ŷi = x′
iβ̂, which are tabulated in Table 2. Note that y∗ in Table 2 is

defined as

y∗
i =

{
yi if i ∈ A2

ŷi if i ∈ Ã2.

Then, we can obtain the mass imputation estimator by (26), which is

θ̂imp = N−1

⎛
⎝∑

i∈A2
w1iyi +

∑
i∈Ã2

w1iŷi

⎞
⎠ = 6.382.

Note that only the first-phase sample weights are used for computation of the mass imputation estimate. On the other
hand, the direct expansion estimator (DEE) of θ is

θ̂DEE =
⎛
⎝∑

i∈A2
w2i

⎞
⎠

−1 ∑
i∈A2

w2iyi = 6.369.
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Variance of θ̂imp can be estimated using Jackknife variance estimator given in (8), where the kth replicates of θ̂imp are

calculated by (9). That is, leave-one-out procedure is repeated for n1 = |A1| times and the θ̂
(k)

imp is computed for each
replicate, which is

θ̂
(k)

imp = N−1

⎛
⎝∑

i∈A2
w

(k)

1k yi +
∑
i∈Ã2

w
(k)

1i ŷ
(k)

i

⎞
⎠ ,

where ŷ
(k)

i = x′
iβ̂

(k)
and β̂

(k) =
(∑

i∈A2 w
(k)

1i xix
′
i

)−1 ∑
i∈A2 w

(k)

1i xiyi. Note that, for each replicate, the first-phase sample

weights are changed.
Then the Jackknife variance estimate of the mass imputation estimator is obtained by

V̂JK (θ̂imp) =
n1∑
k=1

ck(θ̂
(k)

imp − θ̂imp)
2 = 0.057.

The variance estimate of the DEE estimator is 0.075.

7. Simulation study

A limited simulation study is performed to study the finite sample performance of the proposed mass imputation
estimator and the replication variance estimator.

We consider two types of study variable Y = (Y1, Y2), where Y1 is continuous and Y2 is categorical.

1. Two artificial finite populations for Y1 is considered: linear model y1i = 0.8 + 0.5xi + zi + ei where xi ∼ N(2, 1),
ei ∼ N(0, 1) and ratio model y1i = 0.3xi + zi + ui where xi ∼ N(2, 1) and ui ∼ N(0, |xi|). For both models,
zi ∼ exp(1) + 2 is used as the size measure for the unequal probability sampling in the second-phase sampling.

2 Categorical variable of Y2: we consider a binary variable of Y2 ∼ Bernoulli(pi) where logit(pi) = −1.8 + xi + 0.4y1i
using the y1i values generated from either of the artificial finite populations.

A finite population of size N = 100,000 is generated from each model. From each of the finite population, first-phase
samples of size n1 = 500 are independently generated by simple random sampling. Then, second-phase samples of size
n2 = 80 are selected from the first-phase sample using the three different sampling designs as follows:

(1) Simple random sampling without replacement of size n2 = 80.

(2) Poisson sampling:
Define δi for selecting unit i as δi|Ii = 1 ∼ Bernoulli(π2i|1i), where Ii is an indicator variable having 1 if unit i is
included in the first-phase, and having 0 otherwise. We use the conditional first-order inclusion probability of
second-phase sample as π2i|1i = n2zi/

∑
i∈A1 zi, which depends on the first-phase sample, where n2 = 80.

(3) Randomized systematic PPS sampling (RSPPS) of size n2 = 80: We follow the procedure introduced in Thompson
and Wu (2008).

a. Arrange units in the first-phase sample in a random order.

b. Denote qi = zi/
∑

i∈A1 zi and let Aj = ∑j

i=1 n2qi be the cumulative totals of n2qi. Note that A0 = 0 and we have

the order of 0 = A0 < A1 < · · · < An1 = n2.

c. Let u be a uniform random number over [0, 1].
d. Units with indices j satisfying Aj−1 ≤ u + k < Aj for k = 0, 1, . . . , n2 − 1 to be included in the second-phase

sample.

Note that the first-order inclusion probability of second-phase sample π2i|1i obtained by the randomized systematic
PPS sampling procedure satisfies π2i|1i = n2zi/

∑
i∈A1 zi, for i ∈ A1.

