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1. Introduction

Two-phase sampling, first introduced by Neyman (1938), is a convenient and economical sampling design where the
sample selection is conducted in two phases. In phase one, a large sample is collected from the target population and
a relatively inexpensive auxiliary variable x is measured. In phase two, a smaller sample is drawn from the first-phase
sample and the study variable y, which is expensive to measure, is collected.

Two-phase sampling or double sampling increases the precision of estimates by using auxiliary information available
from the first-phase sample. Two-phase sampling is also called outcome-dependent sampling since the second-phase
sampling design depends on the observations from the first-phase sampling. Hidiroglou (2001) and Legg and Fuller (2009)
provided comprehensive overviews of two-phase sampling.

The structure of two-phase sampling can be seen as a missing data problem. Since y’s are observed only in the second-
phase sample and are missing in the remaining part of the first-phase sample, we can regard the two-phase sample
as a planned missing data problem and apply methods for handling missing data. One popular technique is to create
imputation for the missing values in the first-phase sample. It is also called as mass imputation (Kim & Rao, 2012) since
it requires generating a large number of imputed values.

In large-scale surveys, it is sometimes convenient or requested to produce estimates for various domains. Estimates
for domains, or small area, can be computed using various techniques, including mass imputation (Moore & Robbins,
2004). Breidt, McVey, and Fuller (1996) also considered using imputation method for domain estimation under two-phase
sampling and showed that the estimates obtained using mass imputation provide better estimates at finer levels of detail.

Mass imputation is also applicable to survey data integration problem, in which two surveys are combined for enhanced
estimation. Chipperfield, Chessman, and Lim (2012) developed mass imputation for data integration combining two
independent surveys with common measurements. They considered the composite estimation after mass imputation for
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improved estimation. Kim and Rao (2012) also discussed mass imputation under non-nested two-phase sampling and the
conditions for design consistency.

Rao and Sitter (1995) introduced a mass imputation method for two-phase sampling when both phases use the simple
random sampling design. In this paper, we extend it to the complex sampling designs in each of the two phases. We
propose mass imputation using a “working” regression model and replication variance estimation method for the mass
imputation estimator. In addition, we extend the proposed method to cover categorical data mass imputation.

The rest of the paper is organized as follows. In Section 2, we introduce notation used throughout the paper
and introduce two-phase regression estimator and its known properties. In Section 3, we present the proposed mass
imputation estimator with its asymptotic properties. In Section 4, replication variance estimation for the proposed mass
imputation estimator is discussed. In Section 5, an extension to categorical data mass imputation is discussed and in
Section 6, an illustrative example is provided. Results from a simulation study is presented in Section 7 and concluding
remarks are made in Section 8.

2. Basic setup

To discuss the setup for two-phase sampling, consider a finite population, denoted by /v = {(x1,y1), ..., (Xn,Yn)}s
where x is a column vector of dimension p and y is a scalar. Let A; denote the index set of the first-phase sample of size n;
collected from the finite population. For the first-phase sample A;, we assume that the first-order inclusion probability of
unit i, denoted by my; = P(i € A1), is known for all element i € A;. From the first-phase sample, we select a second-phase
sample by a probability sampling design with known conditional first-order inclusion probability my1;; = P(i € Az|i € Aq).
The conditional first-order inclusion probability is random in the sense that it depends on the observations from the
first-phase sample. We assume that m;;; are available throughout the first-phase sample.

Let wy; denote the sampling weight for the first-phase sample and it is the reciprocal of the first-order inclusion
probability for the first-phase sample; wy; = 711’,.]. Also, wo;; is defined as the conditional sampling weight for the
second-phase sample that is the reciprocal of the conditional inclusion probability of the second-phase sample, that is
Wajj1i = ﬂzﬂll,--

We are interested in estimating the finite population total of y, denoted by Y = ZIV: 1Yi. When the study variable y is
observed in the second-phase sample, the population total Y can be estimated using the two-phase regression estimator
defined by

f/tp,reg = 92 + ()A(l - )A(Z)/ﬁ ’ (1)

where )A(1 = Ziem w1iXi, (f(z, f’z) = ZieAz w1iW2i1i(Xi, i), and ii is obtained using the observations from the second-phase
sample. Note that 8 is a column vector of dimension p and notation X’ denotes the transpose of x. To study the asymptotic
properties of the two-phase regression estimator in (1), we assume a sequence of finite populations and samples defined
in Fuller (2009) with bounded fourth moments of (x;, y;). Under some regularity conditions, we can establish that

Yipreg = Yo+ (X1 — %) By + (X — X2) (B — By)
Ys + (X1 — X2) By + Op(n; 'N),

where B), is the probability limit of ii Thus, the two-phase regression estimator f/tp,reg is design-consistent for Y regardless
of the form of B.

3. Proposed method

In this section, we present a new approach for mass imputation under two-phase sampling. Mass imputation estimator
for the population total Y is composed of the observed y values of the second-phase sample and the imputed values for
the rest of the first-phase sample. Thus, a mass imputation estimator for population total using a regression model is
written by

Yimp = Z wYi + Z w1idis (2)
i€Ay icAy

where A, = A1 AS, Ji = xiB and B is to be determined later. The first component is a weighted sum of the real
observations in A, and the second term is a weighted sum of imputed values in A,.