Once the two-phase samples are generated, we compute four estimators for the population mean θ = N−1
∑N

i=1 yi;
(1) direct estimator, (2) classical two-phase regression estimator, (3) classical two-phase regression estimator including
π2i|1i − 1 as a covariate, and (4) mass imputation estimator. These estimates are defined as follows:

1. Direct estimator: θ̂dir = ∑
i∈A2 w1iw2i|1iyi/

∑
i∈A2 (w1iw2i|1i).

2. Two-phase regression estimator: θ̂tp,reg = ȳ2 + (x̄1 − x̄2)′β̂,
where

x̄1 =
∑
i∈A1

w1ixi/
∑
i∈A1

w1i,

(x̄2, ȳ2) =
∑
i∈A2

w1iw2i|1i(xi, yi)/
∑
i∈A2

(w1iw2i|1i),
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Table 3
Continuous case: Monte Carlo bias and Monte Carlo variance of the four estimators:

Direct estimator (θ̂dir ); Two-phase regression estimator (θ̂tp,reg ); Two-phase regression

estimator with extended covariates (θ̂tp,reg2); Mass imputation estimator (θ̂imp).

Population Second-phase sampling Estimator Bias Variance

Linear

SRS

θ̂dir 0.00 0.029

θ̂tp,reg 0.00 0.026

θ̂tp,reg2 0.00 0.026

θ̂imp 0.00 0.026

Poisson

θ̂dir 0.00 0.027

θ̂tp,reg 0.00 0.020

θ̂tp,reg2 0.00 0.019

θ̂imp 0.00 0.017

RSPPS

θ̂dir 0.00 0.022

θ̂tp,reg 0.00 0.018

θ̂tp,reg2 0.00 0.017

θ̂imp 0.00 0.016

Ratio

SRS

θ̂dir 0.00 0.040

θ̂tp,reg 0.00 0.038

θ̂tp,reg2 0.00 0.038

θ̂imp 0.00 0.038

Poisson

θ̂dir 0.00 0.047

θ̂tp,reg 0.00 0.038

θ̂tp,reg2 0.00 0.031

θ̂imp 0.00 0.030

RSPPS

θ̂dir 0.00 0.032

θ̂tp,reg 0.00 0.031

θ̂tp,reg2 0.00 0.030

θ̂imp 0.00 0.030

β̂ =
⎛
⎝∑

i∈A2
w1iw2i|1ixix′

i

⎞
⎠

−1 ∑
i∈A2

w1iw2i|1ixiyi,

and xi = (1, xi)
′.

3. Two-phase regression estimator including π2i|1i − 1 as a covariate: θ̂tp,reg2 = ȳ2 + (x̄1 − x̄2)′β̂, where all estimators

(x̄1, x̄2, ȳ2, β̂) are defined as the same with estimators in θ̂tp,reg except for xi = (1, π2i|1i, xi)′.

4. Mass imputation estimator: θ̂imp = N−1(
∑

i∈A2 w1iyi + ∑
i∈Ã2 w1iŷi), where ŷi = x′

iβ̂, β̂ =
(∑

i∈A2 w1ixix′
i

)−1 ∑
i∈A2

w1ixiyi, and xi = (1, π−1
2i|1i, xi)

′.

Further, we compute the proposed replication variance estimator for the mass imputation estimator. The replication

variance estimator of the mass imputation estimator was computed using the replication number L = n1. Since the

first-phase sample is selected from simple random sampling of size n1, the kth replicate weight is given by

w
(k)

1i =
{
w1in1/(n1 − 1) if i �= k
0 otherwise,

and the replication factor is ck = (1 − n1/N)(1 − 1/n1). This procedure was repeated 1000 times and Monte Carlo bias

and variance of the four estimators, Monte Carlo coverage rate of the mass imputation estimator and Monte Carlo mean

and relative bias of the replication variance estimator are computed.

Tables 3 and 4 present the Monte Carlo bias and variance of the four estimators for continuous case (Y1) and categorical

case (Y2), respectively, and Table 5 presents the Monte Carlo coverage rate of the mass imputation estimator for all cases.