Our goal is to find a sufficient condition that makes the imputation estimator (2) algebraically equivalent to the
two-phase regression estimator in (1).

Lemma 1. If B satisfies
Z wii(waii — (i — Xl/ﬁ) =0, (3)

icAy

then the mass imputation estimator ?imp in (2) is algebraically equivalent to the two-phase regression estimator defined in (1).
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Proof. Condition (3) can be expressed as
> wiwpp(yi — i) = Y wilyi — 3.
ieA icA

Thus,
i}imp = Z w1yi + Z w1iYi

i€Ay icAy

= Z waiyi + Z w1i(yi — 9i)

icA icAy
= Z wyiYi + Z wiiwiz1 (Vi — Vi)
i€Aq i€Ay
=¥+ ()A(l —)A(z)//},
which establishes the equivalence between the mass imputation estimator and the two-phase regression estimator. ®

Note that condition (3) is satisfied ifﬁ is of the form

-1
B= Z W1iXiX; Z W1iXiYi (4)

iEA2 iEAz

and wy;q; — 1 is included in the column space of x;, which means that wy;;; — 1 = x{a for some p-dimensional vector a.
Under condition (3), the mass imputation estimator (2) is also design-consistent for the population total Y. Condition (3)
is similar in spirit to internal bias calibration (IBC) condition of Firth and Bennett (1998).

The mass imputation using y; as the imputed values for y; can be called deterministic imputation. We can also apply
the idea of fractional imputation (Fuller & Kim, 2005) for mass imputation. To do this, we can write

Yo = Z w1iyi + Z wii(Yi + Z wiiey), (5)
icAy icAy jehy

where & = y; — x;B and w;; is the fractional weight assigned to &; in unit i € A,. If we choose

wy = wijlwaiy — 1)/ _[wai(wain — 1,
j€Ay
then, by (3), we have ZjeAz w,-’;-éj = 0and (5) is algebraically equivalent to the mass imputation estimator (2). By including
the residual terms in the fractional imputation, we can estimate other parameters such as percentiles or distribution
functions. However, it leads to have an aggregated dataset as it requires to impute n, values for one unit, so the dataset
can be huge after the fractional imputation.
Note that we can express (5) as

% P
Yeer = E w1y + E Wi E wiYi» (6)
ieAa ihy  ieh

where y?} = J; + &;. Because (6) uses all possible imputed values for imputation, it can be called fully efficient fractional
imputation (FEFI) estimator (Fuller & Kim, 2005).

4. Replication variance estimation

In this section, we consider replication variance estimation of the mass imputation estimator in (2). Let the replicate
variance estimator for the first-phase sample estimator of total be

L
A P
Vi(Th) = (T — 11y (7)
k=1
where fgk) = e, w(ll,f)yi is the kth replicate of estimated total T; = > ica, W1iYi, L is the number of replications, and ci

is the replication factor.
The jackknife variance estimator for the mass imputation estimator using the second-phase sample can be written as

L
‘A/(?imp) = Z Ck({/,'(,ﬁl)j - ?imp)zv (8)
k=1
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where

(h) 0 0
iy = 2wl S wiixp’ (©)

i€Ay icA,

A (k A
and /3( g (Xien, w(]’:)xx) ! D ica w(ll?x,-y, Note that Y¥) is the kth replicate of Yimp using the kth replicated weight of

lmp
wi;. We can show that the jackknife variance estimator is consistent for the variance of the mass imputation estimator.
For simplicity we now assume that a Poisson sampling is used in the second-phase. Fuller (1998) argued that Poisson
sampling for second-phase sample is a good approximation and has little impact on the variance estimation of the mean
under two-phase sampling.

Theorem 1. Assume that a finite population of z; = (x;, yi) is a random sample from an infinite population with 4+6, § > 0,
moments and E(myi1;) = ki. Assume that wo;q; — 1 is in the column space of X; in computing B in (4). Denote n; = |A4],
ny, = |Ay| and Ty, = ZieAl w1iz; is a total estimator of variable z obtained from the first-phase. Assume that
A 2 _
E[|Ty; — To| | Fn] = O(ny 'N?),
and
V(Thy|Fn) < KV (Ty 551 7). (10)

for a fixed Ky, where V(fy’SRslfN) is the variance of the Horvitz-Thompson estimator based on a simple random sample of size
ny. Assume that the variance of a linear estimator of the total is a quadratic function of y and assume that

N N
n1N’2V(Z whiYil Fn) = ZZQWU’] (11)
icA i=1 j=1
where the coefficients §2;; satisfy

N

> 1241 = 0N, (12)

i=1

Let \71(f1) be the first-phase sample replicate estimator of the variance of T given in (7) and satisfy

( Vi(Ty) _1>2
V(T1|7n)

for any y with bounded fourth moments. Assume that the replicates for the first-phase sample estimator of the total, f1, satisfy

Fn | =o0(1) (13)

mlng[{ck(fi") — TPV 1FN] < KoL 2 [V(Ty | 7)1 (14)

for some constant Ky, uniformly in N. Also, assume that
max = o(1). (15)

Then, the jackknife variance estimator of form (8) satisfies
")jl((’\imp):v lmp |]:N ZK e +op(n21N2) (16)

where e; = y; — Yy — (Xi — Xn)Bu-

The proof of Theorem 1 is presented in the Appendix. Assumptions (10)-(12) are the regularity conditions for the
variance of the Horvitz-Thompson estimator in the first-phase sample. Assumption (13) implies that the first-phase
replication variance estimator is consistent and assumption (14) implies that all components of the replication variance
estimator are of the same order, uniformly contribute and no component dominates the others. Assumption (15) is about
the order of the replication factor and it is satisfied for the Jackknife variance estimator. These assumptions are quite
standard in two-phase sampling literature and can be found in Kim, Navarro, and Fuller (2006).

From (16), the bias of Vjk(Yimp) is O(N) and it can be estimated unbiasedly by ) whnzm,(l — nzm,-)éf, where

e =y — X:B The bias term in (16) is negligible if the first-phase sampling rate, n;/N, is negligible. Then, the replicate
variance estimator in (8) can be used directly for the variance of mass imputation estimator under two-phase sampling.

ieAy
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We now consider variance estimation of the FEFI estimator in (6). The kth replicate of the FEFI estimator is

k k k k
Ty = Sl Y Y (17)
ieAy icAy Jjehy
where
k
w;( : wl])(wZJ\U -1 /Z[wu (wajij — 1] (18)
Jj€Ay

is the kth replicate of fractional weight. Note that the imputed values are not changed for each replication, only
the fractional weights are changed. The following theorem provides the asymptotic property of the replicate variance
estimator of the FEFI estimator.

Theorem 2. Assume that

B~ B=o0,m". (19)

Then, the jackknife variance estimator of the FEFI estimator, which has a form of VFEFI = Zi;l ck(x?;,’;;, — ?FEFI 2, satisfies

Vierr = V(Yeer) — ZK De? + op(n; 'N?), (20)

where k; and e; are deﬁned in Theorem 1.

The proof of Theorem 2 is presented in the Appendix.

Theorem 2 establishes the asymptotic equivalence of the FEFI variance estimator using (17) and the variance estimator
(8) for mass imputation. By Theorem 2, the proposed FEFI variance estimator is design-consistent under two-phase
sampling.

5. Categorical data mass imputation

We now extend the proposed mass imputation method to handle categorical data. Note that the regression imputation
using y; = x; B does not necessarily produce imputed values belonging to the range of y values and cannot be used directly
to handle categorical y-values. To discuss the problem, let y take values on {1, 2, ..., K}. We assume a “working” model
for P(Y =1 x):

P(Y =11]x) = pi(x; B)
with Zf:] pi(x; B) = 1. For example, for binary y, we may use a logistic regression model
exp(x'B)
1+ exp(x'B)’

Now, suppose that we are interested in estimating 6, = P(Y = ) from the survey data. The sampling design is the same
two-phase sampling in Section 2. The only difference is that the study variable y is categorical. The two-phase regression
estimator of 6; can be defined as

Otip.reg = Z wupi(Xi; B) + Z w1i7T2_,-‘11,~ {I(}’i = 1) — pi(x; B)} , (21)

icAy icAy

P(Y=1|x)=

for some ,3 Note that él,tp,reg is design-consistent for 6), regardless of whether the working model is true or not.
Similarly to (2), we can construct mass imputation estimator of 6, as follows.

Oiireg = Y willyi =1+ Y wipi(x: B). (22)
i€Ay fEAz
Two estimators, (21) and (22), are algebraically equivalent if the following condition holds:
> wni (it = 1) {1 =0 = pixs B} = 0 (23)
ieA
More generally, we can use
> wii (my — 1) S(B: %0, y:) = 0 (24)
icAy

as the pseudo score equation for model parameter 8 in the working model f(y | x; B), where S(8;x,y) = dlogf(y |
X; B)/0B is the score function of B in the parametric working model f(y | x; ). Condition (24) is the IBC condition
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Table 1
Data for the illustrative example.

Element Phase 1 Phase 1 Phase 2 Phase 2 y

ID Stratum Weight Group Weight
1 1 300 1
2 1 300 1 600 7.2
3 1 300 1 600 6.8
4 1 300 2
5 1 300 2 525 8.6
6 1 300 2
7 1 300 2 525 8.0
8 1 300 3 550 6.2
9 1 300 3 550 6.5
10 1 300 3
11 1 300 3 550 5.9
12 1 300 3
13 2 200 1
14 2 200 1 400 5.2
15 2 200 1
16 2 200 1 400 55
17 2 200 1
18 2 200 2
19 2 200 2 350 57
20 2 200 2 350 6.3
21 2 200 3
22 2 200 3
23 2 200 3 366.7 53
24 2 200 3
25 2 200 3 366.7 49
26 2 200 3 366.7 5.0

of Firth and Bennett (1998) for the parametric model approach in two-phase sampling. It is also related to doubly robust
imputation in the context of missing data imputation (Kim & Haziza, 2014). A