We can check that all four point estimators are unbiased for the population mean regardless of sampling design and

specified population model type. The Monte Carlo coverage rates are about 95% for all cases. Moreover, the variances

of classical two-phase regression estimator, two-phase regression estimator with extended xi and mass imputation

estimator for the sample selected using simple random sampling for both phases are the same, because π−1
2i|1i is constant

under simple random sampling for the second-phase sampling. For other designs, the mass imputation estimator has

smaller variance compared with the classical two-phase regression estimator as the auxiliary variable used for the mass

imputation estimator contains the additional information in π−1
2i|1i. Because the mass imputation estimator is based on the

augmented regression model, augmented by π−1
2i|1i, it is more efficient in the sense of reducing the variance. The mass
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Table 4
Categorical case: Monte Carlo bias and Monte Carlo variance of the four estimators:

Direct estimator (θ̂dir ); Two-phase regression estimator (θ̂tp,reg ); Two-phase regression

estimator with extended covariates (θ̂tp,reg2); Mass imputation estimator (θ̂imp).

Population Second-phase sampling Estimator Bias Variance (×105)

Linear

SRS

θ̂dir 0.00 181

θ̂tp,reg 0.00 157

θ̂tp,reg2 0.00 157

θ̂imp 0.00 157

Poisson

θ̂dir 0.00 359

θ̂tp,reg 0.00 232

θ̂tp,reg2 0.00 206

θ̂imp 0.00 181

RSPPS

θ̂dir 0.00 256

θ̂tp,reg 0.00 198

θ̂tp,reg2 0.00 197

θ̂imp 0.00 184

Ratio

SRS

θ̂dir 0.00 223

θ̂tp,reg 0.00 189

θ̂tp,reg2 0.00 189

θ̂imp 0.00 189

Poisson

θ̂dir 0.00 397

θ̂tp,reg 0.00 257

θ̂tp,reg2 0.00 246

θ̂imp 0.00 216

RSPPS

θ̂dir 0.00 289

θ̂tp,reg 0.00 234

θ̂tp,reg2 0.00 233

θ̂imp 0.00 216

Table 5
Monte Carlo coverage rate of the mass imputation estimator.

Case Population Second-phase sampling Coverage rate

Continuous

Linear

SRS 0.953

Poisson 0.951

RSPPS 0.949

Ratio

SRS 0.951

Poisson 0.950

RSPPS 0.951

Categorical

Linear

SRS 0.948

Poisson 0.949

RSPPS 0.949

Ratio

SRS 0.950

Poisson 0.949

RSPPS 0.951

imputation estimator is slightly more efficient than the two-phase regression estimator with extended covariates. The

mass imputation estimator uses only w1i in computing β̂ while the two-phase regression estimator uses w1iw2i|1i, which

creates extra variability in the final estimation.

Table 6 presents Monte Carlo mean and relative bias of the replication variance estimator of the mass imputation

estimator. The relative bias of the variance estimator is obtained by dividing Monte Carlo bias of the variance estimator

by the Monte Carlo variance of the point estimator. All Monte Carlo means of the replication variance estimators are

consistent for the variance of the mass imputation estimator given in Tables 3 and 4, and it leads to small relative biases

of the replication variance estimator in Table 6. This result supports Theorem 1, as the bias term in (16) can be safely

ignored since the first-phase sampling rate is 500/100,000 = 0.005, which is small enough.

8. Conclusion

We treat two-phase sampling as a missing data problem and propose a mass imputation estimator that is equivalent

to the two-phase regression estimator. The proposed replication variance estimation is simple to implement since it does
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Table 6
Monte Carlo mean and relative bias (R.B.) of the replication variance estimator of the

mass imputation estimator.

Case Population Second-phase sampling Mean R.B.