The mass imputation estimator in (22) is design-consistent under (23) but the imputed value y; = p(x;; B) is not
necessarily categorical. To create categorical imputed values and achieve design consistency, we can apply parametric
fractional imputation of Kim (2011) adopted to two-phase sampling In fractional imputation for categorical data, for
each unit i € A, we create K values of (y;, wi), for j = 1,..., K, where y} is the jth imputed value of y; and wj is the

fractional weight assigned to y;; satisfying Zj=l wj = 1.In the proposed method, we use y;; = j and w}; = pj(X;; ﬂ), where
[3 satisfies (23). Using the fractionally imputed data, we can estimate 6, by

K
O =Y wilyi=D+>_ > wywii(y; =1. (25)

iy icA J=1

Note that, since y?} = j, the fractionally imputed estimator (25) with w;; = pi(X;; f?) is algebraically equivalent to the mass
imputation estimator in (22). Because all the imputed values are categorical, the fractionally imputed dataset can be used
for estimating many different parameters such as proportions.

For variance estimation, we develop replication method for fractional imputation. In fractional imputation, only the
fractional weights are replicated and the imputed values are not changed for each replication. To construct the kth
replicate of w;; = pj(x;; B), we first compute ,8 , the kth replicate of ﬁ by solving (24) with wy; replaced by wlk) The

s . . . ~ (k)
replication fractional weights are given by w;‘-(k) =pi(x;; B ' ).

Using the replicated fractional weights, the kth replicate of 9,,1:, is obtained as
Ak k ! k
i = Y i =0+ T3 w0 =
icAy icAy j=1
and applied to (7) to compute the variance estimator of é]yp’.

6. An illustrative example

In this section, we use a toy example to illustrate the mass imputation estimator and its variance estimation under
two-phase sampling. The data are tabulated in Table 1, which is modified from Table 3.6 of Fuller (2009).

Suppose that the data were obtained by two-phase sampling where the first-phase sample contains 26 elements in
two strata (h = 1, 2) and the second-phase sample contains 14 elements in three groups (g = 1, 2, 3). Simple random
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Table 2
Data for the illustrative example with imputed values.

Element Phase 1 Phase 1 Phase 2 y*

ID Stratum Weight Group
1 1 300 1 6.34
2 1 300 1 7.20
3 1 300 1 6.80
4 1 300 2 7.38
5 1 300 2 8.60
6 1 300 2 7.38
7 1 300 2 8.00
8 1 300 3 6.20
9 1 300 3 6.50
10 1 300 3 5.75
11 1 300 3 5.90
12 1 300 3 5.75
13 2 200 1 6.34
14 2 200 1 5.20
15 2 200 1 6.34
16 2 200 1 5.50
17 2 200 1 6.34
18 2 200 2 7.38
19 2 200 2 5.70
20 2 200 2 6.30
21 2 200 3 5.75
22 2 200 3 5.75
23 2 200 3 5.30
24 2 200 3 5.75
25 2 200 3 4.90
26 2 200 3 5.00

sampling is used in each group for selecting the second-phase sample and the second-phase sampling rate is four-in-eight,
four-in-seven, and six-in-eleven, for groups 1, 2, and 3, respectively. Weights for both phases are also presented in Table 1.
Let x; be the vector of covariate variable, X, which is an indicator variable having either 1 if element i is in group g, or
0 otherwise. A study variable y is continuous and observed only in the second-phase sample (A;), whereas it is missing
in the remaining part of the first-phase sample (A;).
We are interested in estimating the population mean of Y, 6 = N~! Z,.N:lyi. In order to obtain the mass imputation
estimator for 6 written by

éimp =N"! Z w1yi + Z w1 | (26)
ieAy icAy
the missing values of y; in A, should be filled in by imputed values, which are y; = x,ﬁ. Using Eq. (4), we can calculate [9
from the second-phase sample given by

-1
B=|> wixx | > wixiy; =(6.34,7.38,5.75).

ieA icA;

Then the y;’s in A, can be replaced by imputed values, y; = x;f} which are tabulated in Table 2. Note that y* in Table 2 is
defined as

« |y ifieA
Yi=19 ifieA,

Then, we can obtain the mass imputation estimator by (26), which is

éimp =N"" Z wiyi + Z wqiyi | = 6.382.
iEAZ iE/Z\z
Note that only the first-phase sample weights are used for computation of the mass imputation estimate. On the other
hand, the direct expansion estimator (DEE) of 6 is
-1

éDEE = Z Woi Z woiy; = 6.369.

icAy ieAy
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Variance of Q,mp can be estimated using Jackknife variance estimator given in (8), where the kth replicates of O,mp are

calculated by (9). That is, leave-one-out procedure is repeated for n; = |A;| times and the lep is computed for each
replicate, which is

5(k) (k) 2 :
Glmp N~ Wy Yi + w]l yl ’
ieAy icAy
a(k) s 2tk ) (k) -1 (k) . .
: = f = . w i . w+: XiYi. y ’ -
where ¥, xf  and B (erAz 1 xx) > ica, Wri Xiyi. Note that, for each replicate, the first-phase sample

weights are changed.
Then the Jackknife variance estimate of the mass imputation estimator is obtained by

Vi (Bimp) = Zc N — Omp)? = 0.057.

The variance estimate of the DEE estimator is 0.075.
7. Simulation study

A limited simulation study is performed to study the finite sample performance of the proposed mass imputation
estimator and the replication variance estimator.
We consider two types of study variable Y = (Y7, Y5), where Y; is continuous and Y, is categorical.

1. Two artificial finite populations for Y; is considered: linear model y; = 0.8 + 0.5x; + z; + e; where x; ~ N(2, 1),
e; ~ N(0,1) and ratio model y;; = 0.3x; + z; + u; where x; ~ N(2,1) and u; ~ N(O, |x;|). For both models,
z; ~ exp(1) + 2 is used as the size measure for the unequal probability sampling in the second-phase sampling.

2 Categorical variable of Y,: we consider a binary variable of Y, ~ Bernoulli(p;) where logit(p;) = —1.8 + x; + 0.4y+;
using the yy; values generated from either of the artificial finite populations.

A finite population of size N = 100,000 is generated from each model. From each of the finite population, first-phase
samples of size n; = 500 are independently generated by simple random sampling. Then, second-phase samples of size
n, = 80 are selected from the first-phase sample using the three different sampling designs as follows:

(1) Simple random sampling without replacement of size n, = 80.

(2) Poisson sampling:
Define §; for selecting unit i as §;|l; = 1 ~ Bernoulli(sy;1;), where [; is an indicator variable having 1 if unit i is
included in the first-phase, and having O otherwise. We use the conditional first-order inclusion probability of
second-phase sample as my;1; = nzz,-/zm1 z;, which depends on the first-phase sample, where n, = 80.

(3) Randomized systematic PPS sampling (RSPPS) of size n, = 80: We follow the procedure introduced in Thompson
and Wu (2008).

a. Arrange units in the first-phase sample in a random order.

b. Denote q; = zi/Y _, ea, Zi and let A] Zji:1 n,q; be the cumulative totals of n,q;. Note that A = 0 and we have
the order of 0 = Ap < A; < -+ < A, =m.

c. Let u be a uniform random number over [0, 1].

d. Units with indices j satisfying Ai_; < u+k < Ajfork =0,1,...,n, — 1 to be included in the second-phase
sample.
Note that the first-order inclusion probability of second-phase sample my;¢; obtained by the randomized systematic
PPS sampling procedure satisfies my;;; = nzzi/ZieAl z;, for i € Aq.

Once the two-phase samples are generated, we compute four estimators for the population mean § = N~! Zf’:] Vi:
(1) direct estimator, (2) classical two-phase regression estimator, (3) classical two-phase regression estimator including
w1 — 1 as a covariate, and (4) mass imputation estimator. These estimates are defined as follows:

1. Direct estimator: 84 = ZleAz wl,wz,“,y,/zleAz wl,wz,“,)
2. Two-phase regression estimator: th reg = Y2 + (X1 — X3) /3

where
X) = E w1iXi/E Wi,
icAq ieAq
(X2,¥2) E wiwaii(Xi, Vi /E (w1iwaii),
i€Ay icAy
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Table 3
Continuous case: Monte Carlo bias and Monte Carlo variance of the four estimators:
Direct estimator (6 ); Two-phase regression estimator (fyp,re;); Two-phase regression

estimator with extended covariates (é[p,,egz); Mass imputation estimator (éimp).

Population Second-phase sampling Estimator Bias Variance
Oair 0.00 0.029
SRS Orp.reg 0.00 0.026
0[p.reg2 0.00 0.026
Oimp 0.00 0.026
Linear O 0.00 0.027
Poisson Orp.reg 0.00 0.020
G[p,regz 0.00 0.019
Oimp 0.00 0.017
Oair 0.00 0.022
RSPPS Orp.reg 0.00 0.018
th,regz 0.00 0.017
eimp 0.00 0.016
Baic 000 0040
SRS Orp.reg 0.00 0.038
Otp,reg2 0.00 0.038
Gimp 0.00 0.038
Ratio éair 0.00 0.047
Poisson Oup.reg 0.00 0.038
th,regz 0.00 0.031
Bimp 0.00 0.030
Oir 0.00 0.032
RSPPS Oip.reg 0.00 0.031
G[p,regz 0.00 0.030
éimp 0.00 0.030

-1

. /
B = E W1;W2i1iXiX; E w1 W2i1iXiYi,

icAy icAy

and x; = (1, x;).
3. Two-phase regression estimator including m1; — 1 as a covariate: 6y reg2 = ¥2 + (X1 — X2)' B, where all estimators
(X1, X3,Y2, B) are defined as the same with estimators in 6 ., except for x; = (1, i, Xi) -

. . . . ~ 7‘1 A~ A~ o - -
4. Mass imputation estimator: 6imp = N™'(D_;cs) w1i¥i + D_;ca, widi), where j; = xiB, B = (ZieAz w”x,-x,f) Dica
-1
W1iXiYi, and Xj = (l» 772”1," Xi)/-

Further, we compute the proposed replication variance estimator for the mass imputation estimator. The replication
variance estimator of the mass imputation estimator was computed using the replication number L = n;. Since the
first-phase sample is selected from simple random sampling of size n;, the kth replicate weight is given by

Wb — wyng/(np — 1) ifi#k
i 710 otherwise,

and the replication factor is ¢, = (1 — ny/N)(1 — 1/n;). This procedure was repeated 1000 times and Monte Carlo bias
and variance of the four estimators, Monte Carlo coverage rate of the mass imputation estimator and Monte Carlo mean
and relative bias of the replication variance estimator are computed.