Continuous

Linear

SRS 0.026 0.001

Poisson 0.017 0.003

RSPPS 0.016 0.002

Ratio

SRS 0.039 0.006

Poisson 0.032 0.057

RSPPS 0.031 0.017

Categorical

Linear

SRS 0.0015 0.002

Poisson 0.0018 0.016

RSPPS 0.0018 −0.005

Ratio

SRS 0.0019 0.028

Poisson 0.0022 0.048

RSPPS 0.0022 0.033

not require computing replicates of the conditional inclusion probability for the second-phase sample, which may be
complicated or impossible to compute depending on the sampling designs. The proposed method is further extended to
categorical data mass imputation.

In mass imputation, to achieve design consistency, we have used an augmented regression model for imputation
by including the inverse of the conditional inclusion probability for the second-phase sample into the covariates. Thus,
the proposed method is applicable only when the conditional inclusion probabilities are available throughout the first-
phase sample. If all the design information for the second-phase sampling is available at the imputation stage, then
the conditional inclusion probability can be constructed for all the elements in the first-phase sample. If such design
information is not available, the proposed method is not applicable. This is one limitation of our proposed method.
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Appendix A. Proof of Theorem 1

Proof. By Lemma 1, we have

Ŷimp = Ŷ2 + (X̂1 − X̂2)
′β̂.

Since we assume that w2i|1i − 1 is in the column space of xi, we have∑
i∈A2

w
(k)

1i (w2i|1i − 1)(yi − x′
iβ̂

(k)
) = 0, (A.1)

where w
(k)

1i is a replicate weight for the first-phase sample for unit i. It follows from (A.1) that

Ŷ
(k)

imp = Ŷ
(k)

2 + (X̂
(k)

1 − X̂
(k)

2 )′β̂
(k)

,

where

β̂
(k) =

⎛
⎝∑

i∈A2
w

(k)

1i xix
′
i

⎞
⎠

−1 ∑
i∈A2

w
(k)

1i xiyi

and (Ŷ
(k)

2 , X̂
(k)

2 ) are computed from the second-phase replicate using w
(k)

1i . Let ai be the indicator function of the inclusion
for the second-phase sample such that ai = 1 if unit i is selected in A2 and ai = 0 otherwise. Using defined indicator
variable for the second-phase sample, ai, we can write(

X̂
(k)

1 , X̂
(k)

2 , Ŷ
(k)

2

)
=

∑
i∈A1

w
(k)

1i (xi, π
−1
2i|1iaixi, π

−1
2i|1iaiyi)

and

β̂
(k) =

⎛
⎝∑

i∈A1
w

(k)

1i aixix
′
i

⎞
⎠

−1 ∑
i∈A1

w
(k)

1i aixiyi.
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Note that, by assumption (14) and (15),

c
1/2

k

(
X̂

(k)

1 − X̂1

)
= Op(n

−1/2

1 NL−1/2)

c
1/2

k

(
X̂

(k)

2 − X̂2, Ŷ
(k)

2 − Ŷ2

)
= Op(n

−1/2

2 NL−1/2).

Also, it can be shown that

β̂
(k) = β̂ + Op(n

−1/2

2 L−1/2).

Next, we write the Ŷ
(k)

imp − Ŷimp as

Ŷ
(k)

imp − Ŷimp = Ŷ
(k)

2 +
(
X̂

(k)

1 − X̂
(k)

2

)′
β̂
(k) − Ŷ2 − (X̂1 − X̂2)

′β̂

= Ŷ
(k)

2 − Ŷ2 +
(
X̂

(k)

1 − X̂1

)′ (
β̂
(k) − β̂

)
−

(
X̂

(k)

2 − X̂2

)′ (
β̂
(k) − β̂

)
+

(
X̂

(k)

1 − X̂1

)′
β̂ −

(
X̂

(k)

2 − X̂2

)′
β̂ +

(
X̂1 − X̂2

)′ (
β̂
(k) − β̂

)
.