Tables 3 and 4 present the Monte Carlo bias and variance of the four estimators for continuous case (Y;) and categorical
case (Y;), respectively, and Table 5 presents the Monte Carlo coverage rate of the mass imputation estimator for all cases.
We can check that all four point estimators are unbiased for the population mean regardless of sampling design and
specified population model type. The Monte Carlo coverage rates are about 95% for all cases. Moreover, the variances
of classical two-phase regression estimator, two-phase regression estimator with extended x; and mass imputation
estimator for the sample selected using simple random sampling for both phases are the same, because nz’”]” is constant
under simple random sampling for the second-phase sampling. For other designs, the mass imputation estimator has
smaller variance compared with the classical two-phase regression estimator as the auxiliary variable used for the mass
imputation estimator contains the additional information in nz’”]”. Because the mass imputation estimator is based on the

augmented regression model, augmented by nz’ﬂlw it is more efficient in the sense of reducing the variance. The mass
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Table 4
Categorical case: Monte Carlo bias and Monte Carlo variance of the four estimators:
Direct estimator (6 ); Two-phase regression estimator (6, s ); Two-phase regression

estimator with extended covariates (étp_,egz): Mass imputation estimator (éimp).

Population Second-phase sampling Estimator Bias Variance (x10°)
Oair 000 181
SRS qtpvreg 0.00 157
Orp.reg2 0.00 157
Oimp 0.00 157
Linear Oair 000 359
Poisson ?H”eg 0.00 232
Oup.reg2 0.00 206
eimp 0.00 181
Ouir 0.00 256
RSPPS Q[p_reg 0.00 198
Oup.reg2 0.00 197
Oimp 0.00 184
Ouir 000 223
SRS Orp.reg 0.00 189
th.regz 0.00 189
Bimp 0.00 189
Ratio Ouir 000 397
Poisson ?fl’-”?g 0.00 257
Otp.reg2 0.00 246
Bimp 000 216
Odir 0.00 289
RSPPS qtp_,eg 0.00 234
Otp.reg2 0.00 233
Bimp 000 216
Table 5
Monte Carlo coverage rate of the mass imputation estimator.
Case Population Second-phase sampling Coverage rate
SRS 0.953
Linear Poisson 0.951
. RSPPS 0.949
Continuous
SRS 0.951
Ratio Poisson 0.950
RSPPS 0.951
SRS 0.948
Linear Poisson 0.949
. RSPPS 0.949
Categorical
SRS 0.950
Ratio Poisson 0.949
RSPPS 0.951

imputation estimator is slightly more efficient than the two-phase regression estimator with extended covariates. The
mass imputation estimator uses only wy; in computing 8 while the two-phase regression estimator uses wq;wa;j1;, which
creates extra variability in the final estimation.

Table 6 presents Monte Carlo mean and relative bias of the replication variance estimator of the mass imputation
estimator. The relative bias of the variance estimator is obtained by dividing Monte Carlo bias of the variance estimator
by the Monte Carlo variance of the point estimator. All Monte Carlo means of the replication variance estimators are
consistent for the variance of the mass imputation estimator given in Tables 3 and 4, and it leads to small relative biases
of the replication variance estimator in Table 6. This result supports Theorem 1, as the bias term in (16) can be safely
ignored since the first-phase sampling rate is 500/100,000 = 0.005, which is small enough.

8. Conclusion

We treat two-phase sampling as a missing data problem and propose a mass imputation estimator that is equivalent
to the two-phase regression estimator. The proposed replication variance estimation is simple to implement since it does
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Table 6
Monte Carlo mean and relative bias (R.B.) of the replication variance estimator of the
mass imputation estimator.

Case Population Second-phase sampling Mean R.B.

SRS 0.026 0.001

Linear Poisson 0.017 0.003

. RSPPS 0.016 0.002
Continuous

SRS 0.039 0.006

Ratio Poisson 0.032 0.057

RSPPS 0.031 0.017

SRS 0.0015 0.002

Linear Poisson 0.0018 0.016

. RSPPS 0.0018 —0.005
Categorical

SRS 0.0019 0.028

Ratio Poisson 0.0022 0.048

RSPPS 0.0022 0.033

not require computing replicates of the conditional inclusion probability for the second-phase sample, which may be
complicated or impossible to compute depending on the sampling designs. The proposed method is further extended to
categorical data mass imputation.

In mass imputation, to achieve design consistency, we have used an augmented regression model for imputation
by including the inverse of the conditional inclusion probability for the second-phase sample into the covariates. Thus,
the proposed method is applicable only when the conditional inclusion probabilities are available throughout the first-
phase sample. If all the design information for the second-phase sampling is available at the imputation stage, then
the conditional inclusion probability can be constructed for all the elements in the first-phase sample. If such design
information is not available, the proposed method is not applicable. This is one limitation of our proposed method.
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Appendix A. Proof of Theorem 1

Proof. By Lemma 1, we have
}A,imp = 92 + ()A(l - XZY&-
Since we assume that wy;;; — 1 is in the column space of x;, we have
k ~(k)
> wiPwaini — 1y —xB ) =0, (A1)
icAy

where w(]’,f) is a replicate weight for the first-phase sample for unit i. It follows from (A.1) that

S _ o), ol oy pk
Yimp_YZ +(X1 _Xz )ﬂ s
where
-1
Ak (K)y (k)
B =D wivxx wi; XiYi
icAy icAy

and (?z(k), )A(ék)) are computed from the second-phase replicate using w(lllf). Let a; be the indicator function of the inclusion
for the second-phase sample such that a; = 1 if unit i is selected in A; and a; = 0 otherwise. Using defined indicator
variable for the second-phase sample, a;, we can write
(k) ok) (k) (k) -1 -1
(X1 XY, > = Zwli (Xis o3, To1;0iYi)
ic€Aq

and

-1
~k) k k
ﬂ = Z wgi)a,'X,'X; Z w(h-)a,-x,-yi.

ieAq i€Aq
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Note that, by assumption (14) and (15),
o2 ()25") - )%1) 0,(n; ANL71/2)
6 (R4 %, 90— 12) = 0(n; 2NL2),
Also, it can be shown that
BY = B+ oy, ),

. o)
Next, we write the Y; ) — Yinp as

Yi(rﬁp }A,fmp = ?Z(k) + (X K X(k)> ﬁ Y2 (Xl - )22),;3

N N A A A (k N A A\
- () (5 -)- -3

~ NENAR R AN A n AN Ak n
+ (xﬁk) —x1) B— (xg") —Xz) B+ (x1 —xz) (,3 —ﬂ).

>
=
|
>
SN—"

Since
()A(gk) Al>’(B(k) —B> — 0, _l/zL_l/zN)O( 1/2L_1/2)
= 0,(n; *n;’L7'N)
<;(<k) )QZ)/([,(") —3) — 0,(n; 2L V2N)0,(n; 2L 12
= 0y(n; 'L7'N),
(19 -52) B = (30 %) (B ) + (%) o
= (Ag’” — X])'ﬂN +0p(ny 0y PLTIPN),
(5 8= (3 5) (5-0)+ (55 o
(Ag") - )22)/ By + 0p(n; 'L?N),
(X1 )A(z>, (B(k) —ﬂ) = 0,(n; 1/2N)Op(n2—l/2L—1/2)
= 0,(n, 'L7'/2N)
we have

)~y = 19— (K9 ) (9 52) By + 005100
~ ~ /
=&~ — (X %) By +0p(n;'LV2N),
where e; = y; — Yy — (x; — Xy)By. Hence, we can write

1/2 1/2 k ~ ok U 17—
& (Vi = Yimp) = ¢ [ & 8y — (X —xl)/ﬂN] + 0y(ny 'L7V2N).

by (15) and it follows from (A.2) that

L
> Vi = Vimp)? ch[e + (X = X1) By + 0p(n; PN).

(A3)

Order in (A.3) follows from that the order of the first term in (A.2) is nz_l/zL*‘/zN by (14) and (10), and note that

0,(n; **N2) is 0,(n; 'N2).

We now extend the definition of the second-phase sample indicator a; that is defined throughout the population and
this concept has been discussed by Fay (1991) and used by Kim et al. (2006). It means that g; is defined for every unit in
the population. Then, we can see the sample selection process as selecting the first-phase sample from the population
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of (a;, X;, a;y;) vectors. Hence, the main term of the right side of (A.3) can be written by

A(K o (k & k o (k o
&) — & + (X = XiY By = Y (Wl — wi) aie; + (X = X1) By

icAq
k _
= Z(w(u) — wi)(XBy + i aie;)
ieAq
k
= Z(w(“) — W),
icAq

where n; = X{8y + /ci’la,-e,-. Thus, we can express the main tern of right side of (A.3) as a linear function form of n;. Then,
we are ~interested in the linearization form for the variance estimation of Yj;p. 5
Let Vi, = ZieAl w1;n;. By assumption (10) and (13), conditional on a;, the replicate variance estimator of Yj,, satisfies

V(¥impla, Fr) = V(Yimpla, Fiy) + 0p(n; 'N?). (A4)

It implies that the replicate variance estimator of Y,mp is a consistent estimator of conditional variance of Ylmp We now
want to show that the replicate variance estimator is also consistent for the unconditional variance of Ylmp, V( ,m,,lJ-‘N)
The variance of the mass imputation estimator can be written by

V(Yimp| Fr) = EIV(Yimpla, Fn)IFn] + VIE(Yimpla, Fiv )| Fi]. (A5)

We next show that V(?imp|a, Fn) is a consistent estimator of the first term of (A.5). For this, we must show that
V(Yimpla, Fn) converges to E[V(Yimpla, Fv)|Fn] and it is sufficient to demonstrate that

V(niN72V(Yimpla, Fn)IFn) = o(1).