Since (
X̂

(k)

1 − X̂1

)′ (
β̂
(k) − β̂

)
= Op(n

−1/2

1 L−1/2N)Op(n
−1/2

2 L−1/2)

= Op(n
−1/2

1 n
−1/2

2 L−1N),(
X̂

(k)

2 − X̂2

)′ (
β̂
(k) − β̂

)
= Op(n

−1/2

2 L−1/2N)Op(n
−1/2

2 L−1/2)

= Op(n
−1
2 L−1N),(

X̂
(k)

1 − X̂1

)′
β̂ =

(
X̂

(k)

1 − X̂1

)′ (
β̂ − βN

)
+

(
X̂

(k)

1 − X̂1

)′
βN

=
(
X̂

(k)

1 − X̂1

)′
βN + Op(n

−1/2

1 n
−1/2

2 L−1/2N),(
X̂

(k)

2 − X̂2

)′
β̂ =

(
X̂

(k)

2 − X̂2

)′ (
β̂ − βN

)
+

(
X̂

(k)

2 − X̂2

)′
βN

=
(
X̂

(k)

2 − X̂2

)′
βN + Op(n

−1
2 L−1/2N),(

X̂1 − X̂2

)′ (
β̂
(k) − β̂

)
= Op(n

−1/2

2 N)Op(n
−1/2

2 L−1/2)

= Op(n
−1
2 L−1/2N),

we have

Ŷ
(k)

imp − Ŷimp = Ŷ
(k)

2 − Ŷ2 −
(
X̂

(k)

1 − X̂1

)′
βN −

(
X̂

(k)

2 − X̂2

)′
βN + Op(n

−1
2 L−1/2N)

:= ê
(k)

2 − ê2 −
(
X̂

(k)

1 − X̂1

)′
βN + Op(n

−1
2 L−1/2N),

where ei = yi − ȲN − (xi − X̄N )βN . Hence, we can write

c
1/2

k (Ŷ
(k)

imp − Ŷimp) = c
1/2

k

[
ê
(k)

2 − ê2 − (X̂
(k)

1 − X̂1)
′βN

]
+ Op(n

−1
2 L−1/2N). (A.2)

by (15) and it follows from (A.2) that

L∑
k=1

ck(Ŷ
(k)

imp − Ŷimp)
2 =

L∑
k=1

ck[ê(k)2 − ê2 + (X̂
(k)

1 − X̂1)
′βN ]2 + Op(n

−3/2

2 N2). (A.3)

Order in (A.3) follows from that the order of the first term in (A.2) is n
−1/2

2 L−1/2N by (14) and (10), and note that

Op(n
−3/2

2 N2) is op(n
−1
2 N2).

We now extend the definition of the second-phase sample indicator ai that is defined throughout the population and

this concept has been discussed by Fay (1991) and used by Kim et al. (2006). It means that ai is defined for every unit in

the population. Then, we can see the sample selection process as selecting the first-phase sample from the population
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of (ai, xi, aiyi) vectors. Hence, the main term of the right side of (A.3) can be written by

ê
(k)

2 − ê2 + (X̂
(k)

1 − X̂1)
′βN =

∑
i∈A1

(w
(k)

1i − w1i)κ
−1
i aiei + (X̂

(k)

1 − X̂1)
′βN

=
∑
i∈A1

(w
(k)

1i − w1i)(x′
iβN + κ−1

i aiei)

≡
∑
i∈A1

(w
(k)

1i − w1i)ηi,

where ηi = x′
iβN + κ−1

i aiei. Thus, we can express the main tern of right side of (A.3) as a linear function form of ηi. Then,

we are interested in the linearization form for the variance estimation of Ŷimp.

Let Ỹimp = ∑
i∈A1 w1iηi. By assumption (10) and (13), conditional on ai, the replicate variance estimator of Ỹimp satisfies

V̂ (Ỹimp|a,FN ) = V (Ỹimp|a,FN ) + op(n
−1
1 N2). (A.4)

It implies that the replicate variance estimator of Ỹimp is a consistent estimator of conditional variance of Ỹimp. We now

want to show that the replicate variance estimator is also consistent for the unconditional variance of Ỹimp, V (Ỹimp|FN ).

The variance of the mass imputation estimator can be written by

V (Ỹimp|FN ) = E[V (Ỹimp|a,FN )|FN ] + V [E(Ỹimp|a,FN )|FN ]. (A.5)

We next show that V̂ (Ỹimp|a,FN ) is a consistent estimator of the first term of (A.5). For this, we must show that

V (Ỹimp|a,FN ) converges to E[V (Ỹimp|a,FN )|FN ] and it is sufficient to demonstrate that

V (n1N
−2V (Ỹimp|a,FN )|FN ) = o(1).

Since we assumed that ai ∼ Bernoulli(π2i|1i), we have Cov(aiaj, akal|FN ) = κiκj(1−κiκj) where if (i, j) = (k, l) or (i, j) = (l, k)

and Cov(aiaj, akal|FN ) = 0 otherwise. By assumption (11) and (12), we have

V (n1N
−2V (Ỹimp|a,FN )|FN )

= V [n1N
−2V (

∑
i∈A1

w1iηi|a,FN )|FN ]

= V [
N∑
i=1

N∑
j=1

Ωijw1iηiw1iηj|FN ]

=
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

ΩijΩklCov(ηiηj, ηkηl|FN )

= 2

N∑
i=1

N∑
j=1

Ω2
ijκiκj(1 − κiκj)η

2
i η

2
i

≤ 2max
i,j

{
κiκj(1 − κiκj)η

2
i η

2
i

}
(max

i,j
|Ωij|)

N∑
i=1

N∑
j=1

|Ωij|

= O(N−1).

Therefore, V̂ (Ỹimp|a,FN ) is consistent for E[V (Ỹimp|a,FN )|FN ].
Finally, the last term of (A.5) is

V [E(Ỹimp|a,FN )|FN ] = V [E(
∑
i∈A1

w1iηi|a,FN )|FN ]

= V [
N∑
i=1

ηi|FN ]

=
N∑
i=1

N∑
i=1

Cov(ηi, ηj|FN )
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=
N∑
i=1

N∑
j=1

Cov(κ−1
i aiei, κ

−1
j ajej)

=
N∑
i=1

κ−1
i (1 − κi)e

2
i .

Therefore, by combining all the results, we have

V̂ (Ỹimp|a,FN ) = V (Ỹimp|FN ) −
N∑
i=1

κ−1
i (1 − κi)e

2
i + op(n

−1
2 N2), (A.6)

which, by (A.4) and (A.6), establishes (16). �

Appendix B. Proof of Theorem 2

Proof. First define Ỹ
(k)

FEFI as

Ỹ
(k)

FEFI =
∑
i∈A2

w
(k)

1i yi +
∑
i∈Ã2

w
(k)

1i

∑
j∈A2

w
∗(k)
ij y

∗(k)
ij (B.1)

where y
∗(k)
ij = ŷ

(k)

i + ê
(k)

j = x′
iβ̂

(k) + (yj − x′
jβ̂

(k)
) is the kth replicate of y∗

ij. Now,

Ỹ
(k)

FEFI − Ŷ
(k)

FEFI

=
∑
i∈Ã2

w
(k)

1i

∑
j∈A2

w
∗(k)
ij y

∗(k)
ij −

∑
i∈Ã2

w
(k)

1i

∑
j∈A2

w
∗(k)
ij y∗

ij

=
∑
i∈Ã2

w
(k)

1i x
′
iβ̂

(k) +
∑
i∈Ã2

w
(k)

1i

∑
j∈A2 w

(k)

1i (w2j|1j − 1)(yj − x′
iβ̂

(k)
)∑

j∈A2 w
(k)

1i (w2j|1j − 1)

−
∑
i∈Ã2

w
(k)

1i x
′
iβ̂ +

∑
i∈Ã2

w
(k)

1i

∑
j∈A2 w

(k)

1i (w2j|1j − 1)(yj − x′
iβ̂)∑

j∈A2 w
(k)

1i (w2j|1j − 1)

=
⎡
⎣∑

i∈Ã2
w

(k)

1i xi −
∑

i∈Ã2 w
(k)

1i∑
j∈A2 w

(k)

1i (w2j|1j − 1)

∑
j∈A2

w
(k)

1i (w2j|1j − 1)xj

⎤
⎦

′

(β̂
(k) − β̂)

=
⎡
⎣∑

i∈A1
(1 − ai)w

(k)

1i xi −
∑

i∈A1 (1 − ai)w
(k)

1i∑
j∈A1 aiw

(k)

1i (w2j|1j − 1)

∑
j∈A1

aiw
(k)

1i (w2j|1j − 1)xj

⎤
⎦

′

× (β̂
(k) − β̂). (B.2)

Define

X̂
(k)

2c =
∑
i∈A1

(1 − ai)w
(k)

1i xi,

X̂
(k)

2 =
∑
i∈A1

aiw
(k)

1i (w2i|1i − 1)xi,

and

X̂
(k)

1c =
∑
i∈A1

(1 − π2i|1i)w(k)

1i xi.