Since we assumed that a; ~ Bernoulli(mr,;4;), we have Cov(a;a;, axa)| Fy) = kikj(1—kix;) where if (i, j) = (k, ) or (i, j) = (I, k)
and Cov(a;a;, axa| Fy) = 0 otherwise. By assumption (11) and (12), we have

VN2V (Yimp|a, )| Fn)
VINT2VCY ~ wiimila, F)l

ieAq

N N
VDY Y @ywimiwiinl Fi]
i=1 j=1
N
=2

i=1 j

N N

2 2.2

2 Z Z Qjrcirci(1 — kike )i m;
i=1 j=1

N
> 2y2uCov(ninj, meml F)
=1

™=
M=

1

=
Il

1

IA

2m3x{x,/<](1 ik e n? max|9,j|)22|.ou
i=1 j=1

= O(N~h.

Therefore, \A/(f(imp|a, Fn) is consistent for E[V(f’,-mpla, Fn)IFN]
Finally, the last term of (A.5) is

VIE(Vimpla, i) Fi] = VIEQY | wimila, F )l Fn]

ieAq

N
= VLY mlFv]
i=1
N N
=) Cov(mi, mjlFn)

=1 i=1
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||Mz

Cov(k; ael,/c] la;e;)

1—K1

N
N
Therefore, by combining all the results, we have

‘A/(?impha FN) = 1mp|-7:N ZK e +0p(n2 1Nz)

which, by (A.4) and (A.6), establlshes (16). m
Appendix B. Proof of Theorem 2

Proof. First define Y}, as

o) _ (k) (k) *(k (k)
Yeer = wliyl+zw Z y,]
icAy icAy j€Az
where y;;( = yfk) + e(k) X ,B +( ﬁ ) is the kth replicate of y;. Now,
v (K) v (k)
YFEFI YFEFI

(k) (k) (k) (k) *(k)
= 2w Qv vy = Dl ) ity
icAy jehy icAy jeAy
, 2k

_ Z ) /ﬁ + Z ) D jens wn (w21\11 D —xiB )

- U gy
iy ichy ZjeAz wy; (wa1j — 1)

® A
_ Z w(k X ﬂ n Z w(k) 2 jen, Wi (Wajit; — 1Y — XiB)

(k)
icAy icAy ZJEAZ wi; (w1 — 1)
") '
K Dici, Wii ; O

= Z Wi X — G Z wi(wy — 1% | (B — B)

| ic, ZjeAz wy; (wany — 1) i

- i

(k)
! D iea, (1= ai)wy; X RO
= (1 —awix - 1,{ > " aw(wa — 1)x; | x (B — B).
S G ( )( ii—1)
| ieAq jeA; diWqi (W21 e
Define
(k)
X2C - Z wll x“
ieAq
o (k k
X = Zaiwﬁi)(wzim — 1)x;,
ieAq
and

ok k
X = Z(l — i w' ;.

icAq

Further, let I(Ig;), N(") and N(k) be defined similarly using 1 instead of x;. Then, (B.2) can be written by

~ (K ~
[x k) x“‘)N(") /N(k)] ( ﬂ“) —B).
Note that
K (K
(X)) = Xi¢ = ECEY)
and

Ny (k Ny (k N (k
E(NY) = N = E(NJ9).

1c

(B.2)

(B.4)

(B.5)
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Also, we have 1(15'2) = ﬁgk) + Op(n, TN N) and I(JS‘) = Mk) + Op(n, 12N ). Using the Taylor expansion, the ratio term in (B.3)
can be expressed as

N(k) . B N N—l(N(k) _ N(k)) B
=25 = INTINGE + 0p(m; )] | = — =l 4 0y(ny )
N, N3¢ (N=IN3.)
ok S k) ok
_ Ngc) NEC)(NE - Ngc)) ~1/2
= 2o~ RCY I op(n, )
N1c ( 1c)

= 140,(n; "),
based on (B.5). Hence, the first term in (B.3) can be expressed as
X — XN /RS = (XY 4 0,(n, N)] = [1 + 0p(n; NIXY + 0,(n, *N)]
= [xﬁ’; +0,(n; N — XY 4 0,(n; VN

by (B.4). By combining (19) and (B.G), we have
Vigh = Yigh + 0p(n; 'N). (B7)

With the choice of w*(k)

Yimp in (9). That is,

FEFI—Zw11yl+Zw1sz xﬂ +( —Xﬂ ))

given by (18), we can show that Y EF, in (B.1) is algebraically equivalent to the kth replicate of

icA; ich, JjeA
k Ky A(k) k k Ak
= Lovitn e e Dl i 48"
Ay icAy JjehAy
k k
— Zw(lx)y' Z () / (B.8)
i€Ay lEAz

(k) 5 (k)

i = 0. Since the FEFI estimator (6) is equivalent to the mass imputation

where the last equality follows from Z]eA w;;
estimator (2), we have
(k) % v % (k) v (K)
Yeer — Yeern = YFEFI = Yeerr + Yegg — Ve
= V() — Yimp + 0p(n; 'N),
where the second equality holds by (B.7) and (B.8). Therefore, by Theorem 1, the result (20) follows. ®
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