Further, let N̂
(k)

2c , N̂
(k)

1c and N̂
(k)

2 be defined similarly using 1 instead of xi. Then, (B.2) can be written by[
X̂

(k)

2c − X̂
(k)

2 N̂
(k)

2c /N̂
(k)

2

]′
(β̂

(k) − β̂). (B.3)

Note that

E(X̂
(k)

2c ) = X̂
(k)

1c = E(X̂
(k)

2 ) (B.4)

and

E(N̂
(k)

2c ) = N̂
(k)

1c = E(N̂
(k)

2 ). (B.5)
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Also, we have N̂
(k)

2c = N̂
(k)

1c + Op(n
−1/2

2 N) and N̂
(k)

2 = N̂
(k)

1c + Op(n
−1/2

2 N). Using the Taylor expansion, the ratio term in (B.3)
can be expressed as

N̂
(k)

2c

N̂
(k)

2

= [N−1N̂
(k)

1c + Op(n
−1/2

2 )]
[

N

N̂
(k)

1c

− N−1(N̂
(k)

2 − N̂
(k)

1c )

(N−1N̂
(k)

1c )
2

+ op(n
−1/2

2 )

]

= N̂
(k)

1c

N̂
(k)

1c

− N̂
(k)

1c (N̂
(k)

2 − N̂
(k)

1c )

(N̂
(k)

1c )
2

+ op(n
−1/2

2 )

= 1 + Op(n
−1/2

2 ),

based on (B.5). Hence, the first term in (B.3) can be expressed as

X̂
(k)

2c − X̂
(k)

2 N̂
(k)

2c /N̂
(k)

2 = [X̂ (k)

1c + Op(n
−1/2

2 N)] − [1 + Op(n
−1/2

2 )][X̂ (k)

1c + Op(n
−1/2

2 N)]
= [X̂ (k)

1c + Op(n
−1/2

2 N)] − [X̂ (k)

1c + Op(n
−1/2

2 N)]
= Op(n

−1/2

2 N), (B.6)

by (B.4). By combining (19) and (B.6), we have

Ŷ
(k)

FEFI = Ỹ
(k)

FEFI + op(n
−1
2 N). (B.7)

With the choice of w
∗(k)
ij given by (18), we can show that Ỹ

(k)

FEFI in (B.1) is algebraically equivalent to the kth replicate of

Ŷimp in (9). That is,

Ỹ
(k)

FEFI =
∑
i∈A2

w
(k)

1i yi +
∑
i∈Ã2

w
(k)

1i

∑
j∈A2

w
∗(k)
ij (x′

iβ̂
(k) + (yj − x′

jβ̂
(k)
))

=
∑
i∈A2

w
(k)

1i yi +
∑
i∈Ã2

w
(k)

1i x
′
iβ̂

(k) +
∑
i∈Ã2

w
(k)

1i

∑
j∈A2

w
∗(k)
ij (yj − x′

jβ̂
(k)
)

=
∑
i∈A2

w
(k)

1i yi +
∑
i∈Ã2

w
(k)

1i x
′
iβ̂

(k)
, (B.8)

where the last equality follows from
∑

j∈A2 w
∗(k)
ij ê

(k)

j = 0. Since the FEFI estimator (6) is equivalent to the mass imputation

estimator (2), we have

Ŷ
(k)

FEFI − ŶFEFI = Ỹ
(k)

FEFI − ŶFEFI + Ŷ
(k)

FEFI − Ỹ
(k)

FEFI

= Ŷ
(k)

imp − Ŷimp + op(n
−1
2 N),

where the second equality holds by (B.7) and (B.8). Therefore, by Theorem 1, the result (20) follows. �
